if_zyd.c revision 1.8.2.1 1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.8.2.1 2007/09/03 10:22:03 skrll Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich (at) florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.8.2.1 2007/09/03 10:22:03 skrll Exp $");
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/proc.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39
40 #include <machine/bus.h>
41 #include <machine/endian.h>
42
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <dev/firmload.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
69
70 #include <dev/usb/if_zydreg.h>
71
72 #ifdef USB_DEBUG
73 #define ZYD_DEBUG
74 #endif
75
76 #ifdef ZYD_DEBUG
77 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
79 int zyddebug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
86 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
87
88 /* various supported device vendors/products */
89 #define ZYD_ZD1211_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
91 #define ZYD_ZD1211B_DEV(v, p) \
92 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
93 static const struct zyd_type {
94 struct usb_devno dev;
95 uint8_t rev;
96 #define ZYD_ZD1211 0
97 #define ZYD_ZD1211B 1
98 } zyd_devs[] = {
99 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
100 ZYD_ZD1211_DEV(ABOCOM, WL54),
101 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
102 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
103 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
104 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
106 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
107 ZYD_ZD1211_DEV(SAGEM, XG760A),
108 ZYD_ZD1211_DEV(SENAO, NUB8301),
109 ZYD_ZD1211_DEV(SITECOMEU, WL113),
110 ZYD_ZD1211_DEV(SWEEX, ZD1211),
111 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
113 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
114 ZYD_ZD1211_DEV(TWINMOS, G240),
115 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
117 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
118 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
119 ZYD_ZD1211_DEV(ZCOM, ZD1211),
120 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
121 ZYD_ZD1211_DEV(ZYXEL, AG225H),
122 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
126 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
127 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
128 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
129 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
131 ZYD_ZD1211B_DEV(MELCO, KG54L),
132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
133 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
134 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
135 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
136 #if 0 /* Shall we needs? */
137 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
138 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
139 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
140 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
141 #endif
142 ZYD_ZD1211B_DEV(USR, USR5423),
143 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
144 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
145 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
146 ZYD_ZD1211B_DEV(ZYXEL, M202),
147 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
148 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
149 };
150 #define zyd_lookup(v, p) \
151 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
152
153 USB_DECLARE_DRIVER(zyd);
154
155 Static int zyd_attachhook(void *);
156 Static int zyd_complete_attach(struct zyd_softc *);
157 Static int zyd_open_pipes(struct zyd_softc *);
158 Static void zyd_close_pipes(struct zyd_softc *);
159 Static int zyd_alloc_tx_list(struct zyd_softc *);
160 Static void zyd_free_tx_list(struct zyd_softc *);
161 Static int zyd_alloc_rx_list(struct zyd_softc *);
162 Static void zyd_free_rx_list(struct zyd_softc *);
163 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
164 Static int zyd_media_change(struct ifnet *);
165 Static void zyd_next_scan(void *);
166 Static void zyd_task(void *);
167 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
169 void *, int, u_int);
170 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
171 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
172 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
173 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
174 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
175 Static void zyd_lock_phy(struct zyd_softc *);
176 Static void zyd_unlock_phy(struct zyd_softc *);
177 Static int zyd_rfmd_init(struct zyd_rf *);
178 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
179 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
180 Static int zyd_al2230_init(struct zyd_rf *);
181 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
182 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
183 Static int zyd_al2230_init_b(struct zyd_rf *);
184 Static int zyd_al7230B_init(struct zyd_rf *);
185 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
186 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
187 Static int zyd_al2210_init(struct zyd_rf *);
188 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
189 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
190 Static int zyd_gct_init(struct zyd_rf *);
191 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
192 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
193 Static int zyd_maxim_init(struct zyd_rf *);
194 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
195 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
196 Static int zyd_maxim2_init(struct zyd_rf *);
197 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
198 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
199 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
200 Static const char *zyd_rf_name(uint8_t);
201 Static int zyd_hw_init(struct zyd_softc *);
202 Static int zyd_read_eeprom(struct zyd_softc *);
203 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
204 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
205 Static int zyd_switch_radio(struct zyd_softc *, int);
206 Static void zyd_set_led(struct zyd_softc *, int, int);
207 Static int zyd_set_rxfilter(struct zyd_softc *);
208 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
209 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
210 Static uint8_t zyd_plcp_signal(int);
211 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
212 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
213 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
214 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
215 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
216 struct ieee80211_node *);
217 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
218 struct ieee80211_node *);
219 Static void zyd_start(struct ifnet *);
220 Static void zyd_watchdog(struct ifnet *);
221 Static int zyd_ioctl(struct ifnet *, u_long, void *);
222 Static int zyd_init(struct ifnet *);
223 Static void zyd_stop(struct ifnet *, int);
224 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
225 Static void zyd_iter_func(void *, struct ieee80211_node *);
226 Static void zyd_amrr_timeout(void *);
227 Static void zyd_newassoc(struct ieee80211_node *, int);
228
229 static const struct ieee80211_rateset zyd_rateset_11b =
230 { 4, { 2, 4, 11, 22 } };
231
232 static const struct ieee80211_rateset zyd_rateset_11g =
233 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
234
235 USB_MATCH(zyd)
236 {
237 USB_MATCH_START(zyd, uaa);
238
239 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
240 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
241 }
242
243 Static int
244 zyd_attachhook(void *xsc)
245 {
246 struct zyd_softc *sc = xsc;
247 firmware_handle_t fwh;
248 const char *fwname;
249 u_char *fw;
250 size_t size;
251 int error;
252
253 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
254 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
255 printf("%s: failed to open firmware %s (error=%d)\n",
256 USBDEVNAME(sc->sc_dev), fwname, error);
257 return error;
258 }
259 size = firmware_get_size(fwh);
260 fw = firmware_malloc(size);
261 if (fw == NULL) {
262 printf("%s: failed to allocate firmware memory\n",
263 USBDEVNAME(sc->sc_dev));
264 firmware_close(fwh);
265 return ENOMEM;;
266 }
267 error = firmware_read(fwh, 0, fw, size);
268 firmware_close(fwh);
269 if (error != 0) {
270 printf("%s: failed to read firmware (error %d)\n",
271 USBDEVNAME(sc->sc_dev), error);
272 firmware_free(fw, 0);
273 return error;
274 }
275
276 error = zyd_loadfirmware(sc, fw, size);
277 if (error != 0) {
278 printf("%s: could not load firmware (error=%d)\n",
279 USBDEVNAME(sc->sc_dev), error);
280 firmware_free(fw, 0);
281 return ENXIO;
282 }
283
284 firmware_free(fw, 0);
285 sc->sc_flags |= ZD1211_FWLOADED;
286
287 /* complete the attach process */
288 if ((error = zyd_complete_attach(sc)) == 0)
289 sc->attached = 1;
290 return error;
291 }
292
293 USB_ATTACH(zyd)
294 {
295 USB_ATTACH_START(zyd, sc, uaa);
296 char *devinfop;
297 usb_device_descriptor_t* ddesc;
298 struct ifnet *ifp = &sc->sc_if;
299
300 sc->sc_udev = uaa->device;
301 sc->sc_flags = 0;
302
303 devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
304 USB_ATTACH_SETUP;
305 printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
306 usbd_devinfo_free(devinfop);
307
308 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
309
310 ddesc = usbd_get_device_descriptor(sc->sc_udev);
311 if (UGETW(ddesc->bcdDevice) < 0x4330) {
312 printf("%s: device version mismatch: 0x%x "
313 "(only >= 43.30 supported)\n", USBDEVNAME(sc->sc_dev),
314 UGETW(ddesc->bcdDevice));
315 USB_ATTACH_ERROR_RETURN;
316 }
317
318 ifp->if_softc = sc;
319 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
