if_zyd.c revision 1.8 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.8 2007/07/16 06:56:23 nisimura Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.8 2007/07/16 06:56:23 nisimura Exp $");
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/proc.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39
40 #include <machine/bus.h>
41 #include <machine/endian.h>
42
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <dev/firmload.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_zydreg.h>
71
72 #ifdef USB_DEBUG
73 #define ZYD_DEBUG
74 #endif
75
76 #ifdef ZYD_DEBUG
77 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
79 int zyddebug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
86 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
87
88 /* various supported device vendors/products */
89 #define ZYD_ZD1211_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
91 #define ZYD_ZD1211B_DEV(v, p) \
92 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
93 static const struct zyd_type {
94 struct usb_devno dev;
95 uint8_t rev;
96 #define ZYD_ZD1211 0
97 #define ZYD_ZD1211B 1
98 } zyd_devs[] = {
99 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
100 ZYD_ZD1211_DEV(ABOCOM, WL54),
101 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
102 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
103 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
104 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
106 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
107 ZYD_ZD1211_DEV(SAGEM, XG760A),
108 ZYD_ZD1211_DEV(SENAO, NUB8301),
109 ZYD_ZD1211_DEV(SITECOMEU, WL113),
110 ZYD_ZD1211_DEV(SWEEX, ZD1211),
111 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
113 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
114 ZYD_ZD1211_DEV(TWINMOS, G240),
115 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
117 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
118 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
119 ZYD_ZD1211_DEV(ZCOM, ZD1211),
120 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
121 ZYD_ZD1211_DEV(ZYXEL, AG225H),
122 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
126 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
127 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
128 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
129 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
131 ZYD_ZD1211B_DEV(MELCO, KG54L),
132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
133 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
134 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
135 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
136 #if 0 /* Shall we needs? */
137 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
138 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
139 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
140 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
141 #endif
142 ZYD_ZD1211B_DEV(USR, USR5423),
143 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
144 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
145 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
146 ZYD_ZD1211B_DEV(ZYXEL, M202),
147 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
148 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
149 };
150 #define zyd_lookup(v, p) \
151 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
152
153 USB_DECLARE_DRIVER(zyd);
154
155 Static int zyd_attachhook(void *);
156 Static int zyd_complete_attach(struct zyd_softc *);
157 Static int zyd_open_pipes(struct zyd_softc *);
158 Static void zyd_close_pipes(struct zyd_softc *);
159 Static int zyd_alloc_tx_list(struct zyd_softc *);
160 Static void zyd_free_tx_list(struct zyd_softc *);
161 Static int zyd_alloc_rx_list(struct zyd_softc *);
162 Static void zyd_free_rx_list(struct zyd_softc *);
163 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
164 Static int zyd_media_change(struct ifnet *);
165 Static void zyd_next_scan(void *);
166 Static void zyd_task(void *);
167 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
169 void *, int, u_int);
170 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
171 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
172 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
173 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
174 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
175 Static void zyd_lock_phy(struct zyd_softc *);
176 Static void zyd_unlock_phy(struct zyd_softc *);
177 Static int zyd_rfmd_init(struct zyd_rf *);
178 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
179 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
180 Static int zyd_al2230_init(struct zyd_rf *);
181 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
182 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
183 Static int zyd_al2230_init_b(struct zyd_rf *);
184 Static int zyd_al7230B_init(struct zyd_rf *);
185 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
186 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
187 Static int zyd_al2210_init(struct zyd_rf *);
188 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
189 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
190 Static int zyd_gct_init(struct zyd_rf *);
191 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
192 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
193 Static int zyd_maxim_init(struct zyd_rf *);
194 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
195 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_maxim2_init(struct zyd_rf *);
197 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
198 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
199 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
200 Static const char *zyd_rf_name(uint8_t);
201 Static int zyd_hw_init(struct zyd_softc *);
202 Static int zyd_read_eeprom(struct zyd_softc *);
203 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
204 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
205 Static int zyd_switch_radio(struct zyd_softc *, int);
206 Static void zyd_set_led(struct zyd_softc *, int, int);
207 Static int zyd_set_rxfilter(struct zyd_softc *);
208 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
209 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
210 Static uint8_t zyd_plcp_signal(int);
211 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
212 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
213 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
214 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
215 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
216 struct ieee80211_node *);
217 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
218 struct ieee80211_node *);
219 Static void zyd_start(struct ifnet *);
220 Static void zyd_watchdog(struct ifnet *);
221 Static int zyd_ioctl(struct ifnet *, u_long, void *);
222 Static int zyd_init(struct ifnet *);
223 Static void zyd_stop(struct ifnet *, int);
224 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
225 Static void zyd_iter_func(void *, struct ieee80211_node *);
226 Static void zyd_amrr_timeout(void *);
227 Static void zyd_newassoc(struct ieee80211_node *, int);
228
229 static const struct ieee80211_rateset zyd_rateset_11b =
230 { 4, { 2, 4, 11, 22 } };
231
232 static const struct ieee80211_rateset zyd_rateset_11g =
233 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
234
235 USB_MATCH(zyd)
236 {
237 USB_MATCH_START(zyd, uaa);
238
239 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
240 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
241 }
242
243 Static int
244 zyd_attachhook(void *xsc)
245 {
246 struct zyd_softc *sc = xsc;
247 firmware_handle_t fwh;
248 const char *fwname;
249 u_char *fw;
250 size_t size;
251 int error;
252
253 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
254 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
255 printf("%s: failed to open firmware %s (error=%d)\n",
256 USBDEVNAME(sc->sc_dev), fwname, error);
257 return error;
258 }
259 size = firmware_get_size(fwh);
260 fw = firmware_malloc(size);
261 if (fw == NULL) {
262 printf("%s: failed to allocate firmware memory\n",
263 USBDEVNAME(sc->sc_dev));
264 firmware_close(fwh);
265 return ENOMEM;;
266 }
267 error = firmware_read(fwh, 0, fw, size);
268 firmware_close(fwh);
269 if (error != 0) {
270 printf("%s: failed to read firmware (error %d)\n",
271 USBDEVNAME(sc->sc_dev), error);
272 firmware_free(fw, 0);
273 return error;
274 }
275
276 error = zyd_loadfirmware(sc, fw, size);
277 if (error != 0) {
278 printf("%s: could not load firmware (error=%d)\n",
279 USBDEVNAME(sc->sc_dev), error);
280 firmware_free(fw, 0);
281 return ENXIO;
282 }
283
284 firmware_free(fw, 0);
285 sc->sc_flags |= ZD1211_FWLOADED;
286
287 /* complete the attach process */
288 if ((error = zyd_complete_attach(sc)) == 0)
289 sc->attached = 1;
290 return error;
291 }
292
293 USB_ATTACH(zyd)
294 {
295 USB_ATTACH_START(zyd, sc, uaa);
296 char *devinfop;
297 usb_device_descriptor_t* ddesc;
298 struct ifnet *ifp = &sc->sc_if;
299
300 sc->sc_udev = uaa->device;
301 sc->sc_flags = 0;
302
303 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
304 USB_ATTACH_SETUP;
305 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
306 usbd_devinfo_free(devinfop);
307
308 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
309
310 ddesc = usbd_get_device_descriptor(sc->sc_udev);
311 if (UGETW(ddesc->bcdDevice) < 0x4330) {
312 printf("%s: device version mismatch: 0x%x "
313 "(only >= 43.30 supported)\n", USBDEVNAME(sc->sc_dev),
314 UGETW(ddesc->bcdDevice));
315 USB_ATTACH_ERROR_RETURN;
316 }
317
318 ifp->if_softc = sc;
319 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
320 ifp->if_init = zyd_init;
321 ifp->if_ioctl = zyd_ioctl;
322 ifp->if_start = zyd_start;
