uatp.c revision 1.10.2.3 1 /* $NetBSD: uatp.c,v 1.10.2.3 2018/08/08 10:17:11 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * uatp(4) - USB Apple Trackpad
34 *
35 * The uatp driver talks the protocol of the USB trackpads found in
36 * Apple laptops since 2005, including PowerBooks, iBooks, MacBooks,
37 * and MacBook Pros. Some of these also present generic USB HID mice
38 * on another USB report id, which the ums(4) driver can handle, but
39 * Apple's protocol gives more detailed sensor data that lets us detect
40 * multiple fingers to emulate multi-button mice and scroll wheels.
41 */
42
43 /*
44 * Protocol
45 *
46 * The device has a set of horizontal sensors, each being a column at a
47 * particular position on the x axis that tells you whether there is
48 * pressure anywhere on that column, and vertical sensors, each being a
49 * row at a particular position on the y axis that tells you whether
50 * there is pressure anywhere on that row.
51 *
52 * Whenever the device senses anything, it emits a readout of all of
53 * the sensors, in some model-dependent order. (For the order, see
54 * read_sample_1 and read_sample_2.) Each sensor datum is an unsigned
55 * eight-bit quantity representing some measure of pressure. (Of
56 * course, it really measures capacitance, not pressure, but we'll call
57 * it `pressure' here.)
58 */
59
60 /*
61 * Interpretation
62 *
63 * To interpret the finger's position on the trackpad, the driver
64 * computes a weighted average over all possible positions, weighted by
65 * the pressure at that position. The weighted average is computed in
66 * the dimensions of the screen, rather than the trackpad, in order to
67 * admit a finer resolution of positions than the trackpad grid.
68 *
69 * To update the finger's position smoothly on the trackpad, the driver
70 * computes a weighted average of the old raw position, the old
71 * smoothed position, and the new smoothed position. The weights are
72 * given by the old_raw_weight, old_smoothed_weight, and new_raw_weight
73 * sysctl knobs.
74 *
75 * Finally, to move the cursor, the driver takes the difference between
76 * the old and new positions and accelerates it according to some
77 * heuristic knobs that need to be reworked.
78 *
79 * Finally, there are some bells & whistles to detect tapping and to
80 * emulate a three-button mouse by leaving two or three fingers on the
81 * trackpad while pressing the button.
82 */
83
84 /*
85 * Future work
86 *
87 * With the raw sensor data available, we could implement fancier bells
88 * & whistles too, such as pinch-to-zoom. However, wsmouse supports
89 * only four-dimensional mice with buttons, and we already use two
90 * dimensions for mousing and two dimensions for scrolling, so there's
91 * no straightforward way to report zooming and other gestures to the
92 * operating system. Probably a better way to do this would be just to
93 * attach uhid(4) instead of uatp(4) and to read the raw sensors data
94 * yourself -- but that requires hairy mode switching for recent models
95 * (see geyser34_enable_raw_mode).
96 *
97 * XXX Rework the acceleration knobs.
98 * XXX Implement edge scrolling.
99 * XXX Fix sysctl setup; preserve knobs across suspend/resume.
100 * (uatp0 detaches and reattaches across suspend/resume, so as
101 * written, the sysctl tree is torn down and rebuilt, losing any
102 * state the user may have set.)
103 * XXX Refactor motion state so I can understand it again.
104 * Should make a struct uatp_motion for all that state.
105 * XXX Add hooks for ignoring trackpad input while typing.
106 */
107
108 /*
109 * Classifying devices
110 *
111 * I have only one MacBook to test this driver, but the driver should
112 * be applicable to almost every Apple laptop made since the beginning
113 * of 2005, so the driver reports lots of debugging output to help to
114 * classify devices. Boot with `boot -v' (verbose) and check the
115 * output of `dmesg | grep uatp' to answer the following questions:
116 *
117 * - What devices (vendor, product, class, subclass, proto, USB HID
118 * report dump) fail to attach when you think they should work?
119 * (vendor not apple, class not hid, proto not mouse)
120 *
121 * - What devices have an unknown product id?
122 * `unknown vendor/product id'
123 *
124 * - What devices have the wrong screen-to-trackpad ratios?
125 * `... x sensors, scaled by ... for ... points on screen'
126 * `... y sensors, scaled by ... for ... points on screen'
127 * You can tweak hw.uatp0.x_ratio and hw.uatp0.y_ratio to adjust
128 * this, up to a maximum of 384 for each value.
129 *
130 * - What devices have the wrong input size?
131 * `expected input size ... but got ... for Apple trackpad'
132 *
133 * - What devices give wrong-sized packets?
134 * `discarding ...-byte input'
135 *
136 * - What devices split packets in chunks?
137 * `partial packet: ... bytes'
138 *
139 * - What devices develop large sensor readouts?
140 * `large sensor readout: ...'
141 *
142 * - What devices have the wrong number of sensors? Are there parts of
143 * your trackpad that the system doesn't seem to notice? You can
144 * tweak hw.uatp0.x_sensors and hw.uatp0.y_sensors, up to a maximum
145 * of 32 for each value.
146 */
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: uatp.c,v 1.10.2.3 2018/08/08 10:17:11 martin Exp $");
150
151 #ifdef _KERNEL_OPT
152 #include "opt_usb.h"
153 #endif
154
155 #include <sys/types.h>
156 #include <sys/param.h>
157 #include <sys/atomic.h>
158 #include <sys/device.h>
159 #include <sys/errno.h>
160 #include <sys/ioctl.h>
161 #include <sys/kernel.h>
162 #include <sys/module.h>
163 #include <sys/sysctl.h>
164 #include <sys/systm.h>
165 #include <sys/time.h>
166
167 /* Order is important here...sigh... */
168 #include <dev/usb/usb.h>
169 #include <dev/usb/usbdi.h>
170 #include <dev/usb/usbdi_util.h>
171 #include <dev/usb/usbdevs.h>
172 #include <dev/usb/uhidev.h>
173 #include <dev/usb/hid.h>
174 #include <dev/usb/usbhid.h>
175
176 #include <dev/wscons/wsconsio.h>
177 #include <dev/wscons/wsmousevar.h>
178
179 #define CHECK(condition, fail) do { \
180 if (! (condition)) { \
181 aprint_error_dev(uatp_dev(sc), "%s: check failed: %s\n",\
182 __func__, #condition); \
183 fail; \
184 } \
185 } while (0)
186
187 #define UATP_DEBUG_ATTACH (1 << 0)
188 #define UATP_DEBUG_MISC (1 << 1)
189 #define UATP_DEBUG_WSMOUSE (1 << 2)
190 #define UATP_DEBUG_IOCTL (1 << 3)
191 #define UATP_DEBUG_RESET (1 << 4)
192 #define UATP_DEBUG_INTR (1 << 5)
193 #define UATP_DEBUG_PARSE (1 << 6)
194 #define UATP_DEBUG_TAP (1 << 7)
195 #define UATP_DEBUG_EMUL_BUTTON (1 << 8)
196 #define UATP_DEBUG_ACCUMULATE (1 << 9)
197 #define UATP_DEBUG_STATUS (1 << 10)
198 #define UATP_DEBUG_SPURINTR (1 << 11)
199 #define UATP_DEBUG_MOVE (1 << 12)
200 #define UATP_DEBUG_ACCEL (1 << 13)
201 #define UATP_DEBUG_TRACK_DIST (1 << 14)
202 #define UATP_DEBUG_PALM (1 << 15)
203
204 #if UATP_DEBUG
205 # define DPRINTF(sc, flags, format) do { \
206 if ((flags) & (sc)->sc_debug_flags) { \
207 printf("%s: %s: ", device_xname(uatp_dev(sc)), __func__); \
208 printf format; \
209 } \
210 } while (0)
211 #else
212 # define DPRINTF(sc, flags, format) do {} while (0)
213 #endif
214
215 /* Maximum number of bytes in an incoming packet of sensor data. */
216 #define UATP_MAX_INPUT_SIZE 81
217
218 /* Maximum number of sensors in each dimension. */
219 #define UATP_MAX_X_SENSORS 32
220 #define UATP_MAX_Y_SENSORS 32
221 #define UATP_MAX_SENSORS 32
222 #define UATP_SENSORS (UATP_MAX_X_SENSORS + UATP_MAX_Y_SENSORS)
223
224 /* Maximum accumulated sensor value. */
225 #define UATP_MAX_ACC 0xff
226
227 /* Maximum screen dimension to sensor dimension ratios. */
228 #define UATP_MAX_X_RATIO 0x180
229 #define UATP_MAX_Y_RATIO 0x180
230 #define UATP_MAX_RATIO 0x180
231
232 /* Maximum weight for positions in motion calculation. */
233 #define UATP_MAX_WEIGHT 0x7f
234
235 /* Maximum possible trackpad position in a single dimension. */
236 #define UATP_MAX_POSITION (UATP_MAX_SENSORS * UATP_MAX_RATIO)
237
238 /* Bounds on acceleration. */
239 #define UATP_MAX_MOTION_MULTIPLIER 16
240
241 /* Status bits transmitted in the last byte of an input packet. */
242 #define UATP_STATUS_BUTTON (1 << 0) /* Button pressed */
243 #define UATP_STATUS_BASE (1 << 2) /* Base sensor data */
244 #define UATP_STATUS_POST_RESET (1 << 4) /* Post-reset */
245
246 /* Forward declarations */
247
248 struct uatp_softc; /* Device driver state. */
249 struct uatp_descriptor; /* Descriptor for a particular model. */
250 struct uatp_parameters; /* Parameters common to a set of models. */
251 struct uatp_knobs; /* User-settable configuration knobs. */
252 enum uatp_tap_state {
253 TAP_STATE_INITIAL,
254 TAP_STATE_TAPPING,
255 TAP_STATE_TAPPED,
256 TAP_STATE_DOUBLE_TAPPING,
257 TAP_STATE_DRAGGING_DOWN,
258 TAP_STATE_DRAGGING_UP,
259 TAP_STATE_TAPPING_IN_DRAG,
260 };
261
262 static const struct uatp_descriptor *find_uatp_descriptor
263 (const struct uhidev_attach_arg *);
264 static device_t uatp_dev(const struct uatp_softc *);
265 static uint8_t *uatp_x_sample(struct uatp_softc *);
266 static uint8_t *uatp_y_sample(struct uatp_softc *);
267 static int *uatp_x_acc(struct uatp_softc *);
268 static int *uatp_y_acc(struct uatp_softc *);
269 static void uatp_clear_position(struct uatp_softc *);
270 static unsigned int uatp_x_sensors(const struct uatp_softc *);
271 static unsigned int uatp_y_sensors(const struct uatp_softc *);
272 static unsigned int uatp_x_ratio(const struct uatp_softc *);
273 static unsigned int uatp_y_ratio(const struct uatp_softc *);
274 static unsigned int uatp_old_raw_weight(const struct uatp_softc *);
275 static unsigned int uatp_old_smoothed_weight(const struct uatp_softc *);
276 static unsigned int uatp_new_raw_weight(const struct uatp_softc *);
277 static int scale_motion(const struct uatp_softc *, int, int *,
278 const unsigned int *, const unsigned int *);
279 static int uatp_scale_motion(const struct uatp_softc *, int, int *);
280 static int uatp_scale_fast_motion(const struct uatp_softc *, int, int *);
281 static int uatp_match(device_t, cfdata_t, void *);
282 static void uatp_attach(device_t, device_t, void *);
283 static void uatp_setup_sysctl(struct uatp_softc *);
284 static bool uatp_setup_sysctl_knob(struct uatp_softc *, int *, const char *,
285 const char *);
286 static void uatp_childdet(device_t, device_t);
287 static int uatp_detach(device_t, int);
288 static int uatp_activate(device_t, enum devact);
289 static int uatp_enable(void *);
290 static void uatp_disable(void *);
291 static int uatp_ioctl(void *, unsigned long, void *, int, struct lwp *);
292 static void geyser34_enable_raw_mode(struct uatp_softc *);
293 static void geyser34_initialize(struct uatp_softc *);
294 static int geyser34_finalize(struct uatp_softc *);
295 static void geyser34_deferred_reset(struct uatp_softc *);
296 static void geyser34_reset_task(void *);
297 static void uatp_intr(struct uhidev *, void *, unsigned int);
298 static bool base_sample_softc_flag(const struct uatp_softc *, const uint8_t *);
299 static bool base_sample_input_flag(const struct uatp_softc *, const uint8_t *);
300 static void read_sample_1(uint8_t *, uint8_t *, const uint8_t *);
301 static void read_sample_2(uint8_t *, uint8_t *, const uint8_t *);
302 static void accumulate_sample_1(struct uatp_softc *);
303 static void accumulate_sample_2(struct uatp_softc *);
304 static void uatp_input(struct uatp_softc *, uint32_t, int, int, int, int);
305 static uint32_t uatp_tapped_buttons(struct uatp_softc *);
306 static bool interpret_input(struct uatp_softc *, int *, int *, int *, int *,
307 uint32_t *);
308 static unsigned int interpret_dimension(struct uatp_softc *, const int *,
309 unsigned int, unsigned int, unsigned int *, unsigned int *);
310 static void tap_initialize(struct uatp_softc *);
311 static void tap_finalize(struct uatp_softc *);
312 static void tap_enable(struct uatp_softc *);
313 static void tap_disable(struct uatp_softc *);
314 static void tap_transition(struct uatp_softc *, enum uatp_tap_state,
315 const struct timeval *, unsigned int, unsigned int);
316 static void tap_transition_initial(struct uatp_softc *);
317 static void tap_transition_tapping(struct uatp_softc *, const struct timeval *,
318 unsigned int);
319 static void tap_transition_double_tapping(struct uatp_softc *,
320 const struct timeval *, unsigned int);
321 static void tap_transition_dragging_down(struct uatp_softc *);
322 static void tap_transition_tapping_in_drag(struct uatp_softc *,
323 const struct timeval *, unsigned int);
324 static void tap_transition_tapped(struct uatp_softc *, const struct timeval *);
325 static void tap_transition_dragging_up(struct uatp_softc *);
326 static void tap_reset(struct uatp_softc *);
327 static void tap_reset_wait(struct uatp_softc *);
328 static void tap_touched(struct uatp_softc *, unsigned int);
329 static bool tap_released(struct uatp_softc *);
330 static void schedule_untap(struct uatp_softc *);
331 static void untap_callout(void *);
332 static uint32_t emulated_buttons(struct uatp_softc *, unsigned int);
333 static void update_position(struct uatp_softc *, unsigned int,
334 unsigned int, unsigned int, int *, int *, int *, int *);
335 static void move_mouse(struct uatp_softc *, unsigned int, unsigned int,
336 int *, int *);
337 static void scroll_wheel(struct uatp_softc *, unsigned int, unsigned int,
338 int *, int *);
339 static void move(struct uatp_softc *, const char *, unsigned int, unsigned int,
340 int *, int *, int *, int *, unsigned int *, unsigned int *, int *, int *);
341 static int smooth(struct uatp_softc *, unsigned int, unsigned int,
342 unsigned int);
343 static bool motion_below_threshold(struct uatp_softc *, unsigned int,
344 int, int);
345 static int accelerate(struct uatp_softc *, unsigned int, unsigned int,
346 unsigned int, unsigned int, bool, int *);
347
348 struct uatp_knobs {
349 /*
350 * Button emulation. What do we do when two or three fingers
351 * are on the trackpad when the user presses the button?