320 ifp->if_init = zyd_init;
321 ifp->if_ioctl = zyd_ioctl;
322 ifp->if_start = zyd_start;
323 ifp->if_watchdog = zyd_watchdog;
324 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
325 IFQ_SET_READY(&ifp->if_snd);
326 memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
327
328 if_attach(ifp);
329 /* XXXX: alloc temporarily until the layer2 can be configured. */
330 if_alloc_sadl(ifp);
331
332 SIMPLEQ_INIT(&sc->sc_rqh);
333
334 USB_ATTACH_SUCCESS_RETURN;
335 }
336
337 Static int
338 zyd_complete_attach(struct zyd_softc *sc)
339 {
340 struct ieee80211com *ic = &sc->sc_ic;
341 struct ifnet *ifp = &sc->sc_if;
342 usbd_status error;
343 int i;
344
345 usb_init_task(&sc->sc_task, zyd_task, sc);
346 usb_callout_init(sc->sc_scan_ch);
347
348 sc->amrr.amrr_min_success_threshold = 1;
349 sc->amrr.amrr_max_success_threshold = 10;
350 usb_callout_init(sc->sc_amrr_ch);
351
352 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
353 if (error != 0) {
354 printf("%s: setting config no failed\n",
355 USBDEVNAME(sc->sc_dev));
356 goto fail;
357 }
358
359 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
360 &sc->sc_iface);
361 if (error != 0) {
362 printf("%s: getting interface handle failed\n",
363 USBDEVNAME(sc->sc_dev));
364 goto fail;
365 }
366
367 if ((error = zyd_open_pipes(sc)) != 0) {
368 printf("%s: could not open pipes\n", USBDEVNAME(sc->sc_dev));
369 goto fail;
370 }
371
372 if ((error = zyd_read_eeprom(sc)) != 0) {
373 printf("%s: could not read EEPROM\n", USBDEVNAME(sc->sc_dev));
374 goto fail;
375 }
376
377 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
378 printf("%s: could not attach RF\n", USBDEVNAME(sc->sc_dev));
379 goto fail;
380 }
381
382 if ((error = zyd_hw_init(sc)) != 0) {
383 printf("%s: hardware initialization failed\n",
384 USBDEVNAME(sc->sc_dev));
385 goto fail;
386 }
387
388 printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
389 USBDEVNAME(sc->sc_dev), (sc->mac_rev == ZYD_ZD1211) ? "": "B",
390 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
391 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
392
393 ic->ic_ifp = ifp;
394 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
395 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
396 ic->ic_state = IEEE80211_S_INIT;
397
398 /* set device capabilities */
399 ic->ic_caps =
400 IEEE80211_C_MONITOR | /* monitor mode supported */
401 IEEE80211_C_TXPMGT | /* tx power management */
402 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
403 IEEE80211_C_WEP; /* s/w WEP */
404
405 /* set supported .11b and .11g rates */
406 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
407 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
408
409 /* set supported .11b and .11g channels (1 through 14) */
410 for (i = 1; i <= 14; i++) {
411 ic->ic_channels[i].ic_freq =
412 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
413 ic->ic_channels[i].ic_flags =
414 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
415 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
416 }
417
418 if_free_sadl(ifp);
419 ieee80211_ifattach(ic);
420 ic->ic_node_alloc = zyd_node_alloc;
421 ic->ic_newassoc = zyd_newassoc;
422
423 /* override state transition machine */
424 sc->sc_newstate = ic->ic_newstate;
425 ic->ic_newstate = zyd_newstate;
426 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
427
428 #if NBPFILTER > 0
429 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
430 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
431 &sc->sc_drvbpf);
432
433 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
434 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
435 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
436
437 sc->sc_txtap_len = sizeof sc->sc_txtapu;
438 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
439 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
440 #endif
441
442 ieee80211_announce(ic);
443
444 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
445 USBDEV(sc->sc_dev));
446
447 fail: return error;
448 }
449
450 USB_DETACH(zyd)
451 {
452 USB_DETACH_START(zyd, sc);
453 struct ieee80211com *ic = &sc->sc_ic;
454 struct ifnet *ifp = &sc->sc_if;
455 int s;
456
457 if (!sc->attached) {
458 if_free_sadl(ifp);
459 if_detach(ifp);
460 return 0;
461 }
462
463 s = splusb();
464
465 zyd_stop(ifp, 1);
466 usb_rem_task(sc->sc_udev, &sc->sc_task);
467 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
468 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
469
470 zyd_close_pipes(sc);
471
472 sc->attached = 0;
473
474 #if NBPFILTER > 0
475 bpfdetach(ifp);
476 #endif
477 ieee80211_ifdetach(ic);
478 if_detach(ifp);
479
480 splx(s);
481
482 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
483 USBDEV(sc->sc_dev));
484
485 return 0;
486 }
487
488 Static int
489 zyd_open_pipes(struct zyd_softc *sc)
490 {
491 usb_endpoint_descriptor_t *edesc;
492 int isize;
493 usbd_status error;
494
495 /* interrupt in */
496 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
497 if (edesc == NULL)
498 return EINVAL;
499
500 isize = UGETW(edesc->wMaxPacketSize);
501 if (isize == 0) /* should not happen */
502 return EINVAL;
503
504 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
505 if (sc->ibuf == NULL)
506 return ENOMEM;
507
508 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
509 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
510 USBD_DEFAULT_INTERVAL);
511 if (error != 0) {
512 printf("%s: open rx intr pipe failed: %s\n",
513 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
514 goto fail;
515 }
516
517 /* interrupt out (not necessarily an interrupt pipe) */
518 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
519 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
520 if (error != 0) {
521 printf("%s: open tx intr pipe failed: %s\n",
522 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
523 goto fail;
524 }
525
526 /* bulk in */
527 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
528 &sc->zyd_ep[ZYD_ENDPT_BIN]);
529 if (error != 0) {
530 printf("%s: open rx pipe failed: %s\n",
531 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
532 goto fail;
533 }
534
535 /* bulk out */
536 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
537 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
538 if (error != 0) {
539 printf("%s: open tx pipe failed: %s\n",
540 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
541 goto fail;
542 }
543
544 return 0;
545
546 fail: zyd_close_pipes(sc);
547 return error;
548 }
549
550 Static void
551 zyd_close_pipes(struct zyd_softc *sc)
552 {
553 int i;
554
555 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
556 if (sc->zyd_ep[i] != NULL) {
557 usbd_abort_pipe(sc->zyd_ep[i]);
558 usbd_close_pipe(sc->zyd_ep[i]);
559 sc->zyd_ep[i] = NULL;
560 }
561 }
562 if (sc->ibuf != NULL) {
563 free(sc->ibuf, M_USBDEV);
564 sc->ibuf = NULL;
565 }
566 }
567
568 Static int
569 zyd_alloc_tx_list(struct zyd_softc *sc)
570 {
571 int i, error;
572
573 sc->tx_queued = 0;
574
575 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
576 struct zyd_tx_data *data = &sc->tx_data[i];
577
578 data->sc = sc; /* backpointer for callbacks */
579
580 data->xfer = usbd_alloc_xfer(sc->sc_udev);
581 if (data->xfer == NULL) {
582 printf("%s: could not allocate tx xfer\n",
583 USBDEVNAME(sc->sc_dev));
584 error = ENOMEM;
585 goto fail;
586 }
587 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
588 if (data->buf == NULL) {
589 printf("%s: could not allocate tx buffer\n",
590 USBDEVNAME(sc->sc_dev));
591 error = ENOMEM;
592 goto fail;
593 }
594
595 /* clear Tx descriptor */
596 bzero(data->buf, sizeof (struct zyd_tx_desc));
597 }
598 return 0;
599
600 fail: zyd_free_tx_list(sc);
601 return error;
602 }
603
604 Static void
605 zyd_free_tx_list(struct zyd_softc *sc)
606 {
607 int i;
608
609 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
610 struct zyd_tx_data *data = &sc->tx_data[i];
611
612 if (data->xfer != NULL) {
613 usbd_free_xfer(data->xfer);
614 data->xfer = NULL;
615 }
616 if (data->ni != NULL) {
617 ieee80211_free_node(data->ni);
618 data->ni = NULL;
619 }
620 }
621 }
622
623 Static int
624 zyd_alloc_rx_list(struct zyd_softc *sc)
625 {
626 int i, error;
627
628 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
629 struct zyd_rx_data *data = &sc->rx_data[i];
630
631 data->sc = sc; /* backpointer for callbacks */
632
633 data->xfer = usbd_alloc_xfer(sc->sc_udev);
634 if (data->xfer == NULL) {
635 printf("%s: could not allocate rx xfer\n",
636 USBDEVNAME(sc->sc_dev));
637 error = ENOMEM;
638 goto fail;
639 }
640 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
641 if (data->buf == NULL) {
642 printf("%s: could not allocate rx buffer\n",
643 USBDEVNAME(sc->sc_dev));
644 error = ENOMEM;
645 goto fail;
646 }
647 }
648 return 0;
649
650 fail: zyd_free_rx_list(sc);
651 return error;
652 }
653
654 Static void
655 zyd_free_rx_list(struct zyd_softc *sc)
656 {
657 int i;
658
659 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
660 struct zyd_rx_data *data = &sc->rx_data[i];
661
662 if (data->xfer != NULL) {
663 usbd_free_xfer(data->xfer);
664 data->xfer = NULL;
665 }
666 }
667 }
668
669 /* ARGUSED */
670 Static struct ieee80211_node *
671 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
672 {
673 struct zyd_node *zn;
674
675 zn = malloc(sizeof (struct zyd_node), M_DEVBUF, M_NOWAIT);
676 if (zn != NULL)
677 bzero(zn, sizeof (struct zyd_node));
678 return (struct ieee80211_node *)zn;
679 }
680
681 Static int
682 zyd_media_change(struct ifnet *ifp)
683 {
684 int error;
685
686 error = ieee80211_media_change(ifp);
687 if (error != ENETRESET)
688 return error;
689
690 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
691 zyd_init(ifp);
692
693 return 0;
694 }
695
696 /*
697 * This function is called periodically (every 200ms) during scanning to
698 * switch from one channel to another.