323 ifp->if_watchdog = zyd_watchdog;
324 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
325 IFQ_SET_READY(&ifp->if_snd);
326 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
327
328 if_attach(ifp);
329 /* XXXX: alloc temporarily until the layer2 can be configured. */
330 if_alloc_sadl(ifp);
331
332 SIMPLEQ_INIT(&sc->sc_rqh);
333
334 USB_ATTACH_SUCCESS_RETURN;
335 }
336
337 Static int
338 zyd_complete_attach(struct zyd_softc *sc)
339 {
340 struct ieee80211com *ic = &sc->sc_ic;
341 struct ifnet *ifp = &sc->sc_if;
342 usbd_status error;
343 int i;
344
345 usb_init_task(&sc->sc_task, zyd_task, sc);
346 usb_callout_init(sc->sc_scan_ch);
347
348 sc->amrr.amrr_min_success_threshold = 1;
349 sc->amrr.amrr_max_success_threshold = 10;
350 usb_callout_init(sc->sc_amrr_ch);
351
352 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
353 if (error != 0) {
354 printf("%s: setting config no failed\n",
355 USBDEVNAME(sc->sc_dev));
356 goto fail;
357 }
358
359 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
360 &sc->sc_iface);
361 if (error != 0) {
362 printf("%s: getting interface handle failed\n",
363 USBDEVNAME(sc->sc_dev));
364 goto fail;
365 }
366
367 if ((error = zyd_open_pipes(sc)) != 0) {
368 printf("%s: could not open pipes\n", USBDEVNAME(sc->sc_dev));
369 goto fail;
370 }
371
372 if ((error = zyd_read_eeprom(sc)) != 0) {
373 printf("%s: could not read EEPROM\n", USBDEVNAME(sc->sc_dev));
374 goto fail;
375 }
376
377 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
378 printf("%s: could not attach RF\n", USBDEVNAME(sc->sc_dev));
379 goto fail;
380 }
381
382 if ((error = zyd_hw_init(sc)) != 0) {
383 printf("%s: hardware initialization failed\n",
384 USBDEVNAME(sc->sc_dev));
385 goto fail;
386 }
387
388 printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
389 USBDEVNAME(sc->sc_dev), (sc->mac_rev == ZYD_ZD1211) ? "": "B",
390 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
391 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
392
393 ic->ic_ifp = ifp;
394 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
395 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
396 ic->ic_state = IEEE80211_S_INIT;
397
398 /* set device capabilities */
399 ic->ic_caps =
400 IEEE80211_C_MONITOR | /* monitor mode supported */
401 IEEE80211_C_TXPMGT | /* tx power management */
402 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
403 IEEE80211_C_WEP; /* s/w WEP */
404
405 /* set supported .11b and .11g rates */
406 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
407 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
408
409 /* set supported .11b and .11g channels (1 through 14) */
410 for (i = 1; i <= 14; i++) {
411 ic->ic_channels[i].ic_freq =
412 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
413 ic->ic_channels[i].ic_flags =
414 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
415 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
416 }
417
418 if_free_sadl(ifp);
419 ieee80211_ifattach(ic);
420 ic->ic_node_alloc = zyd_node_alloc;
421 ic->ic_newassoc = zyd_newassoc;
422
423 /* override state transition machine */
424 sc->sc_newstate = ic->ic_newstate;
425 ic->ic_newstate = zyd_newstate;
426 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
427
428 #if NBPFILTER > 0
429 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
430 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
431 &sc->sc_drvbpf);
432
433 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
434 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
435 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
436
437 sc->sc_txtap_len = sizeof sc->sc_txtapu;
438 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
439 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
440 #endif
441
442 ieee80211_announce(ic);
443
444 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
445 USBDEV(sc->sc_dev));
446
447 fail: return error;
448 }
449
450 USB_DETACH(zyd)
451 {
452 USB_DETACH_START(zyd, sc);
453 struct ieee80211com *ic = &sc->sc_ic;
454 struct ifnet *ifp = &sc->sc_if;
455 int s;
456
457 if (!sc->attached) {
458 if_free_sadl(ifp);
459 if_detach(ifp);
460 return 0;
461 }
462
463 s = splusb();
464
465 zyd_stop(ifp, 1);
466 usb_rem_task(sc->sc_udev, &sc->sc_task);
467 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
468 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
469
470 zyd_close_pipes(sc);
471
472 zyd_free_rx_list(sc);
473 zyd_free_tx_list(sc);
474
475 sc->attached = 0;
476
477 #if NBPFILTER > 0
478 bpfdetach(ifp);
479 #endif
480 ieee80211_ifdetach(ic);
481 if_detach(ifp);
482
483 splx(s);
484
485 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
486 USBDEV(sc->sc_dev));
487
488 return 0;
489 }
490
491 Static int
492 zyd_open_pipes(struct zyd_softc *sc)
493 {
494 usb_endpoint_descriptor_t *edesc;
495 int isize;
496 usbd_status error;
497
498 /* interrupt in */
499 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
500 if (edesc == NULL)
501 return EINVAL;
502
503 isize = UGETW(edesc->wMaxPacketSize);
504 if (isize == 0) /* should not happen */
505 return EINVAL;
506
507 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
508 if (sc->ibuf == NULL)
509 return ENOMEM;
510
511 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
512 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
513 USBD_DEFAULT_INTERVAL);
514 if (error != 0) {
515 printf("%s: open rx intr pipe failed: %s\n",
516 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
517 goto fail;
518 }
519
520 /* interrupt out (not necessarily an interrupt pipe) */
521 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
522 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
523 if (error != 0) {
524 printf("%s: open tx intr pipe failed: %s\n",
525 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
526 goto fail;
527 }
528
529 /* bulk in */
530 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
531 &sc->zyd_ep[ZYD_ENDPT_BIN]);
532 if (error != 0) {
533 printf("%s: open rx pipe failed: %s\n",
534 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
535 goto fail;
536 }
537
538 /* bulk out */
539 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
540 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
541 if (error != 0) {
542 printf("%s: open tx pipe failed: %s\n",
543 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
544 goto fail;
545 }
546
547 return 0;
548
549 fail: zyd_close_pipes(sc);
550 return error;
551 }
552
553 Static void
554 zyd_close_pipes(struct zyd_softc *sc)
555 {
556 int i;
557
558 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
559 if (sc->zyd_ep[i] != NULL) {
560 usbd_abort_pipe(sc->zyd_ep[i]);
561 usbd_close_pipe(sc->zyd_ep[i]);
562 sc->zyd_ep[i] = NULL;
563 }
564 }
565 if (sc->ibuf != NULL) {
566 free(sc->ibuf, M_USBDEV);
567 sc->ibuf = NULL;
568 }
569 }
570
571 Static int
572 zyd_alloc_tx_list(struct zyd_softc *sc)
573 {
574 int i, error;
575
576 sc->tx_queued = 0;
577
578 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
579 struct zyd_tx_data *data = &sc->tx_data[i];
580
581 data->sc = sc; /* backpointer for callbacks */
582
583 data->xfer = usbd_alloc_xfer(sc->sc_udev);
584 if (data->xfer == NULL) {
585 printf("%s: could not allocate tx xfer\n",
586 USBDEVNAME(sc->sc_dev));
587 error = ENOMEM;
588 goto fail;
589 }
590 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
591 if (data->buf == NULL) {
592 printf("%s: could not allocate tx buffer\n",
593 USBDEVNAME(sc->sc_dev));
594 error = ENOMEM;
595 goto fail;
596 }
597
598 /* clear Tx descriptor */
599 bzero(data->buf, sizeof (struct zyd_tx_desc));
600 }
601 return 0;
602
603 fail: zyd_free_tx_list(sc);
604 return error;
605 }
606
607 Static void
608 zyd_free_tx_list(struct zyd_softc *sc)
609 {
610 int i;
611
612 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
613 struct zyd_tx_data *data = &sc->tx_data[i];
614
615 if (data->xfer != NULL) {
616 usbd_free_xfer(data->xfer);
617 data->xfer = NULL;
618 }
619 if (data->ni != NULL) {
620 ieee80211_free_node(data->ni);
621 data->ni = NULL;
622 }
623 }
624 }
625
626 Static int
627 zyd_alloc_rx_list(struct zyd_softc *sc)
628 {
629 int i, error;
630
631 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
632 struct zyd_rx_data *data = &sc->rx_data[i];
633
634 data->sc = sc; /* backpointer for callbacks */
635
636 data->xfer = usbd_alloc_xfer(sc->sc_udev);
637 if (data->xfer == NULL) {
638 printf("%s: could not allocate rx xfer\n",
639 USBDEVNAME(sc->sc_dev));
640 error = ENOMEM;
641 goto fail;
642 }
643 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
644 if (data->buf == NULL) {
645 printf("%s: could not allocate rx buffer\n",
646 USBDEVNAME(sc->sc_dev));
647 error = ENOMEM;
648 goto fail;
649 }
650 }
651 return 0;
652
653 fail: zyd_free_rx_list(sc);
654 return error;
655 }
656
657 Static void
658 zyd_free_rx_list(struct zyd_softc *sc)
659 {
660 int i;
661
662 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
663 struct zyd_rx_data *data = &sc->rx_data[i];
664
665 if (data->xfer != NULL) {
666 usbd_free_xfer(data->xfer);
667 data->xfer = NULL;
668 }
669 }
670 }
671
672 /* ARGUSED */
673 Static struct ieee80211_node *
674 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
675 {
676 struct zyd_node *zn;
677
678 zn = malloc(sizeof (struct zyd_node), M_DEVBUF, M_NOWAIT);
679 if (zn != NULL)
680 bzero(zn, sizeof (struct zyd_node));
681 return (struct ieee80211_node *)zn;
682 }
683
684 Static int
685 zyd_media_change(struct ifnet *ifp)
686 {
687 int error;
688
689 error = ieee80211_media_change(ifp);
690 if (error != ENETRESET)
691 return error;
692
693 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
694 zyd_init(ifp);
695
696 return 0;
697 }
698
699 /*
700 * This function is called periodically (every 200ms) during scanning to
701 * switch from one channel to another.