352 */
353 unsigned int two_finger_buttons;
354 unsigned int three_finger_buttons;
355
356 #if 0
357 /*
358 * Edge scrolling.
359 *
360 * XXX Implement this. What units should these be in?
361 */
362 unsigned int top_edge;
363 unsigned int bottom_edge;
364 unsigned int left_edge;
365 unsigned int right_edge;
366 #endif
367
368 /*
369 * Multifinger tracking. What do we do with multiple fingers?
370 * 0. Ignore them.
371 * 1. Try to interpret them as ordinary mousing.
372 * 2. Act like a two-dimensional scroll wheel.
373 */
374 unsigned int multifinger_track;
375
376 /*
377 * Sensor parameters.
378 */
379 unsigned int x_sensors;
380 unsigned int x_ratio;
381 unsigned int y_sensors;
382 unsigned int y_ratio;
383 unsigned int sensor_threshold;
384 unsigned int sensor_normalizer;
385 unsigned int palm_width;
386 unsigned int old_raw_weight;
387 unsigned int old_smoothed_weight;
388 unsigned int new_raw_weight;
389
390 /*
391 * Motion parameters.
392 *
393 * XXX There should be a more principled model of acceleration.
394 */
395 unsigned int motion_remainder;
396 unsigned int motion_threshold;
397 unsigned int motion_multiplier;
398 unsigned int motion_divisor;
399 unsigned int fast_motion_threshold;
400 unsigned int fast_motion_multiplier;
401 unsigned int fast_motion_divisor;
402 unsigned int fast_per_direction;
403 unsigned int motion_delay;
404
405 /*
406 * Tapping.
407 */
408 unsigned int tap_limit_msec;
409 unsigned int double_tap_limit_msec;
410 unsigned int one_finger_tap_buttons;
411 unsigned int two_finger_tap_buttons;
412 unsigned int three_finger_tap_buttons;
413 unsigned int tap_track_distance_limit;
414 };
415
416 static const struct uatp_knobs default_knobs = {
417 /*
418 * Button emulation. Fingers on the trackpad don't change it
419 * by default -- it's still the left button.
420 *
421 * XXX The left button should have a name.
422 */
423 .two_finger_buttons = 1,
424 .three_finger_buttons = 1,
425
426 #if 0
427 /*
428 * Edge scrolling. Off by default.
429 */
430 .top_edge = 0,
431 .bottom_edge = 0,
432 .left_edge = 0,
433 .right_edge = 0,
434 #endif
435
436 /*
437 * Multifinger tracking. Ignore by default.
438 */
439 .multifinger_track = 0,
440
441 /*
442 * Sensor parameters.
443 */
444 .x_sensors = 0, /* default for model */
445 .x_ratio = 0, /* default for model */
446 .y_sensors = 0, /* default for model */
447 .y_ratio = 0, /* default for model */
448 .sensor_threshold = 5,
449 .sensor_normalizer = 5,
450 .palm_width = 0, /* palm detection disabled */
451 .old_raw_weight = 0,
452 .old_smoothed_weight = 5,
453 .new_raw_weight = 1,
454
455 /*
456 * Motion parameters.
457 */
458 .motion_remainder = 1,
459 .motion_threshold = 0,
460 .motion_multiplier = 1,
461 .motion_divisor = 1,
462 .fast_motion_threshold = 10,
463 .fast_motion_multiplier = 3,
464 .fast_motion_divisor = 2,
465 .fast_per_direction = 0,
466 .motion_delay = 4,
467
468 /*
469 * Tapping. Disabled by default, with a reasonable time set
470 * nevertheless so that you can just set the buttons to enable
471 * it.
472 */
473 .tap_limit_msec = 100,
474 .double_tap_limit_msec = 200,
475 .one_finger_tap_buttons = 0,
476 .two_finger_tap_buttons = 0,
477 .three_finger_tap_buttons = 0,
478 .tap_track_distance_limit = 200,
479 };
480
481 struct uatp_softc {
482 struct uhidev sc_hdev; /* USB parent. */
483 device_t sc_wsmousedev; /* Attached wsmouse device. */
484 const struct uatp_parameters *sc_parameters;
485 struct uatp_knobs sc_knobs;
486 struct sysctllog *sc_log; /* Log for sysctl knobs. */
487 const struct sysctlnode *sc_node; /* Our sysctl node. */
488 unsigned int sc_input_size; /* Input packet size. */
489 uint8_t sc_input[UATP_MAX_INPUT_SIZE]; /* Buffer for a packet. */
490 unsigned int sc_input_index; /* Current index into sc_input. */
491 int sc_acc[UATP_SENSORS]; /* Accumulated sensor state. */
492 uint8_t sc_base[UATP_SENSORS]; /* Base sample. */
493 uint8_t sc_sample[UATP_SENSORS];/* Current sample. */
494 unsigned int sc_motion_timer; /* XXX describe; motion_delay */
495 int sc_x_raw; /* Raw horiz. mouse position. */
496 int sc_y_raw; /* Raw vert. mouse position. */
497 int sc_z_raw; /* Raw horiz. scroll position. */
498 int sc_w_raw; /* Raw vert. scroll position. */
499 int sc_x_smoothed; /* Smoothed horiz. mouse position. */
500 int sc_y_smoothed; /* Smoothed vert. mouse position. */
501 int sc_z_smoothed; /* Smoothed horiz. scroll position. */
502 int sc_w_smoothed; /* Smoothed vert. scroll position. */
503 int sc_x_remainder; /* Remainders from acceleration. */
504 int sc_y_remainder;
505 int sc_z_remainder;
506 int sc_w_remainder;
507 unsigned int sc_track_distance; /* Distance^2 finger has tracked,
508 * squared to avoid sqrt in kernel. */
509 uint32_t sc_status; /* Status flags: */
510 #define UATP_ENABLED (1 << 0) /* . Is the wsmouse enabled? */
511 #define UATP_DYING (1 << 1) /* . Have we been deactivated? */
512 #define UATP_VALID (1 << 2) /* . Do we have valid sensor data? */
513 struct usb_task sc_reset_task; /* Task for resetting device. */
514
515 callout_t sc_untap_callout; /* Releases button after tap. */
516 kmutex_t sc_tap_mutex; /* Protects the following fields. */
517 kcondvar_t sc_tap_cv; /* Signalled by untap callout. */
518 enum uatp_tap_state sc_tap_state; /* Current tap state. */
519 unsigned int sc_tapping_fingers; /* No. fingers tapping. */
520 unsigned int sc_tapped_fingers; /* No. fingers of last tap. */
521 struct timeval sc_tap_timer; /* Timer for tap state transitions. */
522 uint32_t sc_buttons; /* Physical buttons pressed. */
523 uint32_t sc_all_buttons; /* Buttons pressed or tapped. */
524
525 #if UATP_DEBUG
526 uint32_t sc_debug_flags; /* Debugging output enabled. */
527 #endif
528 };
529
530 struct uatp_descriptor {
531 uint16_t vendor;
532 uint16_t product;
533 const char *description;
534 const struct uatp_parameters *parameters;
535 };
536
537 struct uatp_parameters {
538 unsigned int x_ratio; /* Screen width / trackpad width. */
539 unsigned int x_sensors; /* Number of horizontal sensors. */
540 unsigned int x_sensors_17; /* XXX Same, on a 17" laptop. */
541 unsigned int y_ratio; /* Screen height / trackpad height. */
542 unsigned int y_sensors; /* Number of vertical sensors. */
543 unsigned int input_size; /* Size in bytes of input packets. */
544
545 /* Device-specific initialization routine. May be null. */
546 void (*initialize)(struct uatp_softc *);
547
548 /* Device-specific finalization routine. May be null. May fail. */
549 int (*finalize)(struct uatp_softc *);
550
551 /* Tests whether this is a base sample. Second argument is
552 * input_size bytes long. */
553 bool (*base_sample)(const struct uatp_softc *, const uint8_t *);
554
555 /* Reads a sensor sample from an input packet. First argument
556 * is UATP_MAX_X_SENSORS bytes long; second, UATP_MAX_Y_SENSORS
557 * bytes; third, input_size bytes. */
558 void (*read_sample)(uint8_t *, uint8_t *, const uint8_t *);
559
560 /* Accumulates sensor state in sc->sc_acc. */
561 void (*accumulate)(struct uatp_softc *);
562
563 /* Called on spurious interrupts to reset. May be null. */
564 void (*reset)(struct uatp_softc *);
565 };
566
567 /* Known device parameters */
568
569 static const struct uatp_parameters fountain_parameters = {
570 .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26,
571 .y_ratio = 43, .y_sensors = 16,
572 .input_size = 81,
573 .initialize = NULL,
574 .finalize = NULL,
575 .base_sample = base_sample_softc_flag,
576 .read_sample = read_sample_1,
577 .accumulate = accumulate_sample_1,
578 .reset = NULL,
579 };
580
581 static const struct uatp_parameters geyser_1_parameters = {
582 .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26,
583 .y_ratio = 43, .y_sensors = 16,
584 .input_size = 81,
585 .initialize = NULL,
586 .finalize = NULL,
587 .base_sample = base_sample_softc_flag,
588 .read_sample = read_sample_1,
589 .accumulate = accumulate_sample_1,
590 .reset = NULL,
591 };
592
593 static const struct uatp_parameters geyser_2_parameters = {
594 .x_ratio = 64, .x_sensors = 15, .x_sensors_17 = 20,
595 .y_ratio = 43, .y_sensors = 9,
596 .input_size = 64,
597 .initialize = NULL,
598 .finalize = NULL,
599 .base_sample = base_sample_softc_flag,
600 .read_sample = read_sample_2,
601 .accumulate = accumulate_sample_1,
602 .reset = NULL,
603 };
604
605 /*
606 * The Geyser 3 and Geyser 4 share parameters. They also present
607 * generic USB HID mice on a different report id, so we have smaller
608 * packets by one byte (uhidev handles multiplexing report ids) and
609 * extra initialization work to switch the mode from generic USB HID
610 * mouse to Apple trackpad.