699 */
700 Static void
701 zyd_next_scan(void *arg)
702 {
703 struct zyd_softc *sc = arg;
704 struct ieee80211com *ic = &sc->sc_ic;
705
706 if (ic->ic_state == IEEE80211_S_SCAN)
707 ieee80211_next_scan(ic);
708 }
709
710 Static void
711 zyd_task(void *arg)
712 {
713 struct zyd_softc *sc = arg;
714 struct ieee80211com *ic = &sc->sc_ic;
715 enum ieee80211_state ostate;
716
717 ostate = ic->ic_state;
718
719 switch (sc->sc_state) {
720 case IEEE80211_S_INIT:
721 if (ostate == IEEE80211_S_RUN) {
722 /* turn link LED off */
723 zyd_set_led(sc, ZYD_LED1, 0);
724
725 /* stop data LED from blinking */
726 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
727 }
728 break;
729
730 case IEEE80211_S_SCAN:
731 zyd_set_chan(sc, ic->ic_curchan);
732 usb_callout(sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
733 break;
734
735 case IEEE80211_S_AUTH:
736 case IEEE80211_S_ASSOC:
737 zyd_set_chan(sc, ic->ic_curchan);
738 break;
739
740 case IEEE80211_S_RUN:
741 {
742 struct ieee80211_node *ni = ic->ic_bss;
743
744 zyd_set_chan(sc, ic->ic_curchan);
745
746 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
747 /* turn link LED on */
748 zyd_set_led(sc, ZYD_LED1, 1);
749
750 /* make data LED blink upon Tx */
751 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
752
753 zyd_set_bssid(sc, ni->ni_bssid);
754 }
755
756 if (ic->ic_opmode == IEEE80211_M_STA) {
757 /* fake a join to init the tx rate */
758 zyd_newassoc(ni, 1);
759 }
760
761 /* start automatic rate control timer */
762 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
763 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
764
765 break;
766 }
767 }
768
769 sc->sc_newstate(ic, sc->sc_state, -1);
770 }
771
772 Static int
773 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
774 {
775 struct zyd_softc *sc = ic->ic_ifp->if_softc;
776
777 usb_rem_task(sc->sc_udev, &sc->sc_task);
778 usb_uncallout(sc->sc_scan_ch, zyd_next_scan, sc);
779 usb_uncallout(sc->sc_amrr_ch, zyd_amrr_timeout, sc);
780
781 /* do it in a process context */
782 sc->sc_state = nstate;
783 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
784
785 return 0;
786 }
787
788 Static int
789 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
790 void *odata, int olen, u_int flags)
791 {
792 usbd_xfer_handle xfer;
793 struct zyd_cmd cmd;
794 struct rq rq;
795 uint16_t xferflags;
796 usbd_status error;
797 int s = 0;
798
799 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
800 return ENOMEM;
801
802 cmd.code = htole16(code);
803 bcopy(idata, cmd.data, ilen);
804
805 xferflags = USBD_FORCE_SHORT_XFER;
806 if (!(flags & ZYD_CMD_FLAG_READ))
807 xferflags |= USBD_SYNCHRONOUS;
808 else {
809 s = splusb();
810 rq.idata = idata;
811 rq.odata = odata;
812 rq.len = olen / sizeof (struct zyd_pair);
813 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
814 }
815
816 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
817 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
818 error = usbd_transfer(xfer);
819 if (error != USBD_IN_PROGRESS && error != 0) {
820 if (flags & ZYD_CMD_FLAG_READ)
821 splx(s);
822 printf("%s: could not send command (error=%s)\n",
823 USBDEVNAME(sc->sc_dev), usbd_errstr(error));
824 (void)usbd_free_xfer(xfer);
825 return EIO;
826 }
827 if (!(flags & ZYD_CMD_FLAG_READ)) {
828 (void)usbd_free_xfer(xfer);
829 return 0; /* write: don't wait for reply */
830 }
831 /* wait at most one second for command reply */
832 error = tsleep(odata, PCATCH, "zydcmd", hz);
833 if (error == EWOULDBLOCK)
834 printf("%s: zyd_read sleep timeout\n", USBDEVNAME(sc->sc_dev));
835 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
836 splx(s);
837
838 (void)usbd_free_xfer(xfer);
839 return error;
840 }
841
842 Static int
843 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
844 {
845 struct zyd_pair tmp;
846 int error;
847
848 reg = htole16(reg);
849 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof reg, &tmp, sizeof tmp,
850 ZYD_CMD_FLAG_READ);
851 if (error == 0)
852 *val = le16toh(tmp.val);
853 return error;
854 }
855
856 Static int
857 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
858 {
859 struct zyd_pair tmp[2];
860 uint16_t regs[2];
861 int error;
862
863 regs[0] = htole16(ZYD_REG32_HI(reg));
864 regs[1] = htole16(ZYD_REG32_LO(reg));
865 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
866 ZYD_CMD_FLAG_READ);
867 if (error == 0)
868 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
869 return error;
870 }
871
872 Static int
873 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
874 {
875 struct zyd_pair pair;
876
877 pair.reg = htole16(reg);
878 pair.val = htole16(val);
879
880 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
881 }
882
883 Static int
884 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
885 {
886 struct zyd_pair pair[2];
887
888 pair[0].reg = htole16(ZYD_REG32_HI(reg));
889 pair[0].val = htole16(val >> 16);
890 pair[1].reg = htole16(ZYD_REG32_LO(reg));
891 pair[1].val = htole16(val & 0xffff);
892
893 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
894 }
895
896 Static int
897 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
898 {
899 struct zyd_rf *rf = &sc->sc_rf;
900 struct zyd_rfwrite req;
901 uint16_t cr203;
902 int i;
903
904 (void)zyd_read16(sc, ZYD_CR203, &cr203);
905 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
906
907 req.code = htole16(2);
908 req.width = htole16(rf->width);
909 for (i = 0; i < rf->width; i++) {
910 req.bit[i] = htole16(cr203);
911 if (val & (1 << (rf->width - 1 - i)))
912 req.bit[i] |= htole16(ZYD_RF_DATA);
913 }
914 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
915 }
916
917 Static void
918 zyd_lock_phy(struct zyd_softc *sc)
919 {
920 uint32_t tmp;
921
922 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
923 tmp &= ~ZYD_UNLOCK_PHY_REGS;
924 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
925 }
926
927 Static void
928 zyd_unlock_phy(struct zyd_softc *sc)
929 {
930 uint32_t tmp;
931
932 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
933 tmp |= ZYD_UNLOCK_PHY_REGS;
934 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
935 }
936
937 /*
938 * RFMD RF methods.
939 */
940 Static int
941 zyd_rfmd_init(struct zyd_rf *rf)
942 {
943 #define N(a) (sizeof (a) / sizeof ((a)[0]))
944 struct zyd_softc *sc = rf->rf_sc;
945 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
946 static const uint32_t rfini[] = ZYD_RFMD_RF;
947 int i, error;
948
949 /* init RF-dependent PHY registers */
950 for (i = 0; i < N(phyini); i++) {
951 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
952 if (error != 0)
953 return error;
954 }
955
956 /* init RFMD radio */
957 for (i = 0; i < N(rfini); i++) {
958 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
959 return error;
960 }
961 return 0;
962 #undef N
963 }
964
965 Static int
966 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
967 {
968 struct zyd_softc *sc = rf->rf_sc;
969
970 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
971 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
972
973 return 0;
974 }
975
976 Static int
977 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
978 {
979 struct zyd_softc *sc = rf->rf_sc;
980 static const struct {
981 uint32_t r1, r2;
982 } rfprog[] = ZYD_RFMD_CHANTABLE;
983
984 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
985 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
986
987 return 0;
988 }
989
990 /*
991 * AL2230 RF methods.
