uatp.c revision 1.13 1 /* $NetBSD: uatp.c,v 1.13 2016/11/25 12:56:29 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * uatp(4) - USB Apple Trackpad
34 *
35 * The uatp driver talks the protocol of the USB trackpads found in
36 * Apple laptops since 2005, including PowerBooks, iBooks, MacBooks,
37 * and MacBook Pros. Some of these also present generic USB HID mice
38 * on another USB report id, which the ums(4) driver can handle, but
39 * Apple's protocol gives more detailed sensor data that lets us detect
40 * multiple fingers to emulate multi-button mice and scroll wheels.
41 */
42
43 /*
44 * Protocol
45 *
46 * The device has a set of horizontal sensors, each being a column at a
47 * particular position on the x axis that tells you whether there is
48 * pressure anywhere on that column, and vertical sensors, each being a
49 * row at a particular position on the y axis that tells you whether
50 * there is pressure anywhere on that row.
51 *
52 * Whenever the device senses anything, it emits a readout of all of
53 * the sensors, in some model-dependent order. (For the order, see
54 * read_sample_1 and read_sample_2.) Each sensor datum is an unsigned
55 * eight-bit quantity representing some measure of pressure. (Of
56 * course, it really measures capacitance, not pressure, but we'll call
57 * it `pressure' here.)
58 */
59
60 /*
61 * Interpretation
62 *
63 * To interpret the finger's position on the trackpad, the driver
64 * computes a weighted average over all possible positions, weighted by
65 * the pressure at that position. The weighted average is computed in
66 * the dimensions of the screen, rather than the trackpad, in order to
67 * admit a finer resolution of positions than the trackpad grid.
68 *
69 * To update the finger's position smoothly on the trackpad, the driver
70 * computes a weighted average of the old raw position, the old
71 * smoothed position, and the new smoothed position. The weights are
72 * given by the old_raw_weight, old_smoothed_weight, and new_raw_weight
73 * sysctl knobs.
74 *
75 * Finally, to move the cursor, the driver takes the difference between
76 * the old and new positions and accelerates it according to some
77 * heuristic knobs that need to be reworked.
78 *
79 * Finally, there are some bells & whistles to detect tapping and to
80 * emulate a three-button mouse by leaving two or three fingers on the
81 * trackpad while pressing the button.
82 */
83
84 /*
85 * Future work
86 *
87 * With the raw sensor data available, we could implement fancier bells
88 * & whistles too, such as pinch-to-zoom. However, wsmouse supports
89 * only four-dimensional mice with buttons, and we already use two
90 * dimensions for mousing and two dimensions for scrolling, so there's
91 * no straightforward way to report zooming and other gestures to the
92 * operating system. Probably a better way to do this would be just to
93 * attach uhid(4) instead of uatp(4) and to read the raw sensors data
94 * yourself -- but that requires hairy mode switching for recent models
95 * (see geyser34_enable_raw_mode).
96 *
97 * XXX Rework the acceleration knobs.
98 * XXX Implement edge scrolling.
99 * XXX Fix sysctl setup; preserve knobs across suspend/resume.
100 * (uatp0 detaches and reattaches across suspend/resume, so as
101 * written, the sysctl tree is torn down and rebuilt, losing any
102 * state the user may have set.)
103 * XXX Refactor motion state so I can understand it again.
104 * Should make a struct uatp_motion for all that state.
105 * XXX Add hooks for ignoring trackpad input while typing.
106 */
107
108 /*
109 * Classifying devices
110 *
111 * I have only one MacBook to test this driver, but the driver should
112 * be applicable to almost every Apple laptop made since the beginning
113 * of 2005, so the driver reports lots of debugging output to help to
114 * classify devices. Boot with `boot -v' (verbose) and check the
115 * output of `dmesg | grep uatp' to answer the following questions:
116 *
117 * - What devices (vendor, product, class, subclass, proto, USB HID
118 * report dump) fail to attach when you think they should work?
119 * (vendor not apple, class not hid, proto not mouse)
120 *
121 * - What devices have an unknown product id?
122 * `unknown vendor/product id'
123 *
124 * - What devices have the wrong screen-to-trackpad ratios?
125 * `... x sensors, scaled by ... for ... points on screen'
126 * `... y sensors, scaled by ... for ... points on screen'
127 * You can tweak hw.uatp0.x_ratio and hw.uatp0.y_ratio to adjust
128 * this, up to a maximum of 384 for each value.
129 *
130 * - What devices have the wrong input size?
131 * `expected input size ... but got ... for Apple trackpad'
132 *
133 * - What devices give wrong-sized packets?
134 * `discarding ...-byte input'
135 *
136 * - What devices split packets in chunks?
137 * `partial packet: ... bytes'
138 *
139 * - What devices develop large sensor readouts?
140 * `large sensor readout: ...'
141 *
142 * - What devices have the wrong number of sensors? Are there parts of
143 * your trackpad that the system doesn't seem to notice? You can
144 * tweak hw.uatp0.x_sensors and hw.uatp0.y_sensors, up to a maximum
145 * of 32 for each value.
146 */
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: uatp.c,v 1.13 2016/11/25 12:56:29 skrll Exp $");
150
151 #ifdef _KERNEL_OPT
152 #include "opt_usb.h"
153 #endif
154
155 #include <sys/types.h>
156 #include <sys/param.h>
157 #include <sys/atomic.h>
158 #include <sys/device.h>
159 #include <sys/errno.h>
160 #include <sys/ioctl.h>
161 #include <sys/kernel.h>
162 #include <sys/module.h>
163 #include <sys/sysctl.h>
164 #include <sys/systm.h>
165 #include <sys/time.h>
166
167 /* Order is important here...sigh... */
168 #include <dev/usb/usb.h>
169 #include <dev/usb/usbdi.h>
170 #include <dev/usb/usbdi_util.h>
171 #include <dev/usb/usbdevs.h>
172 #include <dev/usb/uhidev.h>
173 #include <dev/usb/hid.h>
174 #include <dev/usb/usbhid.h>
175
176 #include <dev/wscons/wsconsio.h>
177 #include <dev/wscons/wsmousevar.h>
178
179 #define CHECK(condition, fail) do { \
180 if (! (condition)) { \
181 aprint_error_dev(uatp_dev(sc), "%s: check failed: %s\n",\
182 __func__, #condition); \
183 fail; \
184 } \
185 } while (0)
186
187 #define UATP_DEBUG_ATTACH (1 << 0)
188 #define UATP_DEBUG_MISC (1 << 1)
189 #define UATP_DEBUG_WSMOUSE (1 << 2)
190 #define UATP_DEBUG_IOCTL (1 << 3)
191 #define UATP_DEBUG_RESET (1 << 4)
192 #define UATP_DEBUG_INTR (1 << 5)
193 #define UATP_DEBUG_PARSE (1 << 6)
194 #define UATP_DEBUG_TAP (1 << 7)
195 #define UATP_DEBUG_EMUL_BUTTON (1 << 8)
196 #define UATP_DEBUG_ACCUMULATE (1 << 9)
197 #define UATP_DEBUG_STATUS (1 << 10)
198 #define UATP_DEBUG_SPURINTR (1 << 11)
199 #define UATP_DEBUG_MOVE (1 << 12)
200 #define UATP_DEBUG_ACCEL (1 << 13)
201 #define UATP_DEBUG_TRACK_DIST (1 << 14)
202 #define UATP_DEBUG_PALM (1 << 15)
203
204 #if UATP_DEBUG
205 # define DPRINTF(sc, flags, format) do { \
206 if ((flags) & (sc)->sc_debug_flags) { \
207 printf("%s: %s: ", device_xname(uatp_dev(sc)), __func__); \
208 printf format; \
209 } \
210 } while (0)
211 #else
212 # define DPRINTF(sc, flags, format) do {} while (0)
213 #endif
214
215 /* Maximum number of bytes in an incoming packet of sensor data. */
216 #define UATP_MAX_INPUT_SIZE 81
217
218 /* Maximum number of sensors in each dimension. */
219 #define UATP_MAX_X_SENSORS 32
220 #define UATP_MAX_Y_SENSORS 32
221 #define UATP_MAX_SENSORS 32
222 #define UATP_SENSORS (UATP_MAX_X_SENSORS + UATP_MAX_Y_SENSORS)
223
224 /* Maximum accumulated sensor value. */
225 #define UATP_MAX_ACC 0xff
226
227 /* Maximum screen dimension to sensor dimension ratios. */
228 #define UATP_MAX_X_RATIO 0x180
229 #define UATP_MAX_Y_RATIO 0x180
230 #define UATP_MAX_RATIO 0x180
231
232 /* Maximum weight for positions in motion calculation. */
233 #define UATP_MAX_WEIGHT 0x7f
234
235 /* Maximum possible trackpad position in a single dimension. */
236 #define UATP_MAX_POSITION (UATP_MAX_SENSORS * UATP_MAX_RATIO)
237
238 /* Bounds on acceleration. */
239 #define UATP_MAX_MOTION_MULTIPLIER 16
240
241 /* Status bits transmitted in the last byte of an input packet. */
242 #define UATP_STATUS_BUTTON (1 << 0) /* Button pressed */
243 #define UATP_STATUS_BASE (1 << 2) /* Base sensor data */
244 #define UATP_STATUS_POST_RESET (1 << 4) /* Post-reset */
245
246 /* Forward declarations */
247
248 struct uatp_softc; /* Device driver state. */
249 struct uatp_descriptor; /* Descriptor for a particular model. */
250 struct uatp_parameters; /* Parameters common to a set of models. */
251 struct uatp_knobs; /* User-settable configuration knobs. */
252 enum uatp_tap_state {
253 TAP_STATE_INITIAL,
254 TAP_STATE_TAPPING,
255 TAP_STATE_TAPPED,
256 TAP_STATE_DOUBLE_TAPPING,
257 TAP_STATE_DRAGGING_DOWN,
258 TAP_STATE_DRAGGING_UP,
259 TAP_STATE_TAPPING_IN_DRAG,
260 };
261
262 static const struct uatp_descriptor *find_uatp_descriptor
263 (const struct uhidev_attach_arg *);
264 static device_t uatp_dev(const struct uatp_softc *);
265 static uint8_t *uatp_x_sample(struct uatp_softc *);
266 static uint8_t *uatp_y_sample(struct uatp_softc *);
267 static int *uatp_x_acc(struct uatp_softc *);
268 static int *uatp_y_acc(struct uatp_softc *);
269 static void uatp_clear_position(struct uatp_softc *);
270 static unsigned int uatp_x_sensors(const struct uatp_softc *);
271 static unsigned int uatp_y_sensors(const struct uatp_softc *);
272 static unsigned int uatp_x_ratio(const struct uatp_softc *);
273 static unsigned int uatp_y_ratio(const struct uatp_softc *);
274 static unsigned int uatp_old_raw_weight(const struct uatp_softc *);
275 static unsigned int uatp_old_smoothed_weight(const struct uatp_softc *);
276 static unsigned int uatp_new_raw_weight(const struct uatp_softc *);
277 static int scale_motion(const struct uatp_softc *, int, int *,
278 const unsigned int *, const unsigned int *);
279 static int uatp_scale_motion(const struct uatp_softc *, int, int *);
280 static int uatp_scale_fast_motion(const struct uatp_softc *, int, int *);
281 static int uatp_match(device_t, cfdata_t, void *);
282 static void uatp_attach(device_t, device_t, void *);
283 static void uatp_setup_sysctl(struct uatp_softc *);
284 static bool uatp_setup_sysctl_knob(struct uatp_softc *, int *, const char *,
285 const char *);
286 static void uatp_childdet(device_t, device_t);
287 static int uatp_detach(device_t, int);
288 static int uatp_activate(device_t, enum devact);
289 static int uatp_enable(void *);
290 static void uatp_disable(void *);
291 static int uatp_ioctl(void *, unsigned long, void *, int, struct lwp *);
292 static void geyser34_enable_raw_mode(struct uatp_softc *);
293 static void geyser34_initialize(struct uatp_softc *);
294 static int geyser34_finalize(struct uatp_softc *);
295 static void geyser34_deferred_reset(struct uatp_softc *);
296 static void geyser34_reset_task(void *);
297 static void uatp_intr(struct uhidev *, void *, unsigned int);
298 static bool base_sample_softc_flag(const struct uatp_softc *, const uint8_t *);
299 static bool base_sample_input_flag(const struct uatp_softc *, const uint8_t *);
300 static void read_sample_1(uint8_t *, uint8_t *, const uint8_t *);
301 static void read_sample_2(uint8_t *, uint8_t *, const uint8_t *);
302 static void accumulate_sample_1(struct uatp_softc *);
303 static void accumulate_sample_2(struct uatp_softc *);
304 static void uatp_input(struct uatp_softc *, uint32_t, int, int, int, int);
305 static uint32_t uatp_tapped_buttons(struct uatp_softc *);
306 static bool interpret_input(struct uatp_softc *, int *, int *, int *, int *,
307 uint32_t *);
308 static unsigned int interpret_dimension(struct uatp_softc *, const int *,
309 unsigned int, unsigned int, unsigned int *, unsigned int *);
310 static void tap_initialize(struct uatp_softc *);
311 static void tap_finalize(struct uatp_softc *);
312 static void tap_enable(struct uatp_softc *);
313 static void tap_disable(struct uatp_softc *);
314 static void tap_transition(struct uatp_softc *, enum uatp_tap_state,
315 const struct timeval *, unsigned int, unsigned int);
316 static void tap_transition_initial(struct uatp_softc *);
317 static void tap_transition_tapping(struct uatp_softc *, const struct timeval *,
318 unsigned int);
319 static void tap_transition_double_tapping(struct uatp_softc *,
320 const struct timeval *, unsigned int);
321 static void tap_transition_dragging_down(struct uatp_softc *);
322 static void tap_transition_tapping_in_drag(struct uatp_softc *,
323 const struct timeval *, unsigned int);
324 static void tap_transition_tapped(struct uatp_softc *, const struct timeval *);
325 static void tap_transition_dragging_up(struct uatp_softc *);
326 static void tap_reset(struct uatp_softc *);
327 static void tap_reset_wait(struct uatp_softc *);
328 static void tap_touched(struct uatp_softc *, unsigned int);
329 static bool tap_released(struct uatp_softc *);
330 static void schedule_untap(struct uatp_softc *);
331 static void untap_callout(void *);
332 static uint32_t emulated_buttons(struct uatp_softc *, unsigned int);
333 static void update_position(struct uatp_softc *, unsigned int,
334 unsigned int, unsigned int, int *, int *, int *, int *);
335 static void move_mouse(struct uatp_softc *, unsigned int, unsigned int,
336 int *, int *);
337 static void scroll_wheel(struct uatp_softc *, unsigned int, unsigned int,
338 int *, int *);
339 static void move(struct uatp_softc *, const char *, unsigned int, unsigned int,
340 int *, int *, int *, int *, unsigned int *, unsigned int *, int *, int *);
341 static int smooth(struct uatp_softc *, unsigned int, unsigned int,
342 unsigned int);
343 static bool motion_below_threshold(struct uatp_softc *, unsigned int,
344 int, int);
345 static int accelerate(struct uatp_softc *, unsigned int, unsigned int,
346 unsigned int, unsigned int, bool, int *);
347
348 struct uatp_knobs {
349 /*
350 * Button emulation. What do we do when two or three fingers
351 * are on the trackpad when the user presses the button?
