uatp.c revision 1.17 1 /* $NetBSD: uatp.c,v 1.17 2018/08/02 06:09:04 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * uatp(4) - USB Apple Trackpad
34 *
35 * The uatp driver talks the protocol of the USB trackpads found in
36 * Apple laptops since 2005, including PowerBooks, iBooks, MacBooks,
37 * and MacBook Pros. Some of these also present generic USB HID mice
38 * on another USB report id, which the ums(4) driver can handle, but
39 * Apple's protocol gives more detailed sensor data that lets us detect
40 * multiple fingers to emulate multi-button mice and scroll wheels.
41 */
42
43 /*
44 * Protocol
45 *
46 * The device has a set of horizontal sensors, each being a column at a
47 * particular position on the x axis that tells you whether there is
48 * pressure anywhere on that column, and vertical sensors, each being a
49 * row at a particular position on the y axis that tells you whether
50 * there is pressure anywhere on that row.
51 *
52 * Whenever the device senses anything, it emits a readout of all of
53 * the sensors, in some model-dependent order. (For the order, see
54 * read_sample_1 and read_sample_2.) Each sensor datum is an unsigned
55 * eight-bit quantity representing some measure of pressure. (Of
56 * course, it really measures capacitance, not pressure, but we'll call
57 * it `pressure' here.)
58 */
59
60 /*
61 * Interpretation
62 *
63 * To interpret the finger's position on the trackpad, the driver
64 * computes a weighted average over all possible positions, weighted by
65 * the pressure at that position. The weighted average is computed in
66 * the dimensions of the screen, rather than the trackpad, in order to
67 * admit a finer resolution of positions than the trackpad grid.
68 *
69 * To update the finger's position smoothly on the trackpad, the driver
70 * computes a weighted average of the old raw position, the old
71 * smoothed position, and the new smoothed position. The weights are
72 * given by the old_raw_weight, old_smoothed_weight, and new_raw_weight
73 * sysctl knobs.
74 *
75 * Finally, to move the cursor, the driver takes the difference between
76 * the old and new positions and accelerates it according to some
77 * heuristic knobs that need to be reworked.
78 *
79 * Finally, there are some bells & whistles to detect tapping and to
80 * emulate a three-button mouse by leaving two or three fingers on the
81 * trackpad while pressing the button.
82 */
83
84 /*
85 * Future work
86 *
87 * With the raw sensor data available, we could implement fancier bells
88 * & whistles too, such as pinch-to-zoom. However, wsmouse supports
89 * only four-dimensional mice with buttons, and we already use two
90 * dimensions for mousing and two dimensions for scrolling, so there's
91 * no straightforward way to report zooming and other gestures to the
92 * operating system. Probably a better way to do this would be just to
93 * attach uhid(4) instead of uatp(4) and to read the raw sensors data
94 * yourself -- but that requires hairy mode switching for recent models
95 * (see geyser34_enable_raw_mode).
96 *
97 * XXX Rework the acceleration knobs.
98 * XXX Implement edge scrolling.
99 * XXX Fix sysctl setup; preserve knobs across suspend/resume.
100 * (uatp0 detaches and reattaches across suspend/resume, so as
101 * written, the sysctl tree is torn down and rebuilt, losing any
102 * state the user may have set.)
103 * XXX Refactor motion state so I can understand it again.
104 * Should make a struct uatp_motion for all that state.
105 * XXX Add hooks for ignoring trackpad input while typing.
106 */
107
108 /*
109 * Classifying devices
110 *
111 * I have only one MacBook to test this driver, but the driver should
112 * be applicable to almost every Apple laptop made since the beginning
113 * of 2005, so the driver reports lots of debugging output to help to
114 * classify devices. Boot with `boot -v' (verbose) and check the
115 * output of `dmesg | grep uatp' to answer the following questions:
116 *
117 * - What devices (vendor, product, class, subclass, proto, USB HID
118 * report dump) fail to attach when you think they should work?
119 * (vendor not apple, class not hid, proto not mouse)
120 *
121 * - What devices have an unknown product id?
122 * `unknown vendor/product id'
123 *
124 * - What devices have the wrong screen-to-trackpad ratios?
125 * `... x sensors, scaled by ... for ... points on screen'
126 * `... y sensors, scaled by ... for ... points on screen'
127 * You can tweak hw.uatp0.x_ratio and hw.uatp0.y_ratio to adjust
128 * this, up to a maximum of 384 for each value.
129 *
130 * - What devices have the wrong input size?
131 * `expected input size ... but got ... for Apple trackpad'
132 *
133 * - What devices give wrong-sized packets?
134 * `discarding ...-byte input'
135 *
136 * - What devices split packets in chunks?
137 * `partial packet: ... bytes'
138 *
139 * - What devices develop large sensor readouts?
140 * `large sensor readout: ...'
141 *
142 * - What devices have the wrong number of sensors? Are there parts of
143 * your trackpad that the system doesn't seem to notice? You can
144 * tweak hw.uatp0.x_sensors and hw.uatp0.y_sensors, up to a maximum
145 * of 32 for each value.
146 */
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: uatp.c,v 1.17 2018/08/02 06:09:04 riastradh Exp $");
150
151 #ifdef _KERNEL_OPT
152 #include "opt_usb.h"
153 #endif
154
155 #include <sys/types.h>
156 #include <sys/param.h>
157 #include <sys/atomic.h>
158 #include <sys/device.h>
159 #include <sys/errno.h>
160 #include <sys/ioctl.h>
161 #include <sys/kernel.h>
162 #include <sys/module.h>
163 #include <sys/sysctl.h>
164 #include <sys/systm.h>
165 #include <sys/time.h>
166
167 /* Order is important here...sigh... */
168 #include <dev/usb/usb.h>
169 #include <dev/usb/usbdi.h>
170 #include <dev/usb/usbdi_util.h>
171 #include <dev/usb/usbdevs.h>
172 #include <dev/usb/uhidev.h>
173 #include <dev/usb/usbhid.h>
174 #include <dev/hid/hid.h>
175
176 #include <dev/wscons/wsconsio.h>
177 #include <dev/wscons/wsmousevar.h>
178
179 #define CHECK(condition, fail) do { \
180 if (! (condition)) { \
181 aprint_error_dev(uatp_dev(sc), "%s: check failed: %s\n",\
182 __func__, #condition); \
183 fail; \
184 } \
185 } while (0)
186
187 #define UATP_DEBUG_ATTACH (1 << 0)
188 #define UATP_DEBUG_MISC (1 << 1)
189 #define UATP_DEBUG_WSMOUSE (1 << 2)
190 #define UATP_DEBUG_IOCTL (1 << 3)
191 #define UATP_DEBUG_RESET (1 << 4)
192 #define UATP_DEBUG_INTR (1 << 5)
193 #define UATP_DEBUG_PARSE (1 << 6)
194 #define UATP_DEBUG_TAP (1 << 7)
195 #define UATP_DEBUG_EMUL_BUTTON (1 << 8)
196 #define UATP_DEBUG_ACCUMULATE (1 << 9)
197 #define UATP_DEBUG_STATUS (1 << 10)
198 #define UATP_DEBUG_SPURINTR (1 << 11)
199 #define UATP_DEBUG_MOVE (1 << 12)
200 #define UATP_DEBUG_ACCEL (1 << 13)
201 #define UATP_DEBUG_TRACK_DIST (1 << 14)
202 #define UATP_DEBUG_PALM (1 << 15)
203
204 #if UATP_DEBUG
205 # define DPRINTF(sc, flags, format) do { \
206 if ((flags) & (sc)->sc_debug_flags) { \
207 printf("%s: %s: ", device_xname(uatp_dev(sc)), __func__); \
208 printf format; \
209 } \
210 } while (0)
211 #else
212 # define DPRINTF(sc, flags, format) do {} while (0)
213 #endif
214
215 /* Maximum number of bytes in an incoming packet of sensor data. */
216 #define UATP_MAX_INPUT_SIZE 81
217
218 /* Maximum number of sensors in each dimension. */
219 #define UATP_MAX_X_SENSORS 32
220 #define UATP_MAX_Y_SENSORS 32
221 #define UATP_MAX_SENSORS 32
222 #define UATP_SENSORS (UATP_MAX_X_SENSORS + UATP_MAX_Y_SENSORS)
223
224 /* Maximum accumulated sensor value. */
225 #define UATP_MAX_ACC 0xff
226
227 /* Maximum screen dimension to sensor dimension ratios. */
228 #define UATP_MAX_X_RATIO 0x180
229 #define UATP_MAX_Y_RATIO 0x180
230 #define UATP_MAX_RATIO 0x180
231
232 /* Maximum weight for positions in motion calculation. */
233 #define UATP_MAX_WEIGHT 0x7f
234
235 /* Maximum possible trackpad position in a single dimension. */
236 #define UATP_MAX_POSITION (UATP_MAX_SENSORS * UATP_MAX_RATIO)
237
238 /* Bounds on acceleration. */
239 #define UATP_MAX_MOTION_MULTIPLIER 16
240
241 /* Status bits transmitted in the last byte of an input packet. */
242 #define UATP_STATUS_BUTTON (1 << 0) /* Button pressed */
243 #define UATP_STATUS_BASE (1 << 2) /* Base sensor data */
244 #define UATP_STATUS_POST_RESET (1 << 4) /* Post-reset */
245
246 /* Forward declarations */
247
248 struct uatp_softc; /* Device driver state. */
249 struct uatp_descriptor; /* Descriptor for a particular model. */
250 struct uatp_parameters; /* Parameters common to a set of models. */
251 struct uatp_knobs; /* User-settable configuration knobs. */
252 enum uatp_tap_state {
253 TAP_STATE_INITIAL,
254 TAP_STATE_TAPPING,
255 TAP_STATE_TAPPED,
256 TAP_STATE_DOUBLE_TAPPING,
257 TAP_STATE_DRAGGING_DOWN,
258 TAP_STATE_DRAGGING_UP,
259 TAP_STATE_TAPPING_IN_DRAG,
260 };
261
262 static const struct uatp_descriptor *find_uatp_descriptor
263 (const struct uhidev_attach_arg *);
264 static device_t uatp_dev(const struct uatp_softc *);
265 static uint8_t *uatp_x_sample(struct uatp_softc *);
266 static uint8_t *uatp_y_sample(struct uatp_softc *);
267 static int *uatp_x_acc(struct uatp_softc *);
268 static int *uatp_y_acc(struct uatp_softc *);
269 static void uatp_clear_position(struct uatp_softc *);
270 static unsigned int uatp_x_sensors(const struct uatp_softc *);
271 static unsigned int uatp_y_sensors(const struct uatp_softc *);
272 static unsigned int uatp_x_ratio(const struct uatp_softc *);
273 static unsigned int uatp_y_ratio(const struct uatp_softc *);
274 static unsigned int uatp_old_raw_weight(const struct uatp_softc *);
275 static unsigned int uatp_old_smoothed_weight(const struct uatp_softc *);
276 static unsigned int uatp_new_raw_weight(const struct uatp_softc *);
277 static int scale_motion(const struct uatp_softc *, int, int *,
278 const unsigned int *, const unsigned int *);
279 static int uatp_scale_motion(const struct uatp_softc *, int, int *);
280 static int uatp_scale_fast_motion(const struct uatp_softc *, int, int *);
281 static int uatp_match(device_t, cfdata_t, void *);
282 static void uatp_attach(device_t, device_t, void *);
283 static void uatp_setup_sysctl(struct uatp_softc *);
284 static bool uatp_setup_sysctl_knob(struct uatp_softc *, int *, const char *,
285 const char *);
286 static void uatp_childdet(device_t, device_t);
287 static int uatp_detach(device_t, int);
288 static int uatp_activate(device_t, enum devact);
289 static int uatp_enable(void *);
290 static void uatp_disable(void *);
291 static int uatp_ioctl(void *, unsigned long, void *, int, struct lwp *);
292 static void geyser34_enable_raw_mode(struct uatp_softc *);
293 static void geyser34_initialize(struct uatp_softc *);
294 static int geyser34_finalize(struct uatp_softc *);
295 static void geyser34_deferred_reset(struct uatp_softc *);
296 static void geyser34_reset_task(void *);
297 static void uatp_intr(struct uhidev *, void *, unsigned int);
298 static bool base_sample_softc_flag(const struct uatp_softc *, const uint8_t *);
299 static bool base_sample_input_flag(const struct uatp_softc *, const uint8_t *);
300 static void read_sample_1(uint8_t *, uint8_t *, const uint8_t *);
301 static void read_sample_2(uint8_t *, uint8_t *, const uint8_t *);
302 static void accumulate_sample_1(struct uatp_softc *);
303 static void accumulate_sample_2(struct uatp_softc *);
304 static void uatp_input(struct uatp_softc *, uint32_t, int, int, int, int);
305 static uint32_t uatp_tapped_buttons(struct uatp_softc *);
306 static bool interpret_input(struct uatp_softc *, int *, int *, int *, int *,
307 uint32_t *);
308 static unsigned int interpret_dimension(struct uatp_softc *, const int *,
309 unsigned int, unsigned int, unsigned int *, unsigned int *);
310 static void tap_initialize(struct uatp_softc *);
311 static void tap_finalize(struct uatp_softc *);
312 static void tap_enable(struct uatp_softc *);
313 static void tap_disable(struct uatp_softc *);
314 static void tap_transition(struct uatp_softc *, enum uatp_tap_state,
315 const struct timeval *, unsigned int, unsigned int);
316 static void tap_transition_initial(struct uatp_softc *);
317 static void tap_transition_tapping(struct uatp_softc *, const struct timeval *,
318 unsigned int);
319 static void tap_transition_double_tapping(struct uatp_softc *,
320 const struct timeval *, unsigned int);
321 static void tap_transition_dragging_down(struct uatp_softc *);
322 static void tap_transition_tapping_in_drag(struct uatp_softc *,
323 const struct timeval *, unsigned int);
324 static void tap_transition_tapped(struct uatp_softc *, const struct timeval *);
325 static void tap_transition_dragging_up(struct uatp_softc *);
326 static void tap_reset(struct uatp_softc *);
327 static void tap_reset_wait(struct uatp_softc *);
328 static void tap_touched(struct uatp_softc *, unsigned int);
329 static bool tap_released(struct uatp_softc *);
330 static void schedule_untap(struct uatp_softc *);
331 static void untap_callout(void *);
332 static uint32_t emulated_buttons(struct uatp_softc *, unsigned int);
333 static void update_position(struct uatp_softc *, unsigned int,
334 unsigned int, unsigned int, int *, int *, int *, int *);
335 static void move_mouse(struct uatp_softc *, unsigned int, unsigned int,
336 int *, int *);
337 static void scroll_wheel(struct uatp_softc *, unsigned int, unsigned int,
338 int *, int *);
339 static void move(struct uatp_softc *, const char *, unsigned int, unsigned int,
340 int *, int *, int *, int *, unsigned int *, unsigned int *, int *, int *);
341 static int smooth(struct uatp_softc *, unsigned int, unsigned int,
342 unsigned int);
343 static bool motion_below_threshold(struct uatp_softc *, unsigned int,
344 int, int);
345 static int accelerate(struct uatp_softc *, unsigned int, unsigned int,
346 unsigned int, unsigned int, bool, int *);
347
348 struct uatp_knobs {
349 /*
350 * Button emulation. What do we do when two or three fingers
351 * are on the trackpad when the user presses the button?