992 */
993 Static int
994 zyd_al2230_init(struct zyd_rf *rf)
995 {
996 #define N(a) (sizeof (a) / sizeof ((a)[0]))
997 struct zyd_softc *sc = rf->rf_sc;
998 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
999 static const uint32_t rfini[] = ZYD_AL2230_RF;
1000 int i, error;
1001
1002 /* init RF-dependent PHY registers */
1003 for (i = 0; i < N(phyini); i++) {
1004 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1005 if (error != 0)
1006 return error;
1007 }
1008
1009 /* init AL2230 radio */
1010 for (i = 0; i < N(rfini); i++) {
1011 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1012 return error;
1013 }
1014 return 0;
1015 #undef N
1016 }
1017
1018 Static int
1019 zyd_al2230_init_b(struct zyd_rf *rf)
1020 {
1021 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1022 struct zyd_softc *sc = rf->rf_sc;
1023 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1024 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1025 int i, error;
1026
1027 /* init RF-dependent PHY registers */
1028 for (i = 0; i < N(phyini); i++) {
1029 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1030 if (error != 0)
1031 return error;
1032 }
1033
1034 /* init AL2230 radio */
1035 for (i = 0; i < N(rfini); i++) {
1036 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1037 return error;
1038 }
1039 return 0;
1040 #undef N
1041 }
1042
1043 Static int
1044 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1045 {
1046 struct zyd_softc *sc = rf->rf_sc;
1047 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1048
1049 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1050 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1051
1052 return 0;
1053 }
1054
1055 Static int
1056 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1057 {
1058 struct zyd_softc *sc = rf->rf_sc;
1059 static const struct {
1060 uint32_t r1, r2, r3;
1061 } rfprog[] = ZYD_AL2230_CHANTABLE;
1062
1063 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1064 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1065 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1066
1067 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1068 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * AL7230B RF methods.
1075 */
1076 Static int
1077 zyd_al7230B_init(struct zyd_rf *rf)
1078 {
1079 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1080 struct zyd_softc *sc = rf->rf_sc;
1081 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1082 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1083 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1084 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1085 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1086 int i, error;
1087
1088 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1089
1090 /* init RF-dependent PHY registers, part one */
1091 for (i = 0; i < N(phyini_1); i++) {
1092 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1093 if (error != 0)
1094 return error;
1095 }
1096 /* init AL7230B radio, part one */
1097 for (i = 0; i < N(rfini_1); i++) {
1098 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1099 return error;
1100 }
1101 /* init RF-dependent PHY registers, part two */
1102 for (i = 0; i < N(phyini_2); i++) {
1103 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1104 if (error != 0)
1105 return error;
1106 }
1107 /* init AL7230B radio, part two */
1108 for (i = 0; i < N(rfini_2); i++) {
1109 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1110 return error;
1111 }
1112 /* init RF-dependent PHY registers, part three */
1113 for (i = 0; i < N(phyini_3); i++) {
1114 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1115 if (error != 0)
1116 return error;
1117 }
1118
1119 return 0;
1120 #undef N
1121 }
1122
1123 Static int
1124 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1125 {
1126 struct zyd_softc *sc = rf->rf_sc;
1127
1128 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1129 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1130
1131 return 0;
1132 }
1133
1134 Static int
1135 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1136 {
1137 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1138 struct zyd_softc *sc = rf->rf_sc;
1139 static const struct {
1140 uint32_t r1, r2;
1141 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1142 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1143 int i, error;
1144
1145 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1146 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1147
1148 for (i = 0; i < N(rfsc); i++) {
1149 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1150 return error;
1151 }
1152
1153 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1154 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1155 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1156 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1157 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1158
1159 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1160 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1161 (void)zyd_rfwrite(sc, 0x3c9000);
1162
1163 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1164 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1165 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1166
1167 return 0;
1168 #undef N
1169 }
1170
1171 /*
1172 * AL2210 RF methods.
1173 */
1174 Static int
1175 zyd_al2210_init(struct zyd_rf *rf)
1176 {
1177 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1178 struct zyd_softc *sc = rf->rf_sc;
1179 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1180 static const uint32_t rfini[] = ZYD_AL2210_RF;
1181 uint32_t tmp;
1182 int i, error;
1183
1184 (void)zyd_write32(sc, ZYD_CR18, 2);
1185
1186 /* init RF-dependent PHY registers */
1187 for (i = 0; i < N(phyini); i++) {
1188 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1189 if (error != 0)
1190 return error;
1191 }
1192 /* init AL2210 radio */
1193 for (i = 0; i < N(rfini); i++) {
1194 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1195 return error;
1196 }
1197 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1198 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1199 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1200 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1201 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1202 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1203 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1204 (void)zyd_write32(sc, ZYD_CR18, 3);
1205
1206 return 0;
1207 #undef N
1208 }
1209
1210 Static int
1211 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1212 {
1213 /* vendor driver does nothing for this RF chip */
1214
1215 return 0;
1216 }
1217
1218 Static int
1219 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1220 {
1221 struct zyd_softc *sc = rf->rf_sc;
1222 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1223 uint32_t tmp;
1224
1225 (void)zyd_write32(sc, ZYD_CR18, 2);
1226 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1227 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1228 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1229 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1230 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1231
1232 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1233 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1234
1235 /* actually set the channel */
1236 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1237
1238 (void)zyd_write32(sc, ZYD_CR18, 3);
1239
1240 return 0;
1241 }
1242
1243 /*
1244 * GCT RF methods.
1245 */
1246 Static int
1247 zyd_gct_init(struct zyd_rf *rf)
1248 {
1249 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1250 struct zyd_softc *sc = rf->rf_sc;
1251 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1252 static const uint32_t rfini[] = ZYD_GCT_RF;
1253 int i, error;
1254
1255 /* init RF-dependent PHY registers */
1256 for (i = 0; i < N(phyini); i++) {
1257 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1258 if (error != 0)
1259 return error;
1260 }
1261 /* init cgt radio */
1262 for (i = 0; i < N(rfini); i++) {
1263 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1264 return error;
1265 }
1266 return 0;
1267 #undef N
1268 }
1269
1270 Static int
1271 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1272 {
1273 /* vendor driver does nothing for this RF chip */
1274
1275 return 0;
1276 }
1277
1278 Static int
1279 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1280 {
1281 struct zyd_softc *sc = rf->rf_sc;
1282 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1283
1284 (void)zyd_rfwrite(sc, 0x1c0000);
1285 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1286 (void)zyd_rfwrite(sc, 0x1c0008);
1287
1288 return 0;
1289 }
1290
1291 /*
1292 * Maxim RF methods.
1293 */
1294 Static int
1295 zyd_maxim_init(struct zyd_rf *rf)
1296 {
1297 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1298 struct zyd_softc *sc = rf->rf_sc;
1299 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1300 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1301 uint16_t tmp;
1302 int i, error;
1303
1304 /* init RF-dependent PHY registers */
1305 for (i = 0; i < N(phyini); i++) {
1306 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1307 if (error != 0)
1308 return error;
1309 }
1310 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1311 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1312
1313 /* init maxim radio */
1314 for (i = 0; i < N(rfini); i++) {
1315 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1316 return error;
1317 }
1318 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1319 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1320
1321 return 0;
1322 #undef N
1323 }
1324
1325 Static int
1326 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1327 {
1328 /* vendor driver does nothing for this RF chip */
1329
1330 return 0;
1331 }
1332
1333 Static int
1334 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1335 {
1336 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1337 struct zyd_softc *sc = rf->rf_sc;
1338 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1339 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1340 static const struct {
1341 uint32_t r1, r2;
1342 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1343 uint16_t tmp;
1344 int i, error;
1345
1346 /*
1347 * Do the same as we do when initializing it, except for the channel
1348 * values coming from the two channel tables.
1349 */
1350
1351 /* init RF-dependent PHY registers */
1352 for (i = 0; i < N(phyini); i++) {
1353 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1354 if (error != 0)
1355 return error;
1356 }
1357 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1358 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1359
1360 /* first two values taken from the chantables */
1361 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1362 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1363
1364 /* init maxim radio - skipping the two first values */
1365 for (i = 2; i < N(rfini); i++) {
1366 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1367 return error;
1368 }
1369 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1370 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1371
1372 return 0;
1373 #undef N
1374 }
1375
1376 /*
1377 * Maxim2 RF methods.
1378 */
1379 Static int
1380 zyd_maxim2_init(struct zyd_rf *rf)
1381 {
1382 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1383 struct zyd_softc *sc = rf->rf_sc;
1384 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1385 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1386 uint16_t tmp;
1387 int i, error;
1388
1389 /* init RF-dependent PHY registers */
1390 for (i = 0; i < N(phyini); i++) {
1391 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1392 if (error != 0)
1393 return error;
1394 }
1395 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1396 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1397
1398 /* init maxim2 radio */
1399 for (i = 0; i < N(rfini); i++) {
1400 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1401 return error;
1402 }
1403 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1404 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1405
1406 return 0;
1407 #undef N
1408 }
1409
1410 Static int
1411 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1412 {
1413 /* vendor driver does nothing for this RF chip */
1414
1415 return 0;
1416 }
1417
1418 Static int
1419 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1420 {
1421 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1422 struct zyd_softc *sc = rf->rf_sc;
1423 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1424 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1425 static const struct {
1426 uint32_t r1, r2;
1427 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1428 uint16_t tmp;
1429 int i, error;
1430
1431 /*
1432 * Do the same as we do when initializing it, except for the channel
1433 * values coming from the two channel tables.