352 */
353 unsigned int two_finger_buttons;
354 unsigned int three_finger_buttons;
355
356 #if 0
357 /*
358 * Edge scrolling.
359 *
360 * XXX Implement this. What units should these be in?
361 */
362 unsigned int top_edge;
363 unsigned int bottom_edge;
364 unsigned int left_edge;
365 unsigned int right_edge;
366 #endif
367
368 /*
369 * Multifinger tracking. What do we do with multiple fingers?
370 * 0. Ignore them.
371 * 1. Try to interpret them as ordinary mousing.
372 * 2. Act like a two-dimensional scroll wheel.
373 */
374 unsigned int multifinger_track;
375
376 /*
377 * Sensor parameters.
378 */
379 unsigned int x_sensors;
380 unsigned int x_ratio;
381 unsigned int y_sensors;
382 unsigned int y_ratio;
383 unsigned int sensor_threshold;
384 unsigned int sensor_normalizer;
385 unsigned int palm_width;
386 unsigned int old_raw_weight;
387 unsigned int old_smoothed_weight;
388 unsigned int new_raw_weight;
389
390 /*
391 * Motion parameters.
392 *
393 * XXX There should be a more principled model of acceleration.
394 */
395 unsigned int motion_remainder;
396 unsigned int motion_threshold;
397 unsigned int motion_multiplier;
398 unsigned int motion_divisor;
399 unsigned int fast_motion_threshold;
400 unsigned int fast_motion_multiplier;
401 unsigned int fast_motion_divisor;
402 unsigned int fast_per_direction;
403 unsigned int motion_delay;
404
405 /*
406 * Tapping.
407 */
408 unsigned int tap_limit_msec;
409 unsigned int double_tap_limit_msec;
410 unsigned int one_finger_tap_buttons;
411 unsigned int two_finger_tap_buttons;
412 unsigned int three_finger_tap_buttons;
413 unsigned int tap_track_distance_limit;
414 };
415
416 static const struct uatp_knobs default_knobs = {
417 /*
418 * Button emulation. Fingers on the trackpad don't change it
419 * by default -- it's still the left button.
420 *
421 * XXX The left button should have a name.
422 */
423 .two_finger_buttons = 1,
424 .three_finger_buttons = 1,
425
426 #if 0
427 /*
428 * Edge scrolling. Off by default.
429 */
430 .top_edge = 0,
431 .bottom_edge = 0,
432 .left_edge = 0,
433 .right_edge = 0,
434 #endif
435
436 /*
437 * Multifinger tracking. Ignore by default.
438 */
439 .multifinger_track = 0,
440
441 /*
442 * Sensor parameters.
443 */
444 .x_sensors = 0, /* default for model */
445 .x_ratio = 0, /* default for model */
446 .y_sensors = 0, /* default for model */
447 .y_ratio = 0, /* default for model */
448 .sensor_threshold = 5,
449 .sensor_normalizer = 5,
450 .palm_width = 0, /* palm detection disabled */
451 .old_raw_weight = 0,
452 .old_smoothed_weight = 5,
453 .new_raw_weight = 1,
454
455 /*
456 * Motion parameters.
457 */
458 .motion_remainder = 1,
459 .motion_threshold = 0,
460 .motion_multiplier = 1,
461 .motion_divisor = 1,
462 .fast_motion_threshold = 10,
463 .fast_motion_multiplier = 3,
464 .fast_motion_divisor = 2,
465 .fast_per_direction = 0,
466 .motion_delay = 4,
467
468 /*
469 * Tapping. Disabled by default, with a reasonable time set
470 * nevertheless so that you can just set the buttons to enable
471 * it.
472 */
473 .tap_limit_msec = 100,
474 .double_tap_limit_msec = 200,
475 .one_finger_tap_buttons = 0,
476 .two_finger_tap_buttons = 0,
477 .three_finger_tap_buttons = 0,
478 .tap_track_distance_limit = 200,
479 };
480
481 struct uatp_softc {
482 struct uhidev sc_hdev; /* USB parent. */
483 device_t sc_wsmousedev; /* Attached wsmouse device. */
484 const struct uatp_parameters *sc_parameters;
485 struct uatp_knobs sc_knobs;
486 struct sysctllog *sc_log; /* Log for sysctl knobs. */
487 const struct sysctlnode *sc_node; /* Our sysctl node. */
488 unsigned int sc_input_size; /* Input packet size. */
489 uint8_t sc_input[UATP_MAX_INPUT_SIZE]; /* Buffer for a packet. */
490 unsigned int sc_input_index; /* Current index into sc_input. */
491 int sc_acc[UATP_SENSORS]; /* Accumulated sensor state. */
492 uint8_t sc_base[UATP_SENSORS]; /* Base sample. */
493 uint8_t sc_sample[UATP_SENSORS];/* Current sample. */
494 unsigned int sc_motion_timer; /* XXX describe; motion_delay */
495 int sc_x_raw; /* Raw horiz. mouse position. */
496 int sc_y_raw; /* Raw vert. mouse position. */
497 int sc_z_raw; /* Raw horiz. scroll position. */
498 int sc_w_raw; /* Raw vert. scroll position. */
499 int sc_x_smoothed; /* Smoothed horiz. mouse position. */
500 int sc_y_smoothed; /* Smoothed vert. mouse position. */
501 int sc_z_smoothed; /* Smoothed horiz. scroll position. */
502 int sc_w_smoothed; /* Smoothed vert. scroll position. */
503 int sc_x_remainder; /* Remainders from acceleration. */
504 int sc_y_remainder;
505 int sc_z_remainder;
506 int sc_w_remainder;
507 unsigned int sc_track_distance; /* Distance^2 finger has tracked,
508 * squared to avoid sqrt in kernel. */
509 uint32_t sc_status; /* Status flags: */
510 #define UATP_ENABLED (1 << 0) /* . Is the wsmouse enabled? */
511 #define UATP_DYING (1 << 1) /* . Have we been deactivated? */
512 #define UATP_VALID (1 << 2) /* . Do we have valid sensor data? */
513 struct usb_task sc_reset_task; /* Task for resetting device. */
514
515 callout_t sc_untap_callout; /* Releases button after tap. */
516 kmutex_t sc_tap_mutex; /* Protects the following fields. */
517 kcondvar_t sc_tap_cv; /* Signalled by untap callout. */
518 enum uatp_tap_state sc_tap_state; /* Current tap state. */
519 unsigned int sc_tapping_fingers; /* No. fingers tapping. */
520 unsigned int sc_tapped_fingers; /* No. fingers of last tap. */
521 struct timeval sc_tap_timer; /* Timer for tap state transitions. */
522 uint32_t sc_buttons; /* Physical buttons pressed. */
523 uint32_t sc_all_buttons; /* Buttons pressed or tapped. */
524
525 #if UATP_DEBUG
526 uint32_t sc_debug_flags; /* Debugging output enabled. */
527 #endif
528 };
529
530 struct uatp_descriptor {
531 uint16_t vendor;
532 uint16_t product;
533 const char *description;
534 const struct uatp_parameters *parameters;
535 };
536
537 struct uatp_parameters {
538 unsigned int x_ratio; /* Screen width / trackpad width. */
539 unsigned int x_sensors; /* Number of horizontal sensors. */
540 unsigned int x_sensors_17; /* XXX Same, on a 17" laptop. */
541 unsigned int y_ratio; /* Screen height / trackpad height. */
542 unsigned int y_sensors; /* Number of vertical sensors. */
543 unsigned int input_size; /* Size in bytes of input packets. */
544
545 /* Device-specific initialization routine. May be null. */
546 void (*initialize)(struct uatp_softc *);
547
548 /* Device-specific finalization routine. May be null. May fail. */
549 int (*finalize)(struct uatp_softc *);
550
551 /* Tests whether this is a base sample. Second argument is
552 * input_size bytes long. */
553 bool (*base_sample)(const struct uatp_softc *, const uint8_t *);
554
555 /* Reads a sensor sample from an input packet. First argument
556 * is UATP_MAX_X_SENSORS bytes long; second, UATP_MAX_Y_SENSORS
557 * bytes; third, input_size bytes. */
558 void (*read_sample)(uint8_t *, uint8_t *, const uint8_t *);
559
560 /* Accumulates sensor state in sc->sc_acc. */
561 void (*accumulate)(struct uatp_softc *);
562
563 /* Called on spurious interrupts to reset. May be null. */
564 void (*reset)(struct uatp_softc *);
565 };
566
567 /* Known device parameters */
568
569 static const struct uatp_parameters fountain_parameters = {
570 .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26,
571 .y_ratio = 43, .y_sensors = 16,
572 .input_size = 81,
573 .initialize = NULL,
574 .finalize = NULL,
575 .base_sample = base_sample_softc_flag,
576 .read_sample = read_sample_1,
577 .accumulate = accumulate_sample_1,
578 .reset = NULL,
579 };
580
581 static const struct uatp_parameters geyser_1_parameters = {
582 .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26,
583 .y_ratio = 43, .y_sensors = 16,
584 .input_size = 81,
585 .initialize = NULL,
586 .finalize = NULL,
587 .base_sample = base_sample_softc_flag,
588 .read_sample = read_sample_1,
589 .accumulate = accumulate_sample_1,
590 .reset = NULL,
591 };
592
593 static const struct uatp_parameters geyser_2_parameters = {
594 .x_ratio = 64, .x_sensors = 15, .x_sensors_17 = 20,
595 .y_ratio = 43, .y_sensors = 9,
596 .input_size = 64,
597 .initialize = NULL,
598 .finalize = NULL,
599 .base_sample = base_sample_softc_flag,
600 .read_sample = read_sample_2,
601 .accumulate = accumulate_sample_1,
602 .reset = NULL,
603 };
604
605 /*
606 * The Geyser 3 and Geyser 4 share parameters. They also present
607 * generic USB HID mice on a different report id, so we have smaller
608 * packets by one byte (uhidev handles multiplexing report ids) and
609 * extra initialization work to switch the mode from generic USB HID
610 * mouse to Apple trackpad.