352 */
353 unsigned int two_finger_buttons;
354 unsigned int three_finger_buttons;
355
356 #if 0
357 /*
358 * Edge scrolling.
359 *
360 * XXX Implement this. What units should these be in?
361 */
362 unsigned int top_edge;
363 unsigned int bottom_edge;
364 unsigned int left_edge;
365 unsigned int right_edge;
366 #endif
367
368 /*
369 * Multifinger tracking. What do we do with multiple fingers?
370 * 0. Ignore them.
371 * 1. Try to interpret them as ordinary mousing.
372 * 2. Act like a two-dimensional scroll wheel.
373 */
374 unsigned int multifinger_track;
375
376 /*
377 * Sensor parameters.
378 */
379 unsigned int x_sensors;
380 unsigned int x_ratio;
381 unsigned int y_sensors;
382 unsigned int y_ratio;
383 unsigned int sensor_threshold;
384 unsigned int sensor_normalizer;
385 unsigned int palm_width;
386 unsigned int old_raw_weight;
387 unsigned int old_smoothed_weight;
388 unsigned int new_raw_weight;
389
390 /*
391 * Motion parameters.
392 *
393 * XXX There should be a more principled model of acceleration.
394 */
395 unsigned int motion_remainder;
396 unsigned int motion_threshold;
397 unsigned int motion_multiplier;
398 unsigned int motion_divisor;
399 unsigned int fast_motion_threshold;
400 unsigned int fast_motion_multiplier;
401 unsigned int fast_motion_divisor;
402 unsigned int fast_per_direction;
403 unsigned int motion_delay;
404
405 /*
406 * Tapping.
407 */
408 unsigned int tap_limit_msec;
409 unsigned int double_tap_limit_msec;
410 unsigned int one_finger_tap_buttons;
411 unsigned int two_finger_tap_buttons;
412 unsigned int three_finger_tap_buttons;
413 unsigned int tap_track_distance_limit;
414 };
415
416 static const struct uatp_knobs default_knobs = {
417 /*
418 * Button emulation. Fingers on the trackpad don't change it
419 * by default -- it's still the left button.
420 *
421 * XXX The left button should have a name.
422 */
423 .two_finger_buttons = 1,
424 .three_finger_buttons = 1,
425
426 #if 0
427 /*
428 * Edge scrolling. Off by default.
429 */
430 .top_edge = 0,
431 .bottom_edge = 0,
432 .left_edge = 0,
433 .right_edge = 0,
434 #endif
435
436 /*
437 * Multifinger tracking. Ignore by default.
438 */
439 .multifinger_track = 0,
440
441 /*
442 * Sensor parameters.
443 */
444 .x_sensors = 0, /* default for model */
445 .x_ratio = 0, /* default for model */
446 .y_sensors = 0, /* default for model */
447 .y_ratio = 0, /* default for model */
448 .sensor_threshold = 5,
449 .sensor_normalizer = 5,
450 .palm_width = 0, /* palm detection disabled */
451 .old_raw_weight = 0,
452 .old_smoothed_weight = 5,
453 .new_raw_weight = 1,
454
455 /*
456 * Motion parameters.
457 */
458 .motion_remainder = 1,
459 .motion_threshold = 0,
460 .motion_multiplier = 1,
461 .motion_divisor = 1,
462 .fast_motion_threshold = 10,
463 .fast_motion_multiplier = 3,
464 .fast_motion_divisor = 2,
465 .fast_per_direction = 0,
466 .motion_delay = 4,
467
468 /*
469 * Tapping. Disabled by default, with a reasonable time set
470 * nevertheless so that you can just set the buttons to enable
471 * it.
472 */
473 .tap_limit_msec = 100,
474 .double_tap_limit_msec = 200,
475 .one_finger_tap_buttons = 0,
476 .two_finger_tap_buttons = 0,
477 .three_finger_tap_buttons = 0,
478 .tap_track_distance_limit = 200,
479 };
480
481 struct uatp_softc {
482 struct uhidev sc_hdev; /* USB parent. */
483 device_t sc_wsmousedev; /* Attached wsmouse device. */
484 const struct uatp_parameters *sc_parameters;
485 struct uatp_knobs sc_knobs;
486 struct sysctllog *sc_log; /* Log for sysctl knobs. */
487 const struct sysctlnode *sc_node; /* Our sysctl node. */
488 unsigned int sc_input_size; /* Input packet size. */
489 uint8_t sc_input[UATP_MAX_INPUT_SIZE]; /* Buffer for a packet. */
490 unsigned int sc_input_index; /* Current index into sc_input. */
491 int sc_acc[UATP_SENSORS]; /* Accumulated sensor state. */
492 uint8_t sc_base[UATP_SENSORS]; /* Base sample. */
493 uint8_t sc_sample[UATP_SENSORS];/* Current sample. */
494 unsigned int sc_motion_timer; /* XXX describe; motion_delay */
495 int sc_x_raw; /* Raw horiz. mouse position. */
496 int sc_y_raw; /* Raw vert. mouse position. */
497 int sc_z_raw; /* Raw horiz. scroll position. */
498 int sc_w_raw; /* Raw vert. scroll position. */
499 int sc_x_smoothed; /* Smoothed horiz. mouse position. */
500 int sc_y_smoothed; /* Smoothed vert. mouse position. */
501 int sc_z_smoothed; /* Smoothed horiz. scroll position. */
502 int sc_w_smoothed; /* Smoothed vert. scroll position. */
503 int sc_x_remainder; /* Remainders from acceleration. */
504 int sc_y_remainder;
505 int sc_z_remainder;
506 int sc_w_remainder;
507 unsigned int sc_track_distance; /* Distance^2 finger has tracked,
508 * squared to avoid sqrt in kernel. */
509 uint32_t sc_status; /* Status flags: */
510 #define UATP_ENABLED (1 << 0) /* . Is the wsmouse enabled? */
511 #define UATP_DYING (1 << 1) /* . Have we been deactivated? */
512 #define UATP_VALID (1 << 2) /* . Do we have valid sensor data? */
513 struct usb_task sc_reset_task; /* Task for resetting device. */
514
515 callout_t sc_untap_callout; /* Releases button after tap. */
516 kmutex_t sc_tap_mutex; /* Protects the following fields. */
517 enum uatp_tap_state sc_tap_state; /* Current tap state. */
518 unsigned int sc_tapping_fingers; /* No. fingers tapping. */
519 unsigned int sc_tapped_fingers; /* No. fingers of last tap. */
520 struct timeval sc_tap_timer; /* Timer for tap state transitions. */
521 uint32_t sc_buttons; /* Physical buttons pressed. */
522 uint32_t sc_all_buttons; /* Buttons pressed or tapped. */
523
524 #if UATP_DEBUG
525 uint32_t sc_debug_flags; /* Debugging output enabled. */
526 #endif
527 };
528
529 struct uatp_descriptor {
530 uint16_t vendor;
531 uint16_t product;
532 const char *description;
533 const struct uatp_parameters *parameters;
534 };
535
536 struct uatp_parameters {
537 unsigned int x_ratio; /* Screen width / trackpad width. */
538 unsigned int x_sensors; /* Number of horizontal sensors. */
539 unsigned int x_sensors_17; /* XXX Same, on a 17" laptop. */
540 unsigned int y_ratio; /* Screen height / trackpad height. */
541 unsigned int y_sensors; /* Number of vertical sensors. */
542 unsigned int input_size; /* Size in bytes of input packets. */
543
544 /* Device-specific initialization routine. May be null. */
545 void (*initialize)(struct uatp_softc *);
546
547 /* Device-specific finalization routine. May be null. May fail. */
548 int (*finalize)(struct uatp_softc *);
549
550 /* Tests whether this is a base sample. Second argument is
551 * input_size bytes long. */
552 bool (*base_sample)(const struct uatp_softc *, const uint8_t *);
553
554 /* Reads a sensor sample from an input packet. First argument
555 * is UATP_MAX_X_SENSORS bytes long; second, UATP_MAX_Y_SENSORS
556 * bytes; third, input_size bytes. */
557 void (*read_sample)(uint8_t *, uint8_t *, const uint8_t *);
558
559 /* Accumulates sensor state in sc->sc_acc. */
560 void (*accumulate)(struct uatp_softc *);
561
562 /* Called on spurious interrupts to reset. May be null. */
563 void (*reset)(struct uatp_softc *);
564 };
565
566 /* Known device parameters */
567
568 static const struct uatp_parameters fountain_parameters = {
569 .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26,
570 .y_ratio = 43, .y_sensors = 16,
571 .input_size = 81,
572 .initialize = NULL,
573 .finalize = NULL,
574 .base_sample = base_sample_softc_flag,
575 .read_sample = read_sample_1,
576 .accumulate = accumulate_sample_1,
577 .reset = NULL,
578 };
579
580 static const struct uatp_parameters geyser_1_parameters = {
581 .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26,
582 .y_ratio = 43, .y_sensors = 16,
583 .input_size = 81,
584 .initialize = NULL,
585 .finalize = NULL,
586 .base_sample = base_sample_softc_flag,
587 .read_sample = read_sample_1,
588 .accumulate = accumulate_sample_1,
589 .reset = NULL,
590 };
591
592 static const struct uatp_parameters geyser_2_parameters = {
593 .x_ratio = 64, .x_sensors = 15, .x_sensors_17 = 20,
594 .y_ratio = 43, .y_sensors = 9,
595 .input_size = 64,
596 .initialize = NULL,
597 .finalize = NULL,
598 .base_sample = base_sample_softc_flag,
599 .read_sample = read_sample_2,
600 .accumulate = accumulate_sample_1,
601 .reset = NULL,
602 };
603
604 /*
605 * The Geyser 3 and Geyser 4 share parameters. They also present
606 * generic USB HID mice on a different report id, so we have smaller
607 * packets by one byte (uhidev handles multiplexing report ids) and
608 * extra initialization work to switch the mode from generic USB HID
609 * mouse to Apple trackpad.