1434 */
1435
1436 /* init RF-dependent PHY registers */
1437 for (i = 0; i < N(phyini); i++) {
1438 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1439 if (error != 0)
1440 return error;
1441 }
1442 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1443 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1444
1445 /* first two values taken from the chantables */
1446 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1447 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1448
1449 /* init maxim2 radio - skipping the two first values */
1450 for (i = 2; i < N(rfini); i++) {
1451 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1452 return error;
1453 }
1454 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1455 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1456
1457 return 0;
1458 #undef N
1459 }
1460
1461 Static int
1462 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1463 {
1464 struct zyd_rf *rf = &sc->sc_rf;
1465
1466 rf->rf_sc = sc;
1467
1468 switch (type) {
1469 case ZYD_RF_RFMD:
1470 rf->init = zyd_rfmd_init;
1471 rf->switch_radio = zyd_rfmd_switch_radio;
1472 rf->set_channel = zyd_rfmd_set_channel;
1473 rf->width = 24; /* 24-bit RF values */
1474 break;
1475 case ZYD_RF_AL2230:
1476 if (sc->mac_rev == ZYD_ZD1211B)
1477 rf->init = zyd_al2230_init_b;
1478 else
1479 rf->init = zyd_al2230_init;
1480 rf->switch_radio = zyd_al2230_switch_radio;
1481 rf->set_channel = zyd_al2230_set_channel;
1482 rf->width = 24; /* 24-bit RF values */
1483 break;
1484 case ZYD_RF_AL7230B:
1485 rf->init = zyd_al7230B_init;
1486 rf->switch_radio = zyd_al7230B_switch_radio;
1487 rf->set_channel = zyd_al7230B_set_channel;
1488 rf->width = 24; /* 24-bit RF values */
1489 break;
1490 case ZYD_RF_AL2210:
1491 rf->init = zyd_al2210_init;
1492 rf->switch_radio = zyd_al2210_switch_radio;
1493 rf->set_channel = zyd_al2210_set_channel;
1494 rf->width = 24; /* 24-bit RF values */
1495 break;
1496 case ZYD_RF_GCT:
1497 rf->init = zyd_gct_init;
1498 rf->switch_radio = zyd_gct_switch_radio;
1499 rf->set_channel = zyd_gct_set_channel;
1500 rf->width = 21; /* 21-bit RF values */
1501 break;
1502 case ZYD_RF_MAXIM_NEW:
1503 rf->init = zyd_maxim_init;
1504 rf->switch_radio = zyd_maxim_switch_radio;
1505 rf->set_channel = zyd_maxim_set_channel;
1506 rf->width = 18; /* 18-bit RF values */
1507 break;
1508 case ZYD_RF_MAXIM_NEW2:
1509 rf->init = zyd_maxim2_init;
1510 rf->switch_radio = zyd_maxim2_switch_radio;
1511 rf->set_channel = zyd_maxim2_set_channel;
1512 rf->width = 18; /* 18-bit RF values */
1513 break;
1514 default:
1515 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1516 USBDEVNAME(sc->sc_dev), zyd_rf_name(type));
1517 return EINVAL;
1518 }
1519 return 0;
1520 }
1521
1522 Static const char *
1523 zyd_rf_name(uint8_t type)
1524 {
1525 static const char * const zyd_rfs[] = {
1526 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1527 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1528 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1529 "PHILIPS"
1530 };
1531
1532 return zyd_rfs[(type > 15) ? 0 : type];
1533 }
1534
1535 Static int
1536 zyd_hw_init(struct zyd_softc *sc)
1537 {
1538 struct zyd_rf *rf = &sc->sc_rf;
1539 const struct zyd_phy_pair *phyp;
1540 int error;
1541
1542 /* specify that the plug and play is finished */
1543 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1544
1545 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1546 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1547
1548 /* retrieve firmware revision number */
1549 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1550
1551 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1552 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1553
1554 /* disable interrupts */
1555 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1556
1557 /* PHY init */
1558 zyd_lock_phy(sc);
1559 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1560 for (; phyp->reg != 0; phyp++) {
1561 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1562 goto fail;
1563 }
1564 zyd_unlock_phy(sc);
1565
1566 /* HMAC init */
1567 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1568 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1569
1570 if (sc->mac_rev == ZYD_ZD1211) {
1571 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1572 } else {
1573 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1574 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1575 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1576 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1577 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1578 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1579 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1580 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1581 }
1582
1583 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1584 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1585 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1586 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1587 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1588 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1589 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1590 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1591 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1592 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1593 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1594 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1595 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1596 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1597 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1598 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1599 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1600
1601 /* RF chip init */
1602 zyd_lock_phy(sc);
1603 error = (*rf->init)(rf);
1604 zyd_unlock_phy(sc);
1605 if (error != 0) {
1606 printf("%s: radio initialization failed\n",
1607 USBDEVNAME(sc->sc_dev));
1608 goto fail;
1609 }
1610
1611 /* init beacon interval to 100ms */
1612 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1613 goto fail;
1614
1615 fail: return error;
1616 }
1617
1618 Static int
1619 zyd_read_eeprom(struct zyd_softc *sc)
1620 {
1621 struct ieee80211com *ic = &sc->sc_ic;
1622 uint32_t tmp;
1623 uint16_t val;
1624 int i;
1625
1626 /* read MAC address */
1627 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1628 ic->ic_myaddr[0] = tmp & 0xff;
1629 ic->ic_myaddr[1] = tmp >> 8;
1630 ic->ic_myaddr[2] = tmp >> 16;
1631 ic->ic_myaddr[3] = tmp >> 24;
1632 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1633 ic->ic_myaddr[4] = tmp & 0xff;
1634 ic->ic_myaddr[5] = tmp >> 8;
1635
1636 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1637 sc->rf_rev = tmp & 0x0f;
1638 sc->pa_rev = (tmp >> 16) & 0x0f;
1639
1640 /* read regulatory domain (currently unused) */
1641 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1642 sc->regdomain = tmp >> 16;
1643 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1644
1645 /* read Tx power calibration tables */
1646 for (i = 0; i < 7; i++) {
1647 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1648 sc->pwr_cal[i * 2] = val >> 8;
1649 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1650
1651 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1652 sc->pwr_int[i * 2] = val >> 8;
1653 sc->pwr_int[i * 2 + 1] = val & 0xff;
1654
1655 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1656 sc->ofdm36_cal[i * 2] = val >> 8;
1657 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1658
1659 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1660 sc->ofdm48_cal[i * 2] = val >> 8;
1661 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1662
1663 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1664 sc->ofdm54_cal[i * 2] = val >> 8;
1665 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1666 }
1667 return 0;
1668 }
1669
1670 Static int
1671 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1672 {
1673 uint32_t tmp;
1674
1675 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1676 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1677
1678 tmp = addr[5] << 8 | addr[4];
1679 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1680
1681 return 0;
1682 }
1683
1684 Static int
1685 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1686 {
1687 uint32_t tmp;
1688
1689 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1690 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1691
1692 tmp = addr[5] << 8 | addr[4];
1693 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1694
1695 return 0;
1696 }
1697
1698 Static int
1699 zyd_switch_radio(struct zyd_softc *sc, int on)
1700 {
1701 struct zyd_rf *rf = &sc->sc_rf;
1702 int error;
1703
1704 zyd_lock_phy(sc);
1705 error = (*rf->switch_radio)(rf, on);
1706 zyd_unlock_phy(sc);
1707
1708 return error;
1709 }
1710
1711 Static void
1712 zyd_set_led(struct zyd_softc *sc, int which, int on)
1713 {
1714 uint32_t tmp;
1715
1716 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1717 tmp &= ~which;
1718 if (on)
1719 tmp |= which;
1720 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1721 }
1722
1723 Static int
1724 zyd_set_rxfilter(struct zyd_softc *sc)
1725 {
1726 uint32_t rxfilter;
1727
1728 switch (sc->sc_ic.ic_opmode) {
1729 case IEEE80211_M_STA:
1730 rxfilter = ZYD_FILTER_BSS;
1731 break;
1732 case IEEE80211_M_IBSS:
1733 case IEEE80211_M_HOSTAP:
1734 rxfilter = ZYD_FILTER_HOSTAP;
1735 break;
1736 case IEEE80211_M_MONITOR:
1737 rxfilter = ZYD_FILTER_MONITOR;
1738 break;
1739 default:
1740 /* should not get there */
1741 return EINVAL;
1742 }
1743 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1744 }
1745
1746 Static void
1747 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1748 {
1749 struct ieee80211com *ic = &sc->sc_ic;
1750 struct zyd_rf *rf = &sc->sc_rf;
1751 u_int chan;
1752
1753 chan = ieee80211_chan2ieee(ic, c);
1754 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1755 return;
1756
1757 zyd_lock_phy(sc);
1758
1759 (*rf->set_channel)(rf, chan);
1760
1761 /* update Tx power */
1762 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1763 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1764
1765 if (sc->mac_rev == ZYD_ZD1211B) {
1766 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1767 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1768 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1769
1770 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1771 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1772 }
1773
1774 zyd_unlock_phy(sc);
1775 }
1776
1777 Static int
1778 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1779 {
1780 /* XXX this is probably broken.. */
1781 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1782 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1783 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1784
1785 return 0;
1786 }
1787
1788 Static uint8_t
1789 zyd_plcp_signal(int rate)
1790 {
1791 switch (rate) {
1792 /* CCK rates (returned values are device-dependent) */
1793 case 2: return 0x0;
1794 case 4: return 0x1;
1795 case 11: return 0x2;
1796 case 22: return 0x3;
1797
1798 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1799 case 12: return 0xb;
1800 case 18: return 0xf;
1801 case 24: return 0xa;
1802 case 36: return 0xe;
1803 case 48: return 0x9;
1804 case 72: return 0xd;
1805 case 96: return 0x8;
1806 case 108: return 0xc;
1807
1808 /* unsupported rates (should not get there) */
1809 default: return 0xff;
1810 }
1811 }
1812
1813 Static void
1814 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1815 {
1816 struct zyd_softc *sc = (struct zyd_softc *)priv;
1817 struct zyd_cmd *cmd;
1818 uint32_t datalen;
1819
1820 if (status != USBD_NORMAL_COMPLETION) {
1821 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1822 return;
1823
1824 if (status == USBD_STALLED) {
1825 usbd_clear_endpoint_stall_async(
1826 sc->zyd_ep[ZYD_ENDPT_IIN]);
1827 }
1828 return;
1829 }
1830
1831 cmd = (struct zyd_cmd *)sc->ibuf;
1832
1833 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1834 struct zyd_notif_retry *retry =
1835 (struct zyd_notif_retry *)cmd->data;
1836 struct ieee80211com *ic = &sc->sc_ic;
1837 struct ifnet *ifp = &sc->sc_if;
1838 struct ieee80211_node *ni;
1839
1840 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1841 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1842 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1843
1844 /*
1845 * Find the node to which the packet was sent and update its
1846 * retry statistics. In BSS mode, this node is the AP we're
1847 * associated to so no lookup is actually needed.