702 */
703 Static void
704 zyd_next_scan(void *arg)
705 {
706 struct zyd_softc *sc = arg;
707 struct ieee80211com *ic = &sc->sc_ic;
708
709 if (ic->ic_state == IEEE80211_S_SCAN)
710 ieee80211_next_scan(ic);
711 }
712
713 Static void
714 zyd_task(void *arg)
715 {
716 struct zyd_softc *sc = arg;
717 struct ieee80211com *ic = &sc->sc_ic;
718 enum ieee80211_state ostate;
719
720 ostate = ic->ic_state;
721
722 switch (sc->sc_state) {
723 case IEEE80211_S_INIT:
724 if (ostate == IEEE80211_S_RUN) {
725 /* turn link LED off */
726 zyd_set_led(sc, ZYD_LED1, 0);
727
728 /* stop data LED from blinking */
729 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
730 }
731 break;
732
733 case IEEE80211_S_SCAN:
734 zyd_set_chan(sc, ic->ic_curchan);
735 usb_callout(sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
736 break;
737
738 case IEEE80211_S_AUTH:
739 case IEEE80211_S_ASSOC:
740 zyd_set_chan(sc, ic->ic_curchan);
741 break;
742
743 case IEEE80211_S_RUN:
744 {
745 struct ieee80211_node *ni = ic->ic_bss;
746
747 zyd_set_chan(sc, ic->ic_curchan);
748
749 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
750 /* turn link LED on */
751 zyd_set_led(sc, ZYD_LED1, 1);
752
753 /* make data LED blink upon Tx */
754 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
755
756 zyd_set_bssid(sc, ni->ni_bssid);
757 }
758
759 if (ic->ic_opmode == IEEE80211_M_STA) {
760 /* fake a join to init the tx rate */
761 zyd_newassoc(ni, 1);
762 }
763
764 /* start automatic rate control timer */
765 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
766 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
767
768 break;
769 }
770 }
771
772 sc->sc_newstate(ic, sc->sc_state, -1);
773 }
774
775 Static int
776 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
777 {
778 struct zyd_softc *sc = ic->ic_ifp->if_softc;
779
780 usb_rem_task(sc->sc_udev, &sc->sc_task);
781 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
782 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
783
784 /* do it in a process context */
785 sc->sc_state = nstate;
786 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
787
788 return 0;
789 }
790
791 Static int
792 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
793 void *odata, int olen, u_int flags)
794 {
795 usbd_xfer_handle xfer;
796 struct zyd_cmd cmd;
797 struct rq rq;
798 uint16_t xferflags;
799 usbd_status error;
800 int s = 0;
801
802 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
803 return ENOMEM;
804
805 cmd.code = htole16(code);
806 bcopy(idata, cmd.data, ilen);
807
808 xferflags = USBD_FORCE_SHORT_XFER;
809 if (!(flags & ZYD_CMD_FLAG_READ))
810 xferflags |= USBD_SYNCHRONOUS;
811 else {
812 s = splusb();
813 rq.idata = idata;
814 rq.odata = odata;
815 rq.len = olen / sizeof (struct zyd_pair);
816 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
817 }
818
819 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
820 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
821 error = usbd_transfer(xfer);
822 if (error != USBD_IN_PROGRESS && error != 0) {
823 if (flags & ZYD_CMD_FLAG_READ)
824 splx(s);
825 printf("%s: could not send command (error=%s)\n",
826 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
827 (void)usbd_free_xfer(xfer);
828 return EIO;
829 }
830 if (!(flags & ZYD_CMD_FLAG_READ)) {
831 (void)usbd_free_xfer(xfer);
832 return 0; /* write: don't wait for reply */
833 }
834 /* wait at most one second for command reply */
835 error = tsleep(odata, PCATCH, "zydcmd", hz);
836 if (error == EWOULDBLOCK)
837 printf("%s: zyd_read sleep timeout\n", USBDEVNAME(sc->sc_dev));
838 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
839 splx(s);
840
841 (void)usbd_free_xfer(xfer);
842 return error;
843 }
844
845 Static int
846 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
847 {
848 struct zyd_pair tmp;
849 int error;
850
851 reg = htole16(reg);
852 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp,
853 ZYD_CMD_FLAG_READ);
854 if (error == 0)
855 *val = le16toh(tmp.val);
856 return error;
857 }
858
859 Static int
860 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
861 {
862 struct zyd_pair tmp[2];
863 uint16_t regs[2];
864 int error;
865
866 regs[0] = htole16(ZYD_REG32_HI(reg));
867 regs[1] = htole16(ZYD_REG32_LO(reg));
868 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
869 ZYD_CMD_FLAG_READ);
870 if (error == 0)
871 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
872 return error;
873 }
874
875 Static int
876 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
877 {
878 struct zyd_pair pair;
879
880 pair.reg = htole16(reg);
881 pair.val = htole16(val);
882
883 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
884 }
885
886 Static int
887 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
888 {
889 struct zyd_pair pair[2];
890
891 pair[0].reg = htole16(ZYD_REG32_HI(reg));
892 pair[0].val = htole16(val >> 16);
893 pair[1].reg = htole16(ZYD_REG32_LO(reg));
894 pair[1].val = htole16(val & 0xffff);
895
896 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
897 }
898
899 Static int
900 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
901 {
902 struct zyd_rf *rf = &sc->sc_rf;
903 struct zyd_rfwrite req;
904 uint16_t cr203;
905 int i;
906
907 (void)zyd_read16(sc, ZYD_CR203, &cr203);
908 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
909
910 req.code = htole16(2);
911 req.width = htole16(rf->width);
912 for (i = 0; i < rf->width; i++) {
913 req.bit[i] = htole16(cr203);
914 if (val & (1 << (rf->width - 1 - i)))
915 req.bit[i] |= htole16(ZYD_RF_DATA);
916 }
917 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
918 }
919
920 Static void
921 zyd_lock_phy(struct zyd_softc *sc)
922 {
923 uint32_t tmp;
924
925 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
926 tmp &= ~ZYD_UNLOCK_PHY_REGS;
927 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
928 }
929
930 Static void
931 zyd_unlock_phy(struct zyd_softc *sc)
932 {
933 uint32_t tmp;
934
935 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
936 tmp |= ZYD_UNLOCK_PHY_REGS;
937 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
938 }
939
940 /*
941 * RFMD RF methods.
942 */
943 Static int
944 zyd_rfmd_init(struct zyd_rf *rf)
945 {
946 #define N(a) (sizeof (a) / sizeof ((a)[0]))
947 struct zyd_softc *sc = rf->rf_sc;
948 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
949 static const uint32_t rfini[] = ZYD_RFMD_RF;
950 int i, error;
951
952 /* init RF-dependent PHY registers */
953 for (i = 0; i < N(phyini); i++) {
954 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
955 if (error != 0)
956 return error;
957 }
958
959 /* init RFMD radio */
960 for (i = 0; i < N(rfini); i++) {
961 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
962 return error;
963 }
964 return 0;
965 #undef N
966 }
967
968 Static int
969 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
970 {
971 struct zyd_softc *sc = rf->rf_sc;
972
973 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
974 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
975
976 return 0;
977 }
978
979 Static int
980 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
981 {
982 struct zyd_softc *sc = rf->rf_sc;
983 static const struct {
984 uint32_t r1, r2;
985 } rfprog[] = ZYD_RFMD_CHANTABLE;
986
987 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
988 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
989
990 return 0;
991 }
992
993 /*
994 * AL2230 RF methods.