610 */
611
612 static const struct uatp_parameters geyser_3_4_parameters = {
613 .x_ratio = 64, .x_sensors = 20, /* XXX */ .x_sensors_17 = 0,
614 .y_ratio = 64, .y_sensors = 9,
615 .input_size = 63, /* 64, minus one for the report id. */
616 .initialize = geyser34_initialize,
617 .finalize = geyser34_finalize,
618 .base_sample = base_sample_input_flag,
619 .read_sample = read_sample_2,
620 .accumulate = accumulate_sample_2,
621 .reset = geyser34_deferred_reset,
622 };
623
624 /* Known device models */
625
626 #define APPLE_TRACKPAD(PRODUCT, DESCRIPTION, PARAMETERS) \
627 { \
628 .vendor = USB_VENDOR_APPLE, \
629 .product = (PRODUCT), \
630 .description = "Apple " DESCRIPTION " trackpad", \
631 .parameters = (& (PARAMETERS)), \
632 }
633
634 #define POWERBOOK_TRACKPAD(PRODUCT, PARAMETERS) \
635 APPLE_TRACKPAD(PRODUCT, "PowerBook/iBook", PARAMETERS)
636 #define MACBOOK_TRACKPAD(PRODUCT, PARAMETERS) \
637 APPLE_TRACKPAD(PRODUCT, "MacBook/MacBook Pro", PARAMETERS)
638
639 static const struct uatp_descriptor uatp_descriptors[] =
640 {
641 POWERBOOK_TRACKPAD(0x020e, fountain_parameters),
642 POWERBOOK_TRACKPAD(0x020f, fountain_parameters),
643 POWERBOOK_TRACKPAD(0x030a, fountain_parameters),
644
645 POWERBOOK_TRACKPAD(0x030b, geyser_1_parameters),
646
647 POWERBOOK_TRACKPAD(0x0214, geyser_2_parameters),
648 POWERBOOK_TRACKPAD(0x0215, geyser_2_parameters),
649 POWERBOOK_TRACKPAD(0x0216, geyser_2_parameters),
650
651 MACBOOK_TRACKPAD(0x0217, geyser_3_4_parameters), /* 3 */
652 MACBOOK_TRACKPAD(0x0218, geyser_3_4_parameters), /* 3 */
653 MACBOOK_TRACKPAD(0x0219, geyser_3_4_parameters), /* 3 */
654
655 MACBOOK_TRACKPAD(0x021a, geyser_3_4_parameters), /* 4 */
656 MACBOOK_TRACKPAD(0x021b, geyser_3_4_parameters), /* 4 */
657 MACBOOK_TRACKPAD(0x021c, geyser_3_4_parameters), /* 4 */
658
659 MACBOOK_TRACKPAD(0x0229, geyser_3_4_parameters), /* 4 */
660 MACBOOK_TRACKPAD(0x022a, geyser_3_4_parameters), /* 4 */
661 MACBOOK_TRACKPAD(0x022b, geyser_3_4_parameters), /* 4 */
662 };
663
664 #undef MACBOOK_TRACKPAD
665 #undef POWERBOOK_TRACKPAD
666 #undef APPLE_TRACKPAD
667
668 /* Miscellaneous utilities */
669
670 static const struct uatp_descriptor *
671 find_uatp_descriptor(const struct uhidev_attach_arg *uha)
672 {
673 unsigned int i;
674
675 for (i = 0; i < __arraycount(uatp_descriptors); i++)
676 if ((uha->uiaa->uiaa_vendor == uatp_descriptors[i].vendor) &&
677 (uha->uiaa->uiaa_product == uatp_descriptors[i].product))
678 return &uatp_descriptors[i];
679
680 return NULL;
681 }
682
683 static device_t
684 uatp_dev(const struct uatp_softc *sc)
685 {
686 return sc->sc_hdev.sc_dev;
687 }
688
689 static uint8_t *
690 uatp_x_sample(struct uatp_softc *sc)
691 {
692 return &sc->sc_sample[0];
693 }
694
695 static uint8_t *
696 uatp_y_sample(struct uatp_softc *sc)
697 {
698 return &sc->sc_sample[UATP_MAX_X_SENSORS];
699 }
700
701 static int *
702 uatp_x_acc(struct uatp_softc *sc)
703 {
704 return &sc->sc_acc[0];
705 }
706
707 static int *
708 uatp_y_acc(struct uatp_softc *sc)
709 {
710 return &sc->sc_acc[UATP_MAX_X_SENSORS];
711 }
712
713 static void
714 uatp_clear_position(struct uatp_softc *sc)
715 {
716 memset(sc->sc_acc, 0, sizeof(sc->sc_acc));
717 sc->sc_motion_timer = 0;
718 sc->sc_x_raw = sc->sc_x_smoothed = -1;
719 sc->sc_y_raw = sc->sc_y_smoothed = -1;
720 sc->sc_z_raw = sc->sc_z_smoothed = -1;
721 sc->sc_w_raw = sc->sc_w_smoothed = -1;
722 sc->sc_x_remainder = 0;
723 sc->sc_y_remainder = 0;
724 sc->sc_z_remainder = 0;
725 sc->sc_w_remainder = 0;
726 sc->sc_track_distance = 0;
727 }
728
729 static unsigned int
730 uatp_x_sensors(const struct uatp_softc *sc)
731 {
732 if ((0 < sc->sc_knobs.x_sensors) &&
733 (sc->sc_knobs.x_sensors <= UATP_MAX_X_SENSORS))
734 return sc->sc_knobs.x_sensors;
735 else
736 return sc->sc_parameters->x_sensors;
737 }
738
739 static unsigned int
740 uatp_y_sensors(const struct uatp_softc *sc)
741 {
742 if ((0 < sc->sc_knobs.y_sensors) &&
743 (sc->sc_knobs.y_sensors <= UATP_MAX_Y_SENSORS))
744 return sc->sc_knobs.y_sensors;
745 else
746 return sc->sc_parameters->y_sensors;
747 }
748
749 static unsigned int
750 uatp_x_ratio(const struct uatp_softc *sc)
751 {
752 /* XXX Reject bogus values in sysctl. */
753 if ((0 < sc->sc_knobs.x_ratio) &&
754 (sc->sc_knobs.x_ratio <= UATP_MAX_X_RATIO))
755 return sc->sc_knobs.x_ratio;
756 else
757 return sc->sc_parameters->x_ratio;
758 }
759
760 static unsigned int
761 uatp_y_ratio(const struct uatp_softc *sc)
762 {
763 /* XXX Reject bogus values in sysctl. */
764 if ((0 < sc->sc_knobs.y_ratio) &&
765 (sc->sc_knobs.y_ratio <= UATP_MAX_Y_RATIO))
766 return sc->sc_knobs.y_ratio;
767 else
768 return sc->sc_parameters->y_ratio;
769 }
770
771 static unsigned int
772 uatp_old_raw_weight(const struct uatp_softc *sc)
773 {
774 /* XXX Reject bogus values in sysctl. */
775 if (sc->sc_knobs.old_raw_weight <= UATP_MAX_WEIGHT)
776 return sc->sc_knobs.old_raw_weight;
777 else
778 return 0;
779 }
780
781 static unsigned int
782 uatp_old_smoothed_weight(const struct uatp_softc *sc)
783 {
784 /* XXX Reject bogus values in sysctl. */
785 if (sc->sc_knobs.old_smoothed_weight <= UATP_MAX_WEIGHT)
786 return sc->sc_knobs.old_smoothed_weight;
787 else
788 return 0;
789 }
790
791 static unsigned int
792 uatp_new_raw_weight(const struct uatp_softc *sc)
793 {
794 /* XXX Reject bogus values in sysctl. */
795 if ((0 < sc->sc_knobs.new_raw_weight) &&
796 (sc->sc_knobs.new_raw_weight <= UATP_MAX_WEIGHT))
797 return sc->sc_knobs.new_raw_weight;
798 else
799 return 1;
800 }
801
802 static int
803 scale_motion(const struct uatp_softc *sc, int delta, int *remainder,
804 const unsigned int *multiplier, const unsigned int *divisor)
805 {
806 int product;
807
808 /* XXX Limit the divisor? */
809 if (((*multiplier) == 0) ||
810 ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
811 ((*divisor) == 0))
812 DPRINTF(sc, UATP_DEBUG_ACCEL,
813 ("bad knobs; %d (+ %d) --> %d, rem 0\n",
814 delta, *remainder, (delta + (*remainder))));
815 else
816 DPRINTF(sc, UATP_DEBUG_ACCEL,
817 ("scale %d (+ %d) by %u/%u --> %d, rem %d\n",
818 delta, *remainder,
819 (*multiplier), (*divisor),
820 (((delta + (*remainder)) * ((int) (*multiplier)))
821 / ((int) (*divisor))),
822 (((delta + (*remainder)) * ((int) (*multiplier)))
823 % ((int) (*divisor)))));
824
825 if (sc->sc_knobs.motion_remainder)
826 delta += *remainder;
827 *remainder = 0;
828
829 if (((*multiplier) == 0) ||
830 ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
831 ((*divisor) == 0))
832 return delta;
833
834 product = (delta * ((int) (*multiplier)));
835 *remainder = (product % ((int) (*divisor)));
836 return (product / ((int) (*divisor)));
837 }
838
839 static int
840 uatp_scale_motion(const struct uatp_softc *sc, int delta, int *remainder)
841 {
842 return scale_motion(sc, delta, remainder,
843 &sc->sc_knobs.motion_multiplier,
844 &sc->sc_knobs.motion_divisor);
845 }
846
847 static int
848 uatp_scale_fast_motion(const struct uatp_softc *sc, int delta, int *remainder)
849 {
850 return scale_motion(sc, delta, remainder,
851 &sc->sc_knobs.fast_motion_multiplier,
852 &sc->sc_knobs.fast_motion_divisor);
853 }
854
855 /* Driver goop */
856
857 CFATTACH_DECL2_NEW(uatp, sizeof(struct uatp_softc), uatp_match, uatp_attach,
858 uatp_detach, uatp_activate, NULL, uatp_childdet);
859
860 static const struct wsmouse_accessops uatp_accessops = {
861 .enable = uatp_enable,
862 .disable = uatp_disable,
863 .ioctl = uatp_ioctl,
864 };
865
866 static int
867 uatp_match(device_t parent, cfdata_t match, void *aux)
868 {
869 const struct uhidev_attach_arg *uha = aux;
870 void *report_descriptor;
871 int report_size, input_size;
872 const struct uatp_descriptor *uatp_descriptor;
873
874 aprint_debug("%s: vendor 0x%04x, product 0x%04x\n", __func__,
875 (unsigned int)uha->uiaa->uiaa_vendor,
876 (unsigned int)uha->uiaa->uiaa_product);
877 aprint_debug("%s: class 0x%04x, subclass 0x%04x, proto 0x%04x\n",
878 __func__,
879 (unsigned int)uha->uiaa->uiaa_class,
880 (unsigned int)uha->uiaa->uiaa_subclass,
881 (unsigned int)uha->uiaa->uiaa_proto);
882
883 uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
884 input_size = hid_report_size(report_descriptor, report_size,
885 hid_input, uha->reportid);
886 aprint_debug("%s: reportid %d, input size %d\n", __func__,
887 (int)uha->reportid, input_size);
888
889 /*
890 * Keyboards, trackpads, and eject buttons share common vendor
891 * and product ids, but not protocols: only the trackpad
892 * reports a mouse protocol.
893 */
894 if (uha->uiaa->uiaa_proto != UIPROTO_MOUSE)
895 return UMATCH_NONE;
896
897 /* Check for a known vendor/product id. */
898 uatp_descriptor = find_uatp_descriptor(uha);
899 if (uatp_descriptor == NULL) {
900 aprint_debug("%s: unknown vendor/product id\n", __func__);
901 return UMATCH_NONE;
902 }
903
904 /* Check for the expected input size. */
905 if ((input_size < 0) ||
906 ((unsigned int)input_size !=
907 uatp_descriptor->parameters->input_size)) {
908 aprint_debug("%s: expected input size %u\n", __func__,
909 uatp_descriptor->parameters->input_size);
910 return UMATCH_NONE;
911 }
912
913 return UMATCH_VENDOR_PRODUCT_CONF_IFACE;
914 }
915
916 static void
917 uatp_attach(device_t parent, device_t self, void *aux)
918 {
919 struct uatp_softc *sc = device_private(self);
920 const struct uhidev_attach_arg *uha = aux;
921 const struct uatp_descriptor *uatp_descriptor;
922 void *report_descriptor;
923 int report_size, input_size;
924 struct wsmousedev_attach_args a;
925
926 /* Set up uhidev state. (Why doesn't uhidev do most of this?) */
927 sc->sc_hdev.sc_dev = self;
928 sc->sc_hdev.sc_intr = uatp_intr;
929 sc->sc_hdev.sc_parent = uha->parent;
930 sc->sc_hdev.sc_report_id = uha->reportid;
931
932 /* Identify ourselves to dmesg. */
933 uatp_descriptor = find_uatp_descriptor(uha);
934 KASSERT(uatp_descriptor != NULL);
935 aprint_normal(": %s\n", uatp_descriptor->description);
936 aprint_naive(": %s\n", uatp_descriptor->description);
937 aprint_verbose_dev(self,
938 "vendor 0x%04x, product 0x%04x, report id %d\n",
939 (unsigned int)uha->uiaa->uiaa_vendor,
940 (unsigned int)uha->uiaa->uiaa_product,
941 (int)uha->reportid);
942
943 uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
944 input_size = hid_report_size(report_descriptor, report_size, hid_input,
945 uha->reportid);
946 KASSERT(0 < input_size);
947 sc->sc_input_size = input_size;
948
949 /* Initialize model-specific parameters. */
950 sc->sc_parameters = uatp_descriptor->parameters;
951 KASSERT((int)sc->sc_parameters->input_size == input_size);
952 KASSERT(sc->sc_parameters->x_sensors <= UATP_MAX_X_SENSORS);
953 KASSERT(sc->sc_parameters->x_ratio <= UATP_MAX_X_RATIO);
954 KASSERT(sc->sc_parameters->y_sensors <= UATP_MAX_Y_SENSORS);
955 KASSERT(sc->sc_parameters->y_ratio <= UATP_MAX_Y_RATIO);
956 aprint_verbose_dev(self,
957 "%u x sensors, scaled by %u for %u points on screen\n",
958 sc->sc_parameters->x_sensors, sc->sc_parameters->x_ratio,
959 sc->sc_parameters->x_sensors * sc->sc_parameters->x_ratio);
960 aprint_verbose_dev(self,
961 "%u y sensors, scaled by %u for %u points on screen\n",
962 sc->sc_parameters->y_sensors, sc->sc_parameters->y_ratio,
963 sc->sc_parameters->y_sensors * sc->sc_parameters->y_ratio);
964 if (sc->sc_parameters->initialize)
965 sc->sc_parameters->initialize(sc);
966
967 /* Register with pmf. Nothing special for suspend/resume. */
968 if (!pmf_device_register(self, NULL, NULL))
969 aprint_error_dev(self, "couldn't establish power handler\n");
970
971 /* Initialize knobs and create sysctl subtree to tweak them. */
972 sc->sc_knobs = default_knobs;
973 uatp_setup_sysctl(sc);
974
975 /* Initialize tapping. */
976 tap_initialize(sc);
977
978 /* Attach wsmouse. */
979 a.accessops = &uatp_accessops;
980 a.accesscookie = sc;
981 sc->sc_wsmousedev = config_found_ia(self, "wsmousedev", &a,
982 wsmousedevprint);
983 }
984
985 /* Sysctl setup */
986
987 static void
988 uatp_setup_sysctl(struct uatp_softc *sc)
989 {
990 int error;
991
992 error = sysctl_createv(&sc->sc_log, 0, NULL, &sc->sc_node, 0,
993 CTLTYPE_NODE, device_xname(uatp_dev(sc)),
994 SYSCTL_DESCR("uatp configuration knobs"),
995 NULL, 0, NULL, 0,
996 CTL_HW, CTL_CREATE, CTL_EOL);
997 if (error != 0) {
998 aprint_error_dev(uatp_dev(sc),
999 "unable to set up sysctl tree hw.%s: %d\n",
1000 device_xname(uatp_dev(sc)), error);
1001 goto err;
1002 }
1003
1004 #if UATP_DEBUG
1005 if (!uatp_setup_sysctl_knob(sc, &sc->sc_debug_flags, "debug",
1006 "uatp(4) debug flags"))
1007 goto err;
1008 #endif
1009
1010 /*
1011 * Button emulation.