611 */
612
613 static const struct uatp_parameters geyser_3_4_parameters = {
614 .x_ratio = 64, .x_sensors = 20, /* XXX */ .x_sensors_17 = 0,
615 .y_ratio = 64, .y_sensors = 9,
616 .input_size = 63, /* 64, minus one for the report id. */
617 .initialize = geyser34_initialize,
618 .finalize = geyser34_finalize,
619 .base_sample = base_sample_input_flag,
620 .read_sample = read_sample_2,
621 .accumulate = accumulate_sample_2,
622 .reset = geyser34_deferred_reset,
623 };
624
625 /* Known device models */
626
627 #define APPLE_TRACKPAD(PRODUCT, DESCRIPTION, PARAMETERS) \
628 { \
629 .vendor = USB_VENDOR_APPLE, \
630 .product = (PRODUCT), \
631 .description = "Apple " DESCRIPTION " trackpad", \
632 .parameters = (& (PARAMETERS)), \
633 }
634
635 #define POWERBOOK_TRACKPAD(PRODUCT, PARAMETERS) \
636 APPLE_TRACKPAD(PRODUCT, "PowerBook/iBook", PARAMETERS)
637 #define MACBOOK_TRACKPAD(PRODUCT, PARAMETERS) \
638 APPLE_TRACKPAD(PRODUCT, "MacBook/MacBook Pro", PARAMETERS)
639
640 static const struct uatp_descriptor uatp_descriptors[] =
641 {
642 POWERBOOK_TRACKPAD(0x020e, fountain_parameters),
643 POWERBOOK_TRACKPAD(0x020f, fountain_parameters),
644 POWERBOOK_TRACKPAD(0x030a, fountain_parameters),
645
646 POWERBOOK_TRACKPAD(0x030b, geyser_1_parameters),
647
648 POWERBOOK_TRACKPAD(0x0214, geyser_2_parameters),
649 POWERBOOK_TRACKPAD(0x0215, geyser_2_parameters),
650 POWERBOOK_TRACKPAD(0x0216, geyser_2_parameters),
651
652 MACBOOK_TRACKPAD(0x0217, geyser_3_4_parameters), /* 3 */
653 MACBOOK_TRACKPAD(0x0218, geyser_3_4_parameters), /* 3 */
654 MACBOOK_TRACKPAD(0x0219, geyser_3_4_parameters), /* 3 */
655
656 MACBOOK_TRACKPAD(0x021a, geyser_3_4_parameters), /* 4 */
657 MACBOOK_TRACKPAD(0x021b, geyser_3_4_parameters), /* 4 */
658 MACBOOK_TRACKPAD(0x021c, geyser_3_4_parameters), /* 4 */
659
660 MACBOOK_TRACKPAD(0x0229, geyser_3_4_parameters), /* 4 */
661 MACBOOK_TRACKPAD(0x022a, geyser_3_4_parameters), /* 4 */
662 MACBOOK_TRACKPAD(0x022b, geyser_3_4_parameters), /* 4 */
663 };
664
665 #undef MACBOOK_TRACKPAD
666 #undef POWERBOOK_TRACKPAD
667 #undef APPLE_TRACKPAD
668
669 /* Miscellaneous utilities */
670
671 static const struct uatp_descriptor *
672 find_uatp_descriptor(const struct uhidev_attach_arg *uha)
673 {
674 unsigned int i;
675
676 for (i = 0; i < __arraycount(uatp_descriptors); i++)
677 if ((uha->uiaa->uiaa_vendor == uatp_descriptors[i].vendor) &&
678 (uha->uiaa->uiaa_product == uatp_descriptors[i].product))
679 return &uatp_descriptors[i];
680
681 return NULL;
682 }
683
684 static device_t
685 uatp_dev(const struct uatp_softc *sc)
686 {
687 return sc->sc_hdev.sc_dev;
688 }
689
690 static uint8_t *
691 uatp_x_sample(struct uatp_softc *sc)
692 {
693 return &sc->sc_sample[0];
694 }
695
696 static uint8_t *
697 uatp_y_sample(struct uatp_softc *sc)
698 {
699 return &sc->sc_sample[UATP_MAX_X_SENSORS];
700 }
701
702 static int *
703 uatp_x_acc(struct uatp_softc *sc)
704 {
705 return &sc->sc_acc[0];
706 }
707
708 static int *
709 uatp_y_acc(struct uatp_softc *sc)
710 {
711 return &sc->sc_acc[UATP_MAX_X_SENSORS];
712 }
713
714 static void
715 uatp_clear_position(struct uatp_softc *sc)
716 {
717 memset(sc->sc_acc, 0, sizeof(sc->sc_acc));
718 sc->sc_motion_timer = 0;
719 sc->sc_x_raw = sc->sc_x_smoothed = -1;
720 sc->sc_y_raw = sc->sc_y_smoothed = -1;
721 sc->sc_z_raw = sc->sc_z_smoothed = -1;
722 sc->sc_w_raw = sc->sc_w_smoothed = -1;
723 sc->sc_x_remainder = 0;
724 sc->sc_y_remainder = 0;
725 sc->sc_z_remainder = 0;
726 sc->sc_w_remainder = 0;
727 sc->sc_track_distance = 0;
728 }
729
730 static unsigned int
731 uatp_x_sensors(const struct uatp_softc *sc)
732 {
733 if ((0 < sc->sc_knobs.x_sensors) &&
734 (sc->sc_knobs.x_sensors <= UATP_MAX_X_SENSORS))
735 return sc->sc_knobs.x_sensors;
736 else
737 return sc->sc_parameters->x_sensors;
738 }
739
740 static unsigned int
741 uatp_y_sensors(const struct uatp_softc *sc)
742 {
743 if ((0 < sc->sc_knobs.y_sensors) &&
744 (sc->sc_knobs.y_sensors <= UATP_MAX_Y_SENSORS))
745 return sc->sc_knobs.y_sensors;
746 else
747 return sc->sc_parameters->y_sensors;
748 }
749
750 static unsigned int
751 uatp_x_ratio(const struct uatp_softc *sc)
752 {
753 /* XXX Reject bogus values in sysctl. */
754 if ((0 < sc->sc_knobs.x_ratio) &&
755 (sc->sc_knobs.x_ratio <= UATP_MAX_X_RATIO))
756 return sc->sc_knobs.x_ratio;
757 else
758 return sc->sc_parameters->x_ratio;
759 }
760
761 static unsigned int
762 uatp_y_ratio(const struct uatp_softc *sc)
763 {
764 /* XXX Reject bogus values in sysctl. */
765 if ((0 < sc->sc_knobs.y_ratio) &&
766 (sc->sc_knobs.y_ratio <= UATP_MAX_Y_RATIO))
767 return sc->sc_knobs.y_ratio;
768 else
769 return sc->sc_parameters->y_ratio;
770 }
771
772 static unsigned int
773 uatp_old_raw_weight(const struct uatp_softc *sc)
774 {
775 /* XXX Reject bogus values in sysctl. */
776 if (sc->sc_knobs.old_raw_weight <= UATP_MAX_WEIGHT)
777 return sc->sc_knobs.old_raw_weight;
778 else
779 return 0;
780 }
781
782 static unsigned int
783 uatp_old_smoothed_weight(const struct uatp_softc *sc)
784 {
785 /* XXX Reject bogus values in sysctl. */
786 if (sc->sc_knobs.old_smoothed_weight <= UATP_MAX_WEIGHT)
787 return sc->sc_knobs.old_smoothed_weight;
788 else
789 return 0;
790 }
791
792 static unsigned int
793 uatp_new_raw_weight(const struct uatp_softc *sc)
794 {
795 /* XXX Reject bogus values in sysctl. */
796 if ((0 < sc->sc_knobs.new_raw_weight) &&
797 (sc->sc_knobs.new_raw_weight <= UATP_MAX_WEIGHT))
798 return sc->sc_knobs.new_raw_weight;
799 else
800 return 1;
801 }
802
803 static int
804 scale_motion(const struct uatp_softc *sc, int delta, int *remainder,
805 const unsigned int *multiplier, const unsigned int *divisor)
806 {
807 int product;
808
809 /* XXX Limit the divisor? */
810 if (((*multiplier) == 0) ||
811 ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
812 ((*divisor) == 0))
813 DPRINTF(sc, UATP_DEBUG_ACCEL,
814 ("bad knobs; %d (+ %d) --> %d, rem 0\n",
815 delta, *remainder, (delta + (*remainder))));
816 else
817 DPRINTF(sc, UATP_DEBUG_ACCEL,
818 ("scale %d (+ %d) by %u/%u --> %d, rem %d\n",
819 delta, *remainder,
820 (*multiplier), (*divisor),
821 (((delta + (*remainder)) * ((int) (*multiplier)))
822 / ((int) (*divisor))),
823 (((delta + (*remainder)) * ((int) (*multiplier)))
824 % ((int) (*divisor)))));
825
826 if (sc->sc_knobs.motion_remainder)
827 delta += *remainder;
828 *remainder = 0;
829
830 if (((*multiplier) == 0) ||
831 ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
832 ((*divisor) == 0))
833 return delta;
834
835 product = (delta * ((int) (*multiplier)));
836 *remainder = (product % ((int) (*divisor)));
837 return (product / ((int) (*divisor)));
838 }
839
840 static int
841 uatp_scale_motion(const struct uatp_softc *sc, int delta, int *remainder)
842 {
843 return scale_motion(sc, delta, remainder,
844 &sc->sc_knobs.motion_multiplier,
845 &sc->sc_knobs.motion_divisor);
846 }
847
848 static int
849 uatp_scale_fast_motion(const struct uatp_softc *sc, int delta, int *remainder)
850 {
851 return scale_motion(sc, delta, remainder,
852 &sc->sc_knobs.fast_motion_multiplier,
853 &sc->sc_knobs.fast_motion_divisor);
854 }
855
856 /* Driver goop */
857
858 CFATTACH_DECL2_NEW(uatp, sizeof(struct uatp_softc), uatp_match, uatp_attach,
859 uatp_detach, uatp_activate, NULL, uatp_childdet);
860
861 static const struct wsmouse_accessops uatp_accessops = {
862 .enable = uatp_enable,
863 .disable = uatp_disable,
864 .ioctl = uatp_ioctl,
865 };
866
867 static int
868 uatp_match(device_t parent, cfdata_t match, void *aux)
869 {
870 const struct uhidev_attach_arg *uha = aux;
871 void *report_descriptor;
872 int report_size, input_size;
873 const struct uatp_descriptor *uatp_descriptor;
874
875 aprint_debug("%s: vendor 0x%04x, product 0x%04x\n", __func__,
876 (unsigned int)uha->uiaa->uiaa_vendor,
877 (unsigned int)uha->uiaa->uiaa_product);
878 aprint_debug("%s: class 0x%04x, subclass 0x%04x, proto 0x%04x\n",
879 __func__,
880 (unsigned int)uha->uiaa->uiaa_class,
881 (unsigned int)uha->uiaa->uiaa_subclass,
882 (unsigned int)uha->uiaa->uiaa_proto);
883
884 uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
885 input_size = hid_report_size(report_descriptor, report_size,
886 hid_input, uha->reportid);
887 aprint_debug("%s: reportid %d, input size %d\n", __func__,
888 (int)uha->reportid, input_size);
889
890 /*
891 * Keyboards, trackpads, and eject buttons share common vendor
892 * and product ids, but not protocols: only the trackpad
893 * reports a mouse protocol.
894 */
895 if (uha->uiaa->uiaa_proto != UIPROTO_MOUSE)
896 return UMATCH_NONE;
897
898 /* Check for a known vendor/product id. */
899 uatp_descriptor = find_uatp_descriptor(uha);
900 if (uatp_descriptor == NULL) {
901 aprint_debug("%s: unknown vendor/product id\n", __func__);
902 return UMATCH_NONE;
903 }
904
905 /* Check for the expected input size. */
906 if ((input_size < 0) ||
907 ((unsigned int)input_size !=
908 uatp_descriptor->parameters->input_size)) {
909 aprint_debug("%s: expected input size %u\n", __func__,
910 uatp_descriptor->parameters->input_size);
911 return UMATCH_NONE;
912 }
913
914 return UMATCH_VENDOR_PRODUCT_CONF_IFACE;
915 }
916
917 static void
918 uatp_attach(device_t parent, device_t self, void *aux)
919 {
920 struct uatp_softc *sc = device_private(self);
921 const struct uhidev_attach_arg *uha = aux;
922 const struct uatp_descriptor *uatp_descriptor;
923 void *report_descriptor;
924 int report_size, input_size;
925 struct wsmousedev_attach_args a;
926
927 /* Set up uhidev state. (Why doesn't uhidev do most of this?) */
928 sc->sc_hdev.sc_dev = self;
929 sc->sc_hdev.sc_intr = uatp_intr;
930 sc->sc_hdev.sc_parent = uha->parent;
931 sc->sc_hdev.sc_report_id = uha->reportid;
932
933 /* Identify ourselves to dmesg. */
934 uatp_descriptor = find_uatp_descriptor(uha);
935 KASSERT(uatp_descriptor != NULL);
936 aprint_normal(": %s\n", uatp_descriptor->description);
937 aprint_naive(": %s\n", uatp_descriptor->description);
938 aprint_verbose_dev(self,
939 "vendor 0x%04x, product 0x%04x, report id %d\n",
940 (unsigned int)uha->uiaa->uiaa_vendor,
941 (unsigned int)uha->uiaa->uiaa_product,
942 (int)uha->reportid);
943
944 uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
945 input_size = hid_report_size(report_descriptor, report_size, hid_input,
946 uha->reportid);
947 KASSERT(0 < input_size);
948 sc->sc_input_size = input_size;
949
950 /* Initialize model-specific parameters. */
951 sc->sc_parameters = uatp_descriptor->parameters;
952 KASSERT((int)sc->sc_parameters->input_size == input_size);
953 KASSERT(sc->sc_parameters->x_sensors <= UATP_MAX_X_SENSORS);
954 KASSERT(sc->sc_parameters->x_ratio <= UATP_MAX_X_RATIO);
955 KASSERT(sc->sc_parameters->y_sensors <= UATP_MAX_Y_SENSORS);
956 KASSERT(sc->sc_parameters->y_ratio <= UATP_MAX_Y_RATIO);
957 aprint_verbose_dev(self,
958 "%u x sensors, scaled by %u for %u points on screen\n",
959 sc->sc_parameters->x_sensors, sc->sc_parameters->x_ratio,
960 sc->sc_parameters->x_sensors * sc->sc_parameters->x_ratio);
961 aprint_verbose_dev(self,
962 "%u y sensors, scaled by %u for %u points on screen\n",
963 sc->sc_parameters->y_sensors, sc->sc_parameters->y_ratio,
964 sc->sc_parameters->y_sensors * sc->sc_parameters->y_ratio);
965 if (sc->sc_parameters->initialize)
966 sc->sc_parameters->initialize(sc);
967
968 /* Register with pmf. Nothing special for suspend/resume. */
969 if (!pmf_device_register(self, NULL, NULL))
970 aprint_error_dev(self, "couldn't establish power handler\n");
971
972 /* Initialize knobs and create sysctl subtree to tweak them. */
973 sc->sc_knobs = default_knobs;
974 uatp_setup_sysctl(sc);
975
976 /* Initialize tapping. */
977 tap_initialize(sc);
978
979 /* Attach wsmouse. */
980 a.accessops = &uatp_accessops;
981 a.accesscookie = sc;
982 sc->sc_wsmousedev = config_found_ia(self, "wsmousedev", &a,
983 wsmousedevprint);
984 }
985
986 /* Sysctl setup */
987
988 static void
989 uatp_setup_sysctl(struct uatp_softc *sc)
990 {
991 int error;
992
993 error = sysctl_createv(&sc->sc_log, 0, NULL, &sc->sc_node, 0,
994 CTLTYPE_NODE, device_xname(uatp_dev(sc)),
995 SYSCTL_DESCR("uatp configuration knobs"),
996 NULL, 0, NULL, 0,
997 CTL_HW, CTL_CREATE, CTL_EOL);
998 if (error != 0) {
999 aprint_error_dev(uatp_dev(sc),
1000 "unable to set up sysctl tree hw.%s: %d\n",
1001 device_xname(uatp_dev(sc)), error);
1002 goto err;
1003 }
1004
1005 #if UATP_DEBUG
1006 if (!uatp_setup_sysctl_knob(sc, &sc->sc_debug_flags, "debug",
1007 "uatp(4) debug flags"))
1008 goto err;
1009 #endif
1010
1011 /*
1012 * Button emulation.