611 */
612
613 static const struct uatp_parameters geyser_3_4_parameters = {
614 .x_ratio = 64, .x_sensors = 20, /* XXX */ .x_sensors_17 = 0,
615 .y_ratio = 64, .y_sensors = 9,
616 .input_size = 63, /* 64, minus one for the report id. */
617 .initialize = geyser34_initialize,
618 .finalize = geyser34_finalize,
619 .base_sample = base_sample_input_flag,
620 .read_sample = read_sample_2,
621 .accumulate = accumulate_sample_2,
622 .reset = geyser34_deferred_reset,
623 };
624
625 /* Known device models */
626
627 #define APPLE_TRACKPAD(PRODUCT, DESCRIPTION, PARAMETERS) \
628 { \
629 .vendor = USB_VENDOR_APPLE, \
630 .product = (PRODUCT), \
631 .description = "Apple " DESCRIPTION " trackpad", \
632 .parameters = (& (PARAMETERS)), \
633 }
634
635 #define POWERBOOK_TRACKPAD(PRODUCT, PARAMETERS) \
636 APPLE_TRACKPAD(PRODUCT, "PowerBook/iBook", PARAMETERS)
637 #define MACBOOK_TRACKPAD(PRODUCT, PARAMETERS) \
638 APPLE_TRACKPAD(PRODUCT, "MacBook/MacBook Pro", PARAMETERS)
639
640 static const struct uatp_descriptor uatp_descriptors[] =
641 {
642 POWERBOOK_TRACKPAD(0x020e, fountain_parameters),
643 POWERBOOK_TRACKPAD(0x020f, fountain_parameters),
644 POWERBOOK_TRACKPAD(0x030a, fountain_parameters),
645
646 POWERBOOK_TRACKPAD(0x030b, geyser_1_parameters),
647
648 POWERBOOK_TRACKPAD(0x0214, geyser_2_parameters),
649 POWERBOOK_TRACKPAD(0x0215, geyser_2_parameters),
650 POWERBOOK_TRACKPAD(0x0216, geyser_2_parameters),
651
652 MACBOOK_TRACKPAD(0x0217, geyser_3_4_parameters), /* 3 */
653 MACBOOK_TRACKPAD(0x0218, geyser_3_4_parameters), /* 3 */
654 MACBOOK_TRACKPAD(0x0219, geyser_3_4_parameters), /* 3 */
655
656 MACBOOK_TRACKPAD(0x021a, geyser_3_4_parameters), /* 4 */
657 MACBOOK_TRACKPAD(0x021b, geyser_3_4_parameters), /* 4 */
658 MACBOOK_TRACKPAD(0x021c, geyser_3_4_parameters), /* 4 */
659
660 MACBOOK_TRACKPAD(0x0229, geyser_3_4_parameters), /* 4 */
661 MACBOOK_TRACKPAD(0x022a, geyser_3_4_parameters), /* 4 */
662 MACBOOK_TRACKPAD(0x022b, geyser_3_4_parameters), /* 4 */
663 };
664
665 #undef MACBOOK_TRACKPAD
666 #undef POWERBOOK_TRACKPAD
667 #undef APPLE_TRACKPAD
668
669 /* Miscellaneous utilities */
670
671 static const struct uatp_descriptor *
672 find_uatp_descriptor(const struct uhidev_attach_arg *uha)
673 {
674 unsigned int i;
675
676 for (i = 0; i < __arraycount(uatp_descriptors); i++)
677 if ((uha->uiaa->uiaa_vendor == uatp_descriptors[i].vendor) &&
678 (uha->uiaa->uiaa_product == uatp_descriptors[i].product))
679 return &uatp_descriptors[i];
680
681 return NULL;
682 }
683
684 static device_t
685 uatp_dev(const struct uatp_softc *sc)
686 {
687 return sc->sc_hdev.sc_dev;
688 }
689
690 static uint8_t *
691 uatp_x_sample(struct uatp_softc *sc)
692 {
693 return &sc->sc_sample[0];
694 }
695
696 static uint8_t *
697 uatp_y_sample(struct uatp_softc *sc)
698 {
699 return &sc->sc_sample[UATP_MAX_X_SENSORS];
700 }
701
702 static int *
703 uatp_x_acc(struct uatp_softc *sc)
704 {
705 return &sc->sc_acc[0];
706 }
707
708 static int *
709 uatp_y_acc(struct uatp_softc *sc)
710 {
711 return &sc->sc_acc[UATP_MAX_X_SENSORS];
712 }
713
714 static void
715 uatp_clear_position(struct uatp_softc *sc)
716 {
717 memset(sc->sc_acc, 0, sizeof(sc->sc_acc));
718 sc->sc_motion_timer = 0;
719 sc->sc_x_raw = sc->sc_x_smoothed = -1;
720 sc->sc_y_raw = sc->sc_y_smoothed = -1;
721 sc->sc_z_raw = sc->sc_z_smoothed = -1;
722 sc->sc_w_raw = sc->sc_w_smoothed = -1;
723 sc->sc_x_remainder = 0;
724 sc->sc_y_remainder = 0;
725 sc->sc_z_remainder = 0;
726 sc->sc_w_remainder = 0;
727 sc->sc_track_distance = 0;
728 }
729
730 static unsigned int
731 uatp_x_sensors(const struct uatp_softc *sc)
732 {
733 if ((0 < sc->sc_knobs.x_sensors) &&
734 (sc->sc_knobs.x_sensors <= UATP_MAX_X_SENSORS))
735 return sc->sc_knobs.x_sensors;
736 else
737 return sc->sc_parameters->x_sensors;
738 }
739
740 static unsigned int
741 uatp_y_sensors(const struct uatp_softc *sc)
742 {
743 if ((0 < sc->sc_knobs.y_sensors) &&
744 (sc->sc_knobs.y_sensors <= UATP_MAX_Y_SENSORS))
745 return sc->sc_knobs.y_sensors;
746 else
747 return sc->sc_parameters->y_sensors;
748 }
749
750 static unsigned int
751 uatp_x_ratio(const struct uatp_softc *sc)
752 {
753 /* XXX Reject bogus values in sysctl. */
754 if ((0 < sc->sc_knobs.x_ratio) &&
755 (sc->sc_knobs.x_ratio <= UATP_MAX_X_RATIO))
756 return sc->sc_knobs.x_ratio;
757 else
758 return sc->sc_parameters->x_ratio;
759 }
760
761 static unsigned int
762 uatp_y_ratio(const struct uatp_softc *sc)
763 {
764 /* XXX Reject bogus values in sysctl. */
765 if ((0 < sc->sc_knobs.y_ratio) &&
766 (sc->sc_knobs.y_ratio <= UATP_MAX_Y_RATIO))
767 return sc->sc_knobs.y_ratio;
768 else
769 return sc->sc_parameters->y_ratio;
770 }
771
772 static unsigned int
773 uatp_old_raw_weight(const struct uatp_softc *sc)
774 {
775 /* XXX Reject bogus values in sysctl. */
776 if (sc->sc_knobs.old_raw_weight <= UATP_MAX_WEIGHT)
777 return sc->sc_knobs.old_raw_weight;
778 else
779 return 0;
780 }
781
782 static unsigned int
783 uatp_old_smoothed_weight(const struct uatp_softc *sc)
784 {
785 /* XXX Reject bogus values in sysctl. */
786 if (sc->sc_knobs.old_smoothed_weight <= UATP_MAX_WEIGHT)
787 return sc->sc_knobs.old_smoothed_weight;
788 else
789 return 0;
790 }
791
792 static unsigned int
793 uatp_new_raw_weight(const struct uatp_softc *sc)
794 {
795 /* XXX Reject bogus values in sysctl. */
796 if ((0 < sc->sc_knobs.new_raw_weight) &&
797 (sc->sc_knobs.new_raw_weight <= UATP_MAX_WEIGHT))
798 return sc->sc_knobs.new_raw_weight;
799 else
800 return 1;
801 }
802
803 static int
804 scale_motion(const struct uatp_softc *sc, int delta, int *remainder,
805 const unsigned int *multiplier, const unsigned int *divisor)
806 {
807 int product;
808
809 /* XXX Limit the divisor? */
810 if (((*multiplier) == 0) ||
811 ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
812 ((*divisor) == 0))
813 DPRINTF(sc, UATP_DEBUG_ACCEL,
814 ("bad knobs; %d (+ %d) --> %d, rem 0\n",
815 delta, *remainder, (delta + (*remainder))));
816 else
817 DPRINTF(sc, UATP_DEBUG_ACCEL,
818 ("scale %d (+ %d) by %u/%u --> %d, rem %d\n",
819 delta, *remainder,
820 (*multiplier), (*divisor),
821 (((delta + (*remainder)) * ((int) (*multiplier)))
822 / ((int) (*divisor))),
823 (((delta + (*remainder)) * ((int) (*multiplier)))
824 % ((int) (*divisor)))));
825
826 if (sc->sc_knobs.motion_remainder)
827 delta += *remainder;
828 *remainder = 0;
829
830 if (((*multiplier) == 0) ||
831 ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
832 ((*divisor) == 0))
833 return delta;
834
835 product = (delta * ((int) (*multiplier)));
836 *remainder = (product % ((int) (*divisor)));
837 return product / ((int) (*divisor));
838 }
839
840 static int
841 uatp_scale_motion(const struct uatp_softc *sc, int delta, int *remainder)
842 {
843 return scale_motion(sc, delta, remainder,
844 &sc->sc_knobs.motion_multiplier,
845 &sc->sc_knobs.motion_divisor);
846 }
847
848 static int
849 uatp_scale_fast_motion(const struct uatp_softc *sc, int delta, int *remainder)
850 {
851 return scale_motion(sc, delta, remainder,
852 &sc->sc_knobs.fast_motion_multiplier,
853 &sc->sc_knobs.fast_motion_divisor);
854 }
855
856 /* Driver goop */
857
858 CFATTACH_DECL2_NEW(uatp, sizeof(struct uatp_softc), uatp_match, uatp_attach,
859 uatp_detach, uatp_activate, NULL, uatp_childdet);
860
861 static const struct wsmouse_accessops uatp_accessops = {
862 .enable = uatp_enable,
863 .disable = uatp_disable,
864 .ioctl = uatp_ioctl,
865 };
866
867 static int
868 uatp_match(device_t parent, cfdata_t match, void *aux)
869 {
870 const struct uhidev_attach_arg *uha = aux;
871 void *report_descriptor;
872 int report_size, input_size;
873 const struct uatp_descriptor *uatp_descriptor;
874
875 aprint_debug("%s: vendor 0x%04x, product 0x%04x\n", __func__,
876 (unsigned int)uha->uiaa->uiaa_vendor,
877 (unsigned int)uha->uiaa->uiaa_product);
878 aprint_debug("%s: class 0x%04x, subclass 0x%04x, proto 0x%04x\n",
879 __func__,
880 (unsigned int)uha->uiaa->uiaa_class,
881 (unsigned int)uha->uiaa->uiaa_subclass,
882 (unsigned int)uha->uiaa->uiaa_proto);
883
884 uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
885 input_size = hid_report_size(report_descriptor, report_size,
886 hid_input, uha->reportid);
887 aprint_debug("%s: reportid %d, input size %d\n", __func__,
888 (int)uha->reportid, input_size);
889
890 /*
891 * Keyboards, trackpads, and eject buttons share common vendor
892 * and product ids, but not protocols: only the trackpad
893 * reports a mouse protocol.
894 */
895 if (uha->uiaa->uiaa_proto != UIPROTO_MOUSE)
896 return UMATCH_NONE;
897
898 /* Check for a known vendor/product id. */
899 uatp_descriptor = find_uatp_descriptor(uha);
900 if (uatp_descriptor == NULL) {
901 aprint_debug("%s: unknown vendor/product id\n", __func__);
902 return UMATCH_NONE;
903 }
904
905 /* Check for the expected input size. */
906 if ((input_size < 0) ||
907 ((unsigned int)input_size !=
908 uatp_descriptor->parameters->input_size)) {
909 aprint_debug("%s: expected input size %u\n", __func__,
910 uatp_descriptor->parameters->input_size);
911 return UMATCH_NONE;
912 }
913
914 return UMATCH_VENDOR_PRODUCT_CONF_IFACE;
915 }
916
917 static void
918 uatp_attach(device_t parent, device_t self, void *aux)
919 {
920 struct uatp_softc *sc = device_private(self);
921 const struct uhidev_attach_arg *uha = aux;
922 const struct uatp_descriptor *uatp_descriptor;
923 void *report_descriptor;
924 int report_size, input_size;
925 struct wsmousedev_attach_args a;
926
927 /* Set up uhidev state. (Why doesn't uhidev do most of this?) */
928 sc->sc_hdev.sc_dev = self;
929 sc->sc_hdev.sc_intr = uatp_intr;
930 sc->sc_hdev.sc_parent = uha->parent;
931 sc->sc_hdev.sc_report_id = uha->reportid;
932
933 /* Identify ourselves to dmesg. */
934 uatp_descriptor = find_uatp_descriptor(uha);
935 KASSERT(uatp_descriptor != NULL);
936 aprint_normal(": %s\n", uatp_descriptor->description);
937 aprint_naive(": %s\n", uatp_descriptor->description);
938 aprint_verbose_dev(self,
939 "vendor 0x%04x, product 0x%04x, report id %d\n",
940 (unsigned int)uha->uiaa->uiaa_vendor,
941 (unsigned int)uha->uiaa->uiaa_product,
942 (int)uha->reportid);
943
944 uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
945 input_size = hid_report_size(report_descriptor, report_size, hid_input,
946 uha->reportid);
947 KASSERT(0 < input_size);
948 sc->sc_input_size = input_size;
949
950 /* Initialize model-specific parameters. */
951 sc->sc_parameters = uatp_descriptor->parameters;
952 KASSERT((int)sc->sc_parameters->input_size == input_size);
953 KASSERT(sc->sc_parameters->x_sensors <= UATP_MAX_X_SENSORS);
954 KASSERT(sc->sc_parameters->x_ratio <= UATP_MAX_X_RATIO);
955 KASSERT(sc->sc_parameters->y_sensors <= UATP_MAX_Y_SENSORS);
956 KASSERT(sc->sc_parameters->y_ratio <= UATP_MAX_Y_RATIO);
957 aprint_verbose_dev(self,
958 "%u x sensors, scaled by %u for %u points on screen\n",
959 sc->sc_parameters->x_sensors, sc->sc_parameters->x_ratio,
960 sc->sc_parameters->x_sensors * sc->sc_parameters->x_ratio);
961 aprint_verbose_dev(self,
962 "%u y sensors, scaled by %u for %u points on screen\n",
963 sc->sc_parameters->y_sensors, sc->sc_parameters->y_ratio,
964 sc->sc_parameters->y_sensors * sc->sc_parameters->y_ratio);
965 if (sc->sc_parameters->initialize)
966 sc->sc_parameters->initialize(sc);
967
968 /* Register with pmf. Nothing special for suspend/resume. */
969 if (!pmf_device_register(self, NULL, NULL))
970 aprint_error_dev(self, "couldn't establish power handler\n");
971
972 /* Initialize knobs and create sysctl subtree to tweak them. */
973 sc->sc_knobs = default_knobs;
974 uatp_setup_sysctl(sc);
975
976 /* Initialize tapping. */
977 tap_initialize(sc);
978
979 /* Attach wsmouse. */
980 a.accessops = &uatp_accessops;
981 a.accesscookie = sc;
982 sc->sc_wsmousedev = config_found_ia(self, "wsmousedev", &a,
983 wsmousedevprint);
984 }
985
986 /* Sysctl setup */
987
988 static void
989 uatp_setup_sysctl(struct uatp_softc *sc)
990 {
991 int error;
992
993 error = sysctl_createv(&sc->sc_log, 0, NULL, &sc->sc_node, 0,
994 CTLTYPE_NODE, device_xname(uatp_dev(sc)),
995 SYSCTL_DESCR("uatp configuration knobs"),
996 NULL, 0, NULL, 0,
997 CTL_HW, CTL_CREATE, CTL_EOL);
998 if (error != 0) {
999 aprint_error_dev(uatp_dev(sc),
1000 "unable to set up sysctl tree hw.%s: %d\n",
1001 device_xname(uatp_dev(sc)), error);
1002 goto err;
1003 }
1004
1005 #if UATP_DEBUG
1006 if (!uatp_setup_sysctl_knob(sc, &sc->sc_debug_flags, "debug",
1007 "uatp(4) debug flags"))
1008 goto err;
1009 #endif
1010
1011 /*
1012 * Button emulation.