1012 */
1013 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_buttons,
1014 "two_finger_buttons",
1015 "buttons to emulate with two fingers on trackpad"))
1016 goto err;
1017 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_buttons,
1018 "three_finger_buttons",
1019 "buttons to emulate with three fingers on trackpad"))
1020 goto err;
1021
1022 #if 0
1023 /*
1024 * Edge scrolling.
1025 */
1026 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.top_edge, "top_edge",
1027 "width of top edge for edge scrolling"))
1028 goto err;
1029 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.bottom_edge,
1030 "bottom_edge", "width of bottom edge for edge scrolling"))
1031 goto err;
1032 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.left_edge, "left_edge",
1033 "width of left edge for edge scrolling"))
1034 goto err;
1035 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.right_edge, "right_edge",
1036 "width of right edge for edge scrolling"))
1037 goto err;
1038 #endif
1039
1040 /*
1041 * Multifinger tracking.
1042 */
1043 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.multifinger_track,
1044 "multifinger_track",
1045 "0 to ignore multiple fingers, 1 to reset, 2 to scroll"))
1046 goto err;
1047
1048 /*
1049 * Sensor parameters.
1050 */
1051 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_sensors, "x_sensors",
1052 "number of x sensors"))
1053 goto err;
1054 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_ratio, "x_ratio",
1055 "screen width to trackpad width ratio"))
1056 goto err;
1057 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_sensors, "y_sensors",
1058 "number of y sensors"))
1059 goto err;
1060 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_ratio, "y_ratio",
1061 "screen height to trackpad height ratio"))
1062 goto err;
1063 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_threshold,
1064 "sensor_threshold", "sensor threshold"))
1065 goto err;
1066 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_normalizer,
1067 "sensor_normalizer", "sensor normalizer"))
1068 goto err;
1069 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.palm_width,
1070 "palm_width", "lower bound on width/height of palm"))
1071 goto err;
1072 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_raw_weight,
1073 "old_raw_weight", "weight of old raw position"))
1074 goto err;
1075 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_smoothed_weight,
1076 "old_smoothed_weight", "weight of old smoothed position"))
1077 goto err;
1078 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.new_raw_weight,
1079 "new_raw_weight", "weight of new raw position"))
1080 goto err;
1081 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_remainder,
1082 "motion_remainder", "remember motion division remainder"))
1083 goto err;
1084 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_threshold,
1085 "motion_threshold", "threshold before finger moves cursor"))
1086 goto err;
1087 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_multiplier,
1088 "motion_multiplier", "numerator of motion scale"))
1089 goto err;
1090 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_divisor,
1091 "motion_divisor", "divisor of motion scale"))
1092 goto err;
1093 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_threshold,
1094 "fast_motion_threshold", "threshold before fast motion"))
1095 goto err;
1096 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_multiplier,
1097 "fast_motion_multiplier", "numerator of fast motion scale"))
1098 goto err;
1099 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_divisor,
1100 "fast_motion_divisor", "divisor of fast motion scale"))
1101 goto err;
1102 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_per_direction,
1103 "fast_per_direction", "don't frobnitz the veeblefitzer!"))
1104 goto err;
1105 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_delay,
1106 "motion_delay", "number of packets before motion kicks in"))
1107 goto err;
1108
1109 /*
1110 * Tapping.
1111 */
1112 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_limit_msec,
1113 "tap_limit_msec", "milliseconds before a touch is not a tap"))
1114 goto err;
1115 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.double_tap_limit_msec,
1116 "double_tap_limit_msec",
1117 "milliseconds before a second tap keeps the button down"))
1118 goto err;
1119 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.one_finger_tap_buttons,
1120 "one_finger_tap_buttons", "buttons for one-finger taps"))
1121 goto err;
1122 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_tap_buttons,
1123 "two_finger_tap_buttons", "buttons for two-finger taps"))
1124 goto err;
1125 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_tap_buttons,
1126 "three_finger_tap_buttons", "buttons for three-finger taps"))
1127 goto err;
1128 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_track_distance_limit,
1129 "tap_track_distance_limit",
1130 "maximum distance^2 of tracking during tap"))
1131 goto err;
1132
1133 return;
1134
1135 err:
1136 sysctl_teardown(&sc->sc_log);
1137 sc->sc_node = NULL;
1138 }
1139
1140 static bool
1141 uatp_setup_sysctl_knob(struct uatp_softc *sc, int *ptr, const char *name,
1142 const char *description)
1143 {
1144 int error;
1145
1146 error = sysctl_createv(&sc->sc_log, 0, NULL, NULL, CTLFLAG_READWRITE,
1147 CTLTYPE_INT, name, SYSCTL_DESCR(description),
1148 NULL, 0, ptr, 0,
1149 CTL_HW, sc->sc_node->sysctl_num, CTL_CREATE, CTL_EOL);
1150 if (error != 0) {
1151 aprint_error_dev(uatp_dev(sc),
1152 "unable to setup sysctl node hw.%s.%s: %d\n",
1153 device_xname(uatp_dev(sc)), name, error);
1154 return false;
1155 }
1156
1157 return true;
1158 }
1159
1160 /* More driver goop */
1161
1162 static void
1163 uatp_childdet(device_t self, device_t child)
1164 {
1165 struct uatp_softc *sc = device_private(self);
1166
1167 DPRINTF(sc, UATP_DEBUG_MISC, ("detaching child %s\n",
1168 device_xname(child)));
1169
1170 /* Our only child is the wsmouse device. */
1171 if (child == sc->sc_wsmousedev)
1172 sc->sc_wsmousedev = NULL;
1173 }
1174
1175 static int
1176 uatp_detach(device_t self, int flags)
1177 {
1178 struct uatp_softc *sc = device_private(self);
1179
1180 DPRINTF(sc, UATP_DEBUG_MISC, ("detaching with flags %d\n", flags));
1181
1182 if (sc->sc_status & UATP_ENABLED) {
1183 aprint_error_dev(uatp_dev(sc), "can't detach while enabled\n");
1184 return EBUSY;
1185 }
1186
1187 if (sc->sc_parameters->finalize) {
1188 int error = sc->sc_parameters->finalize(sc);
1189 if (error != 0)
1190 return error;
1191 }
1192
1193 pmf_device_deregister(self);
1194
1195 sysctl_teardown(&sc->sc_log);
1196 sc->sc_node = NULL;
1197
1198 tap_finalize(sc);
1199
1200 return config_detach_children(self, flags);
1201 }
1202
1203 static int
1204 uatp_activate(device_t self, enum devact act)
1205 {
1206 struct uatp_softc *sc = device_private(self);
1207
1208 DPRINTF(sc, UATP_DEBUG_MISC, ("act %d\n", (int)act));
1209
1210 if (act != DVACT_DEACTIVATE)
1211 return EOPNOTSUPP;
1212
1213 sc->sc_status |= UATP_DYING;
1214
1215 return 0;
1216 }
1217
1218 /* wsmouse routines */
1219
1220 static int
1221 uatp_enable(void *v)
1222 {
1223 struct uatp_softc *sc = v;
1224
1225 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("enabling wsmouse\n"));
1226
1227 /* Refuse to enable if we've been deactivated. */
1228 if (sc->sc_status & UATP_DYING) {
1229 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("busy dying\n"));
1230 return EIO;
1231 }
1232
1233 /* Refuse to enable if we already are enabled. */
1234 if (sc->sc_status & UATP_ENABLED) {
1235 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("already enabled\n"));
1236 return EBUSY;
1237 }
1238
1239 sc->sc_status |= UATP_ENABLED;
1240 sc->sc_status &=~ UATP_VALID;
1241 sc->sc_input_index = 0;
1242 tap_enable(sc);
1243 uatp_clear_position(sc);
1244
1245 DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_open(%p)\n", &sc->sc_hdev));
1246 return uhidev_open(&sc->sc_hdev);
1247 }
1248
1249 static void
1250 uatp_disable(void *v)
1251 {
1252 struct uatp_softc *sc = v;
1253
1254 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("disabling wsmouse\n"));
1255
1256 if (!(sc->sc_status & UATP_ENABLED)) {
1257 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("not enabled\n"));
1258 return;
1259 }
1260
1261 tap_disable(sc);
1262 sc->sc_status &=~ UATP_ENABLED;
1263
1264 DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_close(%p)\n", &sc->sc_hdev));
1265 uhidev_close(&sc->sc_hdev);
1266 }
1267
1268 static int
1269 uatp_ioctl(void *v, unsigned long cmd, void *data, int flag, struct lwp *p)
1270 {
1271
1272 DPRINTF((struct uatp_softc*)v, UATP_DEBUG_IOCTL,
1273 ("cmd %lx, data %p, flag %x, lwp %p\n", cmd, data, flag, p));
1274
1275 /* XXX Implement any relevant wsmouse(4) ioctls. */
1276 return EPASSTHROUGH;
1277 }
1278
1279 /*
1280 * The Geyser 3 and 4 models talk the generic USB HID mouse protocol by
1281 * default. This mode switch makes them give raw sensor data instead
1282 * so that we can implement tapping, two-finger scrolling, &c.
1283 */
1284
1285 #define GEYSER34_RAW_MODE 0x04
1286 #define GEYSER34_MODE_REPORT_ID 0
1287 #define GEYSER34_MODE_INTERFACE 0
1288 #define GEYSER34_MODE_PACKET_SIZE 8
1289
1290 static void
1291 geyser34_enable_raw_mode(struct uatp_softc *sc)
1292 {
1293 struct usbd_device *udev = sc->sc_hdev.sc_parent->sc_udev;
1294 usb_device_request_t req;
1295 usbd_status status;
1296 uint8_t report[GEYSER34_MODE_PACKET_SIZE];
1297
1298 req.bmRequestType = UT_READ_CLASS_INTERFACE;
1299 req.bRequest = UR_GET_REPORT;
1300 USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
1301 USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
1302 USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
1303
1304 DPRINTF(sc, UATP_DEBUG_RESET, ("get feature report\n"));
1305 status = usbd_do_request(udev, &req, report);
1306 if (status != USBD_NORMAL_COMPLETION) {
1307 aprint_error_dev(uatp_dev(sc),
1308 "error reading feature report: %s\n", usbd_errstr(status));
1309 return;
1310 }
1311
1312 #if UATP_DEBUG
1313 if (sc->sc_debug_flags & UATP_DEBUG_RESET) {
1314 unsigned int i;
1315 DPRINTF(sc, UATP_DEBUG_RESET, ("old feature report:"));
1316 for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
1317 printf(" %02x", (unsigned int)report[i]);
1318 printf("\n");
1319 /* Doing this twice is harmless here and lets this be
1320 * one ifdef. */
1321 report[0] = GEYSER34_RAW_MODE;
1322 DPRINTF(sc, UATP_DEBUG_RESET, ("new feature report:"));
1323 for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
1324 printf(" %02x", (unsigned int)report[i]);
1325 printf("\n");
1326 }
1327 #endif
1328
1329 report[0] = GEYSER34_RAW_MODE;
1330
1331 req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
1332 req.bRequest = UR_SET_REPORT;
1333 USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
1334 USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
1335 USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
1336
1337 DPRINTF(sc, UATP_DEBUG_RESET, ("set feature report\n"));
1338 status = usbd_do_request(udev, &req, report);
1339 if (status != USBD_NORMAL_COMPLETION) {
1340 aprint_error_dev(uatp_dev(sc),
1341 "error writing feature report: %s\n", usbd_errstr(status));
1342 return;
1343 }
1344 }
1345
1346 /*
1347 * The Geyser 3 and 4 need to be reset periodically after we detect a
1348 * continual flow of spurious interrupts. We use a USB task for this.