1013 */
1014 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_buttons,
1015 "two_finger_buttons",
1016 "buttons to emulate with two fingers on trackpad"))
1017 goto err;
1018 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_buttons,
1019 "three_finger_buttons",
1020 "buttons to emulate with three fingers on trackpad"))
1021 goto err;
1022
1023 #if 0
1024 /*
1025 * Edge scrolling.
1026 */
1027 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.top_edge, "top_edge",
1028 "width of top edge for edge scrolling"))
1029 goto err;
1030 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.bottom_edge,
1031 "bottom_edge", "width of bottom edge for edge scrolling"))
1032 goto err;
1033 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.left_edge, "left_edge",
1034 "width of left edge for edge scrolling"))
1035 goto err;
1036 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.right_edge, "right_edge",
1037 "width of right edge for edge scrolling"))
1038 goto err;
1039 #endif
1040
1041 /*
1042 * Multifinger tracking.
1043 */
1044 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.multifinger_track,
1045 "multifinger_track",
1046 "0 to ignore multiple fingers, 1 to reset, 2 to scroll"))
1047 goto err;
1048
1049 /*
1050 * Sensor parameters.
1051 */
1052 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_sensors, "x_sensors",
1053 "number of x sensors"))
1054 goto err;
1055 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_ratio, "x_ratio",
1056 "screen width to trackpad width ratio"))
1057 goto err;
1058 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_sensors, "y_sensors",
1059 "number of y sensors"))
1060 goto err;
1061 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_ratio, "y_ratio",
1062 "screen height to trackpad height ratio"))
1063 goto err;
1064 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_threshold,
1065 "sensor_threshold", "sensor threshold"))
1066 goto err;
1067 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_normalizer,
1068 "sensor_normalizer", "sensor normalizer"))
1069 goto err;
1070 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.palm_width,
1071 "palm_width", "lower bound on width/height of palm"))
1072 goto err;
1073 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_raw_weight,
1074 "old_raw_weight", "weight of old raw position"))
1075 goto err;
1076 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_smoothed_weight,
1077 "old_smoothed_weight", "weight of old smoothed position"))
1078 goto err;
1079 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.new_raw_weight,
1080 "new_raw_weight", "weight of new raw position"))
1081 goto err;
1082 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_remainder,
1083 "motion_remainder", "remember motion division remainder"))
1084 goto err;
1085 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_threshold,
1086 "motion_threshold", "threshold before finger moves cursor"))
1087 goto err;
1088 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_multiplier,
1089 "motion_multiplier", "numerator of motion scale"))
1090 goto err;
1091 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_divisor,
1092 "motion_divisor", "divisor of motion scale"))
1093 goto err;
1094 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_threshold,
1095 "fast_motion_threshold", "threshold before fast motion"))
1096 goto err;
1097 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_multiplier,
1098 "fast_motion_multiplier", "numerator of fast motion scale"))
1099 goto err;
1100 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_divisor,
1101 "fast_motion_divisor", "divisor of fast motion scale"))
1102 goto err;
1103 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_per_direction,
1104 "fast_per_direction", "don't frobnitz the veeblefitzer!"))
1105 goto err;
1106 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_delay,
1107 "motion_delay", "number of packets before motion kicks in"))
1108 goto err;
1109
1110 /*
1111 * Tapping.
1112 */
1113 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_limit_msec,
1114 "tap_limit_msec", "milliseconds before a touch is not a tap"))
1115 goto err;
1116 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.double_tap_limit_msec,
1117 "double_tap_limit_msec",
1118 "milliseconds before a second tap keeps the button down"))
1119 goto err;
1120 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.one_finger_tap_buttons,
1121 "one_finger_tap_buttons", "buttons for one-finger taps"))
1122 goto err;
1123 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_tap_buttons,
1124 "two_finger_tap_buttons", "buttons for two-finger taps"))
1125 goto err;
1126 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_tap_buttons,
1127 "three_finger_tap_buttons", "buttons for three-finger taps"))
1128 goto err;
1129 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_track_distance_limit,
1130 "tap_track_distance_limit",
1131 "maximum distance^2 of tracking during tap"))
1132 goto err;
1133
1134 return;
1135
1136 err:
1137 sysctl_teardown(&sc->sc_log);
1138 sc->sc_node = NULL;
1139 }
1140
1141 static bool
1142 uatp_setup_sysctl_knob(struct uatp_softc *sc, int *ptr, const char *name,
1143 const char *description)
1144 {
1145 int error;
1146
1147 error = sysctl_createv(&sc->sc_log, 0, NULL, NULL, CTLFLAG_READWRITE,
1148 CTLTYPE_INT, name, SYSCTL_DESCR(description),
1149 NULL, 0, ptr, 0,
1150 CTL_HW, sc->sc_node->sysctl_num, CTL_CREATE, CTL_EOL);
1151 if (error != 0) {
1152 aprint_error_dev(uatp_dev(sc),
1153 "unable to setup sysctl node hw.%s.%s: %d\n",
1154 device_xname(uatp_dev(sc)), name, error);
1155 return false;
1156 }
1157
1158 return true;
1159 }
1160
1161 /* More driver goop */
1162
1163 static void
1164 uatp_childdet(device_t self, device_t child)
1165 {
1166 struct uatp_softc *sc = device_private(self);
1167
1168 DPRINTF(sc, UATP_DEBUG_MISC, ("detaching child %s\n",
1169 device_xname(child)));
1170
1171 /* Our only child is the wsmouse device. */
1172 if (child == sc->sc_wsmousedev)
1173 sc->sc_wsmousedev = NULL;
1174 }
1175
1176 static int
1177 uatp_detach(device_t self, int flags)
1178 {
1179 struct uatp_softc *sc = device_private(self);
1180
1181 DPRINTF(sc, UATP_DEBUG_MISC, ("detaching with flags %d\n", flags));
1182
1183 if (sc->sc_status & UATP_ENABLED) {
1184 aprint_error_dev(uatp_dev(sc), "can't detach while enabled\n");
1185 return EBUSY;
1186 }
1187
1188 if (sc->sc_parameters->finalize) {
1189 int error = sc->sc_parameters->finalize(sc);
1190 if (error != 0)
1191 return error;
1192 }
1193
1194 pmf_device_deregister(self);
1195
1196 sysctl_teardown(&sc->sc_log);
1197 sc->sc_node = NULL;
1198
1199 tap_finalize(sc);
1200
1201 return config_detach_children(self, flags);
1202 }
1203
1204 static int
1205 uatp_activate(device_t self, enum devact act)
1206 {
1207 struct uatp_softc *sc = device_private(self);
1208
1209 DPRINTF(sc, UATP_DEBUG_MISC, ("act %d\n", (int)act));
1210
1211 if (act != DVACT_DEACTIVATE)
1212 return EOPNOTSUPP;
1213
1214 sc->sc_status |= UATP_DYING;
1215
1216 return 0;
1217 }
1218
1219 /* wsmouse routines */
1220
1221 static int
1222 uatp_enable(void *v)
1223 {
1224 struct uatp_softc *sc = v;
1225
1226 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("enabling wsmouse\n"));
1227
1228 /* Refuse to enable if we've been deactivated. */
1229 if (sc->sc_status & UATP_DYING) {
1230 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("busy dying\n"));
1231 return EIO;
1232 }
1233
1234 /* Refuse to enable if we already are enabled. */
1235 if (sc->sc_status & UATP_ENABLED) {
1236 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("already enabled\n"));
1237 return EBUSY;
1238 }
1239
1240 sc->sc_status |= UATP_ENABLED;
1241 sc->sc_status &=~ UATP_VALID;
1242 sc->sc_input_index = 0;
1243 tap_enable(sc);
1244 uatp_clear_position(sc);
1245
1246 DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_open(%p)\n", &sc->sc_hdev));
1247 return uhidev_open(&sc->sc_hdev);
1248 }
1249
1250 static void
1251 uatp_disable(void *v)
1252 {
1253 struct uatp_softc *sc = v;
1254
1255 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("disabling wsmouse\n"));
1256
1257 if (!(sc->sc_status & UATP_ENABLED)) {
1258 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("not enabled\n"));
1259 return;
1260 }
1261
1262 tap_disable(sc);
1263 sc->sc_status &=~ UATP_ENABLED;
1264
1265 DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_close(%p)\n", &sc->sc_hdev));
1266 uhidev_close(&sc->sc_hdev);
1267 }
1268
1269 static int
1270 uatp_ioctl(void *v, unsigned long cmd, void *data, int flag, struct lwp *p)
1271 {
1272
1273 DPRINTF((struct uatp_softc*)v, UATP_DEBUG_IOCTL,
1274 ("cmd %lx, data %p, flag %x, lwp %p\n", cmd, data, flag, p));
1275
1276 /* XXX Implement any relevant wsmouse(4) ioctls. */
1277 return EPASSTHROUGH;
1278 }
1279
1280 /*
1281 * The Geyser 3 and 4 models talk the generic USB HID mouse protocol by
1282 * default. This mode switch makes them give raw sensor data instead
1283 * so that we can implement tapping, two-finger scrolling, &c.
1284 */
1285
1286 #define GEYSER34_RAW_MODE 0x04
1287 #define GEYSER34_MODE_REPORT_ID 0
1288 #define GEYSER34_MODE_INTERFACE 0
1289 #define GEYSER34_MODE_PACKET_SIZE 8
1290
1291 static void
1292 geyser34_enable_raw_mode(struct uatp_softc *sc)
1293 {
1294 struct usbd_device *udev = sc->sc_hdev.sc_parent->sc_udev;
1295 usb_device_request_t req;
1296 usbd_status status;
1297 uint8_t report[GEYSER34_MODE_PACKET_SIZE];
1298
1299 req.bmRequestType = UT_READ_CLASS_INTERFACE;
1300 req.bRequest = UR_GET_REPORT;
1301 USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
1302 USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
1303 USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
1304
1305 DPRINTF(sc, UATP_DEBUG_RESET, ("get feature report\n"));
1306 status = usbd_do_request(udev, &req, report);
1307 if (status != USBD_NORMAL_COMPLETION) {
1308 aprint_error_dev(uatp_dev(sc),
1309 "error reading feature report: %s\n", usbd_errstr(status));
1310 return;
1311 }
1312
1313 #if UATP_DEBUG
1314 if (sc->sc_debug_flags & UATP_DEBUG_RESET) {
1315 unsigned int i;
1316 DPRINTF(sc, UATP_DEBUG_RESET, ("old feature report:"));
1317 for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
1318 printf(" %02x", (unsigned int)report[i]);
1319 printf("\n");
1320 /* Doing this twice is harmless here and lets this be
1321 * one ifdef. */
1322 report[0] = GEYSER34_RAW_MODE;
1323 DPRINTF(sc, UATP_DEBUG_RESET, ("new feature report:"));
1324 for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
1325 printf(" %02x", (unsigned int)report[i]);
1326 printf("\n");
1327 }
1328 #endif
1329
1330 report[0] = GEYSER34_RAW_MODE;
1331
1332 req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
1333 req.bRequest = UR_SET_REPORT;
1334 USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
1335 USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
1336 USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
1337
1338 DPRINTF(sc, UATP_DEBUG_RESET, ("set feature report\n"));
1339 status = usbd_do_request(udev, &req, report);
1340 if (status != USBD_NORMAL_COMPLETION) {
1341 aprint_error_dev(uatp_dev(sc),
1342 "error writing feature report: %s\n", usbd_errstr(status));
1343 return;
1344 }
1345 }
1346
1347 /*
1348 * The Geyser 3 and 4 need to be reset periodically after we detect a
1349 * continual flow of spurious interrupts. We use a USB task for this.
