uatp.c revision 1.27 1 /* $NetBSD: uatp.c,v 1.27 2021/08/07 16:19:17 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * uatp(4) - USB Apple Trackpad
34 *
35 * The uatp driver talks the protocol of the USB trackpads found in
36 * Apple laptops since 2005, including PowerBooks, iBooks, MacBooks,
37 * and MacBook Pros. Some of these also present generic USB HID mice
38 * on another USB report id, which the ums(4) driver can handle, but
39 * Apple's protocol gives more detailed sensor data that lets us detect
40 * multiple fingers to emulate multi-button mice and scroll wheels.
41 */
42
43 /*
44 * Protocol
45 *
46 * The device has a set of horizontal sensors, each being a column at a
47 * particular position on the x axis that tells you whether there is
48 * pressure anywhere on that column, and vertical sensors, each being a
49 * row at a particular position on the y axis that tells you whether
50 * there is pressure anywhere on that row.
51 *
52 * Whenever the device senses anything, it emits a readout of all of
53 * the sensors, in some model-dependent order. (For the order, see
54 * read_sample_1 and read_sample_2.) Each sensor datum is an unsigned
55 * eight-bit quantity representing some measure of pressure. (Of
56 * course, it really measures capacitance, not pressure, but we'll call
57 * it `pressure' here.)
58 */
59
60 /*
61 * Interpretation
62 *
63 * To interpret the finger's position on the trackpad, the driver
64 * computes a weighted average over all possible positions, weighted by
65 * the pressure at that position. The weighted average is computed in
66 * the dimensions of the screen, rather than the trackpad, in order to
67 * admit a finer resolution of positions than the trackpad grid.
68 *
69 * To update the finger's position smoothly on the trackpad, the driver
70 * computes a weighted average of the old raw position, the old
71 * smoothed position, and the new smoothed position. The weights are
72 * given by the old_raw_weight, old_smoothed_weight, and new_raw_weight
73 * sysctl knobs.
74 *
75 * Finally, to move the cursor, the driver takes the difference between
76 * the old and new positions and accelerates it according to some
77 * heuristic knobs that need to be reworked.
78 *
79 * Finally, there are some bells & whistles to detect tapping and to
80 * emulate a three-button mouse by leaving two or three fingers on the
81 * trackpad while pressing the button.
82 */
83
84 /*
85 * Future work
86 *
87 * With the raw sensor data available, we could implement fancier bells
88 * & whistles too, such as pinch-to-zoom. However, wsmouse supports
89 * only four-dimensional mice with buttons, and we already use two
90 * dimensions for mousing and two dimensions for scrolling, so there's
91 * no straightforward way to report zooming and other gestures to the
92 * operating system. Probably a better way to do this would be just to
93 * attach uhid(4) instead of uatp(4) and to read the raw sensors data
94 * yourself -- but that requires hairy mode switching for recent models
95 * (see geyser34_enable_raw_mode).
96 *
97 * XXX Rework the acceleration knobs.
98 * XXX Implement edge scrolling.
99 * XXX Fix sysctl setup; preserve knobs across suspend/resume.
100 * (uatp0 detaches and reattaches across suspend/resume, so as
101 * written, the sysctl tree is torn down and rebuilt, losing any
102 * state the user may have set.)
103 * XXX Refactor motion state so I can understand it again.
104 * Should make a struct uatp_motion for all that state.
105 * XXX Add hooks for ignoring trackpad input while typing.
106 */
107
108 /*
109 * Classifying devices
110 *
111 * I have only one MacBook to test this driver, but the driver should
112 * be applicable to almost every Apple laptop made since the beginning
113 * of 2005, so the driver reports lots of debugging output to help to
114 * classify devices. Boot with `boot -v' (verbose) and check the
115 * output of `dmesg | grep uatp' to answer the following questions:
116 *
117 * - What devices (vendor, product, class, subclass, proto, USB HID
118 * report dump) fail to attach when you think they should work?
119 * (vendor not apple, class not hid, proto not mouse)
120 *
121 * - What devices have an unknown product id?
122 * `unknown vendor/product id'
123 *
124 * - What devices have the wrong screen-to-trackpad ratios?
125 * `... x sensors, scaled by ... for ... points on screen'
126 * `... y sensors, scaled by ... for ... points on screen'
127 * You can tweak hw.uatp0.x_ratio and hw.uatp0.y_ratio to adjust
128 * this, up to a maximum of 384 for each value.
129 *
130 * - What devices have the wrong input size?
131 * `expected input size ... but got ... for Apple trackpad'
132 *
133 * - What devices give wrong-sized packets?
134 * `discarding ...-byte input'
135 *
136 * - What devices split packets in chunks?
137 * `partial packet: ... bytes'
138 *
139 * - What devices develop large sensor readouts?
140 * `large sensor readout: ...'
141 *
142 * - What devices have the wrong number of sensors? Are there parts of
143 * your trackpad that the system doesn't seem to notice? You can
144 * tweak hw.uatp0.x_sensors and hw.uatp0.y_sensors, up to a maximum
145 * of 32 for each value.
146 */
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: uatp.c,v 1.27 2021/08/07 16:19:17 thorpej Exp $");
150
151 #ifdef _KERNEL_OPT
152 #include "opt_usb.h"
153 #endif
154
155 #include <sys/types.h>
156 #include <sys/param.h>
157 #include <sys/atomic.h>
158 #include <sys/device.h>
159 #include <sys/errno.h>
160 #include <sys/ioctl.h>
161 #include <sys/kernel.h>
162 #include <sys/module.h>
163 #include <sys/sysctl.h>
164 #include <sys/systm.h>
165 #include <sys/time.h>
166
167 /* Order is important here...sigh... */
168 #include <dev/usb/usb.h>
169 #include <dev/usb/usbdi.h>
170 #include <dev/usb/usbdi_util.h>
171 #include <dev/usb/usbdevs.h>
172 #include <dev/usb/uhidev.h>
173 #include <dev/usb/usbhid.h>
174 #include <dev/hid/hid.h>
175
176 #include <dev/wscons/wsconsio.h>
177 #include <dev/wscons/wsmousevar.h>
178
179 #define CHECK(condition, fail) do { \
180 if (! (condition)) { \
181 aprint_error_dev(uatp_dev(sc), "%s: check failed: %s\n",\
182 __func__, #condition); \
183 fail; \
184 } \
185 } while (0)
186
187 #define UATP_DEBUG_ATTACH __BIT(0)
188 #define UATP_DEBUG_MISC __BIT(1)
189 #define UATP_DEBUG_WSMOUSE __BIT(2)
190 #define UATP_DEBUG_IOCTL __BIT(3)
191 #define UATP_DEBUG_RESET __BIT(4)
192 #define UATP_DEBUG_INTR __BIT(5)
193 #define UATP_DEBUG_PARSE __BIT(6)
194 #define UATP_DEBUG_TAP __BIT(7)
195 #define UATP_DEBUG_EMUL_BUTTON __BIT(8)
196 #define UATP_DEBUG_ACCUMULATE __BIT(9)
197 #define UATP_DEBUG_STATUS __BIT(10)
198 #define UATP_DEBUG_SPURINTR __BIT(11)
199 #define UATP_DEBUG_MOVE __BIT(12)
200 #define UATP_DEBUG_ACCEL __BIT(13)
201 #define UATP_DEBUG_TRACK_DIST __BIT(14)
202 #define UATP_DEBUG_PALM __BIT(15)
203
204 /*
205 * Unconditionally enable the debug output so you don't have to
206 * recompile the kernel to diagnose it. This is not a high-throughput
207 * NIC driver or anything that will be hurt by a few conditionals.
208 */
209 #define UATP_DEBUG 1
210
211 #if UATP_DEBUG
212 # define DPRINTF(sc, flags, format) do { \
213 if ((flags) & (sc)->sc_debug_flags) { \
214 printf("%s: %s: ", device_xname(uatp_dev(sc)), __func__); \
215 printf format; \
216 } \
217 } while (0)
218 #else
219 # define DPRINTF(sc, flags, format) do {} while (0)
220 #endif
221
222 /* Maximum number of bytes in an incoming packet of sensor data. */
223 #define UATP_MAX_INPUT_SIZE 81
224
225 /* Maximum number of sensors in each dimension. */
226 #define UATP_MAX_X_SENSORS 32
227 #define UATP_MAX_Y_SENSORS 32
228 #define UATP_MAX_SENSORS 32
229 #define UATP_SENSORS (UATP_MAX_X_SENSORS + UATP_MAX_Y_SENSORS)
230
231 /* Maximum accumulated sensor value. */
232 #define UATP_MAX_ACC 0xff
233
234 /* Maximum screen dimension to sensor dimension ratios. */
235 #define UATP_MAX_X_RATIO 0x180
236 #define UATP_MAX_Y_RATIO 0x180
237 #define UATP_MAX_RATIO 0x180
238
239 /* Maximum weight for positions in motion calculation. */
240 #define UATP_MAX_WEIGHT 0x7f
241
242 /* Maximum possible trackpad position in a single dimension. */
243 #define UATP_MAX_POSITION (UATP_MAX_SENSORS * UATP_MAX_RATIO)
244
245 /* Bounds on acceleration. */
246 #define UATP_MAX_MOTION_MULTIPLIER 16
247
248 /* Status bits transmitted in the last byte of an input packet. */
249 #define UATP_STATUS_BUTTON __BIT(0) /* Button pressed */
250 #define UATP_STATUS_BASE __BIT(2) /* Base sensor data */
251 #define UATP_STATUS_POST_RESET __BIT(4) /* Post-reset */
252
253 /* Forward declarations */
254
255 struct uatp_softc; /* Device driver state. */
256 struct uatp_descriptor; /* Descriptor for a particular model. */
257 struct uatp_parameters; /* Parameters common to a set of models. */
258 struct uatp_knobs; /* User-settable configuration knobs. */
259 enum uatp_tap_state {
260 TAP_STATE_INITIAL,
261 TAP_STATE_TAPPING,
262 TAP_STATE_TAPPED,
263 TAP_STATE_DOUBLE_TAPPING,
264 TAP_STATE_DRAGGING_DOWN,
265 TAP_STATE_DRAGGING_UP,
266 TAP_STATE_TAPPING_IN_DRAG,
267 };
268
269 static const struct uatp_descriptor *find_uatp_descriptor
270 (const struct uhidev_attach_arg *);
271 static device_t uatp_dev(const struct uatp_softc *);
272 static uint8_t *uatp_x_sample(struct uatp_softc *);
273 static uint8_t *uatp_y_sample(struct uatp_softc *);
274 static int *uatp_x_acc(struct uatp_softc *);
275 static int *uatp_y_acc(struct uatp_softc *);
276 static void uatp_clear_position(struct uatp_softc *);
277 static unsigned int uatp_x_sensors(const struct uatp_softc *);
278 static unsigned int uatp_y_sensors(const struct uatp_softc *);
279 static unsigned int uatp_x_ratio(const struct uatp_softc *);
280 static unsigned int uatp_y_ratio(const struct uatp_softc *);
281 static unsigned int uatp_old_raw_weight(const struct uatp_softc *);
282 static unsigned int uatp_old_smoothed_weight(const struct uatp_softc *);
283 static unsigned int uatp_new_raw_weight(const struct uatp_softc *);
284 static int scale_motion(const struct uatp_softc *, int, int *,
285 const unsigned int *, const unsigned int *);
286 static int uatp_scale_motion(const struct uatp_softc *, int, int *);
287 static int uatp_scale_fast_motion(const struct uatp_softc *, int, int *);
288 static int uatp_match(device_t, cfdata_t, void *);
289 static void uatp_attach(device_t, device_t, void *);
290 static void uatp_setup_sysctl(struct uatp_softc *);
291 static bool uatp_setup_sysctl_knob(struct uatp_softc *, int *, const char *,
292 const char *);
293 static void uatp_childdet(device_t, device_t);
294 static int uatp_detach(device_t, int);
295 static int uatp_activate(device_t, enum devact);
296 static int uatp_enable(void *);
297 static void uatp_disable(void *);
298 static int uatp_ioctl(void *, unsigned long, void *, int, struct lwp *);
299 static void geyser34_enable_raw_mode(struct uatp_softc *);
300 static void geyser34_initialize(struct uatp_softc *);
301 static int geyser34_finalize(struct uatp_softc *);
302 static void geyser34_deferred_reset(struct uatp_softc *);
303 static void geyser34_reset_task(void *);
304 static void uatp_intr(struct uhidev *, void *, unsigned int);
305 static bool base_sample_softc_flag(const struct uatp_softc *, const uint8_t *);
306 static bool base_sample_input_flag(const struct uatp_softc *, const uint8_t *);
307 static void read_sample_1(uint8_t *, uint8_t *, const uint8_t *);
308 static void read_sample_2(uint8_t *, uint8_t *, const uint8_t *);
309 static void accumulate_sample_1(struct uatp_softc *);
310 static void accumulate_sample_2(struct uatp_softc *);
311 static void uatp_input(struct uatp_softc *, uint32_t, int, int, int, int);
312 static uint32_t uatp_tapped_buttons(struct uatp_softc *);
313 static bool interpret_input(struct uatp_softc *, int *, int *, int *, int *,
314 uint32_t *);
315 static unsigned int interpret_dimension(struct uatp_softc *, const int *,
316 unsigned int, unsigned int, unsigned int *, unsigned int *);
317 static void tap_initialize(struct uatp_softc *);
318 static void tap_finalize(struct uatp_softc *);
319 static void tap_enable(struct uatp_softc *);
320 static void tap_disable(struct uatp_softc *);
321 static void tap_transition(struct uatp_softc *, enum uatp_tap_state,
322 const struct timeval *, unsigned int, unsigned int);
323 static void tap_transition_initial(struct uatp_softc *);
324 static void tap_transition_tapping(struct uatp_softc *, const struct timeval *,
325 unsigned int);
326 static void tap_transition_double_tapping(struct uatp_softc *,
327 const struct timeval *, unsigned int);
328 static void tap_transition_dragging_down(struct uatp_softc *);
329 static void tap_transition_tapping_in_drag(struct uatp_softc *,
330 const struct timeval *, unsigned int);
331 static void tap_transition_tapped(struct uatp_softc *, const struct timeval *);
332 static void tap_transition_dragging_up(struct uatp_softc *);
333 static void tap_reset(struct uatp_softc *);
334 static void tap_reset_wait(struct uatp_softc *);
335 static void tap_touched(struct uatp_softc *, unsigned int);
336 static bool tap_released(struct uatp_softc *);
337 static void schedule_untap(struct uatp_softc *);
338 static void untap_callout(void *);
339 static uint32_t emulated_buttons(struct uatp_softc *, unsigned int);
340 static void update_position(struct uatp_softc *, unsigned int,
341 unsigned int, unsigned int, int *, int *, int *, int *);
342 static void move_mouse(struct uatp_softc *, unsigned int, unsigned int,
343 int *, int *);
344 static void scroll_wheel(struct uatp_softc *, unsigned int, unsigned int,
345 int *, int *);
346 static void move(struct uatp_softc *, const char *, unsigned int, unsigned int,
347 int *, int *, int *, int *, unsigned int *, unsigned int *, int *, int *);
348 static int smooth(struct uatp_softc *, unsigned int, unsigned int,
349 unsigned int);
350 static bool motion_below_threshold(struct uatp_softc *, unsigned int,
351 int, int);
352 static int accelerate(struct uatp_softc *, unsigned int, unsigned int,
353 unsigned int, unsigned int, bool, int *);
354
355 struct uatp_knobs {
356 /*
357 * Button emulation. What do we do when two or three fingers
358 * are on the trackpad when the user presses the button?