1848 */
1849 if (ic->ic_opmode != IEEE80211_M_STA) {
1850 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1851 if (ni == NULL)
1852 return; /* just ignore */
1853 } else
1854 ni = ic->ic_bss;
1855
1856 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1857
1858 if (le16toh(retry->count) & 0x100)
1859 ifp->if_oerrors++; /* too many retries */
1860
1861 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1862 struct rq *rqp;
1863
1864 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1865 return; /* HMAC interrupt */
1866
1867 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1868 datalen -= sizeof(cmd->code);
1869 datalen -= 2; /* XXX: padding? */
1870
1871 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1872 int i;
1873
1874 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1875 continue;
1876 for (i = 0; i < rqp->len; i++) {
1877 if (*(((const uint16_t *)rqp->idata) + i) !=
1878 (((struct zyd_pair *)cmd->data) + i)->reg)
1879 break;
1880 }
1881 if (i != rqp->len)
1882 continue;
1883
1884 /* copy answer into caller-supplied buffer */
1885 bcopy(cmd->data, rqp->odata,
1886 sizeof(struct zyd_pair) * rqp->len);
1887 wakeup(rqp->odata); /* wakeup caller */
1888
1889 return;
1890 }
1891 return; /* unexpected IORD notification */
1892 } else {
1893 printf("%s: unknown notification %x\n", USBDEVNAME(sc->sc_dev),
1894 le16toh(cmd->code));
1895 }
1896 }
1897
1898 Static void
1899 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1900 {
1901 struct ieee80211com *ic = &sc->sc_ic;
1902 struct ifnet *ifp = &sc->sc_if;
1903 struct ieee80211_node *ni;
1904 struct ieee80211_frame *wh;
1905 const struct zyd_plcphdr *plcp;
1906 const struct zyd_rx_stat *stat;
1907 struct mbuf *m;
1908 int rlen, s;
1909
1910 if (len < ZYD_MIN_FRAGSZ) {
1911 printf("%s: frame too short (length=%d)\n",
1912 USBDEVNAME(sc->sc_dev), len);
1913 ifp->if_ierrors++;
1914 return;
1915 }
1916
1917 plcp = (const struct zyd_plcphdr *)buf;
1918 stat = (const struct zyd_rx_stat *)
1919 (buf + len - sizeof (struct zyd_rx_stat));
1920
1921 if (stat->flags & ZYD_RX_ERROR) {
1922 DPRINTF(("%s: RX status indicated error (%x)\n",
1923 USBDEVNAME(sc->sc_dev), stat->flags));
1924 ifp->if_ierrors++;
1925 return;
1926 }
1927
1928 /* compute actual frame length */
1929 rlen = len - sizeof (struct zyd_plcphdr) -
1930 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1931
1932 /* allocate a mbuf to store the frame */
1933 MGETHDR(m, M_DONTWAIT, MT_DATA);
1934 if (m == NULL) {
1935 printf("%s: could not allocate rx mbuf\n",
1936 USBDEVNAME(sc->sc_dev));
1937 ifp->if_ierrors++;
1938 return;
1939 }
1940 if (rlen > MHLEN) {
1941 MCLGET(m, M_DONTWAIT);
1942 if (!(m->m_flags & M_EXT)) {
1943 printf("%s: could not allocate rx mbuf cluster\n",
1944 USBDEVNAME(sc->sc_dev));
1945 m_freem(m);
1946 ifp->if_ierrors++;
1947 return;
1948 }
1949 }
1950 m->m_pkthdr.rcvif = ifp;
1951 m->m_pkthdr.len = m->m_len = rlen;
1952 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1953
1954 s = splnet();
1955
1956 #if NBPFILTER > 0
1957 if (sc->sc_drvbpf != NULL) {
1958 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1959 static const uint8_t rates[] = {
1960 /* reverse function of zyd_plcp_signal() */
1961 2, 4, 11, 22, 0, 0, 0, 0,
1962 96, 48, 24, 12, 108, 72, 36, 18
1963 };
1964
1965 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1966 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1967 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1968 tap->wr_rssi = stat->rssi;
1969 tap->wr_rate = rates[plcp->signal & 0xf];
1970
1971 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1972 }
1973 #endif
1974
1975 wh = mtod(m, struct ieee80211_frame *);
1976 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1977 ieee80211_input(ic, m, ni, stat->rssi, 0);
1978
1979 /* node is no longer needed */
1980 ieee80211_free_node(ni);
1981
1982 splx(s);
1983 }
1984
1985 Static void
1986 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1987 {
1988 struct zyd_rx_data *data = priv;
1989 struct zyd_softc *sc = data->sc;
1990 struct ifnet *ifp = &sc->sc_if;
1991 const struct zyd_rx_desc *desc;
1992 int len;
1993
1994 if (status != USBD_NORMAL_COMPLETION) {
1995 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1996 return;
1997
1998 if (status == USBD_STALLED)
1999 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2000
2001 goto skip;
2002 }
2003 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2004
2005 if (len < ZYD_MIN_RXBUFSZ) {
2006 printf("%s: xfer too short (length=%d)\n",
2007 USBDEVNAME(sc->sc_dev), len);
2008 ifp->if_ierrors++;
2009 goto skip;
2010 }
2011
2012 desc = (const struct zyd_rx_desc *)
2013 (data->buf + len - sizeof (struct zyd_rx_desc));
2014
2015 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2016 const uint8_t *p = data->buf, *end = p + len;
2017 int i;
2018
2019 DPRINTFN(3, ("received multi-frame transfer\n"));
2020
2021 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2022 const uint16_t len16 = UGETW(desc->len[i]);
2023
2024 if (len16 == 0 || p + len16 > end)
2025 break;
2026
2027 zyd_rx_data(sc, p, len16);
2028 /* next frame is aligned on a 32-bit boundary */
2029 p += (len16 + 3) & ~3;
2030 }
2031 } else {
2032 DPRINTFN(3, ("received single-frame transfer\n"));
2033
2034 zyd_rx_data(sc, data->buf, len);
2035 }
2036
2037 skip: /* setup a new transfer */
2038 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2039 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2040 USBD_NO_TIMEOUT, zyd_rxeof);
2041 (void)usbd_transfer(xfer);
2042 }
2043
2044 Static int
2045 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2046 {
2047 struct ieee80211com *ic = &sc->sc_ic;
2048 struct ifnet *ifp = &sc->sc_if;
2049 struct zyd_tx_desc *desc;
2050 struct zyd_tx_data *data;
2051 struct ieee80211_frame *wh;
2052 int xferlen, totlen, rate;
2053 uint16_t pktlen;
2054 usbd_status error;
2055
2056 data = &sc->tx_data[0];
2057 desc = (struct zyd_tx_desc *)data->buf;
2058
2059 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2060
2061 data->ni = ni;
2062
2063 wh = mtod(m0, struct ieee80211_frame *);
2064
2065 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2066 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2067
2068 /* fill Tx descriptor */
2069 desc->len = htole16(totlen);
2070
2071 desc->flags = ZYD_TX_FLAG_BACKOFF;
2072 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2073 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2074 if (totlen > ic->ic_rtsthreshold) {
2075 desc->flags |= ZYD_TX_FLAG_RTS;
2076 } else if (ZYD_RATE_IS_OFDM(rate) &&
2077 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2078 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2079 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2080 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2081 desc->flags |= ZYD_TX_FLAG_RTS;
2082 }
2083 } else
2084 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2085
2086 if ((wh->i_fc[0] &
2087 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2088 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2089 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2090
2091 desc->phy = zyd_plcp_signal(rate);
2092 if (ZYD_RATE_IS_OFDM(rate)) {
2093 desc->phy |= ZYD_TX_PHY_OFDM;
2094 if (ic->ic_curmode == IEEE80211_MODE_11A)
2095 desc->phy |= ZYD_TX_PHY_5GHZ;
2096 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2097 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2098
2099 /* actual transmit length (XXX why +10?) */
2100 pktlen = sizeof (struct zyd_tx_desc) + 10;
2101 if (sc->mac_rev == ZYD_ZD1211)
2102 pktlen += totlen;
2103 desc->pktlen = htole16(pktlen);
2104
2105 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2106 desc->plcp_service = 0;
2107 if (rate == 22) {
2108 const int remainder = (16 * totlen) % 22;
2109 if (remainder != 0 && remainder < 7)