1350 */
1351
1352 static void
1353 geyser34_initialize(struct uatp_softc *sc)
1354 {
1355
1356 DPRINTF(sc, UATP_DEBUG_MISC, ("initializing\n"));
1357 geyser34_enable_raw_mode(sc);
1358 usb_init_task(&sc->sc_reset_task, &geyser34_reset_task, sc, 0);
1359 }
1360
1361 static int
1362 geyser34_finalize(struct uatp_softc *sc)
1363 {
1364
1365 DPRINTF(sc, UATP_DEBUG_MISC, ("finalizing\n"));
1366 usb_rem_task(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task);
1367
1368 return 0;
1369 }
1370
1371 static void
1372 geyser34_deferred_reset(struct uatp_softc *sc)
1373 {
1374
1375 DPRINTF(sc, UATP_DEBUG_RESET, ("deferring reset\n"));
1376 usb_add_task(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task,
1377 USB_TASKQ_DRIVER);
1378 }
1379
1380 static void
1381 geyser34_reset_task(void *arg)
1382 {
1383 struct uatp_softc *sc = arg;
1384
1385 DPRINTF(sc, UATP_DEBUG_RESET, ("resetting\n"));
1386
1387 /* Reset by putting it into raw mode. Not sure why. */
1388 geyser34_enable_raw_mode(sc);
1389 }
1390
1391 /* Interrupt handler */
1392
1393 static void
1394 uatp_intr(struct uhidev *addr, void *ibuf, unsigned int len)
1395 {
1396 struct uatp_softc *sc = (struct uatp_softc *)addr;
1397 uint8_t *input;
1398 int dx, dy, dz, dw;
1399 uint32_t buttons;
1400
1401 DPRINTF(sc, UATP_DEBUG_INTR, ("softc %p, ibuf %p, len %u\n",
1402 addr, ibuf, len));
1403
1404 /*
1405 * Some devices break packets up into chunks, so we accumulate
1406 * input up to the expected packet length, or if it would
1407 * overflow, discard the whole packet and start over.
1408 */
1409 if (sc->sc_input_size < len) {
1410 aprint_error_dev(uatp_dev(sc),
1411 "discarding %u-byte input packet\n", len);
1412 sc->sc_input_index = 0;
1413 return;
1414 } else if (sc->sc_input_size < (sc->sc_input_index + len)) {
1415 aprint_error_dev(uatp_dev(sc), "discarding %u-byte input\n",
1416 (sc->sc_input_index + len));
1417 sc->sc_input_index = 0;
1418 return;
1419 }
1420
1421 #if UATP_DEBUG
1422 if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
1423 unsigned int i;
1424 uint8_t *bytes = ibuf;
1425 DPRINTF(sc, UATP_DEBUG_INTR, ("raw"));
1426 for (i = 0; i < len; i++)
1427 printf(" %02x", (unsigned int)bytes[i]);
1428 printf("\n");
1429 }
1430 #endif
1431
1432 memcpy(&sc->sc_input[sc->sc_input_index], ibuf, len);
1433 sc->sc_input_index += len;
1434 if (sc->sc_input_index != sc->sc_input_size) {
1435 /* Wait until packet is complete. */
1436 aprint_verbose_dev(uatp_dev(sc), "partial packet: %u bytes\n",
1437 len);
1438 return;
1439 }
1440
1441 /* Clear the buffer and process the now complete packet. */
1442 sc->sc_input_index = 0;
1443 input = sc->sc_input;
1444
1445 /* The last byte's first bit is set iff the button is pressed.
1446 * XXX Left button should have a name. */
1447 buttons = ((input[sc->sc_input_size - 1] & UATP_STATUS_BUTTON)
1448 ? 1 : 0);
1449
1450 /* Read the sample. */
1451 memset(uatp_x_sample(sc), 0, UATP_MAX_X_SENSORS);
1452 memset(uatp_y_sample(sc), 0, UATP_MAX_Y_SENSORS);
1453 sc->sc_parameters->read_sample(uatp_x_sample(sc), uatp_y_sample(sc),
1454 input);
1455
1456 #if UATP_DEBUG
1457 if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
1458 unsigned int i;
1459 DPRINTF(sc, UATP_DEBUG_INTR, ("x sensors"));
1460 for (i = 0; i < uatp_x_sensors(sc); i++)
1461 printf(" %02x", (unsigned int)uatp_x_sample(sc)[i]);
1462 printf("\n");
1463 DPRINTF(sc, UATP_DEBUG_INTR, ("y sensors"));
1464 for (i = 0; i < uatp_y_sensors(sc); i++)
1465 printf(" %02x", (unsigned int)uatp_y_sample(sc)[i]);
1466 printf("\n");
1467 } else if ((sc->sc_debug_flags & UATP_DEBUG_STATUS) &&
1468 (input[sc->sc_input_size - 1] &~
1469 (UATP_STATUS_BUTTON | UATP_STATUS_BASE |
1470 UATP_STATUS_POST_RESET)))
1471 DPRINTF(sc, UATP_DEBUG_STATUS, ("status byte: %02x\n",
1472 input[sc->sc_input_size - 1]));
1473 #endif
1474
1475 /*
1476 * If this is a base sample, initialize the state to interpret
1477 * subsequent samples relative to it, and stop here.
1478 */
1479 if (sc->sc_parameters->base_sample(sc, input)) {
1480 DPRINTF(sc, UATP_DEBUG_PARSE,
1481 ("base sample, buttons %"PRIx32"\n", buttons));
1482 /* XXX Should the valid bit ever be reset? */
1483 sc->sc_status |= UATP_VALID;
1484 uatp_clear_position(sc);
1485 memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
1486 /* XXX Perform 17" size detection like Linux? */
1487 return;
1488 }
1489
1490 /* If not, accumulate the change in the sensors. */
1491 sc->sc_parameters->accumulate(sc);
1492
1493 #if UATP_DEBUG
1494 if (sc->sc_debug_flags & UATP_DEBUG_ACCUMULATE) {
1495 unsigned int i;
1496 DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated x state:"));
1497 for (i = 0; i < uatp_x_sensors(sc); i++)
1498 printf(" %02x", (unsigned int)uatp_x_acc(sc)[i]);
1499 printf("\n");
1500 DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated y state:"));
1501 for (i = 0; i < uatp_y_sensors(sc); i++)
1502 printf(" %02x", (unsigned int)uatp_y_acc(sc)[i]);
1503 printf("\n");
1504 }
1505 #endif
1506
1507 /* Compute the change in coordinates and buttons. */
1508 dx = dy = dz = dw = 0;
1509 if ((!interpret_input(sc, &dx, &dy, &dz, &dw, &buttons)) &&
1510 /* If there's no input because we're releasing a button,
1511 * then it's not spurious. XXX Mutex? */
1512 (sc->sc_buttons == 0)) {
1513 DPRINTF(sc, UATP_DEBUG_SPURINTR, ("spurious interrupt\n"));
1514 if (sc->sc_parameters->reset)
1515 sc->sc_parameters->reset(sc);
1516 return;
1517 }
1518
1519 /* Report to wsmouse. */
1520 DPRINTF(sc, UATP_DEBUG_INTR,
1521 ("buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
1522 buttons, dx, dy, dz, dw));
1523 mutex_enter(&sc->sc_tap_mutex);
1524 uatp_input(sc, buttons, dx, dy, dz, dw);
1525 mutex_exit(&sc->sc_tap_mutex);
1526 }
1527
1528 /*
1529 * Different ways to discern the base sample initializing the state.
1530 * `base_sample_softc_flag' uses a state flag stored in the softc;
1531 * `base_sample_input_flag' checks a flag at the end of the input
1532 * packet.
1533 */
1534
1535 static bool
1536 base_sample_softc_flag(const struct uatp_softc *sc, const uint8_t *input)
1537 {
1538 return !(sc->sc_status & UATP_VALID);
1539 }
1540
1541 static bool
1542 base_sample_input_flag(const struct uatp_softc *sc, const uint8_t *input)
1543 {
1544 /* XXX Should we also check the valid flag? */
1545 return !!(input[sc->sc_input_size - 1] & UATP_STATUS_BASE);
1546 }
1547
1548 /*
1549 * Pick apart the horizontal sensors from the vertical sensors.
1550 * Different models interleave them in different orders.
1551 */
1552
1553 static void
1554 read_sample_1(uint8_t *x, uint8_t *y, const uint8_t *input)
1555 {
1556 unsigned int i;
1557
1558 for (i = 0; i < 8; i++) {
1559 x[i] = input[5 * i + 2];
1560 x[i + 8] = input[5 * i + 4];
1561 x[i + 16] = input[5 * i + 42];
1562 if (i < 2)
1563 x[i + 24] = input[5 * i + 44];
1564
1565 y[i] = input[5 * i + 1];
1566 y[i + 8] = input[5 * i + 3];
1567 }
1568 }
1569
1570 static void
1571 read_sample_2(uint8_t *x, uint8_t *y, const uint8_t *input)
1572 {
1573 unsigned int i, j;
1574
1575 for (i = 0, j = 19; i < 20; i += 2, j += 3) {
1576 x[i] = input[j];
1577 x[i + 1] = input[j + 1];
1578 }
1579
1580 for (i = 0, j = 1; i < 9; i += 2, j += 3) {
1581 y[i] = input[j];
1582 y[i + 1] = input[j + 1];
1583 }
1584 }
1585
1586 static void
1587 accumulate_sample_1(struct uatp_softc *sc)
1588 {
1589 unsigned int i;
1590
1591 for (i = 0; i < UATP_SENSORS; i++) {
1592 sc->sc_acc[i] += (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
1593 if (sc->sc_acc[i] < 0) {
1594 sc->sc_acc[i] = 0;
1595 } else if (UATP_MAX_ACC < sc->sc_acc[i]) {
1596 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1597 ("overflow %d\n", sc->sc_acc[i]));
1598 sc->sc_acc[i] = UATP_MAX_ACC;
1599 }
1600 }
1601
1602 memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
1603 }
1604
1605 static void
1606 accumulate_sample_2(struct uatp_softc *sc)
1607 {
1608 unsigned int i;
1609
1610 for (i = 0; i < UATP_SENSORS; i++) {
1611 sc->sc_acc[i] = (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
1612 if (sc->sc_acc[i] < -0x80) {
1613 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1614 ("underflow %u - %u = %d\n",
1615 (unsigned int)sc->sc_sample[i],
1616 (unsigned int)sc->sc_base[i],
1617 sc->sc_acc[i]));
1618 sc->sc_acc[i] += 0x100;
1619 }
1620 if (0x7f < sc->sc_acc[i]) {
1621 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1622 ("overflow %u - %u = %d\n",
1623 (unsigned int)sc->sc_sample[i],
1624 (unsigned int)sc->sc_base[i],
1625 sc->sc_acc[i]));
1626 sc->sc_acc[i] -= 0x100;
1627 }
1628 if (sc->sc_acc[i] < 0)
1629 sc->sc_acc[i] = 0;
1630 }
1631 }
1632
1633 /*
1634 * Report input to wsmouse, if there is anything interesting to report.
1635 * We must take into consideration the current tap-and-drag button
1636 * state.
1637 */
1638
1639 static void
1640 uatp_input(struct uatp_softc *sc, uint32_t buttons,
1641 int dx, int dy, int dz, int dw)
1642 {
1643 uint32_t all_buttons;
1644
1645 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1646 all_buttons = buttons | uatp_tapped_buttons(sc);
1647
1648 if ((sc->sc_wsmousedev != NULL) &&
1649 ((dx != 0) || (dy != 0) || (dz != 0) || (dw != 0) ||
1650 (all_buttons != sc->sc_all_buttons))) {
1651 int s = spltty();
1652 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("wsmouse input:"
1653 " buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
1654 all_buttons, dx, -dy, dz, -dw));
1655 wsmouse_input(sc->sc_wsmousedev, all_buttons, dx, -dy, dz, -dw,
1656 WSMOUSE_INPUT_DELTA);
1657 splx(s);
1658 }
1659 sc->sc_buttons = buttons;
1660 sc->sc_all_buttons = all_buttons;
1661 }
1662
1663 /*
1664 * Interpret the current tap state to decide whether the tap buttons
1665 * are currently pressed.
1666 */
1667
1668 static uint32_t
1669 uatp_tapped_buttons(struct uatp_softc *sc)
1670 {
1671 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1672 switch (sc->sc_tap_state) {
1673 case TAP_STATE_INITIAL:
1674 case TAP_STATE_TAPPING:
1675 return 0;
1676
1677 case TAP_STATE_TAPPED:
1678 case TAP_STATE_DOUBLE_TAPPING:
1679 case TAP_STATE_DRAGGING_DOWN:
1680 case TAP_STATE_DRAGGING_UP:
1681 case TAP_STATE_TAPPING_IN_DRAG:
1682 CHECK((0 < sc->sc_tapped_fingers), return 0);
1683 switch (sc->sc_tapped_fingers) {
1684 case 1: return sc->sc_knobs.one_finger_tap_buttons;
1685 case 2: return sc->sc_knobs.two_finger_tap_buttons;
1686 case 3:
1687 default: return sc->sc_knobs.three_finger_tap_buttons;
1688 }
1689
1690 default:
1691 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
1692 __func__, sc->sc_tap_state);
1693 return 0;
1694 }
1695 }
1696
1697 /*
1698 * Interpret the current input state to find a difference in all the
1699 * relevant coordinates and buttons to pass on to wsmouse, and update
1700 * any internal driver state necessary to interpret subsequent input
1701 * relative to this one.