359 */
360 unsigned int two_finger_buttons;
361 unsigned int three_finger_buttons;
362
363 #if 0
364 /*
365 * Edge scrolling.
366 *
367 * XXX Implement this. What units should these be in?
368 */
369 unsigned int top_edge;
370 unsigned int bottom_edge;
371 unsigned int left_edge;
372 unsigned int right_edge;
373 #endif
374
375 /*
376 * Multifinger tracking. What do we do with multiple fingers?
377 * 0. Ignore them.
378 * 1. Try to interpret them as ordinary mousing.
379 * 2. Act like a two-dimensional scroll wheel.
380 */
381 unsigned int multifinger_track;
382
383 /*
384 * Sensor parameters.
385 */
386 unsigned int x_sensors;
387 unsigned int x_ratio;
388 unsigned int y_sensors;
389 unsigned int y_ratio;
390 unsigned int sensor_threshold;
391 unsigned int sensor_normalizer;
392 unsigned int palm_width;
393 unsigned int old_raw_weight;
394 unsigned int old_smoothed_weight;
395 unsigned int new_raw_weight;
396
397 /*
398 * Motion parameters.
399 *
400 * XXX There should be a more principled model of acceleration.
401 */
402 unsigned int motion_remainder;
403 unsigned int motion_threshold;
404 unsigned int motion_multiplier;
405 unsigned int motion_divisor;
406 unsigned int fast_motion_threshold;
407 unsigned int fast_motion_multiplier;
408 unsigned int fast_motion_divisor;
409 unsigned int fast_per_direction;
410 unsigned int motion_delay;
411
412 /*
413 * Tapping.
414 */
415 unsigned int tap_limit_msec;
416 unsigned int double_tap_limit_msec;
417 unsigned int one_finger_tap_buttons;
418 unsigned int two_finger_tap_buttons;
419 unsigned int three_finger_tap_buttons;
420 unsigned int tap_track_distance_limit;
421 };
422
423 static const struct uatp_knobs default_knobs = {
424 /*
425 * Button emulation. Fingers on the trackpad don't change it
426 * by default -- it's still the left button.
427 *
428 * XXX The left button should have a name.
429 */
430 .two_finger_buttons = 1,
431 .three_finger_buttons = 1,
432
433 #if 0
434 /*
435 * Edge scrolling. Off by default.
436 */
437 .top_edge = 0,
438 .bottom_edge = 0,
439 .left_edge = 0,
440 .right_edge = 0,
441 #endif
442
443 /*
444 * Multifinger tracking. Ignore by default.
445 */
446 .multifinger_track = 0,
447
448 /*
449 * Sensor parameters.
450 */
451 .x_sensors = 0, /* default for model */
452 .x_ratio = 0, /* default for model */
453 .y_sensors = 0, /* default for model */
454 .y_ratio = 0, /* default for model */
455 .sensor_threshold = 5,
456 .sensor_normalizer = 5,
457 .palm_width = 0, /* palm detection disabled */
458 .old_raw_weight = 0,
459 .old_smoothed_weight = 5,
460 .new_raw_weight = 1,
461
462 /*
463 * Motion parameters.
464 */
465 .motion_remainder = 1,
466 .motion_threshold = 0,
467 .motion_multiplier = 1,
468 .motion_divisor = 1,
469 .fast_motion_threshold = 10,
470 .fast_motion_multiplier = 3,
471 .fast_motion_divisor = 2,
472 .fast_per_direction = 0,
473 .motion_delay = 4,
474
475 /*
476 * Tapping. Disabled by default, with a reasonable time set
477 * nevertheless so that you can just set the buttons to enable
478 * it.
479 */
480 .tap_limit_msec = 100,
481 .double_tap_limit_msec = 200,
482 .one_finger_tap_buttons = 0,
483 .two_finger_tap_buttons = 0,
484 .three_finger_tap_buttons = 0,
485 .tap_track_distance_limit = 200,
486 };
487
488 struct uatp_softc {
489 struct uhidev sc_hdev; /* USB parent. */
490 device_t sc_wsmousedev; /* Attached wsmouse device. */
491 const struct uatp_parameters *sc_parameters;
492 struct uatp_knobs sc_knobs;
493 struct sysctllog *sc_log; /* Log for sysctl knobs. */
494 const struct sysctlnode *sc_node; /* Our sysctl node. */
495 unsigned int sc_input_size; /* Input packet size. */
496 uint8_t sc_input[UATP_MAX_INPUT_SIZE]; /* Buffer for a packet. */
497 unsigned int sc_input_index; /* Current index into sc_input. */
498 int sc_acc[UATP_SENSORS]; /* Accumulated sensor state. */
499 uint8_t sc_base[UATP_SENSORS]; /* Base sample. */
500 uint8_t sc_sample[UATP_SENSORS];/* Current sample. */
501 unsigned int sc_motion_timer; /* XXX describe; motion_delay */
502 int sc_x_raw; /* Raw horiz. mouse position. */
503 int sc_y_raw; /* Raw vert. mouse position. */
504 int sc_z_raw; /* Raw horiz. scroll position. */
505 int sc_w_raw; /* Raw vert. scroll position. */
506 int sc_x_smoothed; /* Smoothed horiz. mouse position. */
507 int sc_y_smoothed; /* Smoothed vert. mouse position. */
508 int sc_z_smoothed; /* Smoothed horiz. scroll position. */
509 int sc_w_smoothed; /* Smoothed vert. scroll position. */
510 int sc_x_remainder; /* Remainders from acceleration. */
511 int sc_y_remainder;
512 int sc_z_remainder;
513 int sc_w_remainder;
514 unsigned int sc_track_distance; /* Distance^2 finger has tracked,
515 * squared to avoid sqrt in kernel. */
516 uint32_t sc_status; /* Status flags: */
517 #define UATP_ENABLED __BIT(0) /* . Is the wsmouse enabled? */
518 #define UATP_DYING __BIT(1) /* . Have we been deactivated? */
519 #define UATP_VALID __BIT(2) /* . Do we have valid sensor data? */
520 struct usb_task sc_reset_task; /* Task for resetting device. */
521
522 callout_t sc_untap_callout; /* Releases button after tap. */
523 kmutex_t sc_tap_mutex; /* Protects the following fields. */
524 enum uatp_tap_state sc_tap_state; /* Current tap state. */
525 unsigned int sc_tapping_fingers; /* No. fingers tapping. */
526 unsigned int sc_tapped_fingers; /* No. fingers of last tap. */
527 struct timeval sc_tap_timer; /* Timer for tap state transitions. */
528 uint32_t sc_buttons; /* Physical buttons pressed. */
529 uint32_t sc_all_buttons; /* Buttons pressed or tapped. */
530
531 #if UATP_DEBUG
532 uint32_t sc_debug_flags; /* Debugging output enabled. */
533 #endif
534 };
535
536 struct uatp_descriptor {
537 uint16_t vendor;
538 uint16_t product;
539 const char *description;
540 const struct uatp_parameters *parameters;
541 };
542
543 struct uatp_parameters {
544 unsigned int x_ratio; /* Screen width / trackpad width. */
545 unsigned int x_sensors; /* Number of horizontal sensors. */
546 unsigned int x_sensors_17; /* XXX Same, on a 17" laptop. */
547 unsigned int y_ratio; /* Screen height / trackpad height. */
548 unsigned int y_sensors; /* Number of vertical sensors. */
549 unsigned int input_size; /* Size in bytes of input packets. */
550
551 /* Device-specific initialization routine. May be null. */
552 void (*initialize)(struct uatp_softc *);
553
554 /* Device-specific finalization routine. May be null. May fail. */
555 int (*finalize)(struct uatp_softc *);
556
557 /* Tests whether this is a base sample. Second argument is
558 * input_size bytes long. */
559 bool (*base_sample)(const struct uatp_softc *, const uint8_t *);
560
561 /* Reads a sensor sample from an input packet. First argument
562 * is UATP_MAX_X_SENSORS bytes long; second, UATP_MAX_Y_SENSORS
563 * bytes; third, input_size bytes. */
564 void (*read_sample)(uint8_t *, uint8_t *, const uint8_t *);
565
566 /* Accumulates sensor state in sc->sc_acc. */
567 void (*accumulate)(struct uatp_softc *);
568
569 /* Called on spurious interrupts to reset. May be null. */
570 void (*reset)(struct uatp_softc *);
571 };
572
573 /* Known device parameters */
574
575 static const struct uatp_parameters fountain_parameters = {
576 .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26,
577 .y_ratio = 43, .y_sensors = 16,
578 .input_size = 81,
579 .initialize = NULL,
580 .finalize = NULL,
581 .base_sample = base_sample_softc_flag,
582 .read_sample = read_sample_1,
583 .accumulate = accumulate_sample_1,
584 .reset = NULL,
585 };
586
587 static const struct uatp_parameters geyser_1_parameters = {
588 .x_ratio = 64, .x_sensors = 16, .x_sensors_17 = 26,
589 .y_ratio = 43, .y_sensors = 16,
590 .input_size = 81,
591 .initialize = NULL,
592 .finalize = NULL,
593 .base_sample = base_sample_softc_flag,
594 .read_sample = read_sample_1,
595 .accumulate = accumulate_sample_1,
596 .reset = NULL,
597 };
598
599 static const struct uatp_parameters geyser_2_parameters = {
600 .x_ratio = 64, .x_sensors = 15, .x_sensors_17 = 20,
601 .y_ratio = 43, .y_sensors = 9,
602 .input_size = 64,
603 .initialize = NULL,
604 .finalize = NULL,
605 .base_sample = base_sample_softc_flag,
606 .read_sample = read_sample_2,
607 .accumulate = accumulate_sample_1,
608 .reset = NULL,
609 };
610
611 /*
612 * The Geyser 3 and Geyser 4 share parameters. They also present
613 * generic USB HID mice on a different report id, so we have smaller
614 * packets by one byte (uhidev handles multiplexing report ids) and
615 * extra initialization work to switch the mode from generic USB HID
616 * mouse to Apple trackpad.