1013 */
1014 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_buttons,
1015 "two_finger_buttons",
1016 "buttons to emulate with two fingers on trackpad"))
1017 goto err;
1018 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_buttons,
1019 "three_finger_buttons",
1020 "buttons to emulate with three fingers on trackpad"))
1021 goto err;
1022
1023 #if 0
1024 /*
1025 * Edge scrolling.
1026 */
1027 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.top_edge, "top_edge",
1028 "width of top edge for edge scrolling"))
1029 goto err;
1030 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.bottom_edge,
1031 "bottom_edge", "width of bottom edge for edge scrolling"))
1032 goto err;
1033 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.left_edge, "left_edge",
1034 "width of left edge for edge scrolling"))
1035 goto err;
1036 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.right_edge, "right_edge",
1037 "width of right edge for edge scrolling"))
1038 goto err;
1039 #endif
1040
1041 /*
1042 * Multifinger tracking.
1043 */
1044 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.multifinger_track,
1045 "multifinger_track",
1046 "0 to ignore multiple fingers, 1 to reset, 2 to scroll"))
1047 goto err;
1048
1049 /*
1050 * Sensor parameters.
1051 */
1052 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_sensors, "x_sensors",
1053 "number of x sensors"))
1054 goto err;
1055 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_ratio, "x_ratio",
1056 "screen width to trackpad width ratio"))
1057 goto err;
1058 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_sensors, "y_sensors",
1059 "number of y sensors"))
1060 goto err;
1061 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_ratio, "y_ratio",
1062 "screen height to trackpad height ratio"))
1063 goto err;
1064 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_threshold,
1065 "sensor_threshold", "sensor threshold"))
1066 goto err;
1067 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_normalizer,
1068 "sensor_normalizer", "sensor normalizer"))
1069 goto err;
1070 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.palm_width,
1071 "palm_width", "lower bound on width/height of palm"))
1072 goto err;
1073 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_raw_weight,
1074 "old_raw_weight", "weight of old raw position"))
1075 goto err;
1076 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_smoothed_weight,
1077 "old_smoothed_weight", "weight of old smoothed position"))
1078 goto err;
1079 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.new_raw_weight,
1080 "new_raw_weight", "weight of new raw position"))
1081 goto err;
1082 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_remainder,
1083 "motion_remainder", "remember motion division remainder"))
1084 goto err;
1085 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_threshold,
1086 "motion_threshold", "threshold before finger moves cursor"))
1087 goto err;
1088 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_multiplier,
1089 "motion_multiplier", "numerator of motion scale"))
1090 goto err;
1091 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_divisor,
1092 "motion_divisor", "divisor of motion scale"))
1093 goto err;
1094 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_threshold,
1095 "fast_motion_threshold", "threshold before fast motion"))
1096 goto err;
1097 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_multiplier,
1098 "fast_motion_multiplier", "numerator of fast motion scale"))
1099 goto err;
1100 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_divisor,
1101 "fast_motion_divisor", "divisor of fast motion scale"))
1102 goto err;
1103 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_per_direction,
1104 "fast_per_direction", "don't frobnitz the veeblefitzer!"))
1105 goto err;
1106 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_delay,
1107 "motion_delay", "number of packets before motion kicks in"))
1108 goto err;
1109
1110 /*
1111 * Tapping.
1112 */
1113 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_limit_msec,
1114 "tap_limit_msec", "milliseconds before a touch is not a tap"))
1115 goto err;
1116 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.double_tap_limit_msec,
1117 "double_tap_limit_msec",
1118 "milliseconds before a second tap keeps the button down"))
1119 goto err;
1120 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.one_finger_tap_buttons,
1121 "one_finger_tap_buttons", "buttons for one-finger taps"))
1122 goto err;
1123 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_tap_buttons,
1124 "two_finger_tap_buttons", "buttons for two-finger taps"))
1125 goto err;
1126 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_tap_buttons,
1127 "three_finger_tap_buttons", "buttons for three-finger taps"))
1128 goto err;
1129 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_track_distance_limit,
1130 "tap_track_distance_limit",
1131 "maximum distance^2 of tracking during tap"))
1132 goto err;
1133
1134 return;
1135
1136 err:
1137 sysctl_teardown(&sc->sc_log);
1138 sc->sc_node = NULL;
1139 }
1140
1141 static bool
1142 uatp_setup_sysctl_knob(struct uatp_softc *sc, int *ptr, const char *name,
1143 const char *description)
1144 {
1145 int error;
1146
1147 error = sysctl_createv(&sc->sc_log, 0, NULL, NULL, CTLFLAG_READWRITE,
1148 CTLTYPE_INT, name, SYSCTL_DESCR(description),
1149 NULL, 0, ptr, 0,
1150 CTL_HW, sc->sc_node->sysctl_num, CTL_CREATE, CTL_EOL);
1151 if (error != 0) {
1152 aprint_error_dev(uatp_dev(sc),
1153 "unable to setup sysctl node hw.%s.%s: %d\n",
1154 device_xname(uatp_dev(sc)), name, error);
1155 return false;
1156 }
1157
1158 return true;
1159 }
1160
1161 /* More driver goop */
1162
1163 static void
1164 uatp_childdet(device_t self, device_t child)
1165 {
1166 struct uatp_softc *sc = device_private(self);
1167
1168 DPRINTF(sc, UATP_DEBUG_MISC, ("detaching child %s\n",
1169 device_xname(child)));
1170
1171 /* Our only child is the wsmouse device. */
1172 if (child == sc->sc_wsmousedev)
1173 sc->sc_wsmousedev = NULL;
1174 }
1175
1176 static int
1177 uatp_detach(device_t self, int flags)
1178 {
1179 struct uatp_softc *sc = device_private(self);
1180
1181 DPRINTF(sc, UATP_DEBUG_MISC, ("detaching with flags %d\n", flags));
1182
1183 if (sc->sc_status & UATP_ENABLED) {
1184 aprint_error_dev(uatp_dev(sc), "can't detach while enabled\n");
1185 return EBUSY;
1186 }
1187
1188 if (sc->sc_parameters->finalize) {
1189 int error = sc->sc_parameters->finalize(sc);
1190 if (error != 0)
1191 return error;
1192 }
1193
1194 pmf_device_deregister(self);
1195
1196 sysctl_teardown(&sc->sc_log);
1197 sc->sc_node = NULL;
1198
1199 tap_finalize(sc);
1200
1201 return config_detach_children(self, flags);
1202 }
1203
1204 static int
1205 uatp_activate(device_t self, enum devact act)
1206 {
1207 struct uatp_softc *sc = device_private(self);
1208
1209 DPRINTF(sc, UATP_DEBUG_MISC, ("act %d\n", (int)act));
1210
1211 if (act != DVACT_DEACTIVATE)
1212 return EOPNOTSUPP;
1213
1214 sc->sc_status |= UATP_DYING;
1215
1216 return 0;
1217 }
1218
1219 /* wsmouse routines */
1220
1221 static int
1222 uatp_enable(void *v)
1223 {
1224 struct uatp_softc *sc = v;
1225
1226 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("enabling wsmouse\n"));
1227
1228 /* Refuse to enable if we've been deactivated. */
1229 if (sc->sc_status & UATP_DYING) {
1230 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("busy dying\n"));
1231 return EIO;
1232 }
1233
1234 /* Refuse to enable if we already are enabled. */
1235 if (sc->sc_status & UATP_ENABLED) {
1236 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("already enabled\n"));
1237 return EBUSY;
1238 }
1239
1240 sc->sc_status |= UATP_ENABLED;
1241 sc->sc_status &=~ UATP_VALID;
1242 sc->sc_input_index = 0;
1243 tap_enable(sc);
1244 uatp_clear_position(sc);
1245
1246 DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_open(%p)\n", &sc->sc_hdev));
1247 return uhidev_open(&sc->sc_hdev);
1248 }
1249
1250 static void
1251 uatp_disable(void *v)
1252 {
1253 struct uatp_softc *sc = v;
1254
1255 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("disabling wsmouse\n"));
1256
1257 if (!(sc->sc_status & UATP_ENABLED)) {
1258 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("not enabled\n"));
1259 return;
1260 }
1261
1262 tap_disable(sc);
1263 sc->sc_status &=~ UATP_ENABLED;
1264
1265 DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_close(%p)\n", &sc->sc_hdev));
1266 uhidev_close(&sc->sc_hdev);
1267 }
1268
1269 static int
1270 uatp_ioctl(void *v, unsigned long cmd, void *data, int flag, struct lwp *p)
1271 {
1272
1273 DPRINTF((struct uatp_softc*)v, UATP_DEBUG_IOCTL,
1274 ("cmd %lx, data %p, flag %x, lwp %p\n", cmd, data, flag, p));
1275
1276 /* XXX Implement any relevant wsmouse(4) ioctls. */
1277 return EPASSTHROUGH;
1278 }
1279
1280 /*
1281 * The Geyser 3 and 4 models talk the generic USB HID mouse protocol by
1282 * default. This mode switch makes them give raw sensor data instead
1283 * so that we can implement tapping, two-finger scrolling, &c.
1284 */
1285
1286 #define GEYSER34_RAW_MODE 0x04
1287 #define GEYSER34_MODE_REPORT_ID 0
1288 #define GEYSER34_MODE_INTERFACE 0
1289 #define GEYSER34_MODE_PACKET_SIZE 8
1290
1291 static void
1292 geyser34_enable_raw_mode(struct uatp_softc *sc)
1293 {
1294 struct usbd_device *udev = sc->sc_hdev.sc_parent->sc_udev;
1295 usb_device_request_t req;
1296 usbd_status status;
1297 uint8_t report[GEYSER34_MODE_PACKET_SIZE];
1298
1299 req.bmRequestType = UT_READ_CLASS_INTERFACE;
1300 req.bRequest = UR_GET_REPORT;
1301 USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
1302 USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
1303 USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
1304
1305 DPRINTF(sc, UATP_DEBUG_RESET, ("get feature report\n"));
1306 status = usbd_do_request(udev, &req, report);
1307 if (status != USBD_NORMAL_COMPLETION) {
1308 aprint_error_dev(uatp_dev(sc),
1309 "error reading feature report: %s\n", usbd_errstr(status));
1310 return;
1311 }
1312
1313 #if UATP_DEBUG
1314 if (sc->sc_debug_flags & UATP_DEBUG_RESET) {
1315 unsigned int i;
1316 DPRINTF(sc, UATP_DEBUG_RESET, ("old feature report:"));
1317 for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
1318 printf(" %02x", (unsigned int)report[i]);
1319 printf("\n");
1320 /* Doing this twice is harmless here and lets this be
1321 * one ifdef. */
1322 report[0] = GEYSER34_RAW_MODE;
1323 DPRINTF(sc, UATP_DEBUG_RESET, ("new feature report:"));
1324 for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
1325 printf(" %02x", (unsigned int)report[i]);
1326 printf("\n");
1327 }
1328 #endif
1329
1330 report[0] = GEYSER34_RAW_MODE;
1331
1332 req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
1333 req.bRequest = UR_SET_REPORT;
1334 USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
1335 USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
1336 USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
1337
1338 DPRINTF(sc, UATP_DEBUG_RESET, ("set feature report\n"));
1339 status = usbd_do_request(udev, &req, report);
1340 if (status != USBD_NORMAL_COMPLETION) {
1341 aprint_error_dev(uatp_dev(sc),
1342 "error writing feature report: %s\n", usbd_errstr(status));
1343 return;
1344 }
1345 }
1346
1347 /*
1348 * The Geyser 3 and 4 need to be reset periodically after we detect a
1349 * continual flow of spurious interrupts. We use a USB task for this.