1702 */
1703
1704 static bool
1705 interpret_input(struct uatp_softc *sc, int *dx, int *dy, int *dz, int *dw,
1706 uint32_t *buttons)
1707 {
1708 unsigned int x_pressure, x_raw, x_fingers;
1709 unsigned int y_pressure, y_raw, y_fingers;
1710 unsigned int fingers;
1711
1712 x_pressure = interpret_dimension(sc, uatp_x_acc(sc),
1713 uatp_x_sensors(sc), uatp_x_ratio(sc), &x_raw, &x_fingers);
1714 y_pressure = interpret_dimension(sc, uatp_y_acc(sc),
1715 uatp_y_sensors(sc), uatp_y_ratio(sc), &y_raw, &y_fingers);
1716
1717 DPRINTF(sc, UATP_DEBUG_PARSE,
1718 ("x %u @ %u, %uf; y %u @ %u, %uf; buttons %"PRIx32"\n",
1719 x_pressure, x_raw, x_fingers,
1720 y_pressure, y_raw, y_fingers,
1721 *buttons));
1722
1723 if ((x_pressure == 0) && (y_pressure == 0)) {
1724 bool ok;
1725 /* No fingers: clear position and maybe report a tap. */
1726 DPRINTF(sc, UATP_DEBUG_INTR,
1727 ("no position detected; clearing position\n"));
1728 if (*buttons == 0) {
1729 ok = tap_released(sc);
1730 } else {
1731 tap_reset(sc);
1732 /* Button pressed: interrupt is not spurious. */
1733 ok = true;
1734 }
1735 /*
1736 * Don't clear the position until after tap_released,
1737 * which needs to know the track distance.
1738 */
1739 uatp_clear_position(sc);
1740 return ok;
1741 } else if ((x_pressure == 0) || (y_pressure == 0)) {
1742 /* XXX What to do here? */
1743 DPRINTF(sc, UATP_DEBUG_INTR,
1744 ("pressure in only one dimension; ignoring\n"));
1745 return true;
1746 } else if ((x_pressure == 1) && (y_pressure == 1)) {
1747 fingers = max(x_fingers, y_fingers);
1748 CHECK((0 < fingers), return false);
1749 if (*buttons == 0)
1750 tap_touched(sc, fingers);
1751 else if (fingers == 1)
1752 tap_reset(sc);
1753 else /* Multiple fingers, button pressed. */
1754 *buttons = emulated_buttons(sc, fingers);
1755 update_position(sc, fingers, x_raw, y_raw, dx, dy, dz, dw);
1756 return true;
1757 } else {
1758 /* Palm detected in either or both of the dimensions. */
1759 DPRINTF(sc, UATP_DEBUG_INTR, ("palm detected; ignoring\n"));
1760 return true;
1761 }
1762 }
1763
1764 /*
1765 * Interpret the accumulated sensor state along one dimension to find
1766 * the number, mean position, and pressure of fingers. Returns 0 to
1767 * indicate no pressure, returns 1 and sets *position and *fingers to
1768 * indicate fingers, and returns 2 to indicate palm.
1769 *
1770 * XXX Give symbolic names to the return values.
1771 */
1772
1773 static unsigned int
1774 interpret_dimension(struct uatp_softc *sc, const int *acc,
1775 unsigned int n_sensors, unsigned int ratio,
1776 unsigned int *position, unsigned int *fingers)
1777 {
1778 unsigned int i, v, n_fingers, sum;
1779 unsigned int total[UATP_MAX_SENSORS];
1780 unsigned int weighted[UATP_MAX_SENSORS];
1781 unsigned int sensor_threshold = sc->sc_knobs.sensor_threshold;
1782 unsigned int sensor_normalizer = sc->sc_knobs.sensor_normalizer;
1783 unsigned int width = 0; /* GCC is not smart enough. */
1784 unsigned int palm_width = sc->sc_knobs.palm_width;
1785 enum { none, nondecreasing, decreasing } state = none;
1786
1787 if (sensor_threshold < sensor_normalizer)
1788 sensor_normalizer = sensor_threshold;
1789 if (palm_width == 0) /* Effectively disable palm detection. */
1790 palm_width = UATP_MAX_POSITION;
1791
1792 #define CHECK_(condition) CHECK(condition, return 0)
1793
1794 /*
1795 * Arithmetic bounds:
1796 * . n_sensors is at most UATP_MAX_SENSORS,
1797 * . n_fingers is at most UATP_MAX_SENSORS,
1798 * . i is at most UATP_MAX_SENSORS,
1799 * . sc->sc_acc[i] is at most UATP_MAX_ACC,
1800 * . i * sc->sc_acc[i] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
1801 * . each total[j] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
1802 * . each weighted[j] is at most UATP_MAX_SENSORS^2 * UATP_MAX_ACC,
1803 * . ratio is at most UATP_MAX_RATIO,
1804 * . each weighted[j] * ratio is at most
1805 * UATP_MAX_SENSORS^2 * UATP_MAX_ACC * UATP_MAX_RATIO,
1806 * which is #x5fa0000 with the current values of the constants,
1807 * and
1808 * . the sum of the positions is at most
1809 * UATP_MAX_SENSORS * UATP_MAX_POSITION,
1810 * which is #x60000 with the current values of the constants.
1811 * Hence all of the arithmetic here fits in int (and thus also
1812 * unsigned int). If you change the constants, though, you
1813 * must update the analysis.
1814 */
1815 __CTASSERT(0x5fa0000 == (UATP_MAX_SENSORS * UATP_MAX_SENSORS *
1816 UATP_MAX_ACC * UATP_MAX_RATIO));
1817 __CTASSERT(0x60000 == (UATP_MAX_SENSORS * UATP_MAX_POSITION));
1818 CHECK_(n_sensors <= UATP_MAX_SENSORS);
1819 CHECK_(ratio <= UATP_MAX_RATIO);
1820
1821 /*
1822 * Detect each finger by looking for a consecutive sequence of
1823 * increasing and then decreasing pressures above the sensor
1824 * threshold. Compute the finger's position as the weighted
1825 * average of positions, weighted by the pressure at that
1826 * position. Finally, return the average finger position.
1827 */
1828
1829 n_fingers = 0;
1830 memset(weighted, 0, sizeof(weighted));
1831 memset(total, 0, sizeof(total));
1832
1833 for (i = 0; i < n_sensors; i++) {
1834 CHECK_(0 <= acc[i]);
1835 v = acc[i];
1836
1837 /* Ignore values outside a sensible interval. */
1838 if (v <= sensor_threshold) {
1839 state = none;
1840 continue;
1841 } else if (UATP_MAX_ACC < v) {
1842 aprint_verbose_dev(uatp_dev(sc),
1843 "ignoring large accumulated sensor state: %u\n",
1844 v);
1845 continue;
1846 }
1847
1848 switch (state) {
1849 case none:
1850 n_fingers += 1;
1851 CHECK_(n_fingers <= n_sensors);
1852 state = nondecreasing;
1853 width = 1;
1854 break;
1855
1856 case nondecreasing:
1857 case decreasing:
1858 CHECK_(0 < i);
1859 CHECK_(0 <= acc[i - 1]);
1860 width += 1;
1861 if (palm_width <= (width * ratio)) {
1862 DPRINTF(sc, UATP_DEBUG_PALM,
1863 ("palm detected\n"));
1864 return 2;
1865 } else if ((state == nondecreasing) &&
1866 ((unsigned int)acc[i - 1] > v)) {
1867 state = decreasing;
1868 } else if ((state == decreasing) &&
1869 ((unsigned int)acc[i - 1] < v)) {
1870 n_fingers += 1;
1871 CHECK_(n_fingers <= n_sensors);
1872 state = nondecreasing;
1873 width = 1;
1874 }
1875 break;
1876
1877 default:
1878 aprint_error_dev(uatp_dev(sc),
1879 "bad finger detection state: %d", state);
1880 return 0;
1881 }
1882
1883 v -= sensor_normalizer;
1884 total[n_fingers - 1] += v;
1885 weighted[n_fingers - 1] += (i * v);
1886 CHECK_(total[n_fingers - 1] <=
1887 (UATP_MAX_SENSORS * UATP_MAX_ACC));
1888 CHECK_(weighted[n_fingers - 1] <=
1889 (UATP_MAX_SENSORS * UATP_MAX_SENSORS * UATP_MAX_ACC));
1890 }
1891
1892 if (n_fingers == 0)
1893 return 0;
1894
1895 sum = 0;
1896 for (i = 0; i < n_fingers; i++) {
1897 DPRINTF(sc, UATP_DEBUG_PARSE,
1898 ("finger at %u\n", ((weighted[i] * ratio) / total[i])));
1899 sum += ((weighted[i] * ratio) / total[i]);
1900 CHECK_(sum <= UATP_MAX_SENSORS * UATP_MAX_POSITION);
1901 }
1902
1903 *fingers = n_fingers;
1904 *position = (sum / n_fingers);
1905 return 1;
1906
1907 #undef CHECK_
1908 }
1909
1910 /* Tapping */
1911
1912 /*
1913 * There is a very hairy state machine for detecting taps. At every
1914 * touch, we record the maximum number of fingers touched, and don't
1915 * reset it to zero until the finger is released.
1916 *
1917 * INITIAL STATE
1918 * (no tapping fingers; no tapped fingers)
1919 * - On touch, go to TAPPING STATE.
1920 * - On any other input, remain in INITIAL STATE.
1921 *
1922 * TAPPING STATE: Finger touched; might be tap.
1923 * (tapping fingers; no tapped fingers)
1924 * - On release within the tap limit, go to TAPPED STATE.
1925 * - On release after the tap limit, go to INITIAL STATE.
1926 * - On any other input, remain in TAPPING STATE.
1927 *
1928 * TAPPED STATE: Finger recently tapped, and might double-tap.
1929 * (no tapping fingers; tapped fingers)
1930 * - On touch within the double-tap limit, go to DOUBLE-TAPPING STATE.
1931 * - On touch after the double-tap limit, go to TAPPING STATE.
1932 * - On no event after the double-tap limit, go to INITIAL STATE.
1933 * - On any other input, remain in TAPPED STATE.
1934 *
1935 * DOUBLE-TAPPING STATE: Finger touched soon after tap; might be double-tap.
1936 * (tapping fingers; tapped fingers)
1937 * - On release within the tap limit, release button and go to TAPPED STATE.
1938 * - On release after the tap limit, go to DRAGGING UP STATE.
1939 * - On touch after the tap limit, go to DRAGGING DOWN STATE.
1940 * - On any other input, remain in DOUBLE-TAPPING STATE.
1941 *
1942 * DRAGGING DOWN STATE: Finger has double-tapped and is dragging, not tapping.
1943 * (no tapping fingers; tapped fingers)
1944 * - On release, go to DRAGGING UP STATE.
1945 * - On any other input, remain in DRAGGING DOWN STATE.
1946 *
1947 * DRAGGING UP STATE: Finger has double-tapped and is up.
1948 * (no tapping fingers; tapped fingers)
1949 * - On touch, go to TAPPING IN DRAG STATE.
1950 * - On any other input, remain in DRAGGING UP STATE.
1951 *
1952 * TAPPING IN DRAG STATE: Tap-dancing while cross-dressed.
1953 * (tapping fingers; tapped fingers)
1954 * - On release within the tap limit, go to TAPPED STATE.
1955 * - On release after the tap limit, go to DRAGGING UP STATE.
1956 * - On any other input, remain in TAPPING IN DRAG STATE.
1957 *
1958 * Warning: The graph of states is split into two components, those
1959 * with tapped fingers and those without. The only path from any state
1960 * without tapped fingers to a state with tapped fingers must pass
1961 * through TAPPED STATE. Also, the only transitions into TAPPED STATE
1962 * must be from states with tapping fingers, which become the tapped
1963 * fingers. If you edit the state machine, you must either preserve
1964 * these properties, or globally transform the state machine to avoid
1965 * the bad consequences of violating these properties.
1966 */
1967
1968 static void
1969 uatp_tap_limit(const struct uatp_softc *sc, struct timeval *limit)
1970 {
1971 unsigned int msec = sc->sc_knobs.tap_limit_msec;
1972 limit->tv_sec = 0;
1973 limit->tv_usec = ((msec < 1000) ? (1000 * msec) : 100000);
1974 }
1975
1976 #if UATP_DEBUG
1977
1978 # define TAP_DEBUG_PRE(sc) tap_debug((sc), __func__, "")
1979 # define TAP_DEBUG_POST(sc) tap_debug((sc), __func__, " ->")
1980
1981 static void
1982 tap_debug(struct uatp_softc *sc, const char *caller, const char *prefix)
1983 {
1984 char buffer[128];
1985 const char *state;
1986
1987 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1988 switch (sc->sc_tap_state) {
1989 case TAP_STATE_INITIAL: state = "initial"; break;
1990 case TAP_STATE_TAPPING: state = "tapping"; break;
1991 case TAP_STATE_TAPPED: state = "tapped"; break;
1992 case TAP_STATE_DOUBLE_TAPPING: state = "double-tapping"; break;
1993 case TAP_STATE_DRAGGING_DOWN: state = "dragging-down"; break;
1994 case TAP_STATE_DRAGGING_UP: state = "dragging-up"; break;
1995 case TAP_STATE_TAPPING_IN_DRAG: state = "tapping-in-drag"; break;
1996 default:
1997 snprintf(buffer, sizeof(buffer), "unknown (%d)",
1998 sc->sc_tap_state);
1999 state = buffer;
2000 break;
2001 }
2002
2003 DPRINTF(sc, UATP_DEBUG_TAP,
2004 ("%s:%s state %s, %u tapping, %u tapped\n",
2005 caller, prefix, state,
2006 sc->sc_tapping_fingers, sc->sc_tapped_fingers));
2007 }
2008
2009 #else /* !UATP_DEBUG */
2010
2011 # define TAP_DEBUG_PRE(sc) do {} while (0)
2012 # define TAP_DEBUG_POST(sc) do {} while (0)
2013
2014 #endif
2015
2016 static void
2017 tap_initialize(struct uatp_softc *sc)
2018 {
2019 callout_init(&sc->sc_untap_callout, 0);
2020 callout_setfunc(&sc->sc_untap_callout, untap_callout, sc);
2021 mutex_init(&sc->sc_tap_mutex, MUTEX_DEFAULT, IPL_SOFTUSB);
2022 cv_init(&sc->sc_tap_cv, "uatptap");
2023 }
2024
2025 static void
2026 tap_finalize(struct uatp_softc *sc)
2027 {
2028 /* XXX Can the callout still be scheduled here? */
2029 callout_destroy(&sc->sc_untap_callout);
2030 mutex_destroy(&sc->sc_tap_mutex);
2031 cv_destroy(&sc->sc_tap_cv);
2032 }
2033
2034 static void
2035 tap_enable(struct uatp_softc *sc)
2036 {
2037 mutex_enter(&sc->sc_tap_mutex);
2038 tap_transition_initial(sc);
2039 sc->sc_buttons = 0; /* XXX Not the right place? */
2040 sc->sc_all_buttons = 0;
2041 mutex_exit(&sc->sc_tap_mutex);
2042 }
2043
2044 static void
2045 tap_disable(struct uatp_softc *sc)
2046 {
2047 /* Reset tapping, and wait for any callouts to complete. */
2048 tap_reset_wait(sc);
2049 }
2050
2051 /*
2052 * Reset tap state. If the untap callout has just fired, it may signal
2053 * a harmless button release event before this returns.