617 */
618
619 static const struct uatp_parameters geyser_3_4_parameters = {
620 .x_ratio = 64, .x_sensors = 20, /* XXX */ .x_sensors_17 = 0,
621 .y_ratio = 64, .y_sensors = 9,
622 .input_size = 63, /* 64, minus one for the report id. */
623 .initialize = geyser34_initialize,
624 .finalize = geyser34_finalize,
625 .base_sample = base_sample_input_flag,
626 .read_sample = read_sample_2,
627 .accumulate = accumulate_sample_2,
628 .reset = geyser34_deferred_reset,
629 };
630
631 /* Known device models */
632
633 #define APPLE_TRACKPAD(PRODUCT, DESCRIPTION, PARAMETERS) \
634 { \
635 .vendor = USB_VENDOR_APPLE, \
636 .product = (PRODUCT), \
637 .description = "Apple " DESCRIPTION " trackpad", \
638 .parameters = (& (PARAMETERS)), \
639 }
640
641 #define POWERBOOK_TRACKPAD(PRODUCT, PARAMETERS) \
642 APPLE_TRACKPAD(PRODUCT, "PowerBook/iBook", PARAMETERS)
643 #define MACBOOK_TRACKPAD(PRODUCT, PARAMETERS) \
644 APPLE_TRACKPAD(PRODUCT, "MacBook/MacBook Pro", PARAMETERS)
645
646 static const struct uatp_descriptor uatp_descriptors[] =
647 {
648 POWERBOOK_TRACKPAD(0x020e, fountain_parameters),
649 POWERBOOK_TRACKPAD(0x020f, fountain_parameters),
650 POWERBOOK_TRACKPAD(0x030a, fountain_parameters),
651
652 POWERBOOK_TRACKPAD(0x030b, geyser_1_parameters),
653
654 POWERBOOK_TRACKPAD(0x0214, geyser_2_parameters),
655 POWERBOOK_TRACKPAD(0x0215, geyser_2_parameters),
656 POWERBOOK_TRACKPAD(0x0216, geyser_2_parameters),
657
658 MACBOOK_TRACKPAD(0x0217, geyser_3_4_parameters), /* 3 */
659 MACBOOK_TRACKPAD(0x0218, geyser_3_4_parameters), /* 3 */
660 MACBOOK_TRACKPAD(0x0219, geyser_3_4_parameters), /* 3 */
661
662 MACBOOK_TRACKPAD(0x021a, geyser_3_4_parameters), /* 4 */
663 MACBOOK_TRACKPAD(0x021b, geyser_3_4_parameters), /* 4 */
664 MACBOOK_TRACKPAD(0x021c, geyser_3_4_parameters), /* 4 */
665
666 MACBOOK_TRACKPAD(0x0229, geyser_3_4_parameters), /* 4 */
667 MACBOOK_TRACKPAD(0x022a, geyser_3_4_parameters), /* 4 */
668 MACBOOK_TRACKPAD(0x022b, geyser_3_4_parameters), /* 4 */
669 };
670
671 #undef MACBOOK_TRACKPAD
672 #undef POWERBOOK_TRACKPAD
673 #undef APPLE_TRACKPAD
674
675 /* Miscellaneous utilities */
676
677 static const struct uatp_descriptor *
678 find_uatp_descriptor(const struct uhidev_attach_arg *uha)
679 {
680 unsigned int i;
681
682 for (i = 0; i < __arraycount(uatp_descriptors); i++)
683 if ((uha->uiaa->uiaa_vendor == uatp_descriptors[i].vendor) &&
684 (uha->uiaa->uiaa_product == uatp_descriptors[i].product))
685 return &uatp_descriptors[i];
686
687 return NULL;
688 }
689
690 static device_t
691 uatp_dev(const struct uatp_softc *sc)
692 {
693 return sc->sc_hdev.sc_dev;
694 }
695
696 static uint8_t *
697 uatp_x_sample(struct uatp_softc *sc)
698 {
699 return &sc->sc_sample[0];
700 }
701
702 static uint8_t *
703 uatp_y_sample(struct uatp_softc *sc)
704 {
705 return &sc->sc_sample[UATP_MAX_X_SENSORS];
706 }
707
708 static int *
709 uatp_x_acc(struct uatp_softc *sc)
710 {
711 return &sc->sc_acc[0];
712 }
713
714 static int *
715 uatp_y_acc(struct uatp_softc *sc)
716 {
717 return &sc->sc_acc[UATP_MAX_X_SENSORS];
718 }
719
720 static void
721 uatp_clear_position(struct uatp_softc *sc)
722 {
723 memset(sc->sc_acc, 0, sizeof(sc->sc_acc));
724 sc->sc_motion_timer = 0;
725 sc->sc_x_raw = sc->sc_x_smoothed = -1;
726 sc->sc_y_raw = sc->sc_y_smoothed = -1;
727 sc->sc_z_raw = sc->sc_z_smoothed = -1;
728 sc->sc_w_raw = sc->sc_w_smoothed = -1;
729 sc->sc_x_remainder = 0;
730 sc->sc_y_remainder = 0;
731 sc->sc_z_remainder = 0;
732 sc->sc_w_remainder = 0;
733 sc->sc_track_distance = 0;
734 }
735
736 static unsigned int
737 uatp_x_sensors(const struct uatp_softc *sc)
738 {
739 if ((0 < sc->sc_knobs.x_sensors) &&
740 (sc->sc_knobs.x_sensors <= UATP_MAX_X_SENSORS))
741 return sc->sc_knobs.x_sensors;
742 else
743 return sc->sc_parameters->x_sensors;
744 }
745
746 static unsigned int
747 uatp_y_sensors(const struct uatp_softc *sc)
748 {
749 if ((0 < sc->sc_knobs.y_sensors) &&
750 (sc->sc_knobs.y_sensors <= UATP_MAX_Y_SENSORS))
751 return sc->sc_knobs.y_sensors;
752 else
753 return sc->sc_parameters->y_sensors;
754 }
755
756 static unsigned int
757 uatp_x_ratio(const struct uatp_softc *sc)
758 {
759 /* XXX Reject bogus values in sysctl. */
760 if ((0 < sc->sc_knobs.x_ratio) &&
761 (sc->sc_knobs.x_ratio <= UATP_MAX_X_RATIO))
762 return sc->sc_knobs.x_ratio;
763 else
764 return sc->sc_parameters->x_ratio;
765 }
766
767 static unsigned int
768 uatp_y_ratio(const struct uatp_softc *sc)
769 {
770 /* XXX Reject bogus values in sysctl. */
771 if ((0 < sc->sc_knobs.y_ratio) &&
772 (sc->sc_knobs.y_ratio <= UATP_MAX_Y_RATIO))
773 return sc->sc_knobs.y_ratio;
774 else
775 return sc->sc_parameters->y_ratio;
776 }
777
778 static unsigned int
779 uatp_old_raw_weight(const struct uatp_softc *sc)
780 {
781 /* XXX Reject bogus values in sysctl. */
782 if (sc->sc_knobs.old_raw_weight <= UATP_MAX_WEIGHT)
783 return sc->sc_knobs.old_raw_weight;
784 else
785 return 0;
786 }
787
788 static unsigned int
789 uatp_old_smoothed_weight(const struct uatp_softc *sc)
790 {
791 /* XXX Reject bogus values in sysctl. */
792 if (sc->sc_knobs.old_smoothed_weight <= UATP_MAX_WEIGHT)
793 return sc->sc_knobs.old_smoothed_weight;
794 else
795 return 0;
796 }
797
798 static unsigned int
799 uatp_new_raw_weight(const struct uatp_softc *sc)
800 {
801 /* XXX Reject bogus values in sysctl. */
802 if ((0 < sc->sc_knobs.new_raw_weight) &&
803 (sc->sc_knobs.new_raw_weight <= UATP_MAX_WEIGHT))
804 return sc->sc_knobs.new_raw_weight;
805 else
806 return 1;
807 }
808
809 static int
810 scale_motion(const struct uatp_softc *sc, int delta, int *remainder,
811 const unsigned int *multiplier, const unsigned int *divisor)
812 {
813 int product;
814
815 /* XXX Limit the divisor? */
816 if (((*multiplier) == 0) ||
817 ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
818 ((*divisor) == 0))
819 DPRINTF(sc, UATP_DEBUG_ACCEL,
820 ("bad knobs; %d (+ %d) --> %d, rem 0\n",
821 delta, *remainder, (delta + (*remainder))));
822 else
823 DPRINTF(sc, UATP_DEBUG_ACCEL,
824 ("scale %d (+ %d) by %u/%u --> %d, rem %d\n",
825 delta, *remainder,
826 (*multiplier), (*divisor),
827 (((delta + (*remainder)) * ((int) (*multiplier)))
828 / ((int) (*divisor))),
829 (((delta + (*remainder)) * ((int) (*multiplier)))
830 % ((int) (*divisor)))));
831
832 if (sc->sc_knobs.motion_remainder)
833 delta += *remainder;
834 *remainder = 0;
835
836 if (((*multiplier) == 0) ||
837 ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
838 ((*divisor) == 0))
839 return delta;
840
841 product = (delta * ((int) (*multiplier)));
842 *remainder = (product % ((int) (*divisor)));
843 return product / ((int) (*divisor));
844 }
845
846 static int
847 uatp_scale_motion(const struct uatp_softc *sc, int delta, int *remainder)
848 {
849 return scale_motion(sc, delta, remainder,
850 &sc->sc_knobs.motion_multiplier,
851 &sc->sc_knobs.motion_divisor);
852 }
853
854 static int
855 uatp_scale_fast_motion(const struct uatp_softc *sc, int delta, int *remainder)
856 {
857 return scale_motion(sc, delta, remainder,
858 &sc->sc_knobs.fast_motion_multiplier,
859 &sc->sc_knobs.fast_motion_divisor);
860 }
861
862 /* Driver goop */
863
864 CFATTACH_DECL2_NEW(uatp, sizeof(struct uatp_softc), uatp_match, uatp_attach,
865 uatp_detach, uatp_activate, NULL, uatp_childdet);
866
867 static const struct wsmouse_accessops uatp_accessops = {
868 .enable = uatp_enable,
869 .disable = uatp_disable,
870 .ioctl = uatp_ioctl,
871 };
872
873 static int
874 uatp_match(device_t parent, cfdata_t match, void *aux)
875 {
876 const struct uhidev_attach_arg *uha = aux;
877 void *report_descriptor;
878 int report_size, input_size;
879 const struct uatp_descriptor *uatp_descriptor;
880
881 aprint_debug("%s: vendor 0x%04x, product 0x%04x\n", __func__,
882 (unsigned int)uha->uiaa->uiaa_vendor,
883 (unsigned int)uha->uiaa->uiaa_product);
884 aprint_debug("%s: class 0x%04x, subclass 0x%04x, proto 0x%04x\n",
885 __func__,
886 (unsigned int)uha->uiaa->uiaa_class,
887 (unsigned int)uha->uiaa->uiaa_subclass,
888 (unsigned int)uha->uiaa->uiaa_proto);
889
890 uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
891 input_size = hid_report_size(report_descriptor, report_size,
892 hid_input, uha->reportid);
893 aprint_debug("%s: reportid %d, input size %d\n", __func__,
894 (int)uha->reportid, input_size);
895
896 /*
897 * Keyboards, trackpads, and eject buttons share common vendor
898 * and product ids, but not protocols: only the trackpad
899 * reports a mouse protocol.
900 */
901 if (uha->uiaa->uiaa_proto != UIPROTO_MOUSE)
902 return UMATCH_NONE;
903
904 /* Check for a known vendor/product id. */
905 uatp_descriptor = find_uatp_descriptor(uha);
906 if (uatp_descriptor == NULL) {
907 aprint_debug("%s: unknown vendor/product id\n", __func__);
908 return UMATCH_NONE;
909 }
910
911 /* Check for the expected input size. */
912 if ((input_size < 0) ||
913 ((unsigned int)input_size !=
914 uatp_descriptor->parameters->input_size)) {
915 aprint_debug("%s: expected input size %u\n", __func__,
916 uatp_descriptor->parameters->input_size);
917 return UMATCH_NONE;
918 }
919
920 return UMATCH_VENDOR_PRODUCT_CONF_IFACE;
921 }
922
923 static void
924 uatp_attach(device_t parent, device_t self, void *aux)
925 {
926 struct uatp_softc *sc = device_private(self);
927 const struct uhidev_attach_arg *uha = aux;
928 const struct uatp_descriptor *uatp_descriptor;
929 void *report_descriptor;
930 int report_size, input_size;
931 struct wsmousedev_attach_args a;
932
933 /* Set up uhidev state. (Why doesn't uhidev do most of this?) */
934 sc->sc_hdev.sc_dev = self;
935 sc->sc_hdev.sc_intr = uatp_intr;
936 sc->sc_hdev.sc_parent = uha->parent;
937 sc->sc_hdev.sc_report_id = uha->reportid;
938
939 /* Identify ourselves to dmesg. */
940 uatp_descriptor = find_uatp_descriptor(uha);
941 KASSERT(uatp_descriptor != NULL);
942 aprint_normal(": %s\n", uatp_descriptor->description);
943 aprint_naive(": %s\n", uatp_descriptor->description);
944 aprint_verbose_dev(self,
945 "vendor 0x%04x, product 0x%04x, report id %d\n",
946 (unsigned int)uha->uiaa->uiaa_vendor,
947 (unsigned int)uha->uiaa->uiaa_product,
948 (int)uha->reportid);
949
950 uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
951 input_size = hid_report_size(report_descriptor, report_size, hid_input,
952 uha->reportid);
953 KASSERT(0 < input_size);
954 sc->sc_input_size = input_size;
955
956 /* Initialize model-specific parameters. */
957 sc->sc_parameters = uatp_descriptor->parameters;
958 KASSERT((int)sc->sc_parameters->input_size == input_size);
959 KASSERT(sc->sc_parameters->x_sensors <= UATP_MAX_X_SENSORS);
960 KASSERT(sc->sc_parameters->x_ratio <= UATP_MAX_X_RATIO);
961 KASSERT(sc->sc_parameters->y_sensors <= UATP_MAX_Y_SENSORS);
962 KASSERT(sc->sc_parameters->y_ratio <= UATP_MAX_Y_RATIO);
963 aprint_verbose_dev(self,
964 "%u x sensors, scaled by %u for %u points on screen\n",
965 sc->sc_parameters->x_sensors, sc->sc_parameters->x_ratio,
966 sc->sc_parameters->x_sensors * sc->sc_parameters->x_ratio);
967 aprint_verbose_dev(self,
968 "%u y sensors, scaled by %u for %u points on screen\n",
969 sc->sc_parameters->y_sensors, sc->sc_parameters->y_ratio,
970 sc->sc_parameters->y_sensors * sc->sc_parameters->y_ratio);
971 if (sc->sc_parameters->initialize)
972 sc->sc_parameters->initialize(sc);
973
974 /* Register with pmf. Nothing special for suspend/resume. */
975 if (!pmf_device_register(self, NULL, NULL))
976 aprint_error_dev(self, "couldn't establish power handler\n");
977
978 /* Initialize knobs and create sysctl subtree to tweak them. */
979 sc->sc_knobs = default_knobs;
980 uatp_setup_sysctl(sc);
981
982 /* Initialize tapping. */
983 tap_initialize(sc);
984
985 /* Attach wsmouse. */
986 a.accessops = &uatp_accessops;
987 a.accesscookie = sc;
988 sc->sc_wsmousedev = config_found(self, &a, wsmousedevprint, CFARGS_NONE);
989 }
990
991 /* Sysctl setup */
992
993 static void
994 uatp_setup_sysctl(struct uatp_softc *sc)
995 {
996 int error;
997
998 error = sysctl_createv(&sc->sc_log, 0, NULL, &sc->sc_node, 0,
999 CTLTYPE_NODE, device_xname(uatp_dev(sc)),
1000 SYSCTL_DESCR("uatp configuration knobs"),
1001 NULL, 0, NULL, 0,
1002 CTL_HW, CTL_CREATE, CTL_EOL);
1003 if (error != 0) {
1004 aprint_error_dev(uatp_dev(sc),
1005 "unable to set up sysctl tree hw.%s: %d\n",
1006 device_xname(uatp_dev(sc)), error);
1007 goto err;
1008 }
1009
1010 #if UATP_DEBUG
1011 if (!uatp_setup_sysctl_knob(sc, &sc->sc_debug_flags, "debug",
1012 "uatp(4) debug flags"))
1013 goto err;
1014 #endif
1015
1016 /*
1017 * Button emulation.