1350 */
1351
1352 static void
1353 geyser34_initialize(struct uatp_softc *sc)
1354 {
1355
1356 DPRINTF(sc, UATP_DEBUG_MISC, ("initializing\n"));
1357 geyser34_enable_raw_mode(sc);
1358 usb_init_task(&sc->sc_reset_task, &geyser34_reset_task, sc, 0);
1359 }
1360
1361 static int
1362 geyser34_finalize(struct uatp_softc *sc)
1363 {
1364
1365 DPRINTF(sc, UATP_DEBUG_MISC, ("finalizing\n"));
1366 usb_rem_task_wait(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task,
1367 USB_TASKQ_DRIVER, NULL);
1368
1369 return 0;
1370 }
1371
1372 static void
1373 geyser34_deferred_reset(struct uatp_softc *sc)
1374 {
1375
1376 DPRINTF(sc, UATP_DEBUG_RESET, ("deferring reset\n"));
1377 usb_add_task(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task,
1378 USB_TASKQ_DRIVER);
1379 }
1380
1381 static void
1382 geyser34_reset_task(void *arg)
1383 {
1384 struct uatp_softc *sc = arg;
1385
1386 DPRINTF(sc, UATP_DEBUG_RESET, ("resetting\n"));
1387
1388 /* Reset by putting it into raw mode. Not sure why. */
1389 geyser34_enable_raw_mode(sc);
1390 }
1391
1392 /* Interrupt handler */
1393
1394 static void
1395 uatp_intr(struct uhidev *addr, void *ibuf, unsigned int len)
1396 {
1397 struct uatp_softc *sc = (struct uatp_softc *)addr;
1398 uint8_t *input;
1399 int dx, dy, dz, dw;
1400 uint32_t buttons;
1401
1402 DPRINTF(sc, UATP_DEBUG_INTR, ("softc %p, ibuf %p, len %u\n",
1403 addr, ibuf, len));
1404
1405 /*
1406 * Some devices break packets up into chunks, so we accumulate
1407 * input up to the expected packet length, or if it would
1408 * overflow, discard the whole packet and start over.
1409 */
1410 if (sc->sc_input_size < len) {
1411 aprint_error_dev(uatp_dev(sc),
1412 "discarding %u-byte input packet\n", len);
1413 sc->sc_input_index = 0;
1414 return;
1415 } else if (sc->sc_input_size < (sc->sc_input_index + len)) {
1416 aprint_error_dev(uatp_dev(sc), "discarding %u-byte input\n",
1417 (sc->sc_input_index + len));
1418 sc->sc_input_index = 0;
1419 return;
1420 }
1421
1422 #if UATP_DEBUG
1423 if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
1424 unsigned int i;
1425 uint8_t *bytes = ibuf;
1426 DPRINTF(sc, UATP_DEBUG_INTR, ("raw"));
1427 for (i = 0; i < len; i++)
1428 printf(" %02x", (unsigned int)bytes[i]);
1429 printf("\n");
1430 }
1431 #endif
1432
1433 memcpy(&sc->sc_input[sc->sc_input_index], ibuf, len);
1434 sc->sc_input_index += len;
1435 if (sc->sc_input_index != sc->sc_input_size) {
1436 /* Wait until packet is complete. */
1437 aprint_verbose_dev(uatp_dev(sc), "partial packet: %u bytes\n",
1438 len);
1439 return;
1440 }
1441
1442 /* Clear the buffer and process the now complete packet. */
1443 sc->sc_input_index = 0;
1444 input = sc->sc_input;
1445
1446 /* The last byte's first bit is set iff the button is pressed.
1447 * XXX Left button should have a name. */
1448 buttons = ((input[sc->sc_input_size - 1] & UATP_STATUS_BUTTON)
1449 ? 1 : 0);
1450
1451 /* Read the sample. */
1452 memset(uatp_x_sample(sc), 0, UATP_MAX_X_SENSORS);
1453 memset(uatp_y_sample(sc), 0, UATP_MAX_Y_SENSORS);
1454 sc->sc_parameters->read_sample(uatp_x_sample(sc), uatp_y_sample(sc),
1455 input);
1456
1457 #if UATP_DEBUG
1458 if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
1459 unsigned int i;
1460 DPRINTF(sc, UATP_DEBUG_INTR, ("x sensors"));
1461 for (i = 0; i < uatp_x_sensors(sc); i++)
1462 printf(" %02x", (unsigned int)uatp_x_sample(sc)[i]);
1463 printf("\n");
1464 DPRINTF(sc, UATP_DEBUG_INTR, ("y sensors"));
1465 for (i = 0; i < uatp_y_sensors(sc); i++)
1466 printf(" %02x", (unsigned int)uatp_y_sample(sc)[i]);
1467 printf("\n");
1468 } else if ((sc->sc_debug_flags & UATP_DEBUG_STATUS) &&
1469 (input[sc->sc_input_size - 1] &~
1470 (UATP_STATUS_BUTTON | UATP_STATUS_BASE |
1471 UATP_STATUS_POST_RESET)))
1472 DPRINTF(sc, UATP_DEBUG_STATUS, ("status byte: %02x\n",
1473 input[sc->sc_input_size - 1]));
1474 #endif
1475
1476 /*
1477 * If this is a base sample, initialize the state to interpret
1478 * subsequent samples relative to it, and stop here.
1479 */
1480 if (sc->sc_parameters->base_sample(sc, input)) {
1481 DPRINTF(sc, UATP_DEBUG_PARSE,
1482 ("base sample, buttons %"PRIx32"\n", buttons));
1483 /* XXX Should the valid bit ever be reset? */
1484 sc->sc_status |= UATP_VALID;
1485 uatp_clear_position(sc);
1486 memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
1487 /* XXX Perform 17" size detection like Linux? */
1488 return;
1489 }
1490
1491 /* If not, accumulate the change in the sensors. */
1492 sc->sc_parameters->accumulate(sc);
1493
1494 #if UATP_DEBUG
1495 if (sc->sc_debug_flags & UATP_DEBUG_ACCUMULATE) {
1496 unsigned int i;
1497 DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated x state:"));
1498 for (i = 0; i < uatp_x_sensors(sc); i++)
1499 printf(" %02x", (unsigned int)uatp_x_acc(sc)[i]);
1500 printf("\n");
1501 DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated y state:"));
1502 for (i = 0; i < uatp_y_sensors(sc); i++)
1503 printf(" %02x", (unsigned int)uatp_y_acc(sc)[i]);
1504 printf("\n");
1505 }
1506 #endif
1507
1508 /* Compute the change in coordinates and buttons. */
1509 dx = dy = dz = dw = 0;
1510 if ((!interpret_input(sc, &dx, &dy, &dz, &dw, &buttons)) &&
1511 /* If there's no input because we're releasing a button,
1512 * then it's not spurious. XXX Mutex? */
1513 (sc->sc_buttons == 0)) {
1514 DPRINTF(sc, UATP_DEBUG_SPURINTR, ("spurious interrupt\n"));
1515 if (sc->sc_parameters->reset)
1516 sc->sc_parameters->reset(sc);
1517 return;
1518 }
1519
1520 /* Report to wsmouse. */
1521 DPRINTF(sc, UATP_DEBUG_INTR,
1522 ("buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
1523 buttons, dx, dy, dz, dw));
1524 mutex_enter(&sc->sc_tap_mutex);
1525 uatp_input(sc, buttons, dx, dy, dz, dw);
1526 mutex_exit(&sc->sc_tap_mutex);
1527 }
1528
1529 /*
1530 * Different ways to discern the base sample initializing the state.
1531 * `base_sample_softc_flag' uses a state flag stored in the softc;
1532 * `base_sample_input_flag' checks a flag at the end of the input
1533 * packet.
1534 */
1535
1536 static bool
1537 base_sample_softc_flag(const struct uatp_softc *sc, const uint8_t *input)
1538 {
1539 return !(sc->sc_status & UATP_VALID);
1540 }
1541
1542 static bool
1543 base_sample_input_flag(const struct uatp_softc *sc, const uint8_t *input)
1544 {
1545 /* XXX Should we also check the valid flag? */
1546 return !!(input[sc->sc_input_size - 1] & UATP_STATUS_BASE);
1547 }
1548
1549 /*
1550 * Pick apart the horizontal sensors from the vertical sensors.
1551 * Different models interleave them in different orders.
1552 */
1553
1554 static void
1555 read_sample_1(uint8_t *x, uint8_t *y, const uint8_t *input)
1556 {
1557 unsigned int i;
1558
1559 for (i = 0; i < 8; i++) {
1560 x[i] = input[5 * i + 2];
1561 x[i + 8] = input[5 * i + 4];
1562 x[i + 16] = input[5 * i + 42];
1563 if (i < 2)
1564 x[i + 24] = input[5 * i + 44];
1565
1566 y[i] = input[5 * i + 1];
1567 y[i + 8] = input[5 * i + 3];
1568 }
1569 }
1570
1571 static void
1572 read_sample_2(uint8_t *x, uint8_t *y, const uint8_t *input)
1573 {
1574 unsigned int i, j;
1575
1576 for (i = 0, j = 19; i < 20; i += 2, j += 3) {
1577 x[i] = input[j];
1578 x[i + 1] = input[j + 1];
1579 }
1580
1581 for (i = 0, j = 1; i < 9; i += 2, j += 3) {
1582 y[i] = input[j];
1583 y[i + 1] = input[j + 1];
1584 }
1585 }
1586
1587 static void
1588 accumulate_sample_1(struct uatp_softc *sc)
1589 {
1590 unsigned int i;
1591
1592 for (i = 0; i < UATP_SENSORS; i++) {
1593 sc->sc_acc[i] += (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
1594 if (sc->sc_acc[i] < 0) {
1595 sc->sc_acc[i] = 0;
1596 } else if (UATP_MAX_ACC < sc->sc_acc[i]) {
1597 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1598 ("overflow %d\n", sc->sc_acc[i]));
1599 sc->sc_acc[i] = UATP_MAX_ACC;
1600 }
1601 }
1602
1603 memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
1604 }
1605
1606 static void
1607 accumulate_sample_2(struct uatp_softc *sc)
1608 {
1609 unsigned int i;
1610
1611 for (i = 0; i < UATP_SENSORS; i++) {
1612 sc->sc_acc[i] = (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
1613 if (sc->sc_acc[i] < -0x80) {
1614 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1615 ("underflow %u - %u = %d\n",
1616 (unsigned int)sc->sc_sample[i],
1617 (unsigned int)sc->sc_base[i],
1618 sc->sc_acc[i]));
1619 sc->sc_acc[i] += 0x100;
1620 }
1621 if (0x7f < sc->sc_acc[i]) {
1622 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1623 ("overflow %u - %u = %d\n",
1624 (unsigned int)sc->sc_sample[i],
1625 (unsigned int)sc->sc_base[i],
1626 sc->sc_acc[i]));
1627 sc->sc_acc[i] -= 0x100;
1628 }
1629 if (sc->sc_acc[i] < 0)
1630 sc->sc_acc[i] = 0;
1631 }
1632 }
1633
1634 /*
1635 * Report input to wsmouse, if there is anything interesting to report.
1636 * We must take into consideration the current tap-and-drag button
1637 * state.
1638 */
1639
1640 static void
1641 uatp_input(struct uatp_softc *sc, uint32_t buttons,
1642 int dx, int dy, int dz, int dw)
1643 {
1644 uint32_t all_buttons;
1645
1646 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1647 all_buttons = buttons | uatp_tapped_buttons(sc);
1648
1649 if ((sc->sc_wsmousedev != NULL) &&
1650 ((dx != 0) || (dy != 0) || (dz != 0) || (dw != 0) ||
1651 (all_buttons != sc->sc_all_buttons))) {
1652 int s = spltty();
1653 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("wsmouse input:"
1654 " buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
1655 all_buttons, dx, -dy, dz, -dw));
1656 wsmouse_input(sc->sc_wsmousedev, all_buttons, dx, -dy, dz, -dw,
1657 WSMOUSE_INPUT_DELTA);
1658 splx(s);
1659 }
1660 sc->sc_buttons = buttons;
1661 sc->sc_all_buttons = all_buttons;
1662 }
1663
1664 /*
1665 * Interpret the current tap state to decide whether the tap buttons
1666 * are currently pressed.
1667 */
1668
1669 static uint32_t
1670 uatp_tapped_buttons(struct uatp_softc *sc)
1671 {
1672 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1673 switch (sc->sc_tap_state) {
1674 case TAP_STATE_INITIAL:
1675 case TAP_STATE_TAPPING:
1676 return 0;
1677
1678 case TAP_STATE_TAPPED:
1679 case TAP_STATE_DOUBLE_TAPPING:
1680 case TAP_STATE_DRAGGING_DOWN:
1681 case TAP_STATE_DRAGGING_UP:
1682 case TAP_STATE_TAPPING_IN_DRAG:
1683 CHECK((0 < sc->sc_tapped_fingers), return 0);
1684 switch (sc->sc_tapped_fingers) {
1685 case 1: return sc->sc_knobs.one_finger_tap_buttons;
1686 case 2: return sc->sc_knobs.two_finger_tap_buttons;
1687 case 3:
1688 default: return sc->sc_knobs.three_finger_tap_buttons;
1689 }
1690
1691 default:
1692 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
1693 __func__, sc->sc_tap_state);
1694 return 0;
1695 }
1696 }
1697
1698 /*
1699 * Interpret the current input state to find a difference in all the
1700 * relevant coordinates and buttons to pass on to wsmouse, and update
1701 * any internal driver state necessary to interpret subsequent input
1702 * relative to this one.