2054 */
2055
2056 static void
2057 tap_reset(struct uatp_softc *sc)
2058 {
2059 callout_stop(&sc->sc_untap_callout);
2060 mutex_enter(&sc->sc_tap_mutex);
2061 tap_transition_initial(sc);
2062 mutex_exit(&sc->sc_tap_mutex);
2063 }
2064
2065 /* Reset, but don't return until the callout is done running. */
2066
2067 static void
2068 tap_reset_wait(struct uatp_softc *sc)
2069 {
2070 bool fired = callout_stop(&sc->sc_untap_callout);
2071
2072 mutex_enter(&sc->sc_tap_mutex);
2073 if (fired)
2074 while (sc->sc_tap_state == TAP_STATE_TAPPED)
2075 if (cv_timedwait(&sc->sc_tap_cv, &sc->sc_tap_mutex,
2076 mstohz(1000))) {
2077 aprint_error_dev(uatp_dev(sc),
2078 "tap timeout\n");
2079 break;
2080 }
2081 if (sc->sc_tap_state == TAP_STATE_TAPPED)
2082 aprint_error_dev(uatp_dev(sc), "%s error\n", __func__);
2083 tap_transition_initial(sc);
2084 mutex_exit(&sc->sc_tap_mutex);
2085 }
2086
2087 static const struct timeval zero_timeval;
2088
2089 static void
2090 tap_transition(struct uatp_softc *sc, enum uatp_tap_state tap_state,
2091 const struct timeval *start_time,
2092 unsigned int tapping_fingers, unsigned int tapped_fingers)
2093 {
2094 KASSERT(mutex_owned(&sc->sc_tap_mutex));
2095 sc->sc_tap_state = tap_state;
2096 sc->sc_tap_timer = *start_time;
2097 sc->sc_tapping_fingers = tapping_fingers;
2098 sc->sc_tapped_fingers = tapped_fingers;
2099 }
2100
2101 static void
2102 tap_transition_initial(struct uatp_softc *sc)
2103 {
2104 /*
2105 * No checks. This state is always kosher, and sometimes a
2106 * fallback in case of failure.
2107 */
2108 tap_transition(sc, TAP_STATE_INITIAL, &zero_timeval, 0, 0);
2109 }
2110
2111 /* Touch transitions */
2112
2113 static void
2114 tap_transition_tapping(struct uatp_softc *sc, const struct timeval *start_time,
2115 unsigned int fingers)
2116 {
2117 CHECK((sc->sc_tapping_fingers <= fingers),
2118 do { tap_transition_initial(sc); return; } while (0));
2119 tap_transition(sc, TAP_STATE_TAPPING, start_time, fingers, 0);
2120 }
2121
2122 static void
2123 tap_transition_double_tapping(struct uatp_softc *sc,
2124 const struct timeval *start_time, unsigned int fingers)
2125 {
2126 CHECK((sc->sc_tapping_fingers <= fingers),
2127 do { tap_transition_initial(sc); return; } while (0));
2128 CHECK((0 < sc->sc_tapped_fingers),
2129 do { tap_transition_initial(sc); return; } while (0));
2130 tap_transition(sc, TAP_STATE_DOUBLE_TAPPING, start_time, fingers,
2131 sc->sc_tapped_fingers);
2132 }
2133
2134 static void
2135 tap_transition_dragging_down(struct uatp_softc *sc)
2136 {
2137 CHECK((0 < sc->sc_tapped_fingers),
2138 do { tap_transition_initial(sc); return; } while (0));
2139 tap_transition(sc, TAP_STATE_DRAGGING_DOWN, &zero_timeval, 0,
2140 sc->sc_tapped_fingers);
2141 }
2142
2143 static void
2144 tap_transition_tapping_in_drag(struct uatp_softc *sc,
2145 const struct timeval *start_time, unsigned int fingers)
2146 {
2147 CHECK((sc->sc_tapping_fingers <= fingers),
2148 do { tap_transition_initial(sc); return; } while (0));
2149 CHECK((0 < sc->sc_tapped_fingers),
2150 do { tap_transition_initial(sc); return; } while (0));
2151 tap_transition(sc, TAP_STATE_TAPPING_IN_DRAG, start_time, fingers,
2152 sc->sc_tapped_fingers);
2153 }
2154
2155 /* Release transitions */
2156
2157 static void
2158 tap_transition_tapped(struct uatp_softc *sc, const struct timeval *start_time)
2159 {
2160 /*
2161 * The fingers that were tapping -- of which there must have
2162 * been at least one -- are now the fingers that have tapped,
2163 * and there are no longer fingers tapping.
2164 */
2165 CHECK((0 < sc->sc_tapping_fingers),
2166 do { tap_transition_initial(sc); return; } while (0));
2167 tap_transition(sc, TAP_STATE_TAPPED, start_time, 0,
2168 sc->sc_tapping_fingers);
2169 schedule_untap(sc);
2170 }
2171
2172 static void
2173 tap_transition_dragging_up(struct uatp_softc *sc)
2174 {
2175 CHECK((0 < sc->sc_tapped_fingers),
2176 do { tap_transition_initial(sc); return; } while (0));
2177 tap_transition(sc, TAP_STATE_DRAGGING_UP, &zero_timeval, 0,
2178 sc->sc_tapped_fingers);
2179 }
2180
2181 static void
2182 tap_touched(struct uatp_softc *sc, unsigned int fingers)
2183 {
2184 struct timeval now, diff, limit;
2185
2186 CHECK((0 < fingers), return);
2187 callout_stop(&sc->sc_untap_callout);
2188 mutex_enter(&sc->sc_tap_mutex);
2189 TAP_DEBUG_PRE(sc);
2190 /*
2191 * Guarantee that the number of tapping fingers never decreases
2192 * except when it is reset to zero on release.
2193 */
2194 if (fingers < sc->sc_tapping_fingers)
2195 fingers = sc->sc_tapping_fingers;
2196 switch (sc->sc_tap_state) {
2197 case TAP_STATE_INITIAL:
2198 getmicrouptime(&now);
2199 tap_transition_tapping(sc, &now, fingers);
2200 break;
2201
2202 case TAP_STATE_TAPPING:
2203 /*
2204 * Number of fingers may have increased, so transition
2205 * even though we're already in TAPPING.
2206 */
2207 tap_transition_tapping(sc, &sc->sc_tap_timer, fingers);
2208 break;
2209
2210 case TAP_STATE_TAPPED:
2211 getmicrouptime(&now);
2212 /*
2213 * If the double-tap time limit has passed, it's the
2214 * callout's responsibility to handle that event, so we
2215 * assume the limit has not passed yet.
2216 */
2217 tap_transition_double_tapping(sc, &now, fingers);
2218 break;
2219
2220 case TAP_STATE_DOUBLE_TAPPING:
2221 getmicrouptime(&now);
2222 timersub(&now, &sc->sc_tap_timer, &diff);
2223 uatp_tap_limit(sc, &limit);
2224 if (timercmp(&diff, &limit, >) ||
2225 (sc->sc_track_distance >
2226 sc->sc_knobs.tap_track_distance_limit))
2227 tap_transition_dragging_down(sc);
2228 break;
2229
2230 case TAP_STATE_DRAGGING_DOWN:
2231 break;
2232
2233 case TAP_STATE_DRAGGING_UP:
2234 getmicrouptime(&now);
2235 tap_transition_tapping_in_drag(sc, &now, fingers);
2236 break;
2237
2238 case TAP_STATE_TAPPING_IN_DRAG:
2239 /*
2240 * Number of fingers may have increased, so transition
2241 * even though we're already in TAPPING IN DRAG.
2242 */
2243 tap_transition_tapping_in_drag(sc, &sc->sc_tap_timer, fingers);
2244 break;
2245
2246 default:
2247 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2248 __func__, sc->sc_tap_state);
2249 tap_transition_initial(sc);
2250 break;
2251 }
2252 TAP_DEBUG_POST(sc);
2253 mutex_exit(&sc->sc_tap_mutex);
2254 }
2255
2256 static bool
2257 tap_released(struct uatp_softc *sc)
2258 {
2259 struct timeval now, diff, limit;
2260 void (*non_tapped_transition)(struct uatp_softc *);
2261 bool ok, temporary_release;
2262
2263 mutex_enter(&sc->sc_tap_mutex);
2264 TAP_DEBUG_PRE(sc);
2265 switch (sc->sc_tap_state) {
2266 case TAP_STATE_INITIAL:
2267 case TAP_STATE_TAPPED:
2268 case TAP_STATE_DRAGGING_UP:
2269 /* Spurious interrupt: fingers are already off. */
2270 ok = false;
2271 break;
2272
2273 case TAP_STATE_TAPPING:
2274 temporary_release = false;
2275 non_tapped_transition = &tap_transition_initial;
2276 goto maybe_tap;
2277
2278 case TAP_STATE_DOUBLE_TAPPING:
2279 temporary_release = true;
2280 non_tapped_transition = &tap_transition_dragging_up;
2281 goto maybe_tap;
2282
2283 case TAP_STATE_TAPPING_IN_DRAG:
2284 temporary_release = false;
2285 non_tapped_transition = &tap_transition_dragging_up;
2286 goto maybe_tap;
2287
2288 maybe_tap:
2289 getmicrouptime(&now);
2290 timersub(&now, &sc->sc_tap_timer, &diff);
2291 uatp_tap_limit(sc, &limit);
2292 if (timercmp(&diff, &limit, <=) &&
2293 (sc->sc_track_distance <=
2294 sc->sc_knobs.tap_track_distance_limit)) {
2295 if (temporary_release) {
2296 /*
2297 * XXX Kludge: Temporarily transition
2298 * to a tap state that uatp_input will
2299 * interpret as `no buttons tapped',
2300 * saving the tapping fingers. There
2301 * should instead be a separate routine
2302 * uatp_input_untapped.
2303 */
2304 unsigned int fingers = sc->sc_tapping_fingers;
2305 tap_transition_initial(sc);
2306 uatp_input(sc, 0, 0, 0, 0, 0);
2307 sc->sc_tapping_fingers = fingers;
2308 }
2309 tap_transition_tapped(sc, &now);
2310 } else {
2311 (*non_tapped_transition)(sc);
2312 }
2313 ok = true;
2314 break;
2315
2316 case TAP_STATE_DRAGGING_DOWN:
2317 tap_transition_dragging_up(sc);
2318 ok = true;
2319 break;
2320
2321 default:
2322 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2323 __func__, sc->sc_tap_state);
2324 tap_transition_initial(sc);
2325 ok = false;
2326 break;
2327 }
2328 TAP_DEBUG_POST(sc);
2329 mutex_exit(&sc->sc_tap_mutex);
2330 return ok;
2331 }
2332
2333 /* Untapping: Releasing the button after a tap */
2334
2335 static void
2336 schedule_untap(struct uatp_softc *sc)
2337 {
2338 unsigned int ms = sc->sc_knobs.double_tap_limit_msec;
2339 if (ms <= 1000)
2340 callout_schedule(&sc->sc_untap_callout, mstohz(ms));
2341 else /* XXX Reject bogus values in sysctl. */
2342 aprint_error_dev(uatp_dev(sc),
2343 "double-tap delay too long: %ums\n", ms);
2344 }
2345
2346 static void
2347 untap_callout(void *arg)
2348 {
2349 struct uatp_softc *sc = arg;
2350
2351 mutex_enter(&sc->sc_tap_mutex);
2352 TAP_DEBUG_PRE(sc);
2353 switch (sc->sc_tap_state) {
2354 case TAP_STATE_TAPPED:
2355 tap_transition_initial(sc);
2356 /*
2357 * XXX Kludge: Call uatp_input after the state transition
2358 * to make sure that it will actually release the button.
2359 */
2360 uatp_input(sc, 0, 0, 0, 0, 0);
2361
2362 case TAP_STATE_INITIAL:
2363 case TAP_STATE_TAPPING:
2364 case TAP_STATE_DOUBLE_TAPPING:
2365 case TAP_STATE_DRAGGING_UP:
2366 case TAP_STATE_DRAGGING_DOWN:
2367 case TAP_STATE_TAPPING_IN_DRAG:
2368 /*
2369 * Somebody else got in and changed the state before we
2370 * untapped. Let them take over; do nothing here.