1349 */
1350
1351 static void
1352 geyser34_initialize(struct uatp_softc *sc)
1353 {
1354
1355 DPRINTF(sc, UATP_DEBUG_MISC, ("initializing\n"));
1356 geyser34_enable_raw_mode(sc);
1357 usb_init_task(&sc->sc_reset_task, &geyser34_reset_task, sc, 0);
1358 }
1359
1360 static int
1361 geyser34_finalize(struct uatp_softc *sc)
1362 {
1363
1364 DPRINTF(sc, UATP_DEBUG_MISC, ("finalizing\n"));
1365 usb_rem_task_wait(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task,
1366 USB_TASKQ_DRIVER, NULL);
1367
1368 return 0;
1369 }
1370
1371 static void
1372 geyser34_deferred_reset(struct uatp_softc *sc)
1373 {
1374
1375 DPRINTF(sc, UATP_DEBUG_RESET, ("deferring reset\n"));
1376 usb_add_task(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task,
1377 USB_TASKQ_DRIVER);
1378 }
1379
1380 static void
1381 geyser34_reset_task(void *arg)
1382 {
1383 struct uatp_softc *sc = arg;
1384
1385 DPRINTF(sc, UATP_DEBUG_RESET, ("resetting\n"));
1386
1387 /* Reset by putting it into raw mode. Not sure why. */
1388 geyser34_enable_raw_mode(sc);
1389 }
1390
1391 /* Interrupt handler */
1392
1393 static void
1394 uatp_intr(struct uhidev *addr, void *ibuf, unsigned int len)
1395 {
1396 struct uatp_softc *sc = (struct uatp_softc *)addr;
1397 uint8_t *input;
1398 int dx, dy, dz, dw;
1399 uint32_t buttons;
1400
1401 DPRINTF(sc, UATP_DEBUG_INTR, ("softc %p, ibuf %p, len %u\n",
1402 addr, ibuf, len));
1403
1404 /*
1405 * Some devices break packets up into chunks, so we accumulate
1406 * input up to the expected packet length, or if it would
1407 * overflow, discard the whole packet and start over.
1408 */
1409 if (sc->sc_input_size < len) {
1410 aprint_error_dev(uatp_dev(sc),
1411 "discarding %u-byte input packet\n", len);
1412 sc->sc_input_index = 0;
1413 return;
1414 } else if (sc->sc_input_size < (sc->sc_input_index + len)) {
1415 aprint_error_dev(uatp_dev(sc), "discarding %u-byte input\n",
1416 (sc->sc_input_index + len));
1417 sc->sc_input_index = 0;
1418 return;
1419 }
1420
1421 #if UATP_DEBUG
1422 if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
1423 unsigned int i;
1424 uint8_t *bytes = ibuf;
1425 DPRINTF(sc, UATP_DEBUG_INTR, ("raw"));
1426 for (i = 0; i < len; i++)
1427 printf(" %02x", (unsigned int)bytes[i]);
1428 printf("\n");
1429 }
1430 #endif
1431
1432 memcpy(&sc->sc_input[sc->sc_input_index], ibuf, len);
1433 sc->sc_input_index += len;
1434 if (sc->sc_input_index != sc->sc_input_size) {
1435 /* Wait until packet is complete. */
1436 aprint_verbose_dev(uatp_dev(sc), "partial packet: %u bytes\n",
1437 len);
1438 return;
1439 }
1440
1441 /* Clear the buffer and process the now complete packet. */
1442 sc->sc_input_index = 0;
1443 input = sc->sc_input;
1444
1445 /* The last byte's first bit is set iff the button is pressed.
1446 * XXX Left button should have a name. */
1447 buttons = ((input[sc->sc_input_size - 1] & UATP_STATUS_BUTTON)
1448 ? 1 : 0);
1449
1450 /* Read the sample. */
1451 memset(uatp_x_sample(sc), 0, UATP_MAX_X_SENSORS);
1452 memset(uatp_y_sample(sc), 0, UATP_MAX_Y_SENSORS);
1453 sc->sc_parameters->read_sample(uatp_x_sample(sc), uatp_y_sample(sc),
1454 input);
1455
1456 #if UATP_DEBUG
1457 if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
1458 unsigned int i;
1459 DPRINTF(sc, UATP_DEBUG_INTR, ("x sensors"));
1460 for (i = 0; i < uatp_x_sensors(sc); i++)
1461 printf(" %02x", (unsigned int)uatp_x_sample(sc)[i]);
1462 printf("\n");
1463 DPRINTF(sc, UATP_DEBUG_INTR, ("y sensors"));
1464 for (i = 0; i < uatp_y_sensors(sc); i++)
1465 printf(" %02x", (unsigned int)uatp_y_sample(sc)[i]);
1466 printf("\n");
1467 } else if ((sc->sc_debug_flags & UATP_DEBUG_STATUS) &&
1468 (input[sc->sc_input_size - 1] &~
1469 (UATP_STATUS_BUTTON | UATP_STATUS_BASE |
1470 UATP_STATUS_POST_RESET)))
1471 DPRINTF(sc, UATP_DEBUG_STATUS, ("status byte: %02x\n",
1472 input[sc->sc_input_size - 1]));
1473 #endif
1474
1475 /*
1476 * If this is a base sample, initialize the state to interpret
1477 * subsequent samples relative to it, and stop here.
1478 */
1479 if (sc->sc_parameters->base_sample(sc, input)) {
1480 DPRINTF(sc, UATP_DEBUG_PARSE,
1481 ("base sample, buttons %"PRIx32"\n", buttons));
1482 /* XXX Should the valid bit ever be reset? */
1483 sc->sc_status |= UATP_VALID;
1484 uatp_clear_position(sc);
1485 memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
1486 /* XXX Perform 17" size detection like Linux? */
1487 return;
1488 }
1489
1490 /* If not, accumulate the change in the sensors. */
1491 sc->sc_parameters->accumulate(sc);
1492
1493 #if UATP_DEBUG
1494 if (sc->sc_debug_flags & UATP_DEBUG_ACCUMULATE) {
1495 unsigned int i;
1496 DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated x state:"));
1497 for (i = 0; i < uatp_x_sensors(sc); i++)
1498 printf(" %02x", (unsigned int)uatp_x_acc(sc)[i]);
1499 printf("\n");
1500 DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated y state:"));
1501 for (i = 0; i < uatp_y_sensors(sc); i++)
1502 printf(" %02x", (unsigned int)uatp_y_acc(sc)[i]);
1503 printf("\n");
1504 }
1505 #endif
1506
1507 /* Compute the change in coordinates and buttons. */
1508 dx = dy = dz = dw = 0;
1509 if ((!interpret_input(sc, &dx, &dy, &dz, &dw, &buttons)) &&
1510 /* If there's no input because we're releasing a button,
1511 * then it's not spurious. XXX Mutex? */
1512 (sc->sc_buttons == 0)) {
1513 DPRINTF(sc, UATP_DEBUG_SPURINTR, ("spurious interrupt\n"));
1514 if (sc->sc_parameters->reset)
1515 sc->sc_parameters->reset(sc);
1516 return;
1517 }
1518
1519 /* Report to wsmouse. */
1520 DPRINTF(sc, UATP_DEBUG_INTR,
1521 ("buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
1522 buttons, dx, dy, dz, dw));
1523 mutex_enter(&sc->sc_tap_mutex);
1524 uatp_input(sc, buttons, dx, dy, dz, dw);
1525 mutex_exit(&sc->sc_tap_mutex);
1526 }
1527
1528 /*
1529 * Different ways to discern the base sample initializing the state.
1530 * `base_sample_softc_flag' uses a state flag stored in the softc;
1531 * `base_sample_input_flag' checks a flag at the end of the input
1532 * packet.
1533 */
1534
1535 static bool
1536 base_sample_softc_flag(const struct uatp_softc *sc, const uint8_t *input)
1537 {
1538 return !(sc->sc_status & UATP_VALID);
1539 }
1540
1541 static bool
1542 base_sample_input_flag(const struct uatp_softc *sc, const uint8_t *input)
1543 {
1544 /* XXX Should we also check the valid flag? */
1545 return !!(input[sc->sc_input_size - 1] & UATP_STATUS_BASE);
1546 }
1547
1548 /*
1549 * Pick apart the horizontal sensors from the vertical sensors.
1550 * Different models interleave them in different orders.
1551 */
1552
1553 static void
1554 read_sample_1(uint8_t *x, uint8_t *y, const uint8_t *input)
1555 {
1556 unsigned int i;
1557
1558 for (i = 0; i < 8; i++) {
1559 x[i] = input[5 * i + 2];
1560 x[i + 8] = input[5 * i + 4];
1561 x[i + 16] = input[5 * i + 42];
1562 if (i < 2)
1563 x[i + 24] = input[5 * i + 44];
1564
1565 y[i] = input[5 * i + 1];
1566 y[i + 8] = input[5 * i + 3];
1567 }
1568 }
1569
1570 static void
1571 read_sample_2(uint8_t *x, uint8_t *y, const uint8_t *input)
1572 {
1573 unsigned int i, j;
1574
1575 for (i = 0, j = 19; i < 20; i += 2, j += 3) {
1576 x[i] = input[j];
1577 x[i + 1] = input[j + 1];
1578 }
1579
1580 for (i = 0, j = 1; i < 9; i += 2, j += 3) {
1581 y[i] = input[j];
1582 y[i + 1] = input[j + 1];
1583 }
1584 }
1585
1586 static void
1587 accumulate_sample_1(struct uatp_softc *sc)
1588 {
1589 unsigned int i;
1590
1591 for (i = 0; i < UATP_SENSORS; i++) {
1592 sc->sc_acc[i] += (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
1593 if (sc->sc_acc[i] < 0) {
1594 sc->sc_acc[i] = 0;
1595 } else if (UATP_MAX_ACC < sc->sc_acc[i]) {
1596 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1597 ("overflow %d\n", sc->sc_acc[i]));
1598 sc->sc_acc[i] = UATP_MAX_ACC;
1599 }
1600 }
1601
1602 memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
1603 }
1604
1605 static void
1606 accumulate_sample_2(struct uatp_softc *sc)
1607 {
1608 unsigned int i;
1609
1610 for (i = 0; i < UATP_SENSORS; i++) {
1611 sc->sc_acc[i] = (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
1612 if (sc->sc_acc[i] < -0x80) {
1613 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1614 ("underflow %u - %u = %d\n",
1615 (unsigned int)sc->sc_sample[i],
1616 (unsigned int)sc->sc_base[i],
1617 sc->sc_acc[i]));
1618 sc->sc_acc[i] += 0x100;
1619 }
1620 if (0x7f < sc->sc_acc[i]) {
1621 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1622 ("overflow %u - %u = %d\n",
1623 (unsigned int)sc->sc_sample[i],
1624 (unsigned int)sc->sc_base[i],
1625 sc->sc_acc[i]));
1626 sc->sc_acc[i] -= 0x100;
1627 }
1628 if (sc->sc_acc[i] < 0)
1629 sc->sc_acc[i] = 0;
1630 }
1631 }
1632
1633 /*
1634 * Report input to wsmouse, if there is anything interesting to report.
1635 * We must take into consideration the current tap-and-drag button
1636 * state.
1637 */
1638
1639 static void
1640 uatp_input(struct uatp_softc *sc, uint32_t buttons,
1641 int dx, int dy, int dz, int dw)
1642 {
1643 uint32_t all_buttons;
1644
1645 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1646 all_buttons = buttons | uatp_tapped_buttons(sc);
1647
1648 if ((sc->sc_wsmousedev != NULL) &&
1649 ((dx != 0) || (dy != 0) || (dz != 0) || (dw != 0) ||
1650 (all_buttons != sc->sc_all_buttons))) {
1651 int s = spltty();
1652 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("wsmouse input:"
1653 " buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
1654 all_buttons, dx, -dy, dz, -dw));
1655 wsmouse_input(sc->sc_wsmousedev, all_buttons, dx, -dy, dz, -dw,
1656 WSMOUSE_INPUT_DELTA);
1657 splx(s);
1658 }
1659 sc->sc_buttons = buttons;
1660 sc->sc_all_buttons = all_buttons;
1661 }
1662
1663 /*
1664 * Interpret the current tap state to decide whether the tap buttons
1665 * are currently pressed.
1666 */
1667
1668 static uint32_t
1669 uatp_tapped_buttons(struct uatp_softc *sc)
1670 {
1671 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1672 switch (sc->sc_tap_state) {
1673 case TAP_STATE_INITIAL:
1674 case TAP_STATE_TAPPING:
1675 return 0;
1676
1677 case TAP_STATE_TAPPED:
1678 case TAP_STATE_DOUBLE_TAPPING:
1679 case TAP_STATE_DRAGGING_DOWN:
1680 case TAP_STATE_DRAGGING_UP:
1681 case TAP_STATE_TAPPING_IN_DRAG:
1682 CHECK((0 < sc->sc_tapped_fingers), return 0);
1683 switch (sc->sc_tapped_fingers) {
1684 case 1: return sc->sc_knobs.one_finger_tap_buttons;
1685 case 2: return sc->sc_knobs.two_finger_tap_buttons;
1686 case 3:
1687 default: return sc->sc_knobs.three_finger_tap_buttons;
1688 }
1689
1690 default:
1691 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
1692 __func__, sc->sc_tap_state);
1693 return 0;
1694 }
1695 }
1696
1697 /*
1698 * Interpret the current input state to find a difference in all the
1699 * relevant coordinates and buttons to pass on to wsmouse, and update
1700 * any internal driver state necessary to interpret subsequent input
1701 * relative to this one.