1018 */
1019 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_buttons,
1020 "two_finger_buttons",
1021 "buttons to emulate with two fingers on trackpad"))
1022 goto err;
1023 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_buttons,
1024 "three_finger_buttons",
1025 "buttons to emulate with three fingers on trackpad"))
1026 goto err;
1027
1028 #if 0
1029 /*
1030 * Edge scrolling.
1031 */
1032 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.top_edge, "top_edge",
1033 "width of top edge for edge scrolling"))
1034 goto err;
1035 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.bottom_edge,
1036 "bottom_edge", "width of bottom edge for edge scrolling"))
1037 goto err;
1038 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.left_edge, "left_edge",
1039 "width of left edge for edge scrolling"))
1040 goto err;
1041 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.right_edge, "right_edge",
1042 "width of right edge for edge scrolling"))
1043 goto err;
1044 #endif
1045
1046 /*
1047 * Multifinger tracking.
1048 */
1049 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.multifinger_track,
1050 "multifinger_track",
1051 "0 to ignore multiple fingers, 1 to reset, 2 to scroll"))
1052 goto err;
1053
1054 /*
1055 * Sensor parameters.
1056 */
1057 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_sensors, "x_sensors",
1058 "number of x sensors"))
1059 goto err;
1060 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_ratio, "x_ratio",
1061 "screen width to trackpad width ratio"))
1062 goto err;
1063 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_sensors, "y_sensors",
1064 "number of y sensors"))
1065 goto err;
1066 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_ratio, "y_ratio",
1067 "screen height to trackpad height ratio"))
1068 goto err;
1069 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_threshold,
1070 "sensor_threshold", "sensor threshold"))
1071 goto err;
1072 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_normalizer,
1073 "sensor_normalizer", "sensor normalizer"))
1074 goto err;
1075 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.palm_width,
1076 "palm_width", "lower bound on width/height of palm"))
1077 goto err;
1078 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_raw_weight,
1079 "old_raw_weight", "weight of old raw position"))
1080 goto err;
1081 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_smoothed_weight,
1082 "old_smoothed_weight", "weight of old smoothed position"))
1083 goto err;
1084 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.new_raw_weight,
1085 "new_raw_weight", "weight of new raw position"))
1086 goto err;
1087 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_remainder,
1088 "motion_remainder", "remember motion division remainder"))
1089 goto err;
1090 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_threshold,
1091 "motion_threshold", "threshold before finger moves cursor"))
1092 goto err;
1093 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_multiplier,
1094 "motion_multiplier", "numerator of motion scale"))
1095 goto err;
1096 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_divisor,
1097 "motion_divisor", "divisor of motion scale"))
1098 goto err;
1099 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_threshold,
1100 "fast_motion_threshold", "threshold before fast motion"))
1101 goto err;
1102 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_multiplier,
1103 "fast_motion_multiplier", "numerator of fast motion scale"))
1104 goto err;
1105 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_divisor,
1106 "fast_motion_divisor", "divisor of fast motion scale"))
1107 goto err;
1108 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_per_direction,
1109 "fast_per_direction", "don't frobnitz the veeblefitzer!"))
1110 goto err;
1111 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_delay,
1112 "motion_delay", "number of packets before motion kicks in"))
1113 goto err;
1114
1115 /*
1116 * Tapping.
1117 */
1118 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_limit_msec,
1119 "tap_limit_msec", "milliseconds before a touch is not a tap"))
1120 goto err;
1121 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.double_tap_limit_msec,
1122 "double_tap_limit_msec",
1123 "milliseconds before a second tap keeps the button down"))
1124 goto err;
1125 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.one_finger_tap_buttons,
1126 "one_finger_tap_buttons", "buttons for one-finger taps"))
1127 goto err;
1128 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_tap_buttons,
1129 "two_finger_tap_buttons", "buttons for two-finger taps"))
1130 goto err;
1131 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_tap_buttons,
1132 "three_finger_tap_buttons", "buttons for three-finger taps"))
1133 goto err;
1134 if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_track_distance_limit,
1135 "tap_track_distance_limit",
1136 "maximum distance^2 of tracking during tap"))
1137 goto err;
1138
1139 return;
1140
1141 err:
1142 sysctl_teardown(&sc->sc_log);
1143 sc->sc_node = NULL;
1144 }
1145
1146 static bool
1147 uatp_setup_sysctl_knob(struct uatp_softc *sc, int *ptr, const char *name,
1148 const char *description)
1149 {
1150 int error;
1151
1152 error = sysctl_createv(&sc->sc_log, 0, NULL, NULL, CTLFLAG_READWRITE,
1153 CTLTYPE_INT, name, SYSCTL_DESCR(description),
1154 NULL, 0, ptr, 0,
1155 CTL_HW, sc->sc_node->sysctl_num, CTL_CREATE, CTL_EOL);
1156 if (error != 0) {
1157 aprint_error_dev(uatp_dev(sc),
1158 "unable to setup sysctl node hw.%s.%s: %d\n",
1159 device_xname(uatp_dev(sc)), name, error);
1160 return false;
1161 }
1162
1163 return true;
1164 }
1165
1166 /* More driver goop */
1167
1168 static void
1169 uatp_childdet(device_t self, device_t child)
1170 {
1171 struct uatp_softc *sc = device_private(self);
1172
1173 DPRINTF(sc, UATP_DEBUG_MISC, ("detaching child %s\n",
1174 device_xname(child)));
1175
1176 /* Our only child is the wsmouse device. */
1177 if (child == sc->sc_wsmousedev)
1178 sc->sc_wsmousedev = NULL;
1179 }
1180
1181 static int
1182 uatp_detach(device_t self, int flags)
1183 {
1184 struct uatp_softc *sc = device_private(self);
1185
1186 DPRINTF(sc, UATP_DEBUG_MISC, ("detaching with flags %d\n", flags));
1187
1188 if (sc->sc_status & UATP_ENABLED) {
1189 aprint_error_dev(uatp_dev(sc), "can't detach while enabled\n");
1190 return EBUSY;
1191 }
1192
1193 if (sc->sc_parameters->finalize) {
1194 int error = sc->sc_parameters->finalize(sc);
1195 if (error != 0)
1196 return error;
1197 }
1198
1199 pmf_device_deregister(self);
1200
1201 sysctl_teardown(&sc->sc_log);
1202 sc->sc_node = NULL;
1203
1204 tap_finalize(sc);
1205
1206 return config_detach_children(self, flags);
1207 }
1208
1209 static int
1210 uatp_activate(device_t self, enum devact act)
1211 {
1212 struct uatp_softc *sc = device_private(self);
1213
1214 DPRINTF(sc, UATP_DEBUG_MISC, ("act %d\n", (int)act));
1215
1216 if (act != DVACT_DEACTIVATE)
1217 return EOPNOTSUPP;
1218
1219 sc->sc_status |= UATP_DYING;
1220
1221 return 0;
1222 }
1223
1224 /* wsmouse routines */
1225
1226 static int
1227 uatp_enable(void *v)
1228 {
1229 struct uatp_softc *sc = v;
1230
1231 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("enabling wsmouse\n"));
1232
1233 /* Refuse to enable if we've been deactivated. */
1234 if (sc->sc_status & UATP_DYING) {
1235 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("busy dying\n"));
1236 return EIO;
1237 }
1238
1239 /* Refuse to enable if we already are enabled. */
1240 if (sc->sc_status & UATP_ENABLED) {
1241 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("already enabled\n"));
1242 return EBUSY;
1243 }
1244
1245 sc->sc_status |= UATP_ENABLED;
1246 sc->sc_status &=~ UATP_VALID;
1247 sc->sc_input_index = 0;
1248 tap_enable(sc);
1249 uatp_clear_position(sc);
1250
1251 DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_open(%p)\n", &sc->sc_hdev));
1252 return uhidev_open(&sc->sc_hdev);
1253 }
1254
1255 static void
1256 uatp_disable(void *v)
1257 {
1258 struct uatp_softc *sc = v;
1259
1260 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("disabling wsmouse\n"));
1261
1262 if (!(sc->sc_status & UATP_ENABLED)) {
1263 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("not enabled\n"));
1264 return;
1265 }
1266
1267 tap_disable(sc);
1268 sc->sc_status &=~ UATP_ENABLED;
1269
1270 DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_close(%p)\n", &sc->sc_hdev));
1271 uhidev_close(&sc->sc_hdev);
1272 }
1273
1274 static int
1275 uatp_ioctl(void *v, unsigned long cmd, void *data, int flag, struct lwp *p)
1276 {
1277
1278 DPRINTF((struct uatp_softc*)v, UATP_DEBUG_IOCTL,
1279 ("cmd %lx, data %p, flag %x, lwp %p\n", cmd, data, flag, p));
1280
1281 /* XXX Implement any relevant wsmouse(4) ioctls. */
1282 return EPASSTHROUGH;
1283 }
1284
1285 /*
1286 * The Geyser 3 and 4 models talk the generic USB HID mouse protocol by
1287 * default. This mode switch makes them give raw sensor data instead
1288 * so that we can implement tapping, two-finger scrolling, &c.
1289 */
1290
1291 #define GEYSER34_RAW_MODE 0x04
1292 #define GEYSER34_MODE_REPORT_ID 0
1293 #define GEYSER34_MODE_INTERFACE 0
1294 #define GEYSER34_MODE_PACKET_SIZE 8
1295
1296 static void
1297 geyser34_enable_raw_mode(struct uatp_softc *sc)
1298 {
1299 struct usbd_device *udev = sc->sc_hdev.sc_parent->sc_udev;
1300 usb_device_request_t req;
1301 usbd_status status;
1302 uint8_t report[GEYSER34_MODE_PACKET_SIZE];
1303
1304 req.bmRequestType = UT_READ_CLASS_INTERFACE;
1305 req.bRequest = UR_GET_REPORT;
1306 USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
1307 USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
1308 USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
1309
1310 DPRINTF(sc, UATP_DEBUG_RESET, ("get feature report\n"));
1311 status = usbd_do_request(udev, &req, report);
1312 if (status != USBD_NORMAL_COMPLETION) {
1313 aprint_error_dev(uatp_dev(sc),
1314 "error reading feature report: %s\n", usbd_errstr(status));
1315 return;
1316 }
1317
1318 #if UATP_DEBUG
1319 if (sc->sc_debug_flags & UATP_DEBUG_RESET) {
1320 unsigned int i;
1321 DPRINTF(sc, UATP_DEBUG_RESET, ("old feature report:"));
1322 for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
1323 printf(" %02x", (unsigned int)report[i]);
1324 printf("\n");
1325 /* Doing this twice is harmless here and lets this be
1326 * one ifdef. */
1327 report[0] = GEYSER34_RAW_MODE;
1328 DPRINTF(sc, UATP_DEBUG_RESET, ("new feature report:"));
1329 for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
1330 printf(" %02x", (unsigned int)report[i]);
1331 printf("\n");
1332 }
1333 #endif
1334
1335 report[0] = GEYSER34_RAW_MODE;
1336
1337 req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
1338 req.bRequest = UR_SET_REPORT;
1339 USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
1340 USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
1341 USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
1342
1343 DPRINTF(sc, UATP_DEBUG_RESET, ("set feature report\n"));
1344 status = usbd_do_request(udev, &req, report);
1345 if (status != USBD_NORMAL_COMPLETION) {
1346 aprint_error_dev(uatp_dev(sc),
1347 "error writing feature report: %s\n", usbd_errstr(status));
1348 return;
1349 }
1350 }
1351
1352 /*
1353 * The Geyser 3 and 4 need to be reset periodically after we detect a
1354 * continual flow of spurious interrupts. We use a USB task for this.