2110 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2111 }
2112
2113 #if NBPFILTER > 0
2114 if (sc->sc_drvbpf != NULL) {
2115 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2116
2117 tap->wt_flags = 0;
2118 tap->wt_rate = rate;
2119 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2120 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2121
2122 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2123 }
2124 #endif
2125
2126 m_copydata(m0, 0, m0->m_pkthdr.len,
2127 data->buf + sizeof (struct zyd_tx_desc));
2128
2129 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2130 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2131
2132 m_freem(m0); /* mbuf no longer needed */
2133
2134 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2135 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2136 ZYD_TX_TIMEOUT, zyd_txeof);
2137 error = usbd_transfer(data->xfer);
2138 if (error != USBD_IN_PROGRESS && error != 0) {
2139 ifp->if_oerrors++;
2140 return EIO;
2141 }
2142 sc->tx_queued++;
2143
2144 return 0;
2145 }
2146
2147 Static void
2148 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2149 {
2150 struct zyd_tx_data *data = priv;
2151 struct zyd_softc *sc = data->sc;
2152 struct ifnet *ifp = &sc->sc_if;
2153 int s;
2154
2155 if (status != USBD_NORMAL_COMPLETION) {
2156 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2157 return;
2158
2159 printf("%s: could not transmit buffer: %s\n",
2160 USBDEVNAME(sc->sc_dev), usbd_errstr(status));
2161
2162 if (status == USBD_STALLED) {
2163 usbd_clear_endpoint_stall_async(
2164 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2165 }
2166 ifp->if_oerrors++;
2167 return;
2168 }
2169
2170 s = splnet();
2171
2172 /* update rate control statistics */
2173 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2174
2175 ieee80211_free_node(data->ni);
2176 data->ni = NULL;
2177
2178 sc->tx_queued--;
2179 ifp->if_opackets++;
2180
2181 sc->tx_timer = 0;
2182 ifp->if_flags &= ~IFF_OACTIVE;
2183 zyd_start(ifp);
2184
2185 splx(s);
2186 }
2187
2188 Static int
2189 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2190 {
2191 struct ieee80211com *ic = &sc->sc_ic;
2192 struct ifnet *ifp = &sc->sc_if;
2193 struct zyd_tx_desc *desc;
2194 struct zyd_tx_data *data;
2195 struct ieee80211_frame *wh;
2196 struct ieee80211_key *k;
2197 int xferlen, totlen, rate;
2198 uint16_t pktlen;
2199 usbd_status error;
2200
2201 wh = mtod(m0, struct ieee80211_frame *);
2202
2203 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2204 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2205 else
2206 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2207 rate &= IEEE80211_RATE_VAL;
2208
2209 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2210 k = ieee80211_crypto_encap(ic, ni, m0);
2211 if (k == NULL) {
2212 m_freem(m0);
2213 return ENOBUFS;
2214 }
2215
2216 /* packet header may have moved, reset our local pointer */
2217 wh = mtod(m0, struct ieee80211_frame *);
2218 }
2219
2220 data = &sc->tx_data[0];
2221 desc = (struct zyd_tx_desc *)data->buf;
2222
2223 data->ni = ni;
2224
2225 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2226 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2227
2228 /* fill Tx descriptor */
2229 desc->len = htole16(totlen);
2230
2231 desc->flags = ZYD_TX_FLAG_BACKOFF;
2232 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2233 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2234 if (totlen > ic->ic_rtsthreshold) {
2235 desc->flags |= ZYD_TX_FLAG_RTS;
2236 } else if (ZYD_RATE_IS_OFDM(rate) &&
2237 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2238 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2239 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2240 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2241 desc->flags |= ZYD_TX_FLAG_RTS;
2242 }
2243 } else
2244 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2245
2246 if ((wh->i_fc[0] &
2247 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2248 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2249 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2250
2251 desc->phy = zyd_plcp_signal(rate);
2252 if (ZYD_RATE_IS_OFDM(rate)) {
2253 desc->phy |= ZYD_TX_PHY_OFDM;
2254 if (ic->ic_curmode == IEEE80211_MODE_11A)
2255 desc->phy |= ZYD_TX_PHY_5GHZ;
2256 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2257 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2258
2259 /* actual transmit length (XXX why +10?) */
2260 pktlen = sizeof (struct zyd_tx_desc) + 10;
2261 if (sc->mac_rev == ZYD_ZD1211)
2262 pktlen += totlen;
2263 desc->pktlen = htole16(pktlen);
2264
2265 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2266 desc->plcp_service = 0;
2267 if (rate == 22) {
2268 const int remainder = (16 * totlen) % 22;
2269 if (remainder != 0 && remainder < 7)
2270 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2271 }
2272
2273 #if NBPFILTER > 0
2274 if (sc->sc_drvbpf != NULL) {
2275 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2276
2277 tap->wt_flags = 0;
2278 tap->wt_rate = rate;
2279 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2280 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2281
2282 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2283 }
2284 #endif
2285
2286 m_copydata(m0, 0, m0->m_pkthdr.len,
2287 data->buf + sizeof (struct zyd_tx_desc));
2288
2289 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2290 USBDEVNAME(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2291
2292 m_freem(m0); /* mbuf no longer needed */
2293
2294 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2295 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2296 ZYD_TX_TIMEOUT, zyd_txeof);
2297 error = usbd_transfer(data->xfer);
2298 if (error != USBD_IN_PROGRESS && error != 0) {
2299 ifp->if_oerrors++;
2300 return EIO;
2301 }
2302 sc->tx_queued++;
2303
2304 return 0;
2305 }
2306
2307 Static void
2308 zyd_start(struct ifnet *ifp)
2309 {
2310 struct zyd_softc *sc = ifp->if_softc;
2311 struct ieee80211com *ic = &sc->sc_ic;
2312 struct ether_header *eh;
2313 struct ieee80211_node *ni;
2314 struct mbuf *m0;
2315
2316 for (;;) {
2317 IF_POLL(&ic->ic_mgtq, m0);
2318 if (m0 != NULL) {
2319 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2320 ifp->if_flags |= IFF_OACTIVE;
2321 break;
2322 }
2323 IF_DEQUEUE(&ic->ic_mgtq, m0);
2324
2325 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2326 m0->m_pkthdr.rcvif = NULL;
2327 #if NBPFILTER > 0
2328 if (ic->ic_rawbpf != NULL)
2329 bpf_mtap(ic->ic_rawbpf, m0);
2330 #endif
2331 if (zyd_tx_mgt(sc, m0, ni) != 0)
2332 break;
2333 } else {
2334 if (ic->ic_state != IEEE80211_S_RUN)
2335 break;
2336 IFQ_POLL(&ifp->if_snd, m0);
2337 if (m0 == NULL)
2338 break;
2339 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2340 ifp->if_flags |= IFF_OACTIVE;
2341 break;
2342 }
2343 IFQ_DEQUEUE(&ifp->if_snd, m0);
2344
2345 if (m0->m_len < sizeof(struct ether_header) &&
2346 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2347 continue;
2348
2349 eh = mtod(m0, struct ether_header *);
2350 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2351 if (ni == NULL) {
2352 m_freem(m0);
2353 continue;
2354 }
2355 #if NBPFILTER > 0
2356 if (ifp->if_bpf != NULL)
2357 bpf_mtap(ifp->if_bpf, m0);
2358 #endif
2359 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2360 ieee80211_free_node(ni);
2361 ifp->if_oerrors++;
2362 continue;
2363 }
2364 #if NBPFILTER > 0
2365 if (ic->ic_rawbpf != NULL)
2366 bpf_mtap(ic->ic_rawbpf, m0);
2367 #endif
2368 if (zyd_tx_data(sc, m0, ni) != 0) {
2369 ieee80211_free_node(ni);
2370 ifp->if_oerrors++;
2371 break;
2372 }
2373 }
2374
2375 sc->tx_timer = 5;
2376 ifp->if_timer = 1;
2377 }
2378 }
2379
2380 Static void
2381 zyd_watchdog(struct ifnet *ifp)
2382 {
2383 struct zyd_softc *sc = ifp->if_softc;
2384 struct ieee80211com *ic = &sc->sc_ic;