1703 */
1704
1705 static bool
1706 interpret_input(struct uatp_softc *sc, int *dx, int *dy, int *dz, int *dw,
1707 uint32_t *buttons)
1708 {
1709 unsigned int x_pressure, x_raw, x_fingers;
1710 unsigned int y_pressure, y_raw, y_fingers;
1711 unsigned int fingers;
1712
1713 x_pressure = interpret_dimension(sc, uatp_x_acc(sc),
1714 uatp_x_sensors(sc), uatp_x_ratio(sc), &x_raw, &x_fingers);
1715 y_pressure = interpret_dimension(sc, uatp_y_acc(sc),
1716 uatp_y_sensors(sc), uatp_y_ratio(sc), &y_raw, &y_fingers);
1717
1718 DPRINTF(sc, UATP_DEBUG_PARSE,
1719 ("x %u @ %u, %uf; y %u @ %u, %uf; buttons %"PRIx32"\n",
1720 x_pressure, x_raw, x_fingers,
1721 y_pressure, y_raw, y_fingers,
1722 *buttons));
1723
1724 if ((x_pressure == 0) && (y_pressure == 0)) {
1725 bool ok;
1726 /* No fingers: clear position and maybe report a tap. */
1727 DPRINTF(sc, UATP_DEBUG_INTR,
1728 ("no position detected; clearing position\n"));
1729 if (*buttons == 0) {
1730 ok = tap_released(sc);
1731 } else {
1732 tap_reset(sc);
1733 /* Button pressed: interrupt is not spurious. */
1734 ok = true;
1735 }
1736 /*
1737 * Don't clear the position until after tap_released,
1738 * which needs to know the track distance.
1739 */
1740 uatp_clear_position(sc);
1741 return ok;
1742 } else if ((x_pressure == 0) || (y_pressure == 0)) {
1743 /* XXX What to do here? */
1744 DPRINTF(sc, UATP_DEBUG_INTR,
1745 ("pressure in only one dimension; ignoring\n"));
1746 return true;
1747 } else if ((x_pressure == 1) && (y_pressure == 1)) {
1748 fingers = max(x_fingers, y_fingers);
1749 CHECK((0 < fingers), return false);
1750 if (*buttons == 0)
1751 tap_touched(sc, fingers);
1752 else if (fingers == 1)
1753 tap_reset(sc);
1754 else /* Multiple fingers, button pressed. */
1755 *buttons = emulated_buttons(sc, fingers);
1756 update_position(sc, fingers, x_raw, y_raw, dx, dy, dz, dw);
1757 return true;
1758 } else {
1759 /* Palm detected in either or both of the dimensions. */
1760 DPRINTF(sc, UATP_DEBUG_INTR, ("palm detected; ignoring\n"));
1761 return true;
1762 }
1763 }
1764
1765 /*
1766 * Interpret the accumulated sensor state along one dimension to find
1767 * the number, mean position, and pressure of fingers. Returns 0 to
1768 * indicate no pressure, returns 1 and sets *position and *fingers to
1769 * indicate fingers, and returns 2 to indicate palm.
1770 *
1771 * XXX Give symbolic names to the return values.
1772 */
1773
1774 static unsigned int
1775 interpret_dimension(struct uatp_softc *sc, const int *acc,
1776 unsigned int n_sensors, unsigned int ratio,
1777 unsigned int *position, unsigned int *fingers)
1778 {
1779 unsigned int i, v, n_fingers, sum;
1780 unsigned int total[UATP_MAX_SENSORS];
1781 unsigned int weighted[UATP_MAX_SENSORS];
1782 unsigned int sensor_threshold = sc->sc_knobs.sensor_threshold;
1783 unsigned int sensor_normalizer = sc->sc_knobs.sensor_normalizer;
1784 unsigned int width = 0; /* GCC is not smart enough. */
1785 unsigned int palm_width = sc->sc_knobs.palm_width;
1786 enum { none, nondecreasing, decreasing } state = none;
1787
1788 if (sensor_threshold < sensor_normalizer)
1789 sensor_normalizer = sensor_threshold;
1790 if (palm_width == 0) /* Effectively disable palm detection. */
1791 palm_width = UATP_MAX_POSITION;
1792
1793 #define CHECK_(condition) CHECK(condition, return 0)
1794
1795 /*
1796 * Arithmetic bounds:
1797 * . n_sensors is at most UATP_MAX_SENSORS,
1798 * . n_fingers is at most UATP_MAX_SENSORS,
1799 * . i is at most UATP_MAX_SENSORS,
1800 * . sc->sc_acc[i] is at most UATP_MAX_ACC,
1801 * . i * sc->sc_acc[i] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
1802 * . each total[j] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
1803 * . each weighted[j] is at most UATP_MAX_SENSORS^2 * UATP_MAX_ACC,
1804 * . ratio is at most UATP_MAX_RATIO,
1805 * . each weighted[j] * ratio is at most
1806 * UATP_MAX_SENSORS^2 * UATP_MAX_ACC * UATP_MAX_RATIO,
1807 * which is #x5fa0000 with the current values of the constants,
1808 * and
1809 * . the sum of the positions is at most
1810 * UATP_MAX_SENSORS * UATP_MAX_POSITION,
1811 * which is #x60000 with the current values of the constants.
1812 * Hence all of the arithmetic here fits in int (and thus also
1813 * unsigned int). If you change the constants, though, you
1814 * must update the analysis.
1815 */
1816 __CTASSERT(0x5fa0000 == (UATP_MAX_SENSORS * UATP_MAX_SENSORS *
1817 UATP_MAX_ACC * UATP_MAX_RATIO));
1818 __CTASSERT(0x60000 == (UATP_MAX_SENSORS * UATP_MAX_POSITION));
1819 CHECK_(n_sensors <= UATP_MAX_SENSORS);
1820 CHECK_(ratio <= UATP_MAX_RATIO);
1821
1822 /*
1823 * Detect each finger by looking for a consecutive sequence of
1824 * increasing and then decreasing pressures above the sensor
1825 * threshold. Compute the finger's position as the weighted
1826 * average of positions, weighted by the pressure at that
1827 * position. Finally, return the average finger position.
1828 */
1829
1830 n_fingers = 0;
1831 memset(weighted, 0, sizeof(weighted));
1832 memset(total, 0, sizeof(total));
1833
1834 for (i = 0; i < n_sensors; i++) {
1835 CHECK_(0 <= acc[i]);
1836 v = acc[i];
1837
1838 /* Ignore values outside a sensible interval. */
1839 if (v <= sensor_threshold) {
1840 state = none;
1841 continue;
1842 } else if (UATP_MAX_ACC < v) {
1843 aprint_verbose_dev(uatp_dev(sc),
1844 "ignoring large accumulated sensor state: %u\n",
1845 v);
1846 continue;
1847 }
1848
1849 switch (state) {
1850 case none:
1851 n_fingers += 1;
1852 CHECK_(n_fingers <= n_sensors);
1853 state = nondecreasing;
1854 width = 1;
1855 break;
1856
1857 case nondecreasing:
1858 case decreasing:
1859 CHECK_(0 < i);
1860 CHECK_(0 <= acc[i - 1]);
1861 width += 1;
1862 if (palm_width <= (width * ratio)) {
1863 DPRINTF(sc, UATP_DEBUG_PALM,
1864 ("palm detected\n"));
1865 return 2;
1866 } else if ((state == nondecreasing) &&
1867 ((unsigned int)acc[i - 1] > v)) {
1868 state = decreasing;
1869 } else if ((state == decreasing) &&
1870 ((unsigned int)acc[i - 1] < v)) {
1871 n_fingers += 1;
1872 CHECK_(n_fingers <= n_sensors);
1873 state = nondecreasing;
1874 width = 1;
1875 }
1876 break;
1877
1878 default:
1879 aprint_error_dev(uatp_dev(sc),
1880 "bad finger detection state: %d", state);
1881 return 0;
1882 }
1883
1884 v -= sensor_normalizer;
1885 total[n_fingers - 1] += v;
1886 weighted[n_fingers - 1] += (i * v);
1887 CHECK_(total[n_fingers - 1] <=
1888 (UATP_MAX_SENSORS * UATP_MAX_ACC));
1889 CHECK_(weighted[n_fingers - 1] <=
1890 (UATP_MAX_SENSORS * UATP_MAX_SENSORS * UATP_MAX_ACC));
1891 }
1892
1893 if (n_fingers == 0)
1894 return 0;
1895
1896 sum = 0;
1897 for (i = 0; i < n_fingers; i++) {
1898 DPRINTF(sc, UATP_DEBUG_PARSE,
1899 ("finger at %u\n", ((weighted[i] * ratio) / total[i])));
1900 sum += ((weighted[i] * ratio) / total[i]);
1901 CHECK_(sum <= UATP_MAX_SENSORS * UATP_MAX_POSITION);
1902 }
1903
1904 *fingers = n_fingers;
1905 *position = (sum / n_fingers);
1906 return 1;
1907
1908 #undef CHECK_
1909 }
1910
1911 /* Tapping */
1912
1913 /*
1914 * There is a very hairy state machine for detecting taps. At every
1915 * touch, we record the maximum number of fingers touched, and don't
1916 * reset it to zero until the finger is released.
1917 *
1918 * INITIAL STATE
1919 * (no tapping fingers; no tapped fingers)
1920 * - On touch, go to TAPPING STATE.
1921 * - On any other input, remain in INITIAL STATE.
1922 *
1923 * TAPPING STATE: Finger touched; might be tap.
1924 * (tapping fingers; no tapped fingers)
1925 * - On release within the tap limit, go to TAPPED STATE.
1926 * - On release after the tap limit, go to INITIAL STATE.
1927 * - On any other input, remain in TAPPING STATE.
1928 *
1929 * TAPPED STATE: Finger recently tapped, and might double-tap.
1930 * (no tapping fingers; tapped fingers)
1931 * - On touch within the double-tap limit, go to DOUBLE-TAPPING STATE.
1932 * - On touch after the double-tap limit, go to TAPPING STATE.
1933 * - On no event after the double-tap limit, go to INITIAL STATE.
1934 * - On any other input, remain in TAPPED STATE.
1935 *
1936 * DOUBLE-TAPPING STATE: Finger touched soon after tap; might be double-tap.
1937 * (tapping fingers; tapped fingers)
1938 * - On release within the tap limit, release button and go to TAPPED STATE.
1939 * - On release after the tap limit, go to DRAGGING UP STATE.
1940 * - On touch after the tap limit, go to DRAGGING DOWN STATE.
1941 * - On any other input, remain in DOUBLE-TAPPING STATE.
1942 *
1943 * DRAGGING DOWN STATE: Finger has double-tapped and is dragging, not tapping.
1944 * (no tapping fingers; tapped fingers)
1945 * - On release, go to DRAGGING UP STATE.
1946 * - On any other input, remain in DRAGGING DOWN STATE.
1947 *
1948 * DRAGGING UP STATE: Finger has double-tapped and is up.
1949 * (no tapping fingers; tapped fingers)
1950 * - On touch, go to TAPPING IN DRAG STATE.
1951 * - On any other input, remain in DRAGGING UP STATE.
1952 *
1953 * TAPPING IN DRAG STATE: Tap-dancing while cross-dressed.
1954 * (tapping fingers; tapped fingers)
1955 * - On release within the tap limit, go to TAPPED STATE.
1956 * - On release after the tap limit, go to DRAGGING UP STATE.
1957 * - On any other input, remain in TAPPING IN DRAG STATE.
1958 *
1959 * Warning: The graph of states is split into two components, those
1960 * with tapped fingers and those without. The only path from any state
1961 * without tapped fingers to a state with tapped fingers must pass
1962 * through TAPPED STATE. Also, the only transitions into TAPPED STATE
1963 * must be from states with tapping fingers, which become the tapped
1964 * fingers. If you edit the state machine, you must either preserve
1965 * these properties, or globally transform the state machine to avoid
1966 * the bad consequences of violating these properties.
1967 */
1968
1969 static void
1970 uatp_tap_limit(const struct uatp_softc *sc, struct timeval *limit)
1971 {
1972 unsigned int msec = sc->sc_knobs.tap_limit_msec;
1973 limit->tv_sec = 0;
1974 limit->tv_usec = ((msec < 1000) ? (1000 * msec) : 100000);
1975 }
1976
1977 #if UATP_DEBUG
1978
1979 # define TAP_DEBUG_PRE(sc) tap_debug((sc), __func__, "")
1980 # define TAP_DEBUG_POST(sc) tap_debug((sc), __func__, " ->")
1981
1982 static void
1983 tap_debug(struct uatp_softc *sc, const char *caller, const char *prefix)
1984 {
1985 char buffer[128];
1986 const char *state;
1987
1988 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1989 switch (sc->sc_tap_state) {
1990 case TAP_STATE_INITIAL: state = "initial"; break;
1991 case TAP_STATE_TAPPING: state = "tapping"; break;
1992 case TAP_STATE_TAPPED: state = "tapped"; break;
1993 case TAP_STATE_DOUBLE_TAPPING: state = "double-tapping"; break;
1994 case TAP_STATE_DRAGGING_DOWN: state = "dragging-down"; break;
1995 case TAP_STATE_DRAGGING_UP: state = "dragging-up"; break;
1996 case TAP_STATE_TAPPING_IN_DRAG: state = "tapping-in-drag"; break;
1997 default:
1998 snprintf(buffer, sizeof(buffer), "unknown (%d)",
1999 sc->sc_tap_state);
2000 state = buffer;
2001 break;
2002 }
2003
2004 DPRINTF(sc, UATP_DEBUG_TAP,
2005 ("%s:%s state %s, %u tapping, %u tapped\n",
2006 caller, prefix, state,
2007 sc->sc_tapping_fingers, sc->sc_tapped_fingers));
2008 }
2009
2010 #else /* !UATP_DEBUG */
2011
2012 # define TAP_DEBUG_PRE(sc) do {} while (0)
2013 # define TAP_DEBUG_POST(sc) do {} while (0)
2014
2015 #endif
2016
2017 static void
2018 tap_initialize(struct uatp_softc *sc)
2019 {
2020 callout_init(&sc->sc_untap_callout, 0);
2021 callout_setfunc(&sc->sc_untap_callout, untap_callout, sc);
2022 mutex_init(&sc->sc_tap_mutex, MUTEX_DEFAULT, IPL_SOFTUSB);
2023 cv_init(&sc->sc_tap_cv, "uatptap");
2024 }
2025
2026 static void
2027 tap_finalize(struct uatp_softc *sc)
2028 {
2029 /* XXX Can the callout still be scheduled here? */
2030 callout_destroy(&sc->sc_untap_callout);
2031 mutex_destroy(&sc->sc_tap_mutex);
2032 cv_destroy(&sc->sc_tap_cv);
2033 }
2034
2035 static void
2036 tap_enable(struct uatp_softc *sc)
2037 {
2038 mutex_enter(&sc->sc_tap_mutex);
2039 tap_transition_initial(sc);
2040 sc->sc_buttons = 0; /* XXX Not the right place? */
2041 sc->sc_all_buttons = 0;
2042 mutex_exit(&sc->sc_tap_mutex);
2043 }
2044
2045 static void
2046 tap_disable(struct uatp_softc *sc)
2047 {
2048 /* Reset tapping, and wait for any callouts to complete. */
2049 tap_reset_wait(sc);
2050 }
2051
2052 /*
2053 * Reset tap state. If the untap callout has just fired, it may signal
2054 * a harmless button release event before this returns.