995 */
996 Static int
997 zyd_al2230_init(struct zyd_rf *rf)
998 {
999 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1000 struct zyd_softc *sc = rf->rf_sc;
1001 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1002 static const uint32_t rfini[] = ZYD_AL2230_RF;
1003 int i, error;
1004
1005 /* init RF-dependent PHY registers */
1006 for (i = 0; i < N(phyini); i++) {
1007 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1008 if (error != 0)
1009 return error;
1010 }
1011
1012 /* init AL2230 radio */
1013 for (i = 0; i < N(rfini); i++) {
1014 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1015 return error;
1016 }
1017 return 0;
1018 #undef N
1019 }
1020
1021 Static int
1022 zyd_al2230_init_b(struct zyd_rf *rf)
1023 {
1024 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1025 struct zyd_softc *sc = rf->rf_sc;
1026 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1027 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1028 int i, error;
1029
1030 /* init RF-dependent PHY registers */
1031 for (i = 0; i < N(phyini); i++) {
1032 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1033 if (error != 0)
1034 return error;
1035 }
1036
1037 /* init AL2230 radio */
1038 for (i = 0; i < N(rfini); i++) {
1039 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1040 return error;
1041 }
1042 return 0;
1043 #undef N
1044 }
1045
1046 Static int
1047 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1048 {
1049 struct zyd_softc *sc = rf->rf_sc;
1050 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1051
1052 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1053 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1054
1055 return 0;
1056 }
1057
1058 Static int
1059 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1060 {
1061 struct zyd_softc *sc = rf->rf_sc;
1062 static const struct {
1063 uint32_t r1, r2, r3;
1064 } rfprog[] = ZYD_AL2230_CHANTABLE;
1065
1066 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1067 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1068 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1069
1070 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1071 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1072
1073 return 0;
1074 }
1075
1076 /*
1077 * AL7230B RF methods.
1078 */
1079 Static int
1080 zyd_al7230B_init(struct zyd_rf *rf)
1081 {
1082 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1083 struct zyd_softc *sc = rf->rf_sc;
1084 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1085 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1086 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1087 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1088 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1089 int i, error;
1090
1091 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1092
1093 /* init RF-dependent PHY registers, part one */
1094 for (i = 0; i < N(phyini_1); i++) {
1095 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1096 if (error != 0)
1097 return error;
1098 }
1099 /* init AL7230B radio, part one */
1100 for (i = 0; i < N(rfini_1); i++) {
1101 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1102 return error;
1103 }
1104 /* init RF-dependent PHY registers, part two */
1105 for (i = 0; i < N(phyini_2); i++) {
1106 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1107 if (error != 0)
1108 return error;
1109 }
1110 /* init AL7230B radio, part two */
1111 for (i = 0; i < N(rfini_2); i++) {
1112 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1113 return error;
1114 }
1115 /* init RF-dependent PHY registers, part three */
1116 for (i = 0; i < N(phyini_3); i++) {
1117 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1118 if (error != 0)
1119 return error;
1120 }
1121
1122 return 0;
1123 #undef N
1124 }
1125
1126 Static int
1127 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1128 {
1129 struct zyd_softc *sc = rf->rf_sc;
1130
1131 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1132 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1133
1134 return 0;
1135 }
1136
1137 Static int
1138 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1139 {
1140 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1141 struct zyd_softc *sc = rf->rf_sc;
1142 static const struct {
1143 uint32_t r1, r2;
1144 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1145 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1146 int i, error;
1147
1148 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1149 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1150
1151 for (i = 0; i < N(rfsc); i++) {
1152 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1153 return error;
1154 }
1155
1156 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1157 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1158 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1159 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1160 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1161
1162 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1163 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1164 (void)zyd_rfwrite(sc, 0x3c9000);
1165
1166 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1167 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1168 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1169
1170 return 0;
1171 #undef N
1172 }
1173
1174 /*
1175 * AL2210 RF methods.
1176 */
1177 Static int
1178 zyd_al2210_init(struct zyd_rf *rf)
1179 {
1180 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1181 struct zyd_softc *sc = rf->rf_sc;
1182 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1183 static const uint32_t rfini[] = ZYD_AL2210_RF;
1184 uint32_t tmp;
1185 int i, error;
1186
1187 (void)zyd_write32(sc, ZYD_CR18, 2);
1188
1189 /* init RF-dependent PHY registers */
1190 for (i = 0; i < N(phyini); i++) {
1191 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1192 if (error != 0)
1193 return error;
1194 }
1195 /* init AL2210 radio */
1196 for (i = 0; i < N(rfini); i++) {
1197 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1198 return error;
1199 }
1200 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1201 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1202 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1203 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1204 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1205 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1206 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1207 (void)zyd_write32(sc, ZYD_CR18, 3);
1208
1209 return 0;
1210 #undef N
1211 }
1212
1213 Static int
1214 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1215 {
1216 /* vendor driver does nothing for this RF chip */
1217
1218 return 0;
1219 }
1220
1221 Static int
1222 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1223 {
1224 struct zyd_softc *sc = rf->rf_sc;
1225 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1226 uint32_t tmp;
1227
1228 (void)zyd_write32(sc, ZYD_CR18, 2);
1229 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1230 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1231 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1232 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1233 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1234
1235 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1236 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1237
1238 /* actually set the channel */
1239 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1240
1241 (void)zyd_write32(sc, ZYD_CR18, 3);
1242
1243 return 0;
1244 }
1245
1246 /*
1247 * GCT RF methods.
1248 */
1249 Static int
1250 zyd_gct_init(struct zyd_rf *rf)
1251 {
1252 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1253 struct zyd_softc *sc = rf->rf_sc;
1254 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1255 static const uint32_t rfini[] = ZYD_GCT_RF;
1256 int i, error;
1257
1258 /* init RF-dependent PHY registers */
1259 for (i = 0; i < N(phyini); i++) {
1260 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1261 if (error != 0)
1262 return error;
1263 }
1264 /* init cgt radio */
1265 for (i = 0; i < N(rfini); i++) {
1266 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1267 return error;
1268 }
1269 return 0;
1270 #undef N
1271 }
1272
1273 Static int
1274 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1275 {
1276 /* vendor driver does nothing for this RF chip */
1277
1278 return 0;
1279 }
1280
1281 Static int
1282 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1283 {
1284 struct zyd_softc *sc = rf->rf_sc;
1285 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1286
1287 (void)zyd_rfwrite(sc, 0x1c0000);
1288 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1289 (void)zyd_rfwrite(sc, 0x1c0008);
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * Maxim RF methods.
1296 */
1297 Static int
1298 zyd_maxim_init(struct zyd_rf *rf)
1299 {
1300 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1301 struct zyd_softc *sc = rf->rf_sc;
1302 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1303 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1304 uint16_t tmp;
1305 int i, error;
1306
1307 /* init RF-dependent PHY registers */
1308 for (i = 0; i < N(phyini); i++) {
1309 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1310 if (error != 0)
1311 return error;
1312 }
1313 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1314 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1315
1316 /* init maxim radio */
1317 for (i = 0; i < N(rfini); i++) {
1318 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1319 return error;
1320 }
1321 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1322 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1323
1324 return 0;
1325 #undef N
1326 }
1327
1328 Static int
1329 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1330 {
1331 /* vendor driver does nothing for this RF chip */
1332
1333 return 0;
1334 }
1335
1336 Static int
1337 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1338 {
1339 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1340 struct zyd_softc *sc = rf->rf_sc;
1341 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1342 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1343 static const struct {
1344 uint32_t r1, r2;
1345 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1346 uint16_t tmp;
1347 int i, error;
1348
1349 /*
1350 * Do the same as we do when initializing it, except for the channel
1351 * values coming from the two channel tables.
1352 */
1353
1354 /* init RF-dependent PHY registers */
1355 for (i = 0; i < N(phyini); i++) {
1356 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1357 if (error != 0)
1358 return error;
1359 }
1360 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1361 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1362
1363 /* first two values taken from the chantables */
1364 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1365 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1366
1367 /* init maxim radio - skipping the two first values */
1368 for (i = 2; i < N(rfini); i++) {
1369 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1370 return error;
1371 }
1372 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1373 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1374
1375 return 0;
1376 #undef N
1377 }
1378
1379 /*
1380 * Maxim2 RF methods.
1381 */
1382 Static int
1383 zyd_maxim2_init(struct zyd_rf *rf)
1384 {
1385 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1386 struct zyd_softc *sc = rf->rf_sc;
1387 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1388 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1389 uint16_t tmp;
1390 int i, error;
1391
1392 /* init RF-dependent PHY registers */
1393 for (i = 0; i < N(phyini); i++) {
1394 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1395 if (error != 0)
1396 return error;
1397 }
1398 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1399 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1400
1401 /* init maxim2 radio */
1402 for (i = 0; i < N(rfini); i++) {
1403 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1404 return error;
1405 }
1406 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1407 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1408
1409 return 0;
1410 #undef N
1411 }
1412
1413 Static int
1414 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1415 {
1416 /* vendor driver does nothing for this RF chip */
1417
1418 return 0;
1419 }
1420
1421 Static int
1422 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1423 {
1424 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1425 struct zyd_softc *sc = rf->rf_sc;
1426 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1427 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1428 static const struct {
1429 uint32_t r1, r2;
1430 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1431 uint16_t tmp;
1432 int i, error;
1433
1434 /*
1435 * Do the same as we do when initializing it, except for the channel
1436 * values coming from the two channel tables.