2385
2386 ifp->if_timer = 0;
2387
2388 if (sc->tx_timer > 0) {
2389 if (--sc->tx_timer == 0) {
2390 printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
2391 /* zyd_init(ifp); XXX needs a process context ? */
2392 ifp->if_oerrors++;
2393 return;
2394 }
2395 ifp->if_timer = 1;
2396 }
2397
2398 ieee80211_watchdog(ic);
2399 }
2400
2401 Static int
2402 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2403 {
2404 struct zyd_softc *sc = ifp->if_softc;
2405 struct ieee80211com *ic = &sc->sc_ic;
2406 int s, error = 0;
2407
2408 s = splnet();
2409
2410 switch (cmd) {
2411 case SIOCSIFFLAGS:
2412 if (ifp->if_flags & IFF_UP) {
2413 if (!(ifp->if_flags & IFF_RUNNING))
2414 zyd_init(ifp);
2415 } else {
2416 if (ifp->if_flags & IFF_RUNNING)
2417 zyd_stop(ifp, 1);
2418 }
2419 break;
2420
2421 default:
2422 if (!sc->attached)
2423 error = ENOTTY;
2424 else
2425 error = ieee80211_ioctl(ic, cmd, data);
2426 }
2427
2428 if (error == ENETRESET) {
2429 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2430 (IFF_RUNNING | IFF_UP))
2431 zyd_init(ifp);
2432 error = 0;
2433 }
2434
2435 splx(s);
2436
2437 return error;
2438 }
2439
2440 Static int
2441 zyd_init(struct ifnet *ifp)
2442 {
2443 struct zyd_softc *sc = ifp->if_softc;
2444 struct ieee80211com *ic = &sc->sc_ic;
2445 int i, error;
2446
2447 if ((sc->sc_flags & ZD1211_FWLOADED) == 0)
2448 if ((error = zyd_attachhook(sc)) != 0)
2449 return error;
2450
2451 zyd_stop(ifp, 0);
2452
2453 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2454 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2455 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2456 if (error != 0)
2457 return error;
2458
2459 /* we'll do software WEP decryption for now */
2460 DPRINTF(("setting encryption type\n"));
2461 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2462 if (error != 0)
2463 return error;
2464
2465 /* promiscuous mode */
2466 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2467 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2468
2469 (void)zyd_set_rxfilter(sc);
2470
2471 /* switch radio transmitter ON */
2472 (void)zyd_switch_radio(sc, 1);
2473
2474 /* set basic rates */
2475 if (ic->ic_curmode == IEEE80211_MODE_11B)
2476 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2477 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2478 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2479 else /* assumes 802.11b/g */
2480 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2481
2482 /* set mandatory rates */
2483 if (ic->ic_curmode == IEEE80211_MODE_11B)
2484 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2485 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2486 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2487 else /* assumes 802.11b/g */
2488 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2489
2490 /* set default BSS channel */
2491 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2492 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2493
2494 /* enable interrupts */
2495 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2496
2497 /*
2498 * Allocate Tx and Rx xfer queues.
2499 */
2500 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2501 printf("%s: could not allocate Tx list\n",
2502 USBDEVNAME(sc->sc_dev));
2503 goto fail;
2504 }
2505 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2506 printf("%s: could not allocate Rx list\n",
2507 USBDEVNAME(sc->sc_dev));
2508 goto fail;
2509 }
2510
2511 /*
2512 * Start up the receive pipe.
2513 */
2514 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2515 struct zyd_rx_data *data = &sc->rx_data[i];
2516
2517 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2518 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2519 USBD_NO_TIMEOUT, zyd_rxeof);
2520 error = usbd_transfer(data->xfer);
2521 if (error != USBD_IN_PROGRESS && error != 0) {
2522 printf("%s: could not queue Rx transfer\n",
2523 USBDEVNAME(sc->sc_dev));
2524 goto fail;
2525 }
2526 }
2527
2528 ifp->if_flags &= ~IFF_OACTIVE;
2529 ifp->if_flags |= IFF_RUNNING;
2530
2531 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2532 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2533 else
2534 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2535
2536 return 0;
2537
2538 fail: zyd_stop(ifp, 1);
2539 return error;
2540 }
2541
2542 Static void
2543 zyd_stop(struct ifnet *ifp, int disable)
2544 {
2545 struct zyd_softc *sc = ifp->if_softc;
2546 struct ieee80211com *ic = &sc->sc_ic;
2547
2548 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2549
2550 sc->tx_timer = 0;
2551 ifp->if_timer = 0;
2552 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2553
2554 /* switch radio transmitter OFF */
2555 (void)zyd_switch_radio(sc, 0);
2556
2557 /* disable Rx */
2558 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2559
2560 /* disable interrupts */
2561 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2562
2563 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2564 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2565
2566 zyd_free_rx_list(sc);
2567 zyd_free_tx_list(sc);
2568 }
2569
2570 Static int
2571 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2572 {
2573 usb_device_request_t req;
2574 uint16_t addr;
2575 uint8_t stat;
2576
2577 DPRINTF(("firmware size=%zu\n", size));
2578
2579 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2580 req.bRequest = ZYD_DOWNLOADREQ;
2581 USETW(req.wIndex, 0);
2582
2583 addr = ZYD_FIRMWARE_START_ADDR;
2584 while (size > 0) {
2585 #if 0
2586 const int mlen = min(size, 4096);
2587 #else
2588 /*
2589 * XXXX: When the transfer size is 4096 bytes, it is not
2590 * likely to be able to transfer it.
2591 * The cause is port or machine or chip?
2592 */
2593 const int mlen = min(size, 64);
2594 #endif
2595
2596 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2597 addr));
2598
2599 USETW(req.wValue, addr);
2600 USETW(req.wLength, mlen);
2601 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2602 return EIO;
2603
2604 addr += mlen / 2;
2605 fw += mlen;
2606 size -= mlen;
2607 }
2608
2609 /* check whether the upload succeeded */
2610 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2611 req.bRequest = ZYD_DOWNLOADSTS;
2612 USETW(req.wValue, 0);
2613 USETW(req.wIndex, 0);
2614 USETW(req.wLength, sizeof stat);
2615 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2616 return EIO;
2617
2618 return (stat & 0x80) ? EIO : 0;
2619 }
2620
2621 Static void
2622 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2623 {
2624 struct zyd_softc *sc = arg;
2625 struct zyd_node *zn = (struct zyd_node *)ni;
2626
2627 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2628 }
2629
2630 Static void
2631 zyd_amrr_timeout(void *arg)
2632 {
2633 struct zyd_softc *sc = arg;
2634 struct ieee80211com *ic = &sc->sc_ic;
2635 int s;
2636
2637 s = splnet();
2638 if (ic->ic_opmode == IEEE80211_M_STA)
2639 zyd_iter_func(sc, ic->ic_bss);
2640 else
2641 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2642 splx(s);
2643
2644 usb_callout(sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2645 }
2646
2647 Static void
2648 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2649 {
2650 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2651 int i;
2652
2653 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2654
2655 /* set rate to some reasonable initial value */
2656 for (i = ni->ni_rates.rs_nrates - 1;
2657 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2658 i--);
2659 ni->ni_txrate = i;
2660 }
2661
2662 int
2663 zyd_activate(device_ptr_t self, enum devact act)
2664 {
2665 struct zyd_softc *sc = (struct zyd_softc *)self;
2666
2667 switch (act) {
2668 case DVACT_ACTIVATE:
2669 break;
2670
2671 case DVACT_DEACTIVATE:
2672 if_deactivate(&sc->sc_if);
2673 break;
2674 }
2675 return 0;
2676 }
2677