2055 */
2056
2057 static void
2058 tap_reset(struct uatp_softc *sc)
2059 {
2060 callout_stop(&sc->sc_untap_callout);
2061 mutex_enter(&sc->sc_tap_mutex);
2062 tap_transition_initial(sc);
2063 mutex_exit(&sc->sc_tap_mutex);
2064 }
2065
2066 /* Reset, but don't return until the callout is done running. */
2067
2068 static void
2069 tap_reset_wait(struct uatp_softc *sc)
2070 {
2071 bool fired = callout_stop(&sc->sc_untap_callout);
2072
2073 mutex_enter(&sc->sc_tap_mutex);
2074 if (fired)
2075 while (sc->sc_tap_state == TAP_STATE_TAPPED)
2076 if (cv_timedwait(&sc->sc_tap_cv, &sc->sc_tap_mutex,
2077 mstohz(1000))) {
2078 aprint_error_dev(uatp_dev(sc),
2079 "tap timeout\n");
2080 break;
2081 }
2082 if (sc->sc_tap_state == TAP_STATE_TAPPED)
2083 aprint_error_dev(uatp_dev(sc), "%s error\n", __func__);
2084 tap_transition_initial(sc);
2085 mutex_exit(&sc->sc_tap_mutex);
2086 }
2087
2088 static const struct timeval zero_timeval;
2089
2090 static void
2091 tap_transition(struct uatp_softc *sc, enum uatp_tap_state tap_state,
2092 const struct timeval *start_time,
2093 unsigned int tapping_fingers, unsigned int tapped_fingers)
2094 {
2095 KASSERT(mutex_owned(&sc->sc_tap_mutex));
2096 sc->sc_tap_state = tap_state;
2097 sc->sc_tap_timer = *start_time;
2098 sc->sc_tapping_fingers = tapping_fingers;
2099 sc->sc_tapped_fingers = tapped_fingers;
2100 }
2101
2102 static void
2103 tap_transition_initial(struct uatp_softc *sc)
2104 {
2105 /*
2106 * No checks. This state is always kosher, and sometimes a
2107 * fallback in case of failure.
2108 */
2109 tap_transition(sc, TAP_STATE_INITIAL, &zero_timeval, 0, 0);
2110 }
2111
2112 /* Touch transitions */
2113
2114 static void
2115 tap_transition_tapping(struct uatp_softc *sc, const struct timeval *start_time,
2116 unsigned int fingers)
2117 {
2118 CHECK((sc->sc_tapping_fingers <= fingers),
2119 do { tap_transition_initial(sc); return; } while (0));
2120 tap_transition(sc, TAP_STATE_TAPPING, start_time, fingers, 0);
2121 }
2122
2123 static void
2124 tap_transition_double_tapping(struct uatp_softc *sc,
2125 const struct timeval *start_time, unsigned int fingers)
2126 {
2127 CHECK((sc->sc_tapping_fingers <= fingers),
2128 do { tap_transition_initial(sc); return; } while (0));
2129 CHECK((0 < sc->sc_tapped_fingers),
2130 do { tap_transition_initial(sc); return; } while (0));
2131 tap_transition(sc, TAP_STATE_DOUBLE_TAPPING, start_time, fingers,
2132 sc->sc_tapped_fingers);
2133 }
2134
2135 static void
2136 tap_transition_dragging_down(struct uatp_softc *sc)
2137 {
2138 CHECK((0 < sc->sc_tapped_fingers),
2139 do { tap_transition_initial(sc); return; } while (0));
2140 tap_transition(sc, TAP_STATE_DRAGGING_DOWN, &zero_timeval, 0,
2141 sc->sc_tapped_fingers);
2142 }
2143
2144 static void
2145 tap_transition_tapping_in_drag(struct uatp_softc *sc,
2146 const struct timeval *start_time, unsigned int fingers)
2147 {
2148 CHECK((sc->sc_tapping_fingers <= fingers),
2149 do { tap_transition_initial(sc); return; } while (0));
2150 CHECK((0 < sc->sc_tapped_fingers),
2151 do { tap_transition_initial(sc); return; } while (0));
2152 tap_transition(sc, TAP_STATE_TAPPING_IN_DRAG, start_time, fingers,
2153 sc->sc_tapped_fingers);
2154 }
2155
2156 /* Release transitions */
2157
2158 static void
2159 tap_transition_tapped(struct uatp_softc *sc, const struct timeval *start_time)
2160 {
2161 /*
2162 * The fingers that were tapping -- of which there must have
2163 * been at least one -- are now the fingers that have tapped,
2164 * and there are no longer fingers tapping.
2165 */
2166 CHECK((0 < sc->sc_tapping_fingers),
2167 do { tap_transition_initial(sc); return; } while (0));
2168 tap_transition(sc, TAP_STATE_TAPPED, start_time, 0,
2169 sc->sc_tapping_fingers);
2170 schedule_untap(sc);
2171 }
2172
2173 static void
2174 tap_transition_dragging_up(struct uatp_softc *sc)
2175 {
2176 CHECK((0 < sc->sc_tapped_fingers),
2177 do { tap_transition_initial(sc); return; } while (0));
2178 tap_transition(sc, TAP_STATE_DRAGGING_UP, &zero_timeval, 0,
2179 sc->sc_tapped_fingers);
2180 }
2181
2182 static void
2183 tap_touched(struct uatp_softc *sc, unsigned int fingers)
2184 {
2185 struct timeval now, diff, limit;
2186
2187 CHECK((0 < fingers), return);
2188 callout_stop(&sc->sc_untap_callout);
2189 mutex_enter(&sc->sc_tap_mutex);
2190 TAP_DEBUG_PRE(sc);
2191 /*
2192 * Guarantee that the number of tapping fingers never decreases
2193 * except when it is reset to zero on release.
2194 */
2195 if (fingers < sc->sc_tapping_fingers)
2196 fingers = sc->sc_tapping_fingers;
2197 switch (sc->sc_tap_state) {
2198 case TAP_STATE_INITIAL:
2199 getmicrouptime(&now);
2200 tap_transition_tapping(sc, &now, fingers);
2201 break;
2202
2203 case TAP_STATE_TAPPING:
2204 /*
2205 * Number of fingers may have increased, so transition
2206 * even though we're already in TAPPING.
2207 */
2208 tap_transition_tapping(sc, &sc->sc_tap_timer, fingers);
2209 break;
2210
2211 case TAP_STATE_TAPPED:
2212 getmicrouptime(&now);
2213 /*
2214 * If the double-tap time limit has passed, it's the
2215 * callout's responsibility to handle that event, so we
2216 * assume the limit has not passed yet.
2217 */
2218 tap_transition_double_tapping(sc, &now, fingers);
2219 break;
2220
2221 case TAP_STATE_DOUBLE_TAPPING:
2222 getmicrouptime(&now);
2223 timersub(&now, &sc->sc_tap_timer, &diff);
2224 uatp_tap_limit(sc, &limit);
2225 if (timercmp(&diff, &limit, >) ||
2226 (sc->sc_track_distance >
2227 sc->sc_knobs.tap_track_distance_limit))
2228 tap_transition_dragging_down(sc);
2229 break;
2230
2231 case TAP_STATE_DRAGGING_DOWN:
2232 break;
2233
2234 case TAP_STATE_DRAGGING_UP:
2235 getmicrouptime(&now);
2236 tap_transition_tapping_in_drag(sc, &now, fingers);
2237 break;
2238
2239 case TAP_STATE_TAPPING_IN_DRAG:
2240 /*
2241 * Number of fingers may have increased, so transition
2242 * even though we're already in TAPPING IN DRAG.
2243 */
2244 tap_transition_tapping_in_drag(sc, &sc->sc_tap_timer, fingers);
2245 break;
2246
2247 default:
2248 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2249 __func__, sc->sc_tap_state);
2250 tap_transition_initial(sc);
2251 break;
2252 }
2253 TAP_DEBUG_POST(sc);
2254 mutex_exit(&sc->sc_tap_mutex);
2255 }
2256
2257 static bool
2258 tap_released(struct uatp_softc *sc)
2259 {
2260 struct timeval now, diff, limit;
2261 void (*non_tapped_transition)(struct uatp_softc *);
2262 bool ok, temporary_release;
2263
2264 mutex_enter(&sc->sc_tap_mutex);
2265 TAP_DEBUG_PRE(sc);
2266 switch (sc->sc_tap_state) {
2267 case TAP_STATE_INITIAL:
2268 case TAP_STATE_TAPPED:
2269 case TAP_STATE_DRAGGING_UP:
2270 /* Spurious interrupt: fingers are already off. */
2271 ok = false;
2272 break;
2273
2274 case TAP_STATE_TAPPING:
2275 temporary_release = false;
2276 non_tapped_transition = &tap_transition_initial;
2277 goto maybe_tap;
2278
2279 case TAP_STATE_DOUBLE_TAPPING:
2280 temporary_release = true;
2281 non_tapped_transition = &tap_transition_dragging_up;
2282 goto maybe_tap;
2283
2284 case TAP_STATE_TAPPING_IN_DRAG:
2285 temporary_release = false;
2286 non_tapped_transition = &tap_transition_dragging_up;
2287 goto maybe_tap;
2288
2289 maybe_tap:
2290 getmicrouptime(&now);
2291 timersub(&now, &sc->sc_tap_timer, &diff);
2292 uatp_tap_limit(sc, &limit);
2293 if (timercmp(&diff, &limit, <=) &&
2294 (sc->sc_track_distance <=
2295 sc->sc_knobs.tap_track_distance_limit)) {
2296 if (temporary_release) {
2297 /*
2298 * XXX Kludge: Temporarily transition
2299 * to a tap state that uatp_input will
2300 * interpret as `no buttons tapped',
2301 * saving the tapping fingers. There
2302 * should instead be a separate routine
2303 * uatp_input_untapped.
2304 */
2305 unsigned int fingers = sc->sc_tapping_fingers;
2306 tap_transition_initial(sc);
2307 uatp_input(sc, 0, 0, 0, 0, 0);
2308 sc->sc_tapping_fingers = fingers;
2309 }
2310 tap_transition_tapped(sc, &now);
2311 } else {
2312 (*non_tapped_transition)(sc);
2313 }
2314 ok = true;
2315 break;
2316
2317 case TAP_STATE_DRAGGING_DOWN:
2318 tap_transition_dragging_up(sc);
2319 ok = true;
2320 break;
2321
2322 default:
2323 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2324 __func__, sc->sc_tap_state);
2325 tap_transition_initial(sc);
2326 ok = false;
2327 break;
2328 }
2329 TAP_DEBUG_POST(sc);
2330 mutex_exit(&sc->sc_tap_mutex);
2331 return ok;
2332 }
2333
2334 /* Untapping: Releasing the button after a tap */
2335
2336 static void
2337 schedule_untap(struct uatp_softc *sc)
2338 {
2339 unsigned int ms = sc->sc_knobs.double_tap_limit_msec;
2340 if (ms <= 1000)
2341 callout_schedule(&sc->sc_untap_callout, mstohz(ms));
2342 else /* XXX Reject bogus values in sysctl. */
2343 aprint_error_dev(uatp_dev(sc),
2344 "double-tap delay too long: %ums\n", ms);
2345 }
2346
2347 static void
2348 untap_callout(void *arg)
2349 {
2350 struct uatp_softc *sc = arg;
2351
2352 mutex_enter(&sc->sc_tap_mutex);
2353 TAP_DEBUG_PRE(sc);
2354 switch (sc->sc_tap_state) {
2355 case TAP_STATE_TAPPED:
2356 tap_transition_initial(sc);
2357 /*
2358 * XXX Kludge: Call uatp_input after the state transition
2359 * to make sure that it will actually release the button.
2360 */
2361 uatp_input(sc, 0, 0, 0, 0, 0);
2362
2363 case TAP_STATE_INITIAL:
2364 case TAP_STATE_TAPPING:
2365 case TAP_STATE_DOUBLE_TAPPING:
2366 case TAP_STATE_DRAGGING_UP:
2367 case TAP_STATE_DRAGGING_DOWN:
2368 case TAP_STATE_TAPPING_IN_DRAG:
2369 /*
2370 * Somebody else got in and changed the state before we
2371 * untapped. Let them take over; do nothing here.