1437 */
1438
1439 /* init RF-dependent PHY registers */
1440 for (i = 0; i < N(phyini); i++) {
1441 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1442 if (error != 0)
1443 return error;
1444 }
1445 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1446 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1447
1448 /* first two values taken from the chantables */
1449 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1450 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1451
1452 /* init maxim2 radio - skipping the two first values */
1453 for (i = 2; i < N(rfini); i++) {
1454 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1455 return error;
1456 }
1457 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1458 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1459
1460 return 0;
1461 #undef N
1462 }
1463
1464 Static int
1465 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1466 {
1467 struct zyd_rf *rf = &sc->sc_rf;
1468
1469 rf->rf_sc = sc;
1470
1471 switch (type) {
1472 case ZYD_RF_RFMD:
1473 rf->init = zyd_rfmd_init;
1474 rf->switch_radio = zyd_rfmd_switch_radio;
1475 rf->set_channel = zyd_rfmd_set_channel;
1476 rf->width = 24; /* 24-bit RF values */
1477 break;
1478 case ZYD_RF_AL2230:
1479 if (sc->mac_rev == ZYD_ZD1211B)
1480 rf->init = zyd_al2230_init_b;
1481 else
1482 rf->init = zyd_al2230_init;
1483 rf->switch_radio = zyd_al2230_switch_radio;
1484 rf->set_channel = zyd_al2230_set_channel;
1485 rf->width = 24; /* 24-bit RF values */
1486 break;
1487 case ZYD_RF_AL7230B:
1488 rf->init = zyd_al7230B_init;
1489 rf->switch_radio = zyd_al7230B_switch_radio;
1490 rf->set_channel = zyd_al7230B_set_channel;
1491 rf->width = 24; /* 24-bit RF values */
1492 break;
1493 case ZYD_RF_AL2210:
1494 rf->init = zyd_al2210_init;
1495 rf->switch_radio = zyd_al2210_switch_radio;
1496 rf->set_channel = zyd_al2210_set_channel;
1497 rf->width = 24; /* 24-bit RF values */
1498 break;
1499 case ZYD_RF_GCT:
1500 rf->init = zyd_gct_init;
1501 rf->switch_radio = zyd_gct_switch_radio;
1502 rf->set_channel = zyd_gct_set_channel;
1503 rf->width = 21; /* 21-bit RF values */
1504 break;
1505 case ZYD_RF_MAXIM_NEW:
1506 rf->init = zyd_maxim_init;
1507 rf->switch_radio = zyd_maxim_switch_radio;
1508 rf->set_channel = zyd_maxim_set_channel;
1509 rf->width = 18; /* 18-bit RF values */
1510 break;
1511 case ZYD_RF_MAXIM_NEW2:
1512 rf->init = zyd_maxim2_init;
1513 rf->switch_radio = zyd_maxim2_switch_radio;
1514 rf->set_channel = zyd_maxim2_set_channel;
1515 rf->width = 18; /* 18-bit RF values */
1516 break;
1517 default:
1518 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1519 USBDEVNAME(sc->sc_dev), zyd_rf_name(type));
1520 return EINVAL;
1521 }
1522 return 0;
1523 }
1524
1525 Static const char *
1526 zyd_rf_name(uint8_t type)
1527 {
1528 static const char * const zyd_rfs[] = {
1529 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1530 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1531 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1532 "PHILIPS"
1533 };
1534
1535 return zyd_rfs[(type > 15) ? 0 : type];
1536 }
1537
1538 Static int
1539 zyd_hw_init(struct zyd_softc *sc)
1540 {
1541 struct zyd_rf *rf = &sc->sc_rf;
1542 const struct zyd_phy_pair *phyp;
1543 int error;
1544
1545 /* specify that the plug and play is finished */
1546 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1547
1548 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1549 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1550
1551 /* retrieve firmware revision number */
1552 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1553
1554 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1555 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1556
1557 /* disable interrupts */
1558 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1559
1560 /* PHY init */
1561 zyd_lock_phy(sc);
1562 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1563 for (; phyp->reg != 0; phyp++) {
1564 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1565 goto fail;
1566 }
1567 zyd_unlock_phy(sc);
1568
1569 /* HMAC init */
1570 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1571 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1572
1573 if (sc->mac_rev == ZYD_ZD1211) {
1574 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1575 } else {
1576 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1578 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1579 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1580 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1581 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1582 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1583 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1584 }
1585
1586 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1587 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1588 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1589 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1590 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1591 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1592 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1593 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1594 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1595 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1596 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1597 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1598 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1599 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1600 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1601 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1602 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1603
1604 /* RF chip init */
1605 zyd_lock_phy(sc);
1606 error = (*rf->init)(rf);
1607 zyd_unlock_phy(sc);
1608 if (error != 0) {
1609 printf("%s: radio initialization failed\n",
1610 USBDEVNAME(sc->sc_dev));
1611 goto fail;
1612 }
1613
1614 /* init beacon interval to 100ms */
1615 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1616 goto fail;
1617
1618 fail: return error;
1619 }
1620
1621 Static int
1622 zyd_read_eeprom(struct zyd_softc *sc)
1623 {
1624 struct ieee80211com *ic = &sc->sc_ic;
1625 uint32_t tmp;
1626 uint16_t val;
1627 int i;
1628
1629 /* read MAC address */
1630 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1631 ic->ic_myaddr[0] = tmp & 0xff;
1632 ic->ic_myaddr[1] = tmp >> 8;
1633 ic->ic_myaddr[2] = tmp >> 16;
1634 ic->ic_myaddr[3] = tmp >> 24;
1635 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1636 ic->ic_myaddr[4] = tmp & 0xff;
1637 ic->ic_myaddr[5] = tmp >> 8;
1638
1639 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1640 sc->rf_rev = tmp & 0x0f;
1641 sc->pa_rev = (tmp >> 16) & 0x0f;
1642
1643 /* read regulatory domain (currently unused) */
1644 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1645 sc->regdomain = tmp >> 16;
1646 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1647
1648 /* read Tx power calibration tables */
1649 for (i = 0; i < 7; i++) {
1650 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1651 sc->pwr_cal[i * 2] = val >> 8;
1652 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1653
1654 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1655 sc->pwr_int[i * 2] = val >> 8;
1656 sc->pwr_int[i * 2 + 1] = val & 0xff;
1657
1658 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1659 sc->ofdm36_cal[i * 2] = val >> 8;
1660 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1661
1662 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1663 sc->ofdm48_cal[i * 2] = val >> 8;
1664 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1665
1666 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1667 sc->ofdm54_cal[i * 2] = val >> 8;
1668 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1669 }
1670 return 0;
1671 }
1672
1673 Static int
1674 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1675 {
1676 uint32_t tmp;
1677
1678 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1679 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1680
1681 tmp = addr[5] << 8 | addr[4];
1682 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1683
1684 return 0;
1685 }
1686
1687 Static int
1688 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1689 {
1690 uint32_t tmp;
1691
1692 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1693 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1694
1695 tmp = addr[5] << 8 | addr[4];
1696 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1697
1698 return 0;
1699 }
1700
1701 Static int
1702 zyd_switch_radio(struct zyd_softc *sc, int on)
1703 {
1704 struct zyd_rf *rf = &sc->sc_rf;
1705 int error;
1706
1707 zyd_lock_phy(sc);
1708 error = (*rf->switch_radio)(rf, on);
1709 zyd_unlock_phy(sc);
1710
1711 return error;
1712 }
1713
1714 Static void
1715 zyd_set_led(struct zyd_softc *sc, int which, int on)
1716 {
1717 uint32_t tmp;
1718
1719 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1720 tmp &= ~which;
1721 if (on)
1722 tmp |= which;
1723 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1724 }
1725
1726 Static int
1727 zyd_set_rxfilter(struct zyd_softc *sc)
1728 {
1729 uint32_t rxfilter;
1730
1731 switch (sc->sc_ic.ic_opmode) {
1732 case IEEE80211_M_STA:
1733 rxfilter = ZYD_FILTER_BSS;
1734 break;
1735 case IEEE80211_M_IBSS:
1736 case IEEE80211_M_HOSTAP:
1737 rxfilter = ZYD_FILTER_HOSTAP;
1738 break;
1739 case IEEE80211_M_MONITOR:
1740 rxfilter = ZYD_FILTER_MONITOR;
1741 break;
1742 default:
1743 /* should not get there */
1744 return EINVAL;
1745 }
1746 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1747 }
1748
1749 Static void
1750 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1751 {
1752 struct ieee80211com *ic = &sc->sc_ic;
1753 struct zyd_rf *rf = &sc->sc_rf;
1754 u_int chan;
1755
1756 chan = ieee80211_chan2ieee(ic, c);
1757 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1758 return;
1759
1760 zyd_lock_phy(sc);
1761
1762 (*rf->set_channel)(rf, chan);
1763
1764 /* update Tx power */
1765 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1766 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1767
1768 if (sc->mac_rev == ZYD_ZD1211B) {
1769 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1770 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1771 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1772
1773 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1774 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1775 }
1776
1777 zyd_unlock_phy(sc);
1778 }
1779
1780 Static int
1781 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1782 {
1783 /* XXX this is probably broken.. */
1784 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1785 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1786 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1787
1788 return 0;
1789 }
1790
1791 Static uint8_t
1792 zyd_plcp_signal(int rate)
1793 {
1794 switch (rate) {
1795 /* CCK rates (returned values are device-dependent) */
1796 case 2: return 0x0;
1797 case 4: return 0x1;
1798 case 11: return 0x2;
1799 case 22: return 0x3;
1800
1801 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1802 case 12: return 0xb;
1803 case 18: return 0xf;
1804 case 24: return 0xa;
1805 case 36: return 0xe;
1806 case 48: return 0x9;
1807 case 72: return 0xd;
1808 case 96: return 0x8;
1809 case 108: return 0xc;
1810
1811 /* unsupported rates (should not get there) */
1812 default: return 0xff;
1813 }
1814 }
1815
1816 Static void
1817 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1818 {
1819 struct zyd_softc *sc = (struct zyd_softc *)priv;
1820 struct zyd_cmd *cmd;
1821 uint32_t datalen;
1822
1823 if (status != USBD_NORMAL_COMPLETION) {
1824 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1825 return;
1826
1827 if (status == USBD_STALLED) {
1828 usbd_clear_endpoint_stall_async(
1829 sc->zyd_ep[ZYD_ENDPT_IIN]);
1830 }
1831 return;
1832 }
1833
1834 cmd = (struct zyd_cmd *)sc->ibuf;
1835
1836 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1837 struct zyd_notif_retry *retry =
1838 (struct zyd_notif_retry *)cmd->data;
1839 struct ieee80211com *ic = &sc->sc_ic;
1840 struct ifnet *ifp = &sc->sc_if;
1841 struct ieee80211_node *ni;
1842
1843 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1844 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1845 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1846
1847 /*
1848 * Find the node to which the packet was sent and update its
1849 * retry statistics. In BSS mode, this node is the AP we're
1850 * associated to so no lookup is actually needed.