2371 */
2372 break;
2373
2374 default:
2375 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2376 __func__, sc->sc_tap_state);
2377 tap_transition_initial(sc);
2378 /* XXX Just in case...? */
2379 uatp_input(sc, 0, 0, 0, 0, 0);
2380 break;
2381 }
2382 TAP_DEBUG_POST(sc);
2383 /* XXX Broadcast only if state was TAPPED? */
2384 cv_broadcast(&sc->sc_tap_cv);
2385 mutex_exit(&sc->sc_tap_mutex);
2386 }
2387
2388 /*
2389 * Emulate different buttons if the user holds down n fingers while
2390 * pressing the physical button. (This is unrelated to tapping.)
2391 */
2392
2393 static uint32_t
2394 emulated_buttons(struct uatp_softc *sc, unsigned int fingers)
2395 {
2396 CHECK((1 < fingers), return 0);
2397
2398 switch (fingers) {
2399 case 2:
2400 DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
2401 ("2-finger emulated button: %"PRIx32"\n",
2402 sc->sc_knobs.two_finger_buttons));
2403 return sc->sc_knobs.two_finger_buttons;
2404
2405 case 3:
2406 default:
2407 DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
2408 ("3-finger emulated button: %"PRIx32"\n",
2409 sc->sc_knobs.three_finger_buttons));
2410 return sc->sc_knobs.three_finger_buttons;
2411 }
2412 }
2413
2414 /*
2415 * Update the position known to the driver based on the position and
2416 * number of fingers. dx, dy, dz, and dw are expected to hold zero;
2417 * update_position may store nonzero changes in position in them.
2418 */
2419
2420 static void
2421 update_position(struct uatp_softc *sc, unsigned int fingers,
2422 unsigned int x_raw, unsigned int y_raw,
2423 int *dx, int *dy, int *dz, int *dw)
2424 {
2425 CHECK((0 < fingers), return);
2426
2427 if ((fingers == 1) || (sc->sc_knobs.multifinger_track == 1))
2428 move_mouse(sc, x_raw, y_raw, dx, dy);
2429 else if (sc->sc_knobs.multifinger_track == 2)
2430 scroll_wheel(sc, x_raw, y_raw, dz, dw);
2431 }
2432
2433 /*
2434 * XXX Scrolling needs to use a totally different motion model.
2435 */
2436
2437 static void
2438 move_mouse(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
2439 int *dx, int *dy)
2440 {
2441 move(sc, "mouse", x_raw, y_raw, &sc->sc_x_raw, &sc->sc_y_raw,
2442 &sc->sc_x_smoothed, &sc->sc_y_smoothed,
2443 &sc->sc_x_remainder, &sc->sc_y_remainder,
2444 dx, dy);
2445 }
2446
2447 static void
2448 scroll_wheel(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
2449 int *dz, int *dw)
2450 {
2451 move(sc, "scroll", x_raw, y_raw, &sc->sc_z_raw, &sc->sc_w_raw,
2452 &sc->sc_z_smoothed, &sc->sc_w_smoothed,
2453 &sc->sc_z_remainder, &sc->sc_w_remainder,
2454 dz, dw);
2455 }
2456
2457 static void
2458 move(struct uatp_softc *sc, const char *ctx, unsigned int a, unsigned int b,
2459 int *a_raw, int *b_raw,
2460 int *a_smoothed, int *b_smoothed,
2461 unsigned int *a_remainder, unsigned int *b_remainder,
2462 int *da, int *db)
2463 {
2464 #define CHECK_(condition) CHECK(condition, return)
2465
2466 int old_a_raw = *a_raw, old_a_smoothed = *a_smoothed;
2467 int old_b_raw = *b_raw, old_b_smoothed = *b_smoothed;
2468 unsigned int a_dist, b_dist, dist_squared;
2469 bool a_fast, b_fast;
2470
2471 /*
2472 * Make sure the quadratics in motion_below_threshold and
2473 * tracking distance don't overflow int arithmetic.
2474 */
2475 __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
2476
2477 CHECK_(a <= UATP_MAX_POSITION);
2478 CHECK_(b <= UATP_MAX_POSITION);
2479 *a_raw = a;
2480 *b_raw = b;
2481 if ((old_a_raw < 0) || (old_b_raw < 0)) {
2482 DPRINTF(sc, UATP_DEBUG_MOVE,
2483 ("initialize %s position (%d, %d) -> (%d, %d)\n", ctx,
2484 old_a_raw, old_b_raw, a, b));
2485 return;
2486 }
2487
2488 if ((old_a_smoothed < 0) || (old_b_smoothed < 0)) {
2489 /* XXX Does this make sense? */
2490 old_a_smoothed = old_a_raw;
2491 old_b_smoothed = old_b_raw;
2492 }
2493
2494 CHECK_(0 <= old_a_raw);
2495 CHECK_(0 <= old_b_raw);
2496 CHECK_(old_a_raw <= UATP_MAX_POSITION);
2497 CHECK_(old_b_raw <= UATP_MAX_POSITION);
2498 CHECK_(0 <= old_a_smoothed);
2499 CHECK_(0 <= old_b_smoothed);
2500 CHECK_(old_a_smoothed <= UATP_MAX_POSITION);
2501 CHECK_(old_b_smoothed <= UATP_MAX_POSITION);
2502 CHECK_(0 <= *a_raw);
2503 CHECK_(0 <= *b_raw);
2504 CHECK_(*a_raw <= UATP_MAX_POSITION);
2505 CHECK_(*b_raw <= UATP_MAX_POSITION);
2506 *a_smoothed = smooth(sc, old_a_raw, old_a_smoothed, *a_raw);
2507 *b_smoothed = smooth(sc, old_b_raw, old_b_smoothed, *b_raw);
2508 CHECK_(0 <= *a_smoothed);
2509 CHECK_(0 <= *b_smoothed);
2510 CHECK_(*a_smoothed <= UATP_MAX_POSITION);
2511 CHECK_(*b_smoothed <= UATP_MAX_POSITION);
2512
2513 if (sc->sc_motion_timer < sc->sc_knobs.motion_delay) {
2514 DPRINTF(sc, UATP_DEBUG_MOVE, ("delay motion %u\n",
2515 sc->sc_motion_timer));
2516 sc->sc_motion_timer += 1;
2517 return;
2518 }
2519
2520 /* XXX Use raw distances or smoothed distances? Acceleration? */
2521 if (*a_smoothed < old_a_smoothed)
2522 a_dist = old_a_smoothed - *a_smoothed;
2523 else
2524 a_dist = *a_smoothed - old_a_smoothed;
2525
2526 if (*b_smoothed < old_b_smoothed)
2527 b_dist = old_b_smoothed - *b_smoothed;
2528 else
2529 b_dist = *b_smoothed - old_b_smoothed;
2530
2531 dist_squared = (a_dist * a_dist) + (b_dist * b_dist);
2532 if (dist_squared < ((2 * UATP_MAX_POSITION * UATP_MAX_POSITION)
2533 - sc->sc_track_distance))
2534 sc->sc_track_distance += dist_squared;
2535 else
2536 sc->sc_track_distance = (2 * UATP_MAX_POSITION *
2537 UATP_MAX_POSITION);
2538 DPRINTF(sc, UATP_DEBUG_TRACK_DIST, ("finger has tracked %u units^2\n",
2539 sc->sc_track_distance));
2540
2541 /*
2542 * The checks above guarantee that the differences here are at
2543 * most UATP_MAX_POSITION in magnitude, since both minuend and
2544 * subtrahend are nonnegative and at most UATP_MAX_POSITION.
2545 */
2546 if (motion_below_threshold(sc, sc->sc_knobs.motion_threshold,
2547 (int)(*a_smoothed - old_a_smoothed),
2548 (int)(*b_smoothed - old_b_smoothed))) {
2549 DPRINTF(sc, UATP_DEBUG_MOVE,
2550 ("%s motion too small: (%d, %d) -> (%d, %d)\n", ctx,
2551 old_a_smoothed, old_b_smoothed,
2552 *a_smoothed, *b_smoothed));
2553 return;
2554 }
2555 if (sc->sc_knobs.fast_per_direction == 0) {
2556 a_fast = b_fast = !motion_below_threshold(sc,
2557 sc->sc_knobs.fast_motion_threshold,
2558 (int)(*a_smoothed - old_a_smoothed),
2559 (int)(*b_smoothed - old_b_smoothed));
2560 } else {
2561 a_fast = !motion_below_threshold(sc,
2562 sc->sc_knobs.fast_motion_threshold,
2563 (int)(*a_smoothed - old_a_smoothed),
2564 0);
2565 b_fast = !motion_below_threshold(sc,
2566 sc->sc_knobs.fast_motion_threshold,
2567 0,
2568 (int)(*b_smoothed - old_b_smoothed));
2569 }
2570 *da = accelerate(sc, old_a_raw, *a_raw, old_a_smoothed, *a_smoothed,
2571 a_fast, a_remainder);
2572 *db = accelerate(sc, old_b_raw, *b_raw, old_b_smoothed, *b_smoothed,
2573 b_fast, b_remainder);
2574 DPRINTF(sc, UATP_DEBUG_MOVE,
2575 ("update %s position (%d, %d) -> (%d, %d), move by (%d, %d)\n",
2576 ctx, old_a_smoothed, old_b_smoothed, *a_smoothed, *b_smoothed,
2577 *da, *db));
2578
2579 #undef CHECK_
2580 }
2581
2582 static int
2583 smooth(struct uatp_softc *sc, unsigned int old_raw, unsigned int old_smoothed,
2584 unsigned int raw)
2585 {
2586 #define CHECK_(condition) CHECK(condition, return old_raw)
2587
2588 /*
2589 * Arithmetic bounds:
2590 * . the weights are at most UATP_MAX_WEIGHT;
2591 * . the positions are at most UATP_MAX_POSITION; and so
2592 * . the numerator of the average is at most
2593 * 3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION,
2594 * which is #x477000, fitting comfortably in an int.
2595 */
2596 __CTASSERT(0x477000 == (3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION));
2597 unsigned int old_raw_weight = uatp_old_raw_weight(sc);
2598 unsigned int old_smoothed_weight = uatp_old_smoothed_weight(sc);
2599 unsigned int new_raw_weight = uatp_new_raw_weight(sc);
2600 CHECK_(old_raw_weight <= UATP_MAX_WEIGHT);
2601 CHECK_(old_smoothed_weight <= UATP_MAX_WEIGHT);
2602 CHECK_(new_raw_weight <= UATP_MAX_WEIGHT);
2603 CHECK_(old_raw <= UATP_MAX_POSITION);
2604 CHECK_(old_smoothed <= UATP_MAX_POSITION);
2605 CHECK_(raw <= UATP_MAX_POSITION);
2606 return (((old_raw_weight * old_raw) +
2607 (old_smoothed_weight * old_smoothed) +
2608 (new_raw_weight * raw))
2609 / (old_raw_weight + old_smoothed_weight + new_raw_weight));
2610
2611 #undef CHECK_
2612 }
2613
2614 static bool
2615 motion_below_threshold(struct uatp_softc *sc, unsigned int threshold,
2616 int x, int y)
2617 {
2618 unsigned int x_squared, y_squared;
2619
2620 /* Caller guarantees the multiplication will not overflow. */
2621 KASSERT(-UATP_MAX_POSITION <= x);
2622 KASSERT(-UATP_MAX_POSITION <= y);
2623 KASSERT(x <= UATP_MAX_POSITION);
2624 KASSERT(y <= UATP_MAX_POSITION);
2625 __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
2626
2627 x_squared = (x * x);
2628 y_squared = (y * y);
2629
2630 return ((x_squared + y_squared) < threshold);
2631 }
2632
2633 static int
2634 accelerate(struct uatp_softc *sc, unsigned int old_raw, unsigned int raw,
2635 unsigned int old_smoothed, unsigned int smoothed, bool fast,
2636 int *remainder)
2637 {
2638 #define CHECK_(condition) CHECK(condition, return 0)
2639
2640 /* Guarantee that the scaling won't overflow. */
2641 __CTASSERT(0x30000 ==
2642 (UATP_MAX_POSITION * UATP_MAX_MOTION_MULTIPLIER));
2643
2644 CHECK_(old_raw <= UATP_MAX_POSITION);
2645 CHECK_(raw <= UATP_MAX_POSITION);
2646 CHECK_(old_smoothed <= UATP_MAX_POSITION);
2647 CHECK_(smoothed <= UATP_MAX_POSITION);
2648
2649 return (fast ? uatp_scale_fast_motion : uatp_scale_motion)
2650 (sc, (((int) smoothed) - ((int) old_smoothed)), remainder);
2651
2652 #undef CHECK_
2653 }
2654
2655 MODULE(MODULE_CLASS_DRIVER, uatp, NULL);
2656
2657 #ifdef _MODULE
2658 #include "ioconf.c"
2659 #endif
2660
2661 static int
2662 uatp_modcmd(modcmd_t cmd, void *aux)
2663 {
2664 int error = 0;
2665
2666 switch (cmd) {
2667 case MODULE_CMD_INIT:
2668 #ifdef _MODULE
2669 error = config_init_component(cfdriver_ioconf_uatp,
2670 cfattach_ioconf_uatp, cfdata_ioconf_uatp);
2671 #endif
2672 return error;
2673 case MODULE_CMD_FINI:
2674 #ifdef _MODULE
2675 error = config_fini_component(cfdriver_ioconf_uatp,
2676 cfattach_ioconf_uatp, cfdata_ioconf_uatp);
2677 #endif
2678 return error;
2679 default:
2680 return ENOTTY;
2681 }
2682 }
2683