1355 */
1356
1357 static void
1358 geyser34_initialize(struct uatp_softc *sc)
1359 {
1360
1361 DPRINTF(sc, UATP_DEBUG_MISC, ("initializing\n"));
1362 geyser34_enable_raw_mode(sc);
1363 usb_init_task(&sc->sc_reset_task, &geyser34_reset_task, sc, 0);
1364 }
1365
1366 static int
1367 geyser34_finalize(struct uatp_softc *sc)
1368 {
1369
1370 DPRINTF(sc, UATP_DEBUG_MISC, ("finalizing\n"));
1371 usb_rem_task_wait(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task,
1372 USB_TASKQ_DRIVER, NULL);
1373
1374 return 0;
1375 }
1376
1377 static void
1378 geyser34_deferred_reset(struct uatp_softc *sc)
1379 {
1380
1381 DPRINTF(sc, UATP_DEBUG_RESET, ("deferring reset\n"));
1382 usb_add_task(sc->sc_hdev.sc_parent->sc_udev, &sc->sc_reset_task,
1383 USB_TASKQ_DRIVER);
1384 }
1385
1386 static void
1387 geyser34_reset_task(void *arg)
1388 {
1389 struct uatp_softc *sc = arg;
1390
1391 DPRINTF(sc, UATP_DEBUG_RESET, ("resetting\n"));
1392
1393 /* Reset by putting it into raw mode. Not sure why. */
1394 geyser34_enable_raw_mode(sc);
1395 }
1396
1397 /* Interrupt handler */
1398
1399 static void
1400 uatp_intr(struct uhidev *addr, void *ibuf, unsigned int len)
1401 {
1402 struct uatp_softc *sc = (struct uatp_softc *)addr;
1403 uint8_t *input;
1404 int dx, dy, dz, dw;
1405 uint32_t buttons;
1406
1407 DPRINTF(sc, UATP_DEBUG_INTR, ("softc %p, ibuf %p, len %u\n",
1408 addr, ibuf, len));
1409
1410 /*
1411 * Some devices break packets up into chunks, so we accumulate
1412 * input up to the expected packet length, or if it would
1413 * overflow, discard the whole packet and start over.
1414 */
1415 if (sc->sc_input_size < len) {
1416 aprint_error_dev(uatp_dev(sc),
1417 "discarding %u-byte input packet\n", len);
1418 sc->sc_input_index = 0;
1419 return;
1420 } else if (sc->sc_input_size < (sc->sc_input_index + len)) {
1421 aprint_error_dev(uatp_dev(sc), "discarding %u-byte input\n",
1422 (sc->sc_input_index + len));
1423 sc->sc_input_index = 0;
1424 return;
1425 } else if (sc->sc_input_size == 81 && len == 17 &&
1426 sc->sc_input_index != 64) {
1427 /*
1428 * Quirk of Fountain and Geyser 1 devices: a 17-byte
1429 * packet seems to mean the last one, but sometimes we
1430 * get desynchronized, so drop this one and start over
1431 * if we see a 17-byte packet that's not at the end.
1432 */
1433 aprint_error_dev(uatp_dev(sc),
1434 "discarding 17-byte nonterminal input at %u\n",
1435 sc->sc_input_index);
1436 sc->sc_input_index = 0;
1437 return;
1438 }
1439
1440 #if UATP_DEBUG
1441 if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
1442 unsigned int i;
1443 uint8_t *bytes = ibuf;
1444 DPRINTF(sc, UATP_DEBUG_INTR, ("raw"));
1445 for (i = 0; i < len; i++)
1446 printf(" %02x", (unsigned int)bytes[i]);
1447 printf("\n");
1448 }
1449 #endif
1450
1451 memcpy(&sc->sc_input[sc->sc_input_index], ibuf, len);
1452 sc->sc_input_index += len;
1453 if (sc->sc_input_index != sc->sc_input_size) {
1454 /* Wait until packet is complete. */
1455 DPRINTF(sc, UATP_DEBUG_INTR, ("partial packet: %u bytes\n",
1456 len));
1457 return;
1458 }
1459
1460 /* Clear the buffer and process the now complete packet. */
1461 sc->sc_input_index = 0;
1462 input = sc->sc_input;
1463
1464 /* The last byte's first bit is set iff the button is pressed.
1465 * XXX Left button should have a name. */
1466 buttons = ((input[sc->sc_input_size - 1] & UATP_STATUS_BUTTON)
1467 ? 1 : 0);
1468
1469 /* Read the sample. */
1470 memset(uatp_x_sample(sc), 0, UATP_MAX_X_SENSORS);
1471 memset(uatp_y_sample(sc), 0, UATP_MAX_Y_SENSORS);
1472 sc->sc_parameters->read_sample(uatp_x_sample(sc), uatp_y_sample(sc),
1473 input);
1474
1475 #if UATP_DEBUG
1476 if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
1477 unsigned int i;
1478 DPRINTF(sc, UATP_DEBUG_INTR, ("x sensors"));
1479 for (i = 0; i < uatp_x_sensors(sc); i++)
1480 printf(" %02x", (unsigned int)uatp_x_sample(sc)[i]);
1481 printf("\n");
1482 DPRINTF(sc, UATP_DEBUG_INTR, ("y sensors"));
1483 for (i = 0; i < uatp_y_sensors(sc); i++)
1484 printf(" %02x", (unsigned int)uatp_y_sample(sc)[i]);
1485 printf("\n");
1486 } else if ((sc->sc_debug_flags & UATP_DEBUG_STATUS) &&
1487 (input[sc->sc_input_size - 1] &~
1488 (UATP_STATUS_BUTTON | UATP_STATUS_BASE |
1489 UATP_STATUS_POST_RESET)))
1490 DPRINTF(sc, UATP_DEBUG_STATUS, ("status byte: %02x\n",
1491 input[sc->sc_input_size - 1]));
1492 #endif
1493
1494 /*
1495 * If this is a base sample, initialize the state to interpret
1496 * subsequent samples relative to it, and stop here.
1497 */
1498 if (sc->sc_parameters->base_sample(sc, input)) {
1499 DPRINTF(sc, UATP_DEBUG_PARSE,
1500 ("base sample, buttons %"PRIx32"\n", buttons));
1501 /* XXX Should the valid bit ever be reset? */
1502 sc->sc_status |= UATP_VALID;
1503 uatp_clear_position(sc);
1504 memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
1505 /* XXX Perform 17" size detection like Linux? */
1506 return;
1507 }
1508
1509 /* If not, accumulate the change in the sensors. */
1510 sc->sc_parameters->accumulate(sc);
1511
1512 #if UATP_DEBUG
1513 if (sc->sc_debug_flags & UATP_DEBUG_ACCUMULATE) {
1514 unsigned int i;
1515 DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated x state:"));
1516 for (i = 0; i < uatp_x_sensors(sc); i++)
1517 printf(" %02x", (unsigned int)uatp_x_acc(sc)[i]);
1518 printf("\n");
1519 DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated y state:"));
1520 for (i = 0; i < uatp_y_sensors(sc); i++)
1521 printf(" %02x", (unsigned int)uatp_y_acc(sc)[i]);
1522 printf("\n");
1523 }
1524 #endif
1525
1526 /* Compute the change in coordinates and buttons. */
1527 dx = dy = dz = dw = 0;
1528 if ((!interpret_input(sc, &dx, &dy, &dz, &dw, &buttons)) &&
1529 /* If there's no input because we're releasing a button,
1530 * then it's not spurious. XXX Mutex? */
1531 (sc->sc_buttons == 0)) {
1532 DPRINTF(sc, UATP_DEBUG_SPURINTR, ("spurious interrupt\n"));
1533 if (sc->sc_parameters->reset)
1534 sc->sc_parameters->reset(sc);
1535 return;
1536 }
1537
1538 /* Report to wsmouse. */
1539 DPRINTF(sc, UATP_DEBUG_INTR,
1540 ("buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
1541 buttons, dx, dy, dz, dw));
1542 mutex_enter(&sc->sc_tap_mutex);
1543 uatp_input(sc, buttons, dx, dy, dz, dw);
1544 mutex_exit(&sc->sc_tap_mutex);
1545 }
1546
1547 /*
1548 * Different ways to discern the base sample initializing the state.
1549 * `base_sample_softc_flag' uses a state flag stored in the softc;
1550 * `base_sample_input_flag' checks a flag at the end of the input
1551 * packet.
1552 */
1553
1554 static bool
1555 base_sample_softc_flag(const struct uatp_softc *sc, const uint8_t *input)
1556 {
1557 return !(sc->sc_status & UATP_VALID);
1558 }
1559
1560 static bool
1561 base_sample_input_flag(const struct uatp_softc *sc, const uint8_t *input)
1562 {
1563 /* XXX Should we also check the valid flag? */
1564 return !!(input[sc->sc_input_size - 1] & UATP_STATUS_BASE);
1565 }
1566
1567 /*
1568 * Pick apart the horizontal sensors from the vertical sensors.
1569 * Different models interleave them in different orders.
1570 */
1571
1572 static void
1573 read_sample_1(uint8_t *x, uint8_t *y, const uint8_t *input)
1574 {
1575 unsigned int i;
1576
1577 for (i = 0; i < 8; i++) {
1578 x[i] = input[5 * i + 2];
1579 x[i + 8] = input[5 * i + 4];
1580 x[i + 16] = input[5 * i + 42];
1581 if (i < 2)
1582 x[i + 24] = input[5 * i + 44];
1583
1584 y[i] = input[5 * i + 1];
1585 y[i + 8] = input[5 * i + 3];
1586 }
1587 }
1588
1589 static void
1590 read_sample_2(uint8_t *x, uint8_t *y, const uint8_t *input)
1591 {
1592 unsigned int i, j;
1593
1594 for (i = 0, j = 19; i < 20; i += 2, j += 3) {
1595 x[i] = input[j];
1596 x[i + 1] = input[j + 1];
1597 }
1598
1599 for (i = 0, j = 1; i < 9; i += 2, j += 3) {
1600 y[i] = input[j];
1601 y[i + 1] = input[j + 1];
1602 }
1603 }
1604
1605 static void
1606 accumulate_sample_1(struct uatp_softc *sc)
1607 {
1608 unsigned int i;
1609
1610 for (i = 0; i < UATP_SENSORS; i++) {
1611 sc->sc_acc[i] += (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
1612 if (sc->sc_acc[i] < 0) {
1613 sc->sc_acc[i] = 0;
1614 } else if (UATP_MAX_ACC < sc->sc_acc[i]) {
1615 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1616 ("overflow %d\n", sc->sc_acc[i]));
1617 sc->sc_acc[i] = UATP_MAX_ACC;
1618 }
1619 }
1620
1621 memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
1622 }
1623
1624 static void
1625 accumulate_sample_2(struct uatp_softc *sc)
1626 {
1627 unsigned int i;
1628
1629 for (i = 0; i < UATP_SENSORS; i++) {
1630 sc->sc_acc[i] = (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
1631 if (sc->sc_acc[i] < -0x80) {
1632 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1633 ("underflow %u - %u = %d\n",
1634 (unsigned int)sc->sc_sample[i],
1635 (unsigned int)sc->sc_base[i],
1636 sc->sc_acc[i]));
1637 sc->sc_acc[i] += 0x100;
1638 }
1639 if (0x7f < sc->sc_acc[i]) {
1640 DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
1641 ("overflow %u - %u = %d\n",
1642 (unsigned int)sc->sc_sample[i],
1643 (unsigned int)sc->sc_base[i],
1644 sc->sc_acc[i]));
1645 sc->sc_acc[i] -= 0x100;
1646 }
1647 if (sc->sc_acc[i] < 0)
1648 sc->sc_acc[i] = 0;
1649 }
1650 }
1651
1652 /*
1653 * Report input to wsmouse, if there is anything interesting to report.
1654 * We must take into consideration the current tap-and-drag button
1655 * state.
1656 */
1657
1658 static void
1659 uatp_input(struct uatp_softc *sc, uint32_t buttons,
1660 int dx, int dy, int dz, int dw)
1661 {
1662 uint32_t all_buttons;
1663
1664 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1665 all_buttons = buttons | uatp_tapped_buttons(sc);
1666
1667 if ((sc->sc_wsmousedev != NULL) &&
1668 ((dx != 0) || (dy != 0) || (dz != 0) || (dw != 0) ||
1669 (all_buttons != sc->sc_all_buttons))) {
1670 int s = spltty();
1671 DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("wsmouse input:"
1672 " buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
1673 all_buttons, dx, -dy, dz, -dw));
1674 wsmouse_input(sc->sc_wsmousedev, all_buttons, dx, -dy, dz, -dw,
1675 WSMOUSE_INPUT_DELTA);
1676 splx(s);
1677 }
1678 sc->sc_buttons = buttons;
1679 sc->sc_all_buttons = all_buttons;
1680 }
1681
1682 /*
1683 * Interpret the current tap state to decide whether the tap buttons
1684 * are currently pressed.
1685 */
1686
1687 static uint32_t
1688 uatp_tapped_buttons(struct uatp_softc *sc)
1689 {
1690 KASSERT(mutex_owned(&sc->sc_tap_mutex));
1691 switch (sc->sc_tap_state) {
1692 case TAP_STATE_INITIAL:
1693 case TAP_STATE_TAPPING:
1694 return 0;
1695
1696 case TAP_STATE_TAPPED:
1697 case TAP_STATE_DOUBLE_TAPPING:
1698 case TAP_STATE_DRAGGING_DOWN:
1699 case TAP_STATE_DRAGGING_UP:
1700 case TAP_STATE_TAPPING_IN_DRAG:
1701 CHECK((0 < sc->sc_tapped_fingers), return 0);
1702 switch (sc->sc_tapped_fingers) {
1703 case 1: return sc->sc_knobs.one_finger_tap_buttons;
1704 case 2: return sc->sc_knobs.two_finger_tap_buttons;
1705 case 3:
1706 default: return sc->sc_knobs.three_finger_tap_buttons;
1707 }
1708
1709 default:
1710 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
1711 __func__, sc->sc_tap_state);
1712 return 0;
1713 }
1714 }
1715
1716 /*
1717 * Interpret the current input state to find a difference in all the
1718 * relevant coordinates and buttons to pass on to wsmouse, and update
1719 * any internal driver state necessary to interpret subsequent input
1720 * relative to this one.