1851 */
1852 if (ic->ic_opmode != IEEE80211_M_STA) {
1853 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1854 if (ni == NULL)
1855 return; /* just ignore */
1856 } else
1857 ni = ic->ic_bss;
1858
1859 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1860
1861 if (le16toh(retry->count) & 0x100)
1862 ifp->if_oerrors++; /* too many retries */
1863
1864 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1865 struct rq *rqp;
1866
1867 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1868 return; /* HMAC interrupt */
1869
1870 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1871 datalen -= sizeof(cmd->code);
1872 datalen -= 2; /* XXX: padding? */
1873
1874 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1875 int i;
1876
1877 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1878 continue;
1879 for (i = 0; i < rqp->len; i++) {
1880 if (*(((const uint16_t *)rqp->idata) + i) !=
1881 (((struct zyd_pair *)cmd->data) + i)->reg)
1882 break;
1883 }
1884 if (i != rqp->len)
1885 continue;
1886
1887 /* copy answer into caller-supplied buffer */
1888 bcopy(cmd->data, rqp->odata,
1889 sizeof(struct zyd_pair) * rqp->len);
1890 wakeup(rqp->odata); /* wakeup caller */
1891
1892 return;
1893 }
1894 return; /* unexpected IORD notification */
1895 } else {
1896 printf("%s: unknown notification %x\n", USBDEVNAME(sc->sc_dev),
1897 le16toh(cmd->code));
1898 }
1899 }
1900
1901 Static void
1902 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1903 {
1904 struct ieee80211com *ic = &sc->sc_ic;
1905 struct ifnet *ifp = &sc->sc_if;
1906 struct ieee80211_node *ni;
1907 struct ieee80211_frame *wh;
1908 const struct zyd_plcphdr *plcp;
1909 const struct zyd_rx_stat *stat;
1910 struct mbuf *m;
1911 int rlen, s;
1912
1913 if (len < ZYD_MIN_FRAGSZ) {
1914 printf("%s: frame too short (length=%d)\n",
1915 USBDEVNAME(sc->sc_dev), len);
1916 ifp->if_ierrors++;
1917 return;
1918 }
1919
1920 plcp = (const struct zyd_plcphdr *)buf;
1921 stat = (const struct zyd_rx_stat *)
1922 (buf + len - sizeof (struct zyd_rx_stat));
1923
1924 if (stat->flags & ZYD_RX_ERROR) {
1925 DPRINTF(("%s: RX status indicated error (%x)\n",
1926 USBDEVNAME(sc->sc_dev), stat->flags));
1927 ifp->if_ierrors++;
1928 return;
1929 }
1930
1931 /* compute actual frame length */
1932 rlen = len - sizeof (struct zyd_plcphdr) -
1933 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1934
1935 /* allocate a mbuf to store the frame */
1936 MGETHDR(m, M_DONTWAIT, MT_DATA);
1937 if (m == NULL) {
1938 printf("%s: could not allocate rx mbuf\n",
1939 USBDEVNAME(sc->sc_dev));
1940 ifp->if_ierrors++;
1941 return;
1942 }
1943 if (rlen > MHLEN) {
1944 MCLGET(m, M_DONTWAIT);
1945 if (!(m->m_flags & M_EXT)) {
1946 printf("%s: could not allocate rx mbuf cluster\n",
1947 USBDEVNAME(sc->sc_dev));
1948 m_freem(m);
1949 ifp->if_ierrors++;
1950 return;
1951 }
1952 }
1953 m->m_pkthdr.rcvif = ifp;
1954 m->m_pkthdr.len = m->m_len = rlen;
1955 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1956
1957 s = splnet();
1958
1959 #if NBPFILTER > 0
1960 if (sc->sc_drvbpf != NULL) {
1961 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1962 static const uint8_t rates[] = {
1963 /* reverse function of zyd_plcp_signal() */
1964 2, 4, 11, 22, 0, 0, 0, 0,
1965 96, 48, 24, 12, 108, 72, 36, 18
1966 };
1967
1968 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1969 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1970 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1971 tap->wr_rssi = stat->rssi;
1972 tap->wr_rate = rates[plcp->signal & 0xf];
1973
1974 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1975 }
1976 #endif
1977
1978 wh = mtod(m, struct ieee80211_frame *);
1979 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1980 ieee80211_input(ic, m, ni, stat->rssi, 0);
1981
1982 /* node is no longer needed */
1983 ieee80211_free_node(ni);
1984
1985 splx(s);
1986 }
1987
1988 Static void
1989 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1990 {
1991 struct zyd_rx_data *data = priv;
1992 struct zyd_softc *sc = data->sc;
1993 struct ifnet *ifp = &sc->sc_if;
1994 const struct zyd_rx_desc *desc;
1995 int len;
1996
1997 if (status != USBD_NORMAL_COMPLETION) {
1998 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1999 return;
2000
2001 if (status == USBD_STALLED)
2002 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2003
2004 goto skip;
2005 }
2006 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2007
2008 if (len < ZYD_MIN_RXBUFSZ) {
2009 printf("%s: xfer too short (length=%d)\n",
2010 USBDEVNAME(sc->sc_dev), len);
2011 ifp->if_ierrors++;
2012 goto skip;
2013 }
2014
2015 desc = (const struct zyd_rx_desc *)
2016 (data->buf + len - sizeof (struct zyd_rx_desc));
2017
2018 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2019 const uint8_t *p = data->buf, *end = p + len;
2020 int i;
2021
2022 DPRINTFN(3, ("received multi-frame transfer\n"));
2023
2024 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2025 const uint16_t len16 = UGETW(desc->len[i]);
2026
2027 if (len16 == 0 || p + len16 > end)
2028 break;
2029
2030 zyd_rx_data(sc, p, len16);
2031 /* next frame is aligned on a 32-bit boundary */
2032 p += (len16 + 3) & ~3;
2033 }
2034 } else {
2035 DPRINTFN(3, ("received single-frame transfer\n"));
2036
2037 zyd_rx_data(sc, data->buf, len);
2038 }
2039
2040 skip: /* setup a new transfer */
2041 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2042 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2043 USBD_NO_TIMEOUT, zyd_rxeof);
2044 (void)usbd_transfer(xfer);
2045 }
2046
2047 Static int
2048 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2049 {
2050 struct ieee80211com *ic = &sc->sc_ic;
2051 struct ifnet *ifp = &sc->sc_if;
2052 struct zyd_tx_desc *desc;
2053 struct zyd_tx_data *data;
2054 struct ieee80211_frame *wh;
2055 int xferlen, totlen, rate;
2056 uint16_t pktlen;
2057 usbd_status error;
2058
2059 data = &sc->tx_data[0];
2060 desc = (struct zyd_tx_desc *)data->buf;
2061
2062 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2063
2064 data->ni = ni;
2065
2066 wh = mtod(m0, struct ieee80211_frame *);
2067
2068 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2069 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2070
2071 /* fill Tx descriptor */
2072 desc->len = htole16(totlen);
2073
2074 desc->flags = ZYD_TX_FLAG_BACKOFF;
2075 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2076 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2077 if (totlen > ic->ic_rtsthreshold) {
2078 desc->flags |= ZYD_TX_FLAG_RTS;
2079 } else if (ZYD_RATE_IS_OFDM(rate) &&
2080 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2081 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2082 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2083 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2084 desc->flags |= ZYD_TX_FLAG_RTS;
2085 }
2086 } else
2087 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2088
2089 if ((wh->i_fc[0] &
2090 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2091 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2092 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2093
2094 desc->phy = zyd_plcp_signal(rate);
2095 if (ZYD_RATE_IS_OFDM(rate)) {
2096 desc->phy |= ZYD_TX_PHY_OFDM;
2097 if (ic->ic_curmode == IEEE80211_MODE_11A)
2098 desc->phy |= ZYD_TX_PHY_5GHZ;
2099 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2100 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2101
2102 /* actual transmit length (XXX why +10?) */
2103 pktlen = sizeof (struct zyd_tx_desc) + 10;
2104 if (sc->mac_rev == ZYD_ZD1211)
2105 pktlen += totlen;
2106 desc->pktlen = htole16(pktlen);
2107
2108 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2109 desc->plcp_service = 0;
2110 if (rate == 22) {
2111 const int remainder = (16 * totlen) % 22;
2112 if (remainder != 0 && remainder < 7)