1702 */
1703
1704 static bool
1705 interpret_input(struct uatp_softc *sc, int *dx, int *dy, int *dz, int *dw,
1706 uint32_t *buttons)
1707 {
1708 unsigned int x_pressure, x_raw, x_fingers;
1709 unsigned int y_pressure, y_raw, y_fingers;
1710 unsigned int fingers;
1711
1712 x_pressure = interpret_dimension(sc, uatp_x_acc(sc),
1713 uatp_x_sensors(sc), uatp_x_ratio(sc), &x_raw, &x_fingers);
1714 y_pressure = interpret_dimension(sc, uatp_y_acc(sc),
1715 uatp_y_sensors(sc), uatp_y_ratio(sc), &y_raw, &y_fingers);
1716
1717 DPRINTF(sc, UATP_DEBUG_PARSE,
1718 ("x %u @ %u, %uf; y %u @ %u, %uf; buttons %"PRIx32"\n",
1719 x_pressure, x_raw, x_fingers,
1720 y_pressure, y_raw, y_fingers,
1721 *buttons));
1722
1723 if ((x_pressure == 0) && (y_pressure == 0)) {
1724 bool ok;
1725 /* No fingers: clear position and maybe report a tap. */
1726 DPRINTF(sc, UATP_DEBUG_INTR,
1727 ("no position detected; clearing position\n"));
1728 if (*buttons == 0) {
1729 ok = tap_released(sc);
1730 } else {
1731 tap_reset(sc);
1732 /* Button pressed: interrupt is not spurious. */
1733 ok = true;
1734 }
1735 /*
1736 * Don't clear the position until after tap_released,
1737 * which needs to know the track distance.
1738 */
1739 uatp_clear_position(sc);
1740 return ok;
1741 } else if ((x_pressure == 0) || (y_pressure == 0)) {
1742 /* XXX What to do here? */
1743 DPRINTF(sc, UATP_DEBUG_INTR,
1744 ("pressure in only one dimension; ignoring\n"));
1745 return true;
1746 } else if ((x_pressure == 1) && (y_pressure == 1)) {
1747 fingers = max(x_fingers, y_fingers);
1748 CHECK((0 < fingers), return false);
1749 if (*buttons == 0)
1750 tap_touched(sc, fingers);
1751 else if (fingers == 1)
1752 tap_reset(sc);
1753 else /* Multiple fingers, button pressed. */
1754 *buttons = emulated_buttons(sc, fingers);
1755 update_position(sc, fingers, x_raw, y_raw, dx, dy, dz, dw);
1756 return true;
1757 } else {
1758 /* Palm detected in either or both of the dimensions. */
1759 DPRINTF(sc, UATP_DEBUG_INTR, ("palm detected; ignoring\n"));
1760 return true;
1761 }
1762 }
1763
1764 /*
1765 * Interpret the accumulated sensor state along one dimension to find
1766 * the number, mean position, and pressure of fingers. Returns 0 to
1767 * indicate no pressure, returns 1 and sets *position and *fingers to
1768 * indicate fingers, and returns 2 to indicate palm.
1769 *
1770 * XXX Give symbolic names to the return values.
1771 */
1772
1773 static unsigned int
1774 interpret_dimension(struct uatp_softc *sc, const int *acc,
1775 unsigned int n_sensors, unsigned int ratio,
1776 unsigned int *position, unsigned int *fingers)
1777 {
1778 unsigned int i, v, n_fingers, sum;
1779 unsigned int total[UATP_MAX_SENSORS];
1780 unsigned int weighted[UATP_MAX_SENSORS];
1781 unsigned int sensor_threshold = sc->sc_knobs.sensor_threshold;
1782 unsigned int sensor_normalizer = sc->sc_knobs.sensor_normalizer;
1783 unsigned int width = 0; /* GCC is not smart enough. */
1784 unsigned int palm_width = sc->sc_knobs.palm_width;
1785 enum { none, nondecreasing, decreasing } state = none;
1786
1787 if (sensor_threshold < sensor_normalizer)
1788 sensor_normalizer = sensor_threshold;
1789 if (palm_width == 0) /* Effectively disable palm detection. */
1790 palm_width = UATP_MAX_POSITION;
1791
1792 #define CHECK_(condition) CHECK(condition, return 0)
1793
1794 /*
1795 * Arithmetic bounds:
1796 * . n_sensors is at most UATP_MAX_SENSORS,
1797 * . n_fingers is at most UATP_MAX_SENSORS,
1798 * . i is at most UATP_MAX_SENSORS,
1799 * . sc->sc_acc[i] is at most UATP_MAX_ACC,
1800 * . i * sc->sc_acc[i] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
1801 * . each total[j] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
1802 * . each weighted[j] is at most UATP_MAX_SENSORS^2 * UATP_MAX_ACC,
1803 * . ratio is at most UATP_MAX_RATIO,
1804 * . each weighted[j] * ratio is at most
1805 * UATP_MAX_SENSORS^2 * UATP_MAX_ACC * UATP_MAX_RATIO,
1806 * which is #x5fa0000 with the current values of the constants,
1807 * and
1808 * . the sum of the positions is at most
1809 * UATP_MAX_SENSORS * UATP_MAX_POSITION,
1810 * which is #x60000 with the current values of the constants.
1811 * Hence all of the arithmetic here fits in int (and thus also
1812 * unsigned int). If you change the constants, though, you
1813 * must update the analysis.
1814 */
1815 __CTASSERT(0x5fa0000 == (UATP_MAX_SENSORS * UATP_MAX_SENSORS *
1816 UATP_MAX_ACC * UATP_MAX_RATIO));
1817 __CTASSERT(0x60000 == (UATP_MAX_SENSORS * UATP_MAX_POSITION));
1818 CHECK_(n_sensors <= UATP_MAX_SENSORS);
1819 CHECK_(ratio <= UATP_MAX_RATIO);
1820
1821 /*
1822 * Detect each finger by looking for a consecutive sequence of
1823 * increasing and then decreasing pressures above the sensor
1824 * threshold. Compute the finger's position as the weighted
1825 * average of positions, weighted by the pressure at that
1826 * position. Finally, return the average finger position.
1827 */
1828
1829 n_fingers = 0;
1830 memset(weighted, 0, sizeof(weighted));
1831 memset(total, 0, sizeof(total));
1832
1833 for (i = 0; i < n_sensors; i++) {
1834 CHECK_(0 <= acc[i]);
1835 v = acc[i];
1836
1837 /* Ignore values outside a sensible interval. */
1838 if (v <= sensor_threshold) {
1839 state = none;
1840 continue;
1841 } else if (UATP_MAX_ACC < v) {
1842 aprint_verbose_dev(uatp_dev(sc),
1843 "ignoring large accumulated sensor state: %u\n",
1844 v);
1845 continue;
1846 }
1847
1848 switch (state) {
1849 case none:
1850 n_fingers += 1;
1851 CHECK_(n_fingers <= n_sensors);
1852 state = nondecreasing;
1853 width = 1;
1854 break;
1855
1856 case nondecreasing:
1857 case decreasing:
1858 CHECK_(0 < i);
1859 CHECK_(0 <= acc[i - 1]);
1860 width += 1;
1861 if (palm_width <= (width * ratio)) {
1862 DPRINTF(sc, UATP_DEBUG_PALM,
1863 ("palm detected\n"));
1864 return 2;
1865 } else if ((state == nondecreasing) &&
1866 ((unsigned int)acc[i - 1] > v)) {
1867 state = decreasing;
1868 } else if ((state == decreasing) &&
1869 ((unsigned int)acc[i - 1] < v)) {
1870 n_fingers += 1;
1871 CHECK_(n_fingers <= n_sensors);
1872 state = nondecreasing;
1873 width = 1;
1874 }
1875 break;
1876
1877 default:
1878 aprint_error_dev(uatp_dev(sc),
1879 "bad finger detection state: %d", state);
1880 return 0;
1881 }
1882
1883 v -= sensor_normalizer;
1884 total[n_fingers - 1] += v;
1885 weighted[n_fingers - 1] += (i * v);
1886 CHECK_(total[n_fingers - 1] <=
1887 (UATP_MAX_SENSORS * UATP_MAX_ACC));
1888 CHECK_(weighted[n_fingers - 1] <=
1889 (UATP_MAX_SENSORS * UATP_MAX_SENSORS * UATP_MAX_ACC));
1890 }
1891
1892 if (n_fingers == 0)
1893 return 0;
1894
1895 sum = 0;
1896 for (i = 0; i < n_fingers; i++) {
1897 DPRINTF(sc, UATP_DEBUG_PARSE,
1898 ("finger at %u\n", ((weighted[i] * ratio) / total[i])));
1899 sum += ((weighted[i] * ratio) / total[i]);
1900 CHECK_(sum <= UATP_MAX_SENSORS * UATP_MAX_POSITION);
1901 }
1902
1903 *fingers = n_fingers;
1904 *position = (sum / n_fingers);
1905 return 1;
1906
1907 #undef CHECK_
1908 }
1909
1910 /* Tapping */
1911
1912 /*
1913 * There is a very hairy state machine for detecting taps. At every
1914 * touch, we record the maximum number of fingers touched, and don't
1915 * reset it to zero until the finger is released.
1916 *
1917 * INITIAL STATE
1918 * (no tapping fingers; no tapped fingers)
1919 * - On touch, go to TAPPING STATE.
1920 * - On any other input, remain in INITIAL STATE.
1921 *
1922 * TAPPING STATE: Finger touched; might be tap.
1923 * (tapping fingers; no tapped fingers)
1924 * - On release within the tap limit, go to TAPPED STATE.
1925 * - On release after the tap limit, go to INITIAL STATE.
1926 * - On any other input, remain in TAPPING STATE.
1927 *
1928 * TAPPED STATE: Finger recently tapped, and might double-tap.
1929 * (no tapping fingers; tapped fingers)
1930 * - On touch within the double-tap limit, go to DOUBLE-TAPPING STATE.
1931 * - On touch after the double-tap limit, go to TAPPING STATE.
1932 * - On no event after the double-tap limit, go to INITIAL STATE.
1933 * - On any other input, remain in TAPPED STATE.
1934 *
1935 * DOUBLE-TAPPING STATE: Finger touched soon after tap; might be double-tap.
1936 * (tapping fingers; tapped fingers)
1937 * - On release within the tap limit, release button and go to TAPPED STATE.
1938 * - On release after the tap limit, go to DRAGGING UP STATE.
1939 * - On touch after the tap limit, go to DRAGGING DOWN STATE.
1940 * - On any other input, remain in DOUBLE-TAPPING STATE.
1941 *
1942 * DRAGGING DOWN STATE: Finger has double-tapped and is dragging, not tapping.
1943 * (no tapping fingers; tapped fingers)
1944 * - On release, go to DRAGGING UP STATE.
1945 * - On any other input, remain in DRAGGING DOWN STATE.
1946 *
1947 * DRAGGING UP STATE: Finger has double-tapped and is up.
1948 * (no tapping fingers; tapped fingers)
1949 * - On touch, go to TAPPING IN DRAG STATE.
1950 * - On any other input, remain in DRAGGING UP STATE.
1951 *
1952 * TAPPING IN DRAG STATE: Tap-dancing while cross-dressed.
1953 * (tapping fingers; tapped fingers)
1954 * - On release within the tap limit, go to TAPPED STATE.
1955 * - On release after the tap limit, go to DRAGGING UP STATE.
1956 * - On any other input, remain in TAPPING IN DRAG STATE.
1957 *
1958 * Warning: The graph of states is split into two components, those
1959 * with tapped fingers and those without. The only path from any state
1960 * without tapped fingers to a state with tapped fingers must pass
1961 * through TAPPED STATE. Also, the only transitions into TAPPED STATE
1962 * must be from states with tapping fingers, which become the tapped
1963 * fingers. If you edit the state machine, you must either preserve
1964 * these properties, or globally transform the state machine to avoid
1965 * the bad consequences of violating these properties.