1721 */
1722
1723 static bool
1724 interpret_input(struct uatp_softc *sc, int *dx, int *dy, int *dz, int *dw,
1725 uint32_t *buttons)
1726 {
1727 unsigned int x_pressure, x_raw, x_fingers;
1728 unsigned int y_pressure, y_raw, y_fingers;
1729 unsigned int fingers;
1730
1731 x_pressure = interpret_dimension(sc, uatp_x_acc(sc),
1732 uatp_x_sensors(sc), uatp_x_ratio(sc), &x_raw, &x_fingers);
1733 y_pressure = interpret_dimension(sc, uatp_y_acc(sc),
1734 uatp_y_sensors(sc), uatp_y_ratio(sc), &y_raw, &y_fingers);
1735
1736 DPRINTF(sc, UATP_DEBUG_PARSE,
1737 ("x %u @ %u, %uf; y %u @ %u, %uf; buttons %"PRIx32"\n",
1738 x_pressure, x_raw, x_fingers,
1739 y_pressure, y_raw, y_fingers,
1740 *buttons));
1741
1742 if ((x_pressure == 0) && (y_pressure == 0)) {
1743 bool ok;
1744 /* No fingers: clear position and maybe report a tap. */
1745 DPRINTF(sc, UATP_DEBUG_INTR,
1746 ("no position detected; clearing position\n"));
1747 if (*buttons == 0) {
1748 ok = tap_released(sc);
1749 } else {
1750 tap_reset(sc);
1751 /* Button pressed: interrupt is not spurious. */
1752 ok = true;
1753 }
1754 /*
1755 * Don't clear the position until after tap_released,
1756 * which needs to know the track distance.
1757 */
1758 uatp_clear_position(sc);
1759 return ok;
1760 } else if ((x_pressure == 0) || (y_pressure == 0)) {
1761 /* XXX What to do here? */
1762 DPRINTF(sc, UATP_DEBUG_INTR,
1763 ("pressure in only one dimension; ignoring\n"));
1764 return true;
1765 } else if ((x_pressure == 1) && (y_pressure == 1)) {
1766 fingers = uimax(x_fingers, y_fingers);
1767 CHECK((0 < fingers), return false);
1768 if (*buttons == 0)
1769 tap_touched(sc, fingers);
1770 else if (fingers == 1)
1771 tap_reset(sc);
1772 else /* Multiple fingers, button pressed. */
1773 *buttons = emulated_buttons(sc, fingers);
1774 update_position(sc, fingers, x_raw, y_raw, dx, dy, dz, dw);
1775 return true;
1776 } else {
1777 /* Palm detected in either or both of the dimensions. */
1778 DPRINTF(sc, UATP_DEBUG_INTR, ("palm detected; ignoring\n"));
1779 return true;
1780 }
1781 }
1782
1783 /*
1784 * Interpret the accumulated sensor state along one dimension to find
1785 * the number, mean position, and pressure of fingers. Returns 0 to
1786 * indicate no pressure, returns 1 and sets *position and *fingers to
1787 * indicate fingers, and returns 2 to indicate palm.
1788 *
1789 * XXX Give symbolic names to the return values.
1790 */
1791
1792 static unsigned int
1793 interpret_dimension(struct uatp_softc *sc, const int *acc,
1794 unsigned int n_sensors, unsigned int ratio,
1795 unsigned int *position, unsigned int *fingers)
1796 {
1797 unsigned int i, v, n_fingers, sum;
1798 unsigned int total[UATP_MAX_SENSORS];
1799 unsigned int weighted[UATP_MAX_SENSORS];
1800 unsigned int sensor_threshold = sc->sc_knobs.sensor_threshold;
1801 unsigned int sensor_normalizer = sc->sc_knobs.sensor_normalizer;
1802 unsigned int width = 0; /* GCC is not smart enough. */
1803 unsigned int palm_width = sc->sc_knobs.palm_width;
1804 enum { none, nondecreasing, decreasing } state = none;
1805
1806 if (sensor_threshold < sensor_normalizer)
1807 sensor_normalizer = sensor_threshold;
1808 if (palm_width == 0) /* Effectively disable palm detection. */
1809 palm_width = UATP_MAX_POSITION;
1810
1811 #define CHECK_(condition) CHECK(condition, return 0)
1812
1813 /*
1814 * Arithmetic bounds:
1815 * . n_sensors is at most UATP_MAX_SENSORS,
1816 * . n_fingers is at most UATP_MAX_SENSORS,
1817 * . i is at most UATP_MAX_SENSORS,
1818 * . sc->sc_acc[i] is at most UATP_MAX_ACC,
1819 * . i * sc->sc_acc[i] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
1820 * . each total[j] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
1821 * . each weighted[j] is at most UATP_MAX_SENSORS^2 * UATP_MAX_ACC,
1822 * . ratio is at most UATP_MAX_RATIO,
1823 * . each weighted[j] * ratio is at most
1824 * UATP_MAX_SENSORS^2 * UATP_MAX_ACC * UATP_MAX_RATIO,
1825 * which is #x5fa0000 with the current values of the constants,
1826 * and
1827 * . the sum of the positions is at most
1828 * UATP_MAX_SENSORS * UATP_MAX_POSITION,
1829 * which is #x60000 with the current values of the constants.
1830 * Hence all of the arithmetic here fits in int (and thus also
1831 * unsigned int). If you change the constants, though, you
1832 * must update the analysis.
1833 */
1834 __CTASSERT(0x5fa0000 == (UATP_MAX_SENSORS * UATP_MAX_SENSORS *
1835 UATP_MAX_ACC * UATP_MAX_RATIO));
1836 __CTASSERT(0x60000 == (UATP_MAX_SENSORS * UATP_MAX_POSITION));
1837 CHECK_(n_sensors <= UATP_MAX_SENSORS);
1838 CHECK_(ratio <= UATP_MAX_RATIO);
1839
1840 /*
1841 * Detect each finger by looking for a consecutive sequence of
1842 * increasing and then decreasing pressures above the sensor
1843 * threshold. Compute the finger's position as the weighted
1844 * average of positions, weighted by the pressure at that
1845 * position. Finally, return the average finger position.
1846 */
1847
1848 n_fingers = 0;
1849 memset(weighted, 0, sizeof(weighted));
1850 memset(total, 0, sizeof(total));
1851
1852 for (i = 0; i < n_sensors; i++) {
1853 CHECK_(0 <= acc[i]);
1854 v = acc[i];
1855
1856 /* Ignore values outside a sensible interval. */
1857 if (v <= sensor_threshold) {
1858 state = none;
1859 continue;
1860 } else if (UATP_MAX_ACC < v) {
1861 aprint_verbose_dev(uatp_dev(sc),
1862 "ignoring large accumulated sensor state: %u\n",
1863 v);
1864 continue;
1865 }
1866
1867 switch (state) {
1868 case none:
1869 n_fingers += 1;
1870 CHECK_(n_fingers <= n_sensors);
1871 state = nondecreasing;
1872 width = 1;
1873 break;
1874
1875 case nondecreasing:
1876 case decreasing:
1877 CHECK_(0 < i);
1878 CHECK_(0 <= acc[i - 1]);
1879 width += 1;
1880 if (palm_width <= (width * ratio)) {
1881 DPRINTF(sc, UATP_DEBUG_PALM,
1882 ("palm detected\n"));
1883 return 2;
1884 } else if ((state == nondecreasing) &&
1885 ((unsigned int)acc[i - 1] > v)) {
1886 state = decreasing;
1887 } else if ((state == decreasing) &&
1888 ((unsigned int)acc[i - 1] < v)) {
1889 n_fingers += 1;
1890 CHECK_(n_fingers <= n_sensors);
1891 state = nondecreasing;
1892 width = 1;
1893 }
1894 break;
1895
1896 default:
1897 aprint_error_dev(uatp_dev(sc),
1898 "bad finger detection state: %d", state);
1899 return 0;
1900 }
1901
1902 v -= sensor_normalizer;
1903 total[n_fingers - 1] += v;
1904 weighted[n_fingers - 1] += (i * v);
1905 CHECK_(total[n_fingers - 1] <=
1906 (UATP_MAX_SENSORS * UATP_MAX_ACC));
1907 CHECK_(weighted[n_fingers - 1] <=
1908 (UATP_MAX_SENSORS * UATP_MAX_SENSORS * UATP_MAX_ACC));
1909 }
1910
1911 if (n_fingers == 0)
1912 return 0;
1913
1914 sum = 0;
1915 for (i = 0; i < n_fingers; i++) {
1916 DPRINTF(sc, UATP_DEBUG_PARSE,
1917 ("finger at %u\n", ((weighted[i] * ratio) / total[i])));
1918 sum += ((weighted[i] * ratio) / total[i]);
1919 CHECK_(sum <= UATP_MAX_SENSORS * UATP_MAX_POSITION);
1920 }
1921
1922 *fingers = n_fingers;
1923 *position = (sum / n_fingers);
1924 return 1;
1925
1926 #undef CHECK_
1927 }
1928
1929 /* Tapping */
1930
1931 /*
1932 * There is a very hairy state machine for detecting taps. At every
1933 * touch, we record the maximum number of fingers touched, and don't
1934 * reset it to zero until the finger is released.
1935 *
1936 * INITIAL STATE
1937 * (no tapping fingers; no tapped fingers)
1938 * - On touch, go to TAPPING STATE.
1939 * - On any other input, remain in INITIAL STATE.
1940 *
1941 * TAPPING STATE: Finger touched; might be tap.
1942 * (tapping fingers; no tapped fingers)
1943 * - On release within the tap limit, go to TAPPED STATE.
1944 * - On release after the tap limit, go to INITIAL STATE.
1945 * - On any other input, remain in TAPPING STATE.
1946 *
1947 * TAPPED STATE: Finger recently tapped, and might double-tap.
1948 * (no tapping fingers; tapped fingers)
1949 * - On touch within the double-tap limit, go to DOUBLE-TAPPING STATE.
1950 * - On touch after the double-tap limit, go to TAPPING STATE.
1951 * - On no event after the double-tap limit, go to INITIAL STATE.
1952 * - On any other input, remain in TAPPED STATE.
1953 *
1954 * DOUBLE-TAPPING STATE: Finger touched soon after tap; might be double-tap.
1955 * (tapping fingers; tapped fingers)
1956 * - On release within the tap limit, release button and go to TAPPED STATE.
1957 * - On release after the tap limit, go to DRAGGING UP STATE.
1958 * - On touch after the tap limit, go to DRAGGING DOWN STATE.
1959 * - On any other input, remain in DOUBLE-TAPPING STATE.
1960 *
1961 * DRAGGING DOWN STATE: Finger has double-tapped and is dragging, not tapping.
1962 * (no tapping fingers; tapped fingers)
1963 * - On release, go to DRAGGING UP STATE.
1964 * - On any other input, remain in DRAGGING DOWN STATE.
1965 *
1966 * DRAGGING UP STATE: Finger has double-tapped and is up.
1967 * (no tapping fingers; tapped fingers)
1968 * - On touch, go to TAPPING IN DRAG STATE.
1969 * - On any other input, remain in DRAGGING UP STATE.
1970 *
1971 * TAPPING IN DRAG STATE: Tap-dancing while cross-dressed.
1972 * (tapping fingers; tapped fingers)
1973 * - On release within the tap limit, go to TAPPED STATE.
1974 * - On release after the tap limit, go to DRAGGING UP STATE.
1975 * - On any other input, remain in TAPPING IN DRAG STATE.
1976 *
1977 * Warning: The graph of states is split into two components, those
1978 * with tapped fingers and those without. The only path from any state
1979 * without tapped fingers to a state with tapped fingers must pass
1980 * through TAPPED STATE. Also, the only transitions into TAPPED STATE
1981 * must be from states with tapping fingers, which become the tapped
1982 * fingers. If you edit the state machine, you must either preserve
1983 * these properties, or globally transform the state machine to avoid
1984 * the bad consequences of violating these properties.