2113 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2114 }
2115
2116 #if NBPFILTER > 0
2117 if (sc->sc_drvbpf != NULL) {
2118 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2119
2120 tap->wt_flags = 0;
2121 tap->wt_rate = rate;
2122 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2123 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2124
2125 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2126 }
2127 #endif
2128
2129 m_copydata(m0, 0, m0->m_pkthdr.len,
2130 data->buf + sizeof (struct zyd_tx_desc));
2131
2132 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2133 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2134
2135 m_freem(m0); /* mbuf no longer needed */
2136
2137 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2138 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2139 ZYD_TX_TIMEOUT, zyd_txeof);
2140 error = usbd_transfer(data->xfer);
2141 if (error != USBD_IN_PROGRESS && error != 0) {
2142 ifp->if_oerrors++;
2143 return EIO;
2144 }
2145 sc->tx_queued++;
2146
2147 return 0;
2148 }
2149
2150 Static void
2151 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2152 {
2153 struct zyd_tx_data *data = priv;
2154 struct zyd_softc *sc = data->sc;
2155 struct ifnet *ifp = &sc->sc_if;
2156 int s;
2157
2158 if (status != USBD_NORMAL_COMPLETION) {
2159 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2160 return;
2161
2162 printf("%s: could not transmit buffer: %s\n",
2163 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
2164
2165 if (status == USBD_STALLED) {
2166 usbd_clear_endpoint_stall_async(
2167 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2168 }
2169 ifp->if_oerrors++;
2170 return;
2171 }
2172
2173 s = splnet();
2174
2175 /* update rate control statistics */
2176 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2177
2178 ieee80211_free_node(data->ni);
2179 data->ni = NULL;
2180
2181 sc->tx_queued--;
2182 ifp->if_opackets++;
2183
2184 sc->tx_timer = 0;
2185 ifp->if_flags &= ~IFF_OACTIVE;
2186 zyd_start(ifp);
2187
2188 splx(s);
2189 }
2190
2191 Static int
2192 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2193 {
2194 struct ieee80211com *ic = &sc->sc_ic;
2195 struct ifnet *ifp = &sc->sc_if;
2196 struct zyd_tx_desc *desc;
2197 struct zyd_tx_data *data;
2198 struct ieee80211_frame *wh;
2199 struct ieee80211_key *k;
2200 int xferlen, totlen, rate;
2201 uint16_t pktlen;
2202 usbd_status error;
2203
2204 wh = mtod(m0, struct ieee80211_frame *);
2205
2206 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2207 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2208 else
2209 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2210 rate &= IEEE80211_RATE_VAL;
2211
2212 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2213 k = ieee80211_crypto_encap(ic, ni, m0);
2214 if (k == NULL) {
2215 m_freem(m0);
2216 return ENOBUFS;
2217 }
2218
2219 /* packet header may have moved, reset our local pointer */
2220 wh = mtod(m0, struct ieee80211_frame *);
2221 }
2222
2223 data = &sc->tx_data[0];
2224 desc = (struct zyd_tx_desc *)data->buf;
2225
2226 data->ni = ni;
2227
2228 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2229 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2230
2231 /* fill Tx descriptor */
2232 desc->len = htole16(totlen);
2233
2234 desc->flags = ZYD_TX_FLAG_BACKOFF;
2235 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2236 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2237 if (totlen > ic->ic_rtsthreshold) {
2238 desc->flags |= ZYD_TX_FLAG_RTS;
2239 } else if (ZYD_RATE_IS_OFDM(rate) &&
2240 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2241 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2242 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2243 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2244 desc->flags |= ZYD_TX_FLAG_RTS;
2245 }
2246 } else
2247 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2248
2249 if ((wh->i_fc[0] &
2250 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2251 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2252 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2253
2254 desc->phy = zyd_plcp_signal(rate);
2255 if (ZYD_RATE_IS_OFDM(rate)) {
2256 desc->phy |= ZYD_TX_PHY_OFDM;
2257 if (ic->ic_curmode == IEEE80211_MODE_11A)
2258 desc->phy |= ZYD_TX_PHY_5GHZ;
2259 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2260 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2261
2262 /* actual transmit length (XXX why +10?) */
2263 pktlen = sizeof (struct zyd_tx_desc) + 10;
2264 if (sc->mac_rev == ZYD_ZD1211)
2265 pktlen += totlen;
2266 desc->pktlen = htole16(pktlen);
2267
2268 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2269 desc->plcp_service = 0;
2270 if (rate == 22) {
2271 const int remainder = (16 * totlen) % 22;
2272 if (remainder != 0 && remainder < 7)
2273 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2274 }
2275
2276 #if NBPFILTER > 0
2277 if (sc->sc_drvbpf != NULL) {
2278 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2279
2280 tap->wt_flags = 0;
2281 tap->wt_rate = rate;
2282 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2283 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2284
2285 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2286 }
2287 #endif
2288
2289 m_copydata(m0, 0, m0->m_pkthdr.len,
2290 data->buf + sizeof (struct zyd_tx_desc));
2291
2292 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2293 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2294
2295 m_freem(m0); /* mbuf no longer needed */
2296
2297 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2298 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2299 ZYD_TX_TIMEOUT, zyd_txeof);
2300 error = usbd_transfer(data->xfer);
2301 if (error != USBD_IN_PROGRESS && error != 0) {
2302 ifp->if_oerrors++;
2303 return EIO;
2304 }
2305 sc->tx_queued++;
2306
2307 return 0;
2308 }
2309
2310 Static void
2311 zyd_start(struct ifnet *ifp)
2312 {
2313 struct zyd_softc *sc = ifp->if_softc;
2314 struct ieee80211com *ic = &sc->sc_ic;
2315 struct ether_header *eh;
2316 struct ieee80211_node *ni;
2317 struct mbuf *m0;
2318
2319 for (;;) {
2320 IF_POLL(&ic->ic_mgtq, m0);
2321 if (m0 != NULL) {
2322 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2323 ifp->if_flags |= IFF_OACTIVE;
2324 break;
2325 }
2326 IF_DEQUEUE(&ic->ic_mgtq, m0);
2327
2328 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2329 m0->m_pkthdr.rcvif = NULL;
2330 #if NBPFILTER > 0
2331 if (ic->ic_rawbpf != NULL)
2332 bpf_mtap(ic->ic_rawbpf, m0);
2333 #endif
2334 if (zyd_tx_mgt(sc, m0, ni) != 0)
2335 break;
2336 } else {
2337 if (ic->ic_state != IEEE80211_S_RUN)
2338 break;
2339 IFQ_POLL(&ifp->if_snd, m0);
2340 if (m0 == NULL)
2341 break;
2342 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2343 ifp->if_flags |= IFF_OACTIVE;
2344 break;
2345 }
2346 IFQ_DEQUEUE(&ifp->if_snd, m0);
2347
2348 if (m0->m_len < sizeof(struct ether_header) &&
2349 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2350 continue;
2351
2352 eh = mtod(m0, struct ether_header *);
2353 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2354 if (ni == NULL) {
2355 m_freem(m0);
2356 continue;
2357 }
2358 #if NBPFILTER > 0
2359 if (ifp->if_bpf != NULL)
2360 bpf_mtap(ifp->if_bpf, m0);
2361 #endif
2362 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2363 ieee80211_free_node(ni);
2364 ifp->if_oerrors++;
2365 continue;
2366 }
2367 #if NBPFILTER > 0
2368 if (ic->ic_rawbpf != NULL)
2369 bpf_mtap(ic->ic_rawbpf, m0);
2370 #endif
2371 if (zyd_tx_data(sc, m0, ni) != 0) {
2372 ieee80211_free_node(ni);
2373 ifp->if_oerrors++;
2374 break;
2375 }
2376 }
2377
2378 sc->tx_timer = 5;
2379 ifp->if_timer = 1;
2380 }
2381 }
2382
2383 Static void
2384 zyd_watchdog(struct ifnet *ifp)
2385 {
2386 struct zyd_softc *sc = ifp->if_softc;