1966 */
1967
1968 static void
1969 uatp_tap_limit(const struct uatp_softc *sc, struct timeval *limit)
1970 {
1971 unsigned int msec = sc->sc_knobs.tap_limit_msec;
1972 limit->tv_sec = 0;
1973 limit->tv_usec = ((msec < 1000) ? (1000 * msec) : 100000);
1974 }
1975
1976 #if UATP_DEBUG
1977
1978 # define TAP_DEBUG_PRE(sc) tap_debug((sc), __func__, "")
1979 # define TAP_DEBUG_POST(sc) tap_debug((sc), __func__, " ->")
1980
1981 static void
1982 tap_debug(struct uatp_softc *sc, const char *caller, const char *prefix)
1983 {
1984 char buffer[128];
1985 const char *state;
1986
1987 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1988 switch (sc->sc_tap_state) {
1989 case TAP_STATE_INITIAL: state = "initial"; break;
1990 case TAP_STATE_TAPPING: state = "tapping"; break;
1991 case TAP_STATE_TAPPED: state = "tapped"; break;
1992 case TAP_STATE_DOUBLE_TAPPING: state = "double-tapping"; break;
1993 case TAP_STATE_DRAGGING_DOWN: state = "dragging-down"; break;
1994 case TAP_STATE_DRAGGING_UP: state = "dragging-up"; break;
1995 case TAP_STATE_TAPPING_IN_DRAG: state = "tapping-in-drag"; break;
1996 default:
1997 snprintf(buffer, sizeof(buffer), "unknown (%d)",
1998 sc->sc_tap_state);
1999 state = buffer;
2000 break;
2001 }
2002
2003 DPRINTF(sc, UATP_DEBUG_TAP,
2004 ("%s:%s state %s, %u tapping, %u tapped\n",
2005 caller, prefix, state,
2006 sc->sc_tapping_fingers, sc->sc_tapped_fingers));
2007 }
2008
2009 #else /* !UATP_DEBUG */
2010
2011 # define TAP_DEBUG_PRE(sc) do {} while (0)
2012 # define TAP_DEBUG_POST(sc) do {} while (0)
2013
2014 #endif
2015
2016 static void
2017 tap_initialize(struct uatp_softc *sc)
2018 {
2019 callout_init(&sc->sc_untap_callout, 0);
2020 callout_setfunc(&sc->sc_untap_callout, untap_callout, sc);
2021 mutex_init(&sc->sc_tap_mutex, MUTEX_DEFAULT, IPL_SOFTUSB);
2022 }
2023
2024 static void
2025 tap_finalize(struct uatp_softc *sc)
2026 {
2027 /* XXX Can the callout still be scheduled here? */
2028 callout_destroy(&sc->sc_untap_callout);
2029 mutex_destroy(&sc->sc_tap_mutex);
2030 }
2031
2032 static void
2033 tap_enable(struct uatp_softc *sc)
2034 {
2035 mutex_enter(&sc->sc_tap_mutex);
2036 tap_transition_initial(sc);
2037 sc->sc_buttons = 0; /* XXX Not the right place? */
2038 sc->sc_all_buttons = 0;
2039 mutex_exit(&sc->sc_tap_mutex);
2040 }
2041
2042 static void
2043 tap_disable(struct uatp_softc *sc)
2044 {
2045 /* Reset tapping, and wait for any callouts to complete. */
2046 tap_reset_wait(sc);
2047 }
2048
2049 /*
2050 * Reset tap state. If the untap callout has just fired, it may signal
2051 * a harmless button release event before this returns.
2052 */
2053
2054 static void
2055 tap_reset(struct uatp_softc *sc)
2056 {
2057
2058 callout_stop(&sc->sc_untap_callout);
2059 mutex_enter(&sc->sc_tap_mutex);
2060 tap_transition_initial(sc);
2061 mutex_exit(&sc->sc_tap_mutex);
2062 }
2063
2064 /* Reset, but don't return until the callout is done running. */
2065
2066 static void
2067 tap_reset_wait(struct uatp_softc *sc)
2068 {
2069
2070 callout_halt(&sc->sc_untap_callout, NULL);
2071 mutex_enter(&sc->sc_tap_mutex);
2072 tap_transition_initial(sc);
2073 mutex_exit(&sc->sc_tap_mutex);
2074 }
2075
2076 static const struct timeval zero_timeval;
2077
2078 static void
2079 tap_transition(struct uatp_softc *sc, enum uatp_tap_state tap_state,
2080 const struct timeval *start_time,
2081 unsigned int tapping_fingers, unsigned int tapped_fingers)
2082 {
2083 KASSERT(mutex_owned(&sc->sc_tap_mutex));
2084 sc->sc_tap_state = tap_state;
2085 sc->sc_tap_timer = *start_time;
2086 sc->sc_tapping_fingers = tapping_fingers;
2087 sc->sc_tapped_fingers = tapped_fingers;
2088 }
2089
2090 static void
2091 tap_transition_initial(struct uatp_softc *sc)
2092 {
2093 /*
2094 * No checks. This state is always kosher, and sometimes a
2095 * fallback in case of failure.
2096 */
2097 tap_transition(sc, TAP_STATE_INITIAL, &zero_timeval, 0, 0);
2098 }
2099
2100 /* Touch transitions */
2101
2102 static void
2103 tap_transition_tapping(struct uatp_softc *sc, const struct timeval *start_time,
2104 unsigned int fingers)
2105 {
2106 CHECK((sc->sc_tapping_fingers <= fingers),
2107 do { tap_transition_initial(sc); return; } while (0));
2108 tap_transition(sc, TAP_STATE_TAPPING, start_time, fingers, 0);
2109 }
2110
2111 static void
2112 tap_transition_double_tapping(struct uatp_softc *sc,
2113 const struct timeval *start_time, unsigned int fingers)
2114 {
2115 CHECK((sc->sc_tapping_fingers <= fingers),
2116 do { tap_transition_initial(sc); return; } while (0));
2117 CHECK((0 < sc->sc_tapped_fingers),
2118 do { tap_transition_initial(sc); return; } while (0));
2119 tap_transition(sc, TAP_STATE_DOUBLE_TAPPING, start_time, fingers,
2120 sc->sc_tapped_fingers);
2121 }
2122
2123 static void
2124 tap_transition_dragging_down(struct uatp_softc *sc)
2125 {
2126 CHECK((0 < sc->sc_tapped_fingers),
2127 do { tap_transition_initial(sc); return; } while (0));
2128 tap_transition(sc, TAP_STATE_DRAGGING_DOWN, &zero_timeval, 0,
2129 sc->sc_tapped_fingers);
2130 }
2131
2132 static void
2133 tap_transition_tapping_in_drag(struct uatp_softc *sc,
2134 const struct timeval *start_time, unsigned int fingers)
2135 {
2136 CHECK((sc->sc_tapping_fingers <= fingers),
2137 do { tap_transition_initial(sc); return; } while (0));
2138 CHECK((0 < sc->sc_tapped_fingers),
2139 do { tap_transition_initial(sc); return; } while (0));
2140 tap_transition(sc, TAP_STATE_TAPPING_IN_DRAG, start_time, fingers,
2141 sc->sc_tapped_fingers);
2142 }
2143
2144 /* Release transitions */
2145
2146 static void
2147 tap_transition_tapped(struct uatp_softc *sc, const struct timeval *start_time)
2148 {
2149 /*
2150 * The fingers that were tapping -- of which there must have
2151 * been at least one -- are now the fingers that have tapped,
2152 * and there are no longer fingers tapping.
2153 */
2154 CHECK((0 < sc->sc_tapping_fingers),
2155 do { tap_transition_initial(sc); return; } while (0));
2156 tap_transition(sc, TAP_STATE_TAPPED, start_time, 0,
2157 sc->sc_tapping_fingers);
2158 schedule_untap(sc);
2159 }
2160
2161 static void
2162 tap_transition_dragging_up(struct uatp_softc *sc)
2163 {
2164 CHECK((0 < sc->sc_tapped_fingers),
2165 do { tap_transition_initial(sc); return; } while (0));
2166 tap_transition(sc, TAP_STATE_DRAGGING_UP, &zero_timeval, 0,
2167 sc->sc_tapped_fingers);
2168 }
2169
2170 static void
2171 tap_touched(struct uatp_softc *sc, unsigned int fingers)
2172 {
2173 struct timeval now, diff, limit;
2174
2175 CHECK((0 < fingers), return);
2176 callout_stop(&sc->sc_untap_callout);
2177 mutex_enter(&sc->sc_tap_mutex);
2178 TAP_DEBUG_PRE(sc);
2179 /*
2180 * Guarantee that the number of tapping fingers never decreases
2181 * except when it is reset to zero on release.
2182 */
2183 if (fingers < sc->sc_tapping_fingers)
2184 fingers = sc->sc_tapping_fingers;
2185 switch (sc->sc_tap_state) {
2186 case TAP_STATE_INITIAL:
2187 getmicrouptime(&now);
2188 tap_transition_tapping(sc, &now, fingers);
2189 break;
2190
2191 case TAP_STATE_TAPPING:
2192 /*
2193 * Number of fingers may have increased, so transition
2194 * even though we're already in TAPPING.
2195 */
2196 tap_transition_tapping(sc, &sc->sc_tap_timer, fingers);
2197 break;
2198
2199 case TAP_STATE_TAPPED:
2200 getmicrouptime(&now);
2201 /*
2202 * If the double-tap time limit has passed, it's the
2203 * callout's responsibility to handle that event, so we
2204 * assume the limit has not passed yet.
2205 */
2206 tap_transition_double_tapping(sc, &now, fingers);
2207 break;
2208
2209 case TAP_STATE_DOUBLE_TAPPING:
2210 getmicrouptime(&now);
2211 timersub(&now, &sc->sc_tap_timer, &diff);
2212 uatp_tap_limit(sc, &limit);
2213 if (timercmp(&diff, &limit, >) ||
2214 (sc->sc_track_distance >
2215 sc->sc_knobs.tap_track_distance_limit))
2216 tap_transition_dragging_down(sc);
2217 break;
2218
2219 case TAP_STATE_DRAGGING_DOWN:
2220 break;
2221
2222 case TAP_STATE_DRAGGING_UP:
2223 getmicrouptime(&now);
2224 tap_transition_tapping_in_drag(sc, &now, fingers);
2225 break;
2226
2227 case TAP_STATE_TAPPING_IN_DRAG:
2228 /*
2229 * Number of fingers may have increased, so transition
2230 * even though we're already in TAPPING IN DRAG.
2231 */
2232 tap_transition_tapping_in_drag(sc, &sc->sc_tap_timer, fingers);
2233 break;
2234
2235 default:
2236 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2237 __func__, sc->sc_tap_state);
2238 tap_transition_initial(sc);
2239 break;
2240 }
2241 TAP_DEBUG_POST(sc);
2242 mutex_exit(&sc->sc_tap_mutex);
2243 }
2244
2245 static bool
2246 tap_released(struct uatp_softc *sc)
2247 {
2248 struct timeval now, diff, limit;
2249 void (*non_tapped_transition)(struct uatp_softc *);
2250 bool ok, temporary_release;
2251
2252 mutex_enter(&sc->sc_tap_mutex);
2253 TAP_DEBUG_PRE(sc);
2254 switch (sc->sc_tap_state) {
2255 case TAP_STATE_INITIAL:
2256 case TAP_STATE_TAPPED:
2257 case TAP_STATE_DRAGGING_UP:
2258 /* Spurious interrupt: fingers are already off. */
2259 ok = false;
2260 break;
2261
2262 case TAP_STATE_TAPPING:
2263 temporary_release = false;
2264 non_tapped_transition = &tap_transition_initial;
2265 goto maybe_tap;
2266
2267 case TAP_STATE_DOUBLE_TAPPING:
2268 temporary_release = true;
2269 non_tapped_transition = &tap_transition_dragging_up;
2270 goto maybe_tap;
2271
2272 case TAP_STATE_TAPPING_IN_DRAG:
2273 temporary_release = false;
2274 non_tapped_transition = &tap_transition_dragging_up;
2275 goto maybe_tap;
2276
2277 maybe_tap:
2278 getmicrouptime(&now);
2279 timersub(&now, &sc->sc_tap_timer, &diff);
2280 uatp_tap_limit(sc, &limit);
2281 if (timercmp(&diff, &limit, <=) &&
2282 (sc->sc_track_distance <=
2283 sc->sc_knobs.tap_track_distance_limit)) {
2284 if (temporary_release) {
2285 /*
2286 * XXX Kludge: Temporarily transition
2287 * to a tap state that uatp_input will
2288 * interpret as `no buttons tapped',
2289 * saving the tapping fingers. There
2290 * should instead be a separate routine
2291 * uatp_input_untapped.
2292 */
2293 unsigned int fingers = sc->sc_tapping_fingers;
2294 tap_transition_initial(sc);
2295 uatp_input(sc, 0, 0, 0, 0, 0);
2296 sc->sc_tapping_fingers = fingers;
2297 }
2298 tap_transition_tapped(sc, &now);
2299 } else {
2300 (*non_tapped_transition)(sc);
2301 }
2302 ok = true;
2303 break;
2304
2305 case TAP_STATE_DRAGGING_DOWN:
2306 tap_transition_dragging_up(sc);
2307 ok = true;
2308 break;
2309
2310 default:
2311 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2312 __func__, sc->sc_tap_state);
2313 tap_transition_initial(sc);
2314 ok = false;
2315 break;
2316 }
2317 TAP_DEBUG_POST(sc);
2318 mutex_exit(&sc->sc_tap_mutex);
2319 return ok;
2320 }
2321
2322 /* Untapping: Releasing the button after a tap */
2323
2324 static void
2325 schedule_untap(struct uatp_softc *sc)
2326 {
2327 unsigned int ms = sc->sc_knobs.double_tap_limit_msec;
2328 if (ms <= 1000)
2329 callout_schedule(&sc->sc_untap_callout, mstohz(ms));
2330 else /* XXX Reject bogus values in sysctl. */
2331 aprint_error_dev(uatp_dev(sc),
2332 "double-tap delay too long: %ums\n", ms);
2333 }
2334
2335 static void
2336 untap_callout(void *arg)
2337 {
2338 struct uatp_softc *sc = arg;
2339
2340 mutex_enter(&sc->sc_tap_mutex);
2341 TAP_DEBUG_PRE(sc);
2342 switch (sc->sc_tap_state) {
2343 case TAP_STATE_TAPPED:
2344 tap_transition_initial(sc);
2345 /*
2346 * XXX Kludge: Call uatp_input after the state transition
2347 * to make sure that it will actually release the button.
2348 */
2349 uatp_input(sc, 0, 0, 0, 0, 0);
2350
2351 case TAP_STATE_INITIAL:
2352 case TAP_STATE_TAPPING:
2353 case TAP_STATE_DOUBLE_TAPPING:
2354 case TAP_STATE_DRAGGING_UP:
2355 case TAP_STATE_DRAGGING_DOWN:
2356 case TAP_STATE_TAPPING_IN_DRAG:
2357 /*
2358 * Somebody else got in and changed the state before we
2359 * untapped. Let them take over; do nothing here.