1985 */
1986
1987 static void
1988 uatp_tap_limit(const struct uatp_softc *sc, struct timeval *limit)
1989 {
1990 unsigned int msec = sc->sc_knobs.tap_limit_msec;
1991 limit->tv_sec = 0;
1992 limit->tv_usec = ((msec < 1000) ? (1000 * msec) : 100000);
1993 }
1994
1995 #if UATP_DEBUG
1996
1997 # define TAP_DEBUG_PRE(sc) tap_debug((sc), __func__, "")
1998 # define TAP_DEBUG_POST(sc) tap_debug((sc), __func__, " ->")
1999
2000 static void
2001 tap_debug(struct uatp_softc *sc, const char *caller, const char *prefix)
2002 {
2003 char buffer[128];
2004 const char *state;
2005
2006 KASSERT(mutex_owned(&sc->sc_tap_mutex));
2007 switch (sc->sc_tap_state) {
2008 case TAP_STATE_INITIAL: state = "initial"; break;
2009 case TAP_STATE_TAPPING: state = "tapping"; break;
2010 case TAP_STATE_TAPPED: state = "tapped"; break;
2011 case TAP_STATE_DOUBLE_TAPPING: state = "double-tapping"; break;
2012 case TAP_STATE_DRAGGING_DOWN: state = "dragging-down"; break;
2013 case TAP_STATE_DRAGGING_UP: state = "dragging-up"; break;
2014 case TAP_STATE_TAPPING_IN_DRAG: state = "tapping-in-drag"; break;
2015 default:
2016 snprintf(buffer, sizeof(buffer), "unknown (%d)",
2017 sc->sc_tap_state);
2018 state = buffer;
2019 break;
2020 }
2021
2022 DPRINTF(sc, UATP_DEBUG_TAP,
2023 ("%s:%s state %s, %u tapping, %u tapped\n",
2024 caller, prefix, state,
2025 sc->sc_tapping_fingers, sc->sc_tapped_fingers));
2026 }
2027
2028 #else /* !UATP_DEBUG */
2029
2030 # define TAP_DEBUG_PRE(sc) do {} while (0)
2031 # define TAP_DEBUG_POST(sc) do {} while (0)
2032
2033 #endif
2034
2035 static void
2036 tap_initialize(struct uatp_softc *sc)
2037 {
2038 callout_init(&sc->sc_untap_callout, 0);
2039 callout_setfunc(&sc->sc_untap_callout, untap_callout, sc);
2040 mutex_init(&sc->sc_tap_mutex, MUTEX_DEFAULT, IPL_SOFTUSB);
2041 }
2042
2043 static void
2044 tap_finalize(struct uatp_softc *sc)
2045 {
2046 /* XXX Can the callout still be scheduled here? */
2047 callout_destroy(&sc->sc_untap_callout);
2048 mutex_destroy(&sc->sc_tap_mutex);
2049 }
2050
2051 static void
2052 tap_enable(struct uatp_softc *sc)
2053 {
2054 mutex_enter(&sc->sc_tap_mutex);
2055 tap_transition_initial(sc);
2056 sc->sc_buttons = 0; /* XXX Not the right place? */
2057 sc->sc_all_buttons = 0;
2058 mutex_exit(&sc->sc_tap_mutex);
2059 }
2060
2061 static void
2062 tap_disable(struct uatp_softc *sc)
2063 {
2064 /* Reset tapping, and wait for any callouts to complete. */
2065 tap_reset_wait(sc);
2066 }
2067
2068 /*
2069 * Reset tap state. If the untap callout has just fired, it may signal
2070 * a harmless button release event before this returns.
2071 */
2072
2073 static void
2074 tap_reset(struct uatp_softc *sc)
2075 {
2076
2077 callout_stop(&sc->sc_untap_callout);
2078 mutex_enter(&sc->sc_tap_mutex);
2079 tap_transition_initial(sc);
2080 mutex_exit(&sc->sc_tap_mutex);
2081 }
2082
2083 /* Reset, but don't return until the callout is done running. */
2084
2085 static void
2086 tap_reset_wait(struct uatp_softc *sc)
2087 {
2088
2089 callout_halt(&sc->sc_untap_callout, NULL);
2090 mutex_enter(&sc->sc_tap_mutex);
2091 tap_transition_initial(sc);
2092 mutex_exit(&sc->sc_tap_mutex);
2093 }
2094
2095 static const struct timeval zero_timeval;
2096
2097 static void
2098 tap_transition(struct uatp_softc *sc, enum uatp_tap_state tap_state,
2099 const struct timeval *start_time,
2100 unsigned int tapping_fingers, unsigned int tapped_fingers)
2101 {
2102 KASSERT(mutex_owned(&sc->sc_tap_mutex));
2103 sc->sc_tap_state = tap_state;
2104 sc->sc_tap_timer = *start_time;
2105 sc->sc_tapping_fingers = tapping_fingers;
2106 sc->sc_tapped_fingers = tapped_fingers;
2107 }
2108
2109 static void
2110 tap_transition_initial(struct uatp_softc *sc)
2111 {
2112 /*
2113 * No checks. This state is always kosher, and sometimes a
2114 * fallback in case of failure.
2115 */
2116 tap_transition(sc, TAP_STATE_INITIAL, &zero_timeval, 0, 0);
2117 }
2118
2119 /* Touch transitions */
2120
2121 static void
2122 tap_transition_tapping(struct uatp_softc *sc, const struct timeval *start_time,
2123 unsigned int fingers)
2124 {
2125 CHECK((sc->sc_tapping_fingers <= fingers),
2126 do { tap_transition_initial(sc); return; } while (0));
2127 tap_transition(sc, TAP_STATE_TAPPING, start_time, fingers, 0);
2128 }
2129
2130 static void
2131 tap_transition_double_tapping(struct uatp_softc *sc,
2132 const struct timeval *start_time, unsigned int fingers)
2133 {
2134 CHECK((sc->sc_tapping_fingers <= fingers),
2135 do { tap_transition_initial(sc); return; } while (0));
2136 CHECK((0 < sc->sc_tapped_fingers),
2137 do { tap_transition_initial(sc); return; } while (0));
2138 tap_transition(sc, TAP_STATE_DOUBLE_TAPPING, start_time, fingers,
2139 sc->sc_tapped_fingers);
2140 }
2141
2142 static void
2143 tap_transition_dragging_down(struct uatp_softc *sc)
2144 {
2145 CHECK((0 < sc->sc_tapped_fingers),
2146 do { tap_transition_initial(sc); return; } while (0));
2147 tap_transition(sc, TAP_STATE_DRAGGING_DOWN, &zero_timeval, 0,
2148 sc->sc_tapped_fingers);
2149 }
2150
2151 static void
2152 tap_transition_tapping_in_drag(struct uatp_softc *sc,
2153 const struct timeval *start_time, unsigned int fingers)
2154 {
2155 CHECK((sc->sc_tapping_fingers <= fingers),
2156 do { tap_transition_initial(sc); return; } while (0));
2157 CHECK((0 < sc->sc_tapped_fingers),
2158 do { tap_transition_initial(sc); return; } while (0));
2159 tap_transition(sc, TAP_STATE_TAPPING_IN_DRAG, start_time, fingers,
2160 sc->sc_tapped_fingers);
2161 }
2162
2163 /* Release transitions */
2164
2165 static void
2166 tap_transition_tapped(struct uatp_softc *sc, const struct timeval *start_time)
2167 {
2168 /*
2169 * The fingers that were tapping -- of which there must have
2170 * been at least one -- are now the fingers that have tapped,
2171 * and there are no longer fingers tapping.
2172 */
2173 CHECK((0 < sc->sc_tapping_fingers),
2174 do { tap_transition_initial(sc); return; } while (0));
2175 tap_transition(sc, TAP_STATE_TAPPED, start_time, 0,
2176 sc->sc_tapping_fingers);
2177 schedule_untap(sc);
2178 }
2179
2180 static void
2181 tap_transition_dragging_up(struct uatp_softc *sc)
2182 {
2183 CHECK((0 < sc->sc_tapped_fingers),
2184 do { tap_transition_initial(sc); return; } while (0));
2185 tap_transition(sc, TAP_STATE_DRAGGING_UP, &zero_timeval, 0,
2186 sc->sc_tapped_fingers);
2187 }
2188
2189 static void
2190 tap_touched(struct uatp_softc *sc, unsigned int fingers)
2191 {
2192 struct timeval now, diff, limit;
2193
2194 CHECK((0 < fingers), return);
2195 callout_stop(&sc->sc_untap_callout);
2196 mutex_enter(&sc->sc_tap_mutex);
2197 TAP_DEBUG_PRE(sc);
2198 /*
2199 * Guarantee that the number of tapping fingers never decreases
2200 * except when it is reset to zero on release.
2201 */
2202 if (fingers < sc->sc_tapping_fingers)
2203 fingers = sc->sc_tapping_fingers;
2204 switch (sc->sc_tap_state) {
2205 case TAP_STATE_INITIAL:
2206 getmicrouptime(&now);
2207 tap_transition_tapping(sc, &now, fingers);
2208 break;
2209
2210 case TAP_STATE_TAPPING:
2211 /*
2212 * Number of fingers may have increased, so transition
2213 * even though we're already in TAPPING.
2214 */
2215 tap_transition_tapping(sc, &sc->sc_tap_timer, fingers);
2216 break;
2217
2218 case TAP_STATE_TAPPED:
2219 getmicrouptime(&now);
2220 /*
2221 * If the double-tap time limit has passed, it's the
2222 * callout's responsibility to handle that event, so we
2223 * assume the limit has not passed yet.
2224 */
2225 tap_transition_double_tapping(sc, &now, fingers);
2226 break;
2227
2228 case TAP_STATE_DOUBLE_TAPPING:
2229 getmicrouptime(&now);
2230 timersub(&now, &sc->sc_tap_timer, &diff);
2231 uatp_tap_limit(sc, &limit);
2232 if (timercmp(&diff, &limit, >) ||
2233 (sc->sc_track_distance >
2234 sc->sc_knobs.tap_track_distance_limit))
2235 tap_transition_dragging_down(sc);
2236 break;
2237
2238 case TAP_STATE_DRAGGING_DOWN:
2239 break;
2240
2241 case TAP_STATE_DRAGGING_UP:
2242 getmicrouptime(&now);
2243 tap_transition_tapping_in_drag(sc, &now, fingers);
2244 break;
2245
2246 case TAP_STATE_TAPPING_IN_DRAG:
2247 /*
2248 * Number of fingers may have increased, so transition
2249 * even though we're already in TAPPING IN DRAG.
2250 */
2251 tap_transition_tapping_in_drag(sc, &sc->sc_tap_timer, fingers);
2252 break;
2253
2254 default:
2255 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2256 __func__, sc->sc_tap_state);
2257 tap_transition_initial(sc);
2258 break;
2259 }
2260 TAP_DEBUG_POST(sc);
2261 mutex_exit(&sc->sc_tap_mutex);
2262 }
2263
2264 static bool
2265 tap_released(struct uatp_softc *sc)
2266 {
2267 struct timeval now, diff, limit;
2268 void (*non_tapped_transition)(struct uatp_softc *);
2269 bool ok, temporary_release;
2270
2271 mutex_enter(&sc->sc_tap_mutex);
2272 TAP_DEBUG_PRE(sc);
2273 switch (sc->sc_tap_state) {
2274 case TAP_STATE_INITIAL:
2275 case TAP_STATE_TAPPED:
2276 case TAP_STATE_DRAGGING_UP:
2277 /* Spurious interrupt: fingers are already off. */
2278 ok = false;
2279 break;
2280
2281 case TAP_STATE_TAPPING:
2282 temporary_release = false;
2283 non_tapped_transition = &tap_transition_initial;
2284 goto maybe_tap;
2285
2286 case TAP_STATE_DOUBLE_TAPPING:
2287 temporary_release = true;
2288 non_tapped_transition = &tap_transition_dragging_up;
2289 goto maybe_tap;
2290
2291 case TAP_STATE_TAPPING_IN_DRAG:
2292 temporary_release = false;
2293 non_tapped_transition = &tap_transition_dragging_up;
2294 goto maybe_tap;
2295
2296 maybe_tap:
2297 getmicrouptime(&now);
2298 timersub(&now, &sc->sc_tap_timer, &diff);
2299 uatp_tap_limit(sc, &limit);
2300 if (timercmp(&diff, &limit, <=) &&
2301 (sc->sc_track_distance <=
2302 sc->sc_knobs.tap_track_distance_limit)) {
2303 if (temporary_release) {
2304 /*
2305 * XXX Kludge: Temporarily transition
2306 * to a tap state that uatp_input will
2307 * interpret as `no buttons tapped',
2308 * saving the tapping fingers. There
2309 * should instead be a separate routine
2310 * uatp_input_untapped.
2311 */
2312 unsigned int fingers = sc->sc_tapping_fingers;
2313 tap_transition_initial(sc);
2314 uatp_input(sc, 0, 0, 0, 0, 0);
2315 sc->sc_tapping_fingers = fingers;
2316 }
2317 tap_transition_tapped(sc, &now);
2318 } else {
2319 (*non_tapped_transition)(sc);
2320 }
2321 ok = true;
2322 break;
2323
2324 case TAP_STATE_DRAGGING_DOWN:
2325 tap_transition_dragging_up(sc);
2326 ok = true;
2327 break;
2328
2329 default:
2330 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2331 __func__, sc->sc_tap_state);
2332 tap_transition_initial(sc);
2333 ok = false;
2334 break;
2335 }
2336 TAP_DEBUG_POST(sc);
2337 mutex_exit(&sc->sc_tap_mutex);
2338 return ok;
2339 }
2340
2341 /* Untapping: Releasing the button after a tap */
2342
2343 static void
2344 schedule_untap(struct uatp_softc *sc)
2345 {
2346 unsigned int ms = sc->sc_knobs.double_tap_limit_msec;
2347 if (ms <= 1000)
2348 callout_schedule(&sc->sc_untap_callout, mstohz(ms));
2349 else /* XXX Reject bogus values in sysctl. */
2350 aprint_error_dev(uatp_dev(sc),
2351 "double-tap delay too long: %ums\n", ms);
2352 }
2353
2354 static void
2355 untap_callout(void *arg)
2356 {
2357 struct uatp_softc *sc = arg;
2358
2359 mutex_enter(&sc->sc_tap_mutex);
2360 TAP_DEBUG_PRE(sc);
2361 switch (sc->sc_tap_state) {
2362 case TAP_STATE_TAPPED:
2363 tap_transition_initial(sc);
2364 /*
2365 * XXX Kludge: Call uatp_input after the state transition
2366 * to make sure that it will actually release the button.
2367 */
2368 uatp_input(sc, 0, 0, 0, 0, 0);
2369
2370 case TAP_STATE_INITIAL:
2371 case TAP_STATE_TAPPING:
2372 case TAP_STATE_DOUBLE_TAPPING:
2373 case TAP_STATE_DRAGGING_UP:
2374 case TAP_STATE_DRAGGING_DOWN:
2375 case TAP_STATE_TAPPING_IN_DRAG:
2376 /*
2377 * Somebody else got in and changed the state before we
2378 * untapped. Let them take over; do nothing here.