2372 */
2373 break;
2374
2375 default:
2376 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2377 __func__, sc->sc_tap_state);
2378 tap_transition_initial(sc);
2379 /* XXX Just in case...? */
2380 uatp_input(sc, 0, 0, 0, 0, 0);
2381 break;
2382 }
2383 TAP_DEBUG_POST(sc);
2384 /* XXX Broadcast only if state was TAPPED? */
2385 cv_broadcast(&sc->sc_tap_cv);
2386 mutex_exit(&sc->sc_tap_mutex);
2387 }
2388
2389 /*
2390 * Emulate different buttons if the user holds down n fingers while
2391 * pressing the physical button. (This is unrelated to tapping.)
2392 */
2393
2394 static uint32_t
2395 emulated_buttons(struct uatp_softc *sc, unsigned int fingers)
2396 {
2397 CHECK((1 < fingers), return 0);
2398
2399 switch (fingers) {
2400 case 2:
2401 DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
2402 ("2-finger emulated button: %"PRIx32"\n",
2403 sc->sc_knobs.two_finger_buttons));
2404 return sc->sc_knobs.two_finger_buttons;
2405
2406 case 3:
2407 default:
2408 DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
2409 ("3-finger emulated button: %"PRIx32"\n",
2410 sc->sc_knobs.three_finger_buttons));
2411 return sc->sc_knobs.three_finger_buttons;
2412 }
2413 }
2414
2415 /*
2416 * Update the position known to the driver based on the position and
2417 * number of fingers. dx, dy, dz, and dw are expected to hold zero;
2418 * update_position may store nonzero changes in position in them.
2419 */
2420
2421 static void
2422 update_position(struct uatp_softc *sc, unsigned int fingers,
2423 unsigned int x_raw, unsigned int y_raw,
2424 int *dx, int *dy, int *dz, int *dw)
2425 {
2426 CHECK((0 < fingers), return);
2427
2428 if ((fingers == 1) || (sc->sc_knobs.multifinger_track == 1))
2429 move_mouse(sc, x_raw, y_raw, dx, dy);
2430 else if (sc->sc_knobs.multifinger_track == 2)
2431 scroll_wheel(sc, x_raw, y_raw, dz, dw);
2432 }
2433
2434 /*
2435 * XXX Scrolling needs to use a totally different motion model.
2436 */
2437
2438 static void
2439 move_mouse(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
2440 int *dx, int *dy)
2441 {
2442 move(sc, "mouse", x_raw, y_raw, &sc->sc_x_raw, &sc->sc_y_raw,
2443 &sc->sc_x_smoothed, &sc->sc_y_smoothed,
2444 &sc->sc_x_remainder, &sc->sc_y_remainder,
2445 dx, dy);
2446 }
2447
2448 static void
2449 scroll_wheel(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
2450 int *dz, int *dw)
2451 {
2452 move(sc, "scroll", x_raw, y_raw, &sc->sc_z_raw, &sc->sc_w_raw,
2453 &sc->sc_z_smoothed, &sc->sc_w_smoothed,
2454 &sc->sc_z_remainder, &sc->sc_w_remainder,
2455 dz, dw);
2456 }
2457
2458 static void
2459 move(struct uatp_softc *sc, const char *ctx, unsigned int a, unsigned int b,
2460 int *a_raw, int *b_raw,
2461 int *a_smoothed, int *b_smoothed,
2462 unsigned int *a_remainder, unsigned int *b_remainder,
2463 int *da, int *db)
2464 {
2465 #define CHECK_(condition) CHECK(condition, return)
2466
2467 int old_a_raw = *a_raw, old_a_smoothed = *a_smoothed;
2468 int old_b_raw = *b_raw, old_b_smoothed = *b_smoothed;
2469 unsigned int a_dist, b_dist, dist_squared;
2470 bool a_fast, b_fast;
2471
2472 /*
2473 * Make sure the quadratics in motion_below_threshold and
2474 * tracking distance don't overflow int arithmetic.
2475 */
2476 __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
2477
2478 CHECK_(a <= UATP_MAX_POSITION);
2479 CHECK_(b <= UATP_MAX_POSITION);
2480 *a_raw = a;
2481 *b_raw = b;
2482 if ((old_a_raw < 0) || (old_b_raw < 0)) {
2483 DPRINTF(sc, UATP_DEBUG_MOVE,
2484 ("initialize %s position (%d, %d) -> (%d, %d)\n", ctx,
2485 old_a_raw, old_b_raw, a, b));
2486 return;
2487 }
2488
2489 if ((old_a_smoothed < 0) || (old_b_smoothed < 0)) {
2490 /* XXX Does this make sense? */
2491 old_a_smoothed = old_a_raw;
2492 old_b_smoothed = old_b_raw;
2493 }
2494
2495 CHECK_(0 <= old_a_raw);
2496 CHECK_(0 <= old_b_raw);
2497 CHECK_(old_a_raw <= UATP_MAX_POSITION);
2498 CHECK_(old_b_raw <= UATP_MAX_POSITION);
2499 CHECK_(0 <= old_a_smoothed);
2500 CHECK_(0 <= old_b_smoothed);
2501 CHECK_(old_a_smoothed <= UATP_MAX_POSITION);
2502 CHECK_(old_b_smoothed <= UATP_MAX_POSITION);
2503 CHECK_(0 <= *a_raw);
2504 CHECK_(0 <= *b_raw);
2505 CHECK_(*a_raw <= UATP_MAX_POSITION);
2506 CHECK_(*b_raw <= UATP_MAX_POSITION);
2507 *a_smoothed = smooth(sc, old_a_raw, old_a_smoothed, *a_raw);
2508 *b_smoothed = smooth(sc, old_b_raw, old_b_smoothed, *b_raw);
2509 CHECK_(0 <= *a_smoothed);
2510 CHECK_(0 <= *b_smoothed);
2511 CHECK_(*a_smoothed <= UATP_MAX_POSITION);
2512 CHECK_(*b_smoothed <= UATP_MAX_POSITION);
2513
2514 if (sc->sc_motion_timer < sc->sc_knobs.motion_delay) {
2515 DPRINTF(sc, UATP_DEBUG_MOVE, ("delay motion %u\n",
2516 sc->sc_motion_timer));
2517 sc->sc_motion_timer += 1;
2518 return;
2519 }
2520
2521 /* XXX Use raw distances or smoothed distances? Acceleration? */
2522 if (*a_smoothed < old_a_smoothed)
2523 a_dist = old_a_smoothed - *a_smoothed;
2524 else
2525 a_dist = *a_smoothed - old_a_smoothed;
2526
2527 if (*b_smoothed < old_b_smoothed)
2528 b_dist = old_b_smoothed - *b_smoothed;
2529 else
2530 b_dist = *b_smoothed - old_b_smoothed;
2531
2532 dist_squared = (a_dist * a_dist) + (b_dist * b_dist);
2533 if (dist_squared < ((2 * UATP_MAX_POSITION * UATP_MAX_POSITION)
2534 - sc->sc_track_distance))
2535 sc->sc_track_distance += dist_squared;
2536 else
2537 sc->sc_track_distance = (2 * UATP_MAX_POSITION *
2538 UATP_MAX_POSITION);
2539 DPRINTF(sc, UATP_DEBUG_TRACK_DIST, ("finger has tracked %u units^2\n",
2540 sc->sc_track_distance));
2541
2542 /*
2543 * The checks above guarantee that the differences here are at
2544 * most UATP_MAX_POSITION in magnitude, since both minuend and
2545 * subtrahend are nonnegative and at most UATP_MAX_POSITION.
2546 */
2547 if (motion_below_threshold(sc, sc->sc_knobs.motion_threshold,
2548 (int)(*a_smoothed - old_a_smoothed),
2549 (int)(*b_smoothed - old_b_smoothed))) {
2550 DPRINTF(sc, UATP_DEBUG_MOVE,
2551 ("%s motion too small: (%d, %d) -> (%d, %d)\n", ctx,
2552 old_a_smoothed, old_b_smoothed,
2553 *a_smoothed, *b_smoothed));
2554 return;
2555 }
2556 if (sc->sc_knobs.fast_per_direction == 0) {
2557 a_fast = b_fast = !motion_below_threshold(sc,
2558 sc->sc_knobs.fast_motion_threshold,
2559 (int)(*a_smoothed - old_a_smoothed),
2560 (int)(*b_smoothed - old_b_smoothed));
2561 } else {
2562 a_fast = !motion_below_threshold(sc,
2563 sc->sc_knobs.fast_motion_threshold,
2564 (int)(*a_smoothed - old_a_smoothed),
2565 0);
2566 b_fast = !motion_below_threshold(sc,
2567 sc->sc_knobs.fast_motion_threshold,
2568 0,
2569 (int)(*b_smoothed - old_b_smoothed));
2570 }
2571 *da = accelerate(sc, old_a_raw, *a_raw, old_a_smoothed, *a_smoothed,
2572 a_fast, a_remainder);
2573 *db = accelerate(sc, old_b_raw, *b_raw, old_b_smoothed, *b_smoothed,
2574 b_fast, b_remainder);
2575 DPRINTF(sc, UATP_DEBUG_MOVE,
2576 ("update %s position (%d, %d) -> (%d, %d), move by (%d, %d)\n",
2577 ctx, old_a_smoothed, old_b_smoothed, *a_smoothed, *b_smoothed,
2578 *da, *db));
2579
2580 #undef CHECK_
2581 }
2582
2583 static int
2584 smooth(struct uatp_softc *sc, unsigned int old_raw, unsigned int old_smoothed,
2585 unsigned int raw)
2586 {
2587 #define CHECK_(condition) CHECK(condition, return old_raw)
2588
2589 /*
2590 * Arithmetic bounds:
2591 * . the weights are at most UATP_MAX_WEIGHT;
2592 * . the positions are at most UATP_MAX_POSITION; and so
2593 * . the numerator of the average is at most
2594 * 3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION,
2595 * which is #x477000, fitting comfortably in an int.
2596 */
2597 __CTASSERT(0x477000 == (3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION));
2598 unsigned int old_raw_weight = uatp_old_raw_weight(sc);
2599 unsigned int old_smoothed_weight = uatp_old_smoothed_weight(sc);
2600 unsigned int new_raw_weight = uatp_new_raw_weight(sc);
2601 CHECK_(old_raw_weight <= UATP_MAX_WEIGHT);
2602 CHECK_(old_smoothed_weight <= UATP_MAX_WEIGHT);
2603 CHECK_(new_raw_weight <= UATP_MAX_WEIGHT);
2604 CHECK_(old_raw <= UATP_MAX_POSITION);
2605 CHECK_(old_smoothed <= UATP_MAX_POSITION);
2606 CHECK_(raw <= UATP_MAX_POSITION);
2607 return (((old_raw_weight * old_raw) +
2608 (old_smoothed_weight * old_smoothed) +
2609 (new_raw_weight * raw))
2610 / (old_raw_weight + old_smoothed_weight + new_raw_weight));
2611
2612 #undef CHECK_
2613 }
2614
2615 static bool
2616 motion_below_threshold(struct uatp_softc *sc, unsigned int threshold,
2617 int x, int y)
2618 {
2619 unsigned int x_squared, y_squared;
2620
2621 /* Caller guarantees the multiplication will not overflow. */
2622 KASSERT(-UATP_MAX_POSITION <= x);
2623 KASSERT(-UATP_MAX_POSITION <= y);
2624 KASSERT(x <= UATP_MAX_POSITION);
2625 KASSERT(y <= UATP_MAX_POSITION);
2626 __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
2627
2628 x_squared = (x * x);
2629 y_squared = (y * y);
2630
2631 return (x_squared + y_squared) < threshold;
2632 }
2633
2634 static int
2635 accelerate(struct uatp_softc *sc, unsigned int old_raw, unsigned int raw,
2636 unsigned int old_smoothed, unsigned int smoothed, bool fast,
2637 int *remainder)
2638 {
2639 #define CHECK_(condition) CHECK(condition, return 0)
2640
2641 /* Guarantee that the scaling won't overflow. */
2642 __CTASSERT(0x30000 ==
2643 (UATP_MAX_POSITION * UATP_MAX_MOTION_MULTIPLIER));
2644
2645 CHECK_(old_raw <= UATP_MAX_POSITION);
2646 CHECK_(raw <= UATP_MAX_POSITION);
2647 CHECK_(old_smoothed <= UATP_MAX_POSITION);
2648 CHECK_(smoothed <= UATP_MAX_POSITION);
2649
2650 return (fast ? uatp_scale_fast_motion : uatp_scale_motion)
2651 (sc, (((int) smoothed) - ((int) old_smoothed)), remainder);
2652
2653 #undef CHECK_
2654 }
2655
2656 MODULE(MODULE_CLASS_DRIVER, uatp, NULL);
2657
2658 #ifdef _MODULE
2659 #include "ioconf.c"
2660 #endif
2661
2662 static int
2663 uatp_modcmd(modcmd_t cmd, void *aux)
2664 {
2665 int error = 0;
2666
2667 switch (cmd) {
2668 case MODULE_CMD_INIT:
2669 #ifdef _MODULE
2670 error = config_init_component(cfdriver_ioconf_uatp,
2671 cfattach_ioconf_uatp, cfdata_ioconf_uatp);
2672 #endif
2673 return error;
2674 case MODULE_CMD_FINI:
2675 #ifdef _MODULE
2676 error = config_fini_component(cfdriver_ioconf_uatp,
2677 cfattach_ioconf_uatp, cfdata_ioconf_uatp);
2678 #endif
2679 return error;
2680 default:
2681 return ENOTTY;
2682 }
2683 }
2684