2360 */
2361 break;
2362
2363 default:
2364 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2365 __func__, sc->sc_tap_state);
2366 tap_transition_initial(sc);
2367 /* XXX Just in case...? */
2368 uatp_input(sc, 0, 0, 0, 0, 0);
2369 break;
2370 }
2371 TAP_DEBUG_POST(sc);
2372 mutex_exit(&sc->sc_tap_mutex);
2373 }
2374
2375 /*
2376 * Emulate different buttons if the user holds down n fingers while
2377 * pressing the physical button. (This is unrelated to tapping.)
2378 */
2379
2380 static uint32_t
2381 emulated_buttons(struct uatp_softc *sc, unsigned int fingers)
2382 {
2383 CHECK((1 < fingers), return 0);
2384
2385 switch (fingers) {
2386 case 2:
2387 DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
2388 ("2-finger emulated button: %"PRIx32"\n",
2389 sc->sc_knobs.two_finger_buttons));
2390 return sc->sc_knobs.two_finger_buttons;
2391
2392 case 3:
2393 default:
2394 DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
2395 ("3-finger emulated button: %"PRIx32"\n",
2396 sc->sc_knobs.three_finger_buttons));
2397 return sc->sc_knobs.three_finger_buttons;
2398 }
2399 }
2400
2401 /*
2402 * Update the position known to the driver based on the position and
2403 * number of fingers. dx, dy, dz, and dw are expected to hold zero;
2404 * update_position may store nonzero changes in position in them.
2405 */
2406
2407 static void
2408 update_position(struct uatp_softc *sc, unsigned int fingers,
2409 unsigned int x_raw, unsigned int y_raw,
2410 int *dx, int *dy, int *dz, int *dw)
2411 {
2412 CHECK((0 < fingers), return);
2413
2414 if ((fingers == 1) || (sc->sc_knobs.multifinger_track == 1))
2415 move_mouse(sc, x_raw, y_raw, dx, dy);
2416 else if (sc->sc_knobs.multifinger_track == 2)
2417 scroll_wheel(sc, x_raw, y_raw, dz, dw);
2418 }
2419
2420 /*
2421 * XXX Scrolling needs to use a totally different motion model.
2422 */
2423
2424 static void
2425 move_mouse(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
2426 int *dx, int *dy)
2427 {
2428 move(sc, "mouse", x_raw, y_raw, &sc->sc_x_raw, &sc->sc_y_raw,
2429 &sc->sc_x_smoothed, &sc->sc_y_smoothed,
2430 &sc->sc_x_remainder, &sc->sc_y_remainder,
2431 dx, dy);
2432 }
2433
2434 static void
2435 scroll_wheel(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
2436 int *dz, int *dw)
2437 {
2438 move(sc, "scroll", x_raw, y_raw, &sc->sc_z_raw, &sc->sc_w_raw,
2439 &sc->sc_z_smoothed, &sc->sc_w_smoothed,
2440 &sc->sc_z_remainder, &sc->sc_w_remainder,
2441 dz, dw);
2442 }
2443
2444 static void
2445 move(struct uatp_softc *sc, const char *ctx, unsigned int a, unsigned int b,
2446 int *a_raw, int *b_raw,
2447 int *a_smoothed, int *b_smoothed,
2448 unsigned int *a_remainder, unsigned int *b_remainder,
2449 int *da, int *db)
2450 {
2451 #define CHECK_(condition) CHECK(condition, return)
2452
2453 int old_a_raw = *a_raw, old_a_smoothed = *a_smoothed;
2454 int old_b_raw = *b_raw, old_b_smoothed = *b_smoothed;
2455 unsigned int a_dist, b_dist, dist_squared;
2456 bool a_fast, b_fast;
2457
2458 /*
2459 * Make sure the quadratics in motion_below_threshold and
2460 * tracking distance don't overflow int arithmetic.
2461 */
2462 __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
2463
2464 CHECK_(a <= UATP_MAX_POSITION);
2465 CHECK_(b <= UATP_MAX_POSITION);
2466 *a_raw = a;
2467 *b_raw = b;
2468 if ((old_a_raw < 0) || (old_b_raw < 0)) {
2469 DPRINTF(sc, UATP_DEBUG_MOVE,
2470 ("initialize %s position (%d, %d) -> (%d, %d)\n", ctx,
2471 old_a_raw, old_b_raw, a, b));
2472 return;
2473 }
2474
2475 if ((old_a_smoothed < 0) || (old_b_smoothed < 0)) {
2476 /* XXX Does this make sense? */
2477 old_a_smoothed = old_a_raw;
2478 old_b_smoothed = old_b_raw;
2479 }
2480
2481 CHECK_(0 <= old_a_raw);
2482 CHECK_(0 <= old_b_raw);
2483 CHECK_(old_a_raw <= UATP_MAX_POSITION);
2484 CHECK_(old_b_raw <= UATP_MAX_POSITION);
2485 CHECK_(0 <= old_a_smoothed);
2486 CHECK_(0 <= old_b_smoothed);
2487 CHECK_(old_a_smoothed <= UATP_MAX_POSITION);
2488 CHECK_(old_b_smoothed <= UATP_MAX_POSITION);
2489 CHECK_(0 <= *a_raw);
2490 CHECK_(0 <= *b_raw);
2491 CHECK_(*a_raw <= UATP_MAX_POSITION);
2492 CHECK_(*b_raw <= UATP_MAX_POSITION);
2493 *a_smoothed = smooth(sc, old_a_raw, old_a_smoothed, *a_raw);
2494 *b_smoothed = smooth(sc, old_b_raw, old_b_smoothed, *b_raw);
2495 CHECK_(0 <= *a_smoothed);
2496 CHECK_(0 <= *b_smoothed);
2497 CHECK_(*a_smoothed <= UATP_MAX_POSITION);
2498 CHECK_(*b_smoothed <= UATP_MAX_POSITION);
2499
2500 if (sc->sc_motion_timer < sc->sc_knobs.motion_delay) {
2501 DPRINTF(sc, UATP_DEBUG_MOVE, ("delay motion %u\n",
2502 sc->sc_motion_timer));
2503 sc->sc_motion_timer += 1;
2504 return;
2505 }
2506
2507 /* XXX Use raw distances or smoothed distances? Acceleration? */
2508 if (*a_smoothed < old_a_smoothed)
2509 a_dist = old_a_smoothed - *a_smoothed;
2510 else
2511 a_dist = *a_smoothed - old_a_smoothed;
2512
2513 if (*b_smoothed < old_b_smoothed)
2514 b_dist = old_b_smoothed - *b_smoothed;
2515 else
2516 b_dist = *b_smoothed - old_b_smoothed;
2517
2518 dist_squared = (a_dist * a_dist) + (b_dist * b_dist);
2519 if (dist_squared < ((2 * UATP_MAX_POSITION * UATP_MAX_POSITION)
2520 - sc->sc_track_distance))
2521 sc->sc_track_distance += dist_squared;
2522 else
2523 sc->sc_track_distance = (2 * UATP_MAX_POSITION *
2524 UATP_MAX_POSITION);
2525 DPRINTF(sc, UATP_DEBUG_TRACK_DIST, ("finger has tracked %u units^2\n",
2526 sc->sc_track_distance));
2527
2528 /*
2529 * The checks above guarantee that the differences here are at
2530 * most UATP_MAX_POSITION in magnitude, since both minuend and
2531 * subtrahend are nonnegative and at most UATP_MAX_POSITION.
2532 */
2533 if (motion_below_threshold(sc, sc->sc_knobs.motion_threshold,
2534 (int)(*a_smoothed - old_a_smoothed),
2535 (int)(*b_smoothed - old_b_smoothed))) {
2536 DPRINTF(sc, UATP_DEBUG_MOVE,
2537 ("%s motion too small: (%d, %d) -> (%d, %d)\n", ctx,
2538 old_a_smoothed, old_b_smoothed,
2539 *a_smoothed, *b_smoothed));
2540 return;
2541 }
2542 if (sc->sc_knobs.fast_per_direction == 0) {
2543 a_fast = b_fast = !motion_below_threshold(sc,
2544 sc->sc_knobs.fast_motion_threshold,
2545 (int)(*a_smoothed - old_a_smoothed),
2546 (int)(*b_smoothed - old_b_smoothed));
2547 } else {
2548 a_fast = !motion_below_threshold(sc,
2549 sc->sc_knobs.fast_motion_threshold,
2550 (int)(*a_smoothed - old_a_smoothed),
2551 0);
2552 b_fast = !motion_below_threshold(sc,
2553 sc->sc_knobs.fast_motion_threshold,
2554 0,
2555 (int)(*b_smoothed - old_b_smoothed));
2556 }
2557 *da = accelerate(sc, old_a_raw, *a_raw, old_a_smoothed, *a_smoothed,
2558 a_fast, a_remainder);
2559 *db = accelerate(sc, old_b_raw, *b_raw, old_b_smoothed, *b_smoothed,
2560 b_fast, b_remainder);
2561 DPRINTF(sc, UATP_DEBUG_MOVE,
2562 ("update %s position (%d, %d) -> (%d, %d), move by (%d, %d)\n",
2563 ctx, old_a_smoothed, old_b_smoothed, *a_smoothed, *b_smoothed,
2564 *da, *db));
2565
2566 #undef CHECK_
2567 }
2568
2569 static int
2570 smooth(struct uatp_softc *sc, unsigned int old_raw, unsigned int old_smoothed,
2571 unsigned int raw)
2572 {
2573 #define CHECK_(condition) CHECK(condition, return old_raw)
2574
2575 /*
2576 * Arithmetic bounds:
2577 * . the weights are at most UATP_MAX_WEIGHT;
2578 * . the positions are at most UATP_MAX_POSITION; and so
2579 * . the numerator of the average is at most
2580 * 3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION,
2581 * which is #x477000, fitting comfortably in an int.
2582 */
2583 __CTASSERT(0x477000 == (3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION));
2584 unsigned int old_raw_weight = uatp_old_raw_weight(sc);
2585 unsigned int old_smoothed_weight = uatp_old_smoothed_weight(sc);
2586 unsigned int new_raw_weight = uatp_new_raw_weight(sc);
2587 CHECK_(old_raw_weight <= UATP_MAX_WEIGHT);
2588 CHECK_(old_smoothed_weight <= UATP_MAX_WEIGHT);
2589 CHECK_(new_raw_weight <= UATP_MAX_WEIGHT);
2590 CHECK_(old_raw <= UATP_MAX_POSITION);
2591 CHECK_(old_smoothed <= UATP_MAX_POSITION);
2592 CHECK_(raw <= UATP_MAX_POSITION);
2593 return (((old_raw_weight * old_raw) +
2594 (old_smoothed_weight * old_smoothed) +
2595 (new_raw_weight * raw))
2596 / (old_raw_weight + old_smoothed_weight + new_raw_weight));
2597
2598 #undef CHECK_
2599 }
2600
2601 static bool
2602 motion_below_threshold(struct uatp_softc *sc, unsigned int threshold,
2603 int x, int y)
2604 {
2605 unsigned int x_squared, y_squared;
2606
2607 /* Caller guarantees the multiplication will not overflow. */
2608 KASSERT(-UATP_MAX_POSITION <= x);
2609 KASSERT(-UATP_MAX_POSITION <= y);
2610 KASSERT(x <= UATP_MAX_POSITION);
2611 KASSERT(y <= UATP_MAX_POSITION);
2612 __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
2613
2614 x_squared = (x * x);
2615 y_squared = (y * y);
2616
2617 return ((x_squared + y_squared) < threshold);
2618 }
2619
2620 static int
2621 accelerate(struct uatp_softc *sc, unsigned int old_raw, unsigned int raw,
2622 unsigned int old_smoothed, unsigned int smoothed, bool fast,
2623 int *remainder)
2624 {
2625 #define CHECK_(condition) CHECK(condition, return 0)
2626
2627 /* Guarantee that the scaling won't overflow. */
2628 __CTASSERT(0x30000 ==
2629 (UATP_MAX_POSITION * UATP_MAX_MOTION_MULTIPLIER));
2630
2631 CHECK_(old_raw <= UATP_MAX_POSITION);
2632 CHECK_(raw <= UATP_MAX_POSITION);
2633 CHECK_(old_smoothed <= UATP_MAX_POSITION);
2634 CHECK_(smoothed <= UATP_MAX_POSITION);
2635
2636 return (fast ? uatp_scale_fast_motion : uatp_scale_motion)
2637 (sc, (((int) smoothed) - ((int) old_smoothed)), remainder);
2638
2639 #undef CHECK_
2640 }
2641
2642 MODULE(MODULE_CLASS_DRIVER, uatp, NULL);
2643
2644 #ifdef _MODULE
2645 #include "ioconf.c"
2646 #endif
2647
2648 static int
2649 uatp_modcmd(modcmd_t cmd, void *aux)
2650 {
2651 int error = 0;
2652
2653 switch (cmd) {
2654 case MODULE_CMD_INIT:
2655 #ifdef _MODULE
2656 error = config_init_component(cfdriver_ioconf_uatp,
2657 cfattach_ioconf_uatp, cfdata_ioconf_uatp);
2658 #endif
2659 return error;
2660 case MODULE_CMD_FINI:
2661 #ifdef _MODULE
2662 error = config_fini_component(cfdriver_ioconf_uatp,
2663 cfattach_ioconf_uatp, cfdata_ioconf_uatp);
2664 #endif
2665 return error;
2666 default:
2667 return ENOTTY;
2668 }
2669 }
2670