2379 */
2380 break;
2381
2382 default:
2383 aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
2384 __func__, sc->sc_tap_state);
2385 tap_transition_initial(sc);
2386 /* XXX Just in case...? */
2387 uatp_input(sc, 0, 0, 0, 0, 0);
2388 break;
2389 }
2390 TAP_DEBUG_POST(sc);
2391 mutex_exit(&sc->sc_tap_mutex);
2392 }
2393
2394 /*
2395 * Emulate different buttons if the user holds down n fingers while
2396 * pressing the physical button. (This is unrelated to tapping.)
2397 */
2398
2399 static uint32_t
2400 emulated_buttons(struct uatp_softc *sc, unsigned int fingers)
2401 {
2402 CHECK((1 < fingers), return 0);
2403
2404 switch (fingers) {
2405 case 2:
2406 DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
2407 ("2-finger emulated button: %"PRIx32"\n",
2408 sc->sc_knobs.two_finger_buttons));
2409 return sc->sc_knobs.two_finger_buttons;
2410
2411 case 3:
2412 default:
2413 DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
2414 ("3-finger emulated button: %"PRIx32"\n",
2415 sc->sc_knobs.three_finger_buttons));
2416 return sc->sc_knobs.three_finger_buttons;
2417 }
2418 }
2419
2420 /*
2421 * Update the position known to the driver based on the position and
2422 * number of fingers. dx, dy, dz, and dw are expected to hold zero;
2423 * update_position may store nonzero changes in position in them.
2424 */
2425
2426 static void
2427 update_position(struct uatp_softc *sc, unsigned int fingers,
2428 unsigned int x_raw, unsigned int y_raw,
2429 int *dx, int *dy, int *dz, int *dw)
2430 {
2431 CHECK((0 < fingers), return);
2432
2433 if ((fingers == 1) || (sc->sc_knobs.multifinger_track == 1))
2434 move_mouse(sc, x_raw, y_raw, dx, dy);
2435 else if (sc->sc_knobs.multifinger_track == 2)
2436 scroll_wheel(sc, x_raw, y_raw, dz, dw);
2437 }
2438
2439 /*
2440 * XXX Scrolling needs to use a totally different motion model.
2441 */
2442
2443 static void
2444 move_mouse(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
2445 int *dx, int *dy)
2446 {
2447 move(sc, "mouse", x_raw, y_raw, &sc->sc_x_raw, &sc->sc_y_raw,
2448 &sc->sc_x_smoothed, &sc->sc_y_smoothed,
2449 &sc->sc_x_remainder, &sc->sc_y_remainder,
2450 dx, dy);
2451 }
2452
2453 static void
2454 scroll_wheel(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
2455 int *dz, int *dw)
2456 {
2457 move(sc, "scroll", x_raw, y_raw, &sc->sc_z_raw, &sc->sc_w_raw,
2458 &sc->sc_z_smoothed, &sc->sc_w_smoothed,
2459 &sc->sc_z_remainder, &sc->sc_w_remainder,
2460 dz, dw);
2461 }
2462
2463 static void
2464 move(struct uatp_softc *sc, const char *ctx, unsigned int a, unsigned int b,
2465 int *a_raw, int *b_raw,
2466 int *a_smoothed, int *b_smoothed,
2467 unsigned int *a_remainder, unsigned int *b_remainder,
2468 int *da, int *db)
2469 {
2470 #define CHECK_(condition) CHECK(condition, return)
2471
2472 int old_a_raw = *a_raw, old_a_smoothed = *a_smoothed;
2473 int old_b_raw = *b_raw, old_b_smoothed = *b_smoothed;
2474 unsigned int a_dist, b_dist, dist_squared;
2475 bool a_fast, b_fast;
2476
2477 /*
2478 * Make sure the quadratics in motion_below_threshold and
2479 * tracking distance don't overflow int arithmetic.
2480 */
2481 __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
2482
2483 CHECK_(a <= UATP_MAX_POSITION);
2484 CHECK_(b <= UATP_MAX_POSITION);
2485 *a_raw = a;
2486 *b_raw = b;
2487 if ((old_a_raw < 0) || (old_b_raw < 0)) {
2488 DPRINTF(sc, UATP_DEBUG_MOVE,
2489 ("initialize %s position (%d, %d) -> (%d, %d)\n", ctx,
2490 old_a_raw, old_b_raw, a, b));
2491 return;
2492 }
2493
2494 if ((old_a_smoothed < 0) || (old_b_smoothed < 0)) {
2495 /* XXX Does this make sense? */
2496 old_a_smoothed = old_a_raw;
2497 old_b_smoothed = old_b_raw;
2498 }
2499
2500 CHECK_(0 <= old_a_raw);
2501 CHECK_(0 <= old_b_raw);
2502 CHECK_(old_a_raw <= UATP_MAX_POSITION);
2503 CHECK_(old_b_raw <= UATP_MAX_POSITION);
2504 CHECK_(0 <= old_a_smoothed);
2505 CHECK_(0 <= old_b_smoothed);
2506 CHECK_(old_a_smoothed <= UATP_MAX_POSITION);
2507 CHECK_(old_b_smoothed <= UATP_MAX_POSITION);
2508 CHECK_(0 <= *a_raw);
2509 CHECK_(0 <= *b_raw);
2510 CHECK_(*a_raw <= UATP_MAX_POSITION);
2511 CHECK_(*b_raw <= UATP_MAX_POSITION);
2512 *a_smoothed = smooth(sc, old_a_raw, old_a_smoothed, *a_raw);
2513 *b_smoothed = smooth(sc, old_b_raw, old_b_smoothed, *b_raw);
2514 CHECK_(0 <= *a_smoothed);
2515 CHECK_(0 <= *b_smoothed);
2516 CHECK_(*a_smoothed <= UATP_MAX_POSITION);
2517 CHECK_(*b_smoothed <= UATP_MAX_POSITION);
2518
2519 if (sc->sc_motion_timer < sc->sc_knobs.motion_delay) {
2520 DPRINTF(sc, UATP_DEBUG_MOVE, ("delay motion %u\n",
2521 sc->sc_motion_timer));
2522 sc->sc_motion_timer += 1;
2523 return;
2524 }
2525
2526 /* XXX Use raw distances or smoothed distances? Acceleration? */
2527 if (*a_smoothed < old_a_smoothed)
2528 a_dist = old_a_smoothed - *a_smoothed;
2529 else
2530 a_dist = *a_smoothed - old_a_smoothed;
2531
2532 if (*b_smoothed < old_b_smoothed)
2533 b_dist = old_b_smoothed - *b_smoothed;
2534 else
2535 b_dist = *b_smoothed - old_b_smoothed;
2536
2537 dist_squared = (a_dist * a_dist) + (b_dist * b_dist);
2538 if (dist_squared < ((2 * UATP_MAX_POSITION * UATP_MAX_POSITION)
2539 - sc->sc_track_distance))
2540 sc->sc_track_distance += dist_squared;
2541 else
2542 sc->sc_track_distance = (2 * UATP_MAX_POSITION *
2543 UATP_MAX_POSITION);
2544 DPRINTF(sc, UATP_DEBUG_TRACK_DIST, ("finger has tracked %u units^2\n",
2545 sc->sc_track_distance));
2546
2547 /*
2548 * The checks above guarantee that the differences here are at
2549 * most UATP_MAX_POSITION in magnitude, since both minuend and
2550 * subtrahend are nonnegative and at most UATP_MAX_POSITION.
2551 */
2552 if (motion_below_threshold(sc, sc->sc_knobs.motion_threshold,
2553 (int)(*a_smoothed - old_a_smoothed),
2554 (int)(*b_smoothed - old_b_smoothed))) {
2555 DPRINTF(sc, UATP_DEBUG_MOVE,
2556 ("%s motion too small: (%d, %d) -> (%d, %d)\n", ctx,
2557 old_a_smoothed, old_b_smoothed,
2558 *a_smoothed, *b_smoothed));
2559 return;
2560 }
2561 if (sc->sc_knobs.fast_per_direction == 0) {
2562 a_fast = b_fast = !motion_below_threshold(sc,
2563 sc->sc_knobs.fast_motion_threshold,
2564 (int)(*a_smoothed - old_a_smoothed),
2565 (int)(*b_smoothed - old_b_smoothed));
2566 } else {
2567 a_fast = !motion_below_threshold(sc,
2568 sc->sc_knobs.fast_motion_threshold,
2569 (int)(*a_smoothed - old_a_smoothed),
2570 0);
2571 b_fast = !motion_below_threshold(sc,
2572 sc->sc_knobs.fast_motion_threshold,
2573 0,
2574 (int)(*b_smoothed - old_b_smoothed));
2575 }
2576 *da = accelerate(sc, old_a_raw, *a_raw, old_a_smoothed, *a_smoothed,
2577 a_fast, a_remainder);
2578 *db = accelerate(sc, old_b_raw, *b_raw, old_b_smoothed, *b_smoothed,
2579 b_fast, b_remainder);
2580 DPRINTF(sc, UATP_DEBUG_MOVE,
2581 ("update %s position (%d, %d) -> (%d, %d), move by (%d, %d)\n",
2582 ctx, old_a_smoothed, old_b_smoothed, *a_smoothed, *b_smoothed,
2583 *da, *db));
2584
2585 #undef CHECK_
2586 }
2587
2588 static int
2589 smooth(struct uatp_softc *sc, unsigned int old_raw, unsigned int old_smoothed,
2590 unsigned int raw)
2591 {
2592 #define CHECK_(condition) CHECK(condition, return old_raw)
2593
2594 /*
2595 * Arithmetic bounds:
2596 * . the weights are at most UATP_MAX_WEIGHT;
2597 * . the positions are at most UATP_MAX_POSITION; and so
2598 * . the numerator of the average is at most
2599 * 3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION,
2600 * which is #x477000, fitting comfortably in an int.
2601 */
2602 __CTASSERT(0x477000 == (3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION));
2603 unsigned int old_raw_weight = uatp_old_raw_weight(sc);
2604 unsigned int old_smoothed_weight = uatp_old_smoothed_weight(sc);
2605 unsigned int new_raw_weight = uatp_new_raw_weight(sc);
2606 CHECK_(old_raw_weight <= UATP_MAX_WEIGHT);
2607 CHECK_(old_smoothed_weight <= UATP_MAX_WEIGHT);
2608 CHECK_(new_raw_weight <= UATP_MAX_WEIGHT);
2609 CHECK_(old_raw <= UATP_MAX_POSITION);
2610 CHECK_(old_smoothed <= UATP_MAX_POSITION);
2611 CHECK_(raw <= UATP_MAX_POSITION);
2612 return (((old_raw_weight * old_raw) +
2613 (old_smoothed_weight * old_smoothed) +
2614 (new_raw_weight * raw))
2615 / (old_raw_weight + old_smoothed_weight + new_raw_weight));
2616
2617 #undef CHECK_
2618 }
2619
2620 static bool
2621 motion_below_threshold(struct uatp_softc *sc, unsigned int threshold,
2622 int x, int y)
2623 {
2624 unsigned int x_squared, y_squared;
2625
2626 /* Caller guarantees the multiplication will not overflow. */
2627 KASSERT(-UATP_MAX_POSITION <= x);
2628 KASSERT(-UATP_MAX_POSITION <= y);
2629 KASSERT(x <= UATP_MAX_POSITION);
2630 KASSERT(y <= UATP_MAX_POSITION);
2631 __CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
2632
2633 x_squared = (x * x);
2634 y_squared = (y * y);
2635
2636 return (x_squared + y_squared) < threshold;
2637 }
2638
2639 static int
2640 accelerate(struct uatp_softc *sc, unsigned int old_raw, unsigned int raw,
2641 unsigned int old_smoothed, unsigned int smoothed, bool fast,
2642 int *remainder)
2643 {
2644 #define CHECK_(condition) CHECK(condition, return 0)
2645
2646 /* Guarantee that the scaling won't overflow. */
2647 __CTASSERT(0x30000 ==
2648 (UATP_MAX_POSITION * UATP_MAX_MOTION_MULTIPLIER));
2649
2650 CHECK_(old_raw <= UATP_MAX_POSITION);
2651 CHECK_(raw <= UATP_MAX_POSITION);
2652 CHECK_(old_smoothed <= UATP_MAX_POSITION);
2653 CHECK_(smoothed <= UATP_MAX_POSITION);
2654
2655 return (fast ? uatp_scale_fast_motion : uatp_scale_motion)
2656 (sc, (((int) smoothed) - ((int) old_smoothed)), remainder);
2657
2658 #undef CHECK_
2659 }
2660
2661 MODULE(MODULE_CLASS_DRIVER, uatp, NULL);
2662
2663 #ifdef _MODULE
2664 #include "ioconf.c"
2665 #endif
2666
2667 static int
2668 uatp_modcmd(modcmd_t cmd, void *aux)
2669 {
2670 int error = 0;
2671
2672 switch (cmd) {
2673 case MODULE_CMD_INIT:
2674 #ifdef _MODULE
2675 error = config_init_component(cfdriver_ioconf_uatp,
2676 cfattach_ioconf_uatp, cfdata_ioconf_uatp);
2677 #endif
2678 return error;
2679 case MODULE_CMD_FINI:
2680 #ifdef _MODULE
2681 error = config_fini_component(cfdriver_ioconf_uatp,
2682 cfattach_ioconf_uatp, cfdata_ioconf_uatp);
2683 #endif
2684 return error;
2685 default:
2686 return ENOTTY;
2687 }
2688 }
2689