2387 struct ieee80211com *ic = &sc->sc_ic;
2388
2389 ifp->if_timer = 0;
2390
2391 if (sc->tx_timer > 0) {
2392 if (--sc->tx_timer == 0) {
2393 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
2394 /* zyd_init(ifp); XXX needs a process context ? */
2395 ifp->if_oerrors++;
2396 return;
2397 }
2398 ifp->if_timer = 1;
2399 }
2400
2401 ieee80211_watchdog(ic);
2402 }
2403
2404 Static int
2405 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2406 {
2407 struct zyd_softc *sc = ifp->if_softc;
2408 struct ieee80211com *ic = &sc->sc_ic;
2409 int s, error = 0;
2410
2411 s = splnet();
2412
2413 switch (cmd) {
2414 case SIOCSIFFLAGS:
2415 if (ifp->if_flags & IFF_UP) {
2416 if (!(ifp->if_flags & IFF_RUNNING))
2417 zyd_init(ifp);
2418 } else {
2419 if (ifp->if_flags & IFF_RUNNING)
2420 zyd_stop(ifp, 1);
2421 }
2422 break;
2423
2424 default:
2425 if (!sc->attached)
2426 error = ENOTTY;
2427 else
2428 error = ieee80211_ioctl(ic, cmd, data);
2429 }
2430
2431 if (error == ENETRESET) {
2432 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2433 (IFF_RUNNING | IFF_UP))
2434 zyd_init(ifp);
2435 error = 0;
2436 }
2437
2438 splx(s);
2439
2440 return error;
2441 }
2442
2443 Static int
2444 zyd_init(struct ifnet *ifp)
2445 {
2446 struct zyd_softc *sc = ifp->if_softc;
2447 struct ieee80211com *ic = &sc->sc_ic;
2448 int i, error;
2449
2450 if ((sc->sc_flags & ZD1211_FWLOADED) == 0)
2451 if ((error = zyd_attachhook(sc)) != 0)
2452 return error;
2453
2454 zyd_stop(ifp, 0);
2455
2456 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2457 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2458 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2459 if (error != 0)
2460 return error;
2461
2462 /* we'll do software WEP decryption for now */
2463 DPRINTF(("setting encryption type\n"));
2464 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2465 if (error != 0)
2466 return error;
2467
2468 /* promiscuous mode */
2469 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2470 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2471
2472 (void)zyd_set_rxfilter(sc);
2473
2474 /* switch radio transmitter ON */
2475 (void)zyd_switch_radio(sc, 1);
2476
2477 /* set basic rates */
2478 if (ic->ic_curmode == IEEE80211_MODE_11B)
2479 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2480 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2481 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2482 else /* assumes 802.11b/g */
2483 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2484
2485 /* set mandatory rates */
2486 if (ic->ic_curmode == IEEE80211_MODE_11B)
2487 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2488 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2489 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2490 else /* assumes 802.11b/g */
2491 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2492
2493 /* set default BSS channel */
2494 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2495 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2496
2497 /* enable interrupts */
2498 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2499
2500 /*
2501 * Allocate Tx and Rx xfer queues.
2502 */
2503 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2504 printf("%s: could not allocate Tx list\n",
2505 USBDEVNAME(sc->sc_dev));
2506 goto fail;
2507 }
2508 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2509 printf("%s: could not allocate Rx list\n",
2510 USBDEVNAME(sc->sc_dev));
2511 goto fail;
2512 }
2513
2514 /*
2515 * Start up the receive pipe.
2516 */
2517 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2518 struct zyd_rx_data *data = &sc->rx_data[i];
2519
2520 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2521 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2522 USBD_NO_TIMEOUT, zyd_rxeof);
2523 error = usbd_transfer(data->xfer);
2524 if (error != USBD_IN_PROGRESS && error != 0) {
2525 printf("%s: could not queue Rx transfer\n",
2526 USBDEVNAME(sc->sc_dev));
2527 goto fail;
2528 }
2529 }
2530
2531 ifp->if_flags &= ~IFF_OACTIVE;
2532 ifp->if_flags |= IFF_RUNNING;
2533
2534 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2535 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2536 else
2537 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2538
2539 return 0;
2540
2541 fail: zyd_stop(ifp, 1);
2542 return error;
2543 }
2544
2545 Static void
2546 zyd_stop(struct ifnet *ifp, int disable)
2547 {
2548 struct zyd_softc *sc = ifp->if_softc;
2549 struct ieee80211com *ic = &sc->sc_ic;
2550
2551 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2552
2553 sc->tx_timer = 0;
2554 ifp->if_timer = 0;
2555 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2556
2557 /* switch radio transmitter OFF */
2558 (void)zyd_switch_radio(sc, 0);
2559
2560 /* disable Rx */
2561 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2562
2563 /* disable interrupts */
2564 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2565
2566 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2567 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2568
2569 zyd_free_rx_list(sc);
2570 zyd_free_tx_list(sc);
2571 }
2572
2573 Static int
2574 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2575 {
2576 usb_device_request_t req;
2577 uint16_t addr;
2578 uint8_t stat;
2579
2580 DPRINTF(("firmware size=%zu\n", size));
2581
2582 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2583 req.bRequest = ZYD_DOWNLOADREQ;
2584 USETW(req.wIndex, 0);
2585
2586 addr = ZYD_FIRMWARE_START_ADDR;
2587 while (size > 0) {
2588 #if 0
2589 const int mlen = min(size, 4096);
2590 #else
2591 /*
2592 * XXXX: When the transfer size is 4096 bytes, it is not
2593 * likely to be able to transfer it.
2594 * The cause is port or machine or chip?
2595 */
2596 const int mlen = min(size, 64);
2597 #endif
2598
2599 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2600 addr));
2601
2602 USETW(req.wValue, addr);
2603 USETW(req.wLength, mlen);
2604 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2605 return EIO;
2606
2607 addr += mlen / 2;
2608 fw += mlen;
2609 size -= mlen;
2610 }
2611
2612 /* check whether the upload succeeded */
2613 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2614 req.bRequest = ZYD_DOWNLOADSTS;
2615 USETW(req.wValue, 0);
2616 USETW(req.wIndex, 0);
2617 USETW(req.wLength, sizeof stat);
2618 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2619 return EIO;
2620
2621 return (stat & 0x80) ? EIO : 0;
2622 }
2623
2624 Static void
2625 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2626 {
2627 struct zyd_softc *sc = arg;
2628 struct zyd_node *zn = (struct zyd_node *)ni;
2629
2630 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2631 }
2632
2633 Static void
2634 zyd_amrr_timeout(void *arg)
2635 {
2636 struct zyd_softc *sc = arg;
2637 struct ieee80211com *ic = &sc->sc_ic;
2638 int s;
2639
2640 s = splnet();
2641 if (ic->ic_opmode == IEEE80211_M_STA)
2642 zyd_iter_func(sc, ic->ic_bss);
2643 else
2644 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2645 splx(s);
2646
2647 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2648 }
2649
2650 Static void
2651 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2652 {
2653 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2654 int i;
2655
2656 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2657
2658 /* set rate to some reasonable initial value */
2659 for (i = ni->ni_rates.rs_nrates - 1;
2660 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2661 i--);
2662 ni->ni_txrate = i;
2663 }
2664
2665 int
2666 zyd_activate(device_ptr_t self, enum devact act)
2667 {
2668 struct zyd_softc *sc = (struct zyd_softc *)self;
2669
2670 switch (act) {
2671 case DVACT_ACTIVATE:
2672 break;
2673
2674 case DVACT_DEACTIVATE:
2675 if_deactivate(&sc->sc_if);
2676 break;
2677 }
2678 return 0;
2679 }
2680