Home | History | Annotate | Line # | Download | only in usb
uatp.c revision 1.3.2.1
      1 /*	$NetBSD: uatp.c,v 1.3.2.1 2014/05/18 17:45:47 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2011-2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * uatp(4) - USB Apple Trackpad
     34  *
     35  * The uatp driver talks the protocol of the USB trackpads found in
     36  * Apple laptops since 2005, including PowerBooks, iBooks, MacBooks,
     37  * and MacBook Pros.  Some of these also present generic USB HID mice
     38  * on another USB report id, which the ums(4) driver can handle, but
     39  * Apple's protocol gives more detailed sensor data that lets us detect
     40  * multiple fingers to emulate multi-button mice and scroll wheels.
     41  */
     42 
     43 /*
     45  * Protocol
     46  *
     47  * The device has a set of horizontal sensors, each being a column at a
     48  * particular position on the x axis that tells you whether there is
     49  * pressure anywhere on that column, and vertical sensors, each being a
     50  * row at a particular position on the y axis that tells you whether
     51  * there is pressure anywhere on that row.
     52  *
     53  * Whenever the device senses anything, it emits a readout of all of
     54  * the sensors, in some model-dependent order.  (For the order, see
     55  * read_sample_1 and read_sample_2.)  Each sensor datum is an unsigned
     56  * eight-bit quantity representing some measure of pressure.  (Of
     57  * course, it really measures capacitance, not pressure, but we'll call
     58  * it `pressure' here.)
     59  */
     60 
     61 /*
     62  * Interpretation
     63  *
     64  * To interpret the finger's position on the trackpad, the driver
     65  * computes a weighted average over all possible positions, weighted by
     66  * the pressure at that position.  The weighted average is computed in
     67  * the dimensions of the screen, rather than the trackpad, in order to
     68  * admit a finer resolution of positions than the trackpad grid.
     69  *
     70  * To update the finger's position smoothly on the trackpad, the driver
     71  * computes a weighted average of the old raw position, the old
     72  * smoothed position, and the new smoothed position.  The weights are
     73  * given by the old_raw_weight, old_smoothed_weight, and new_raw_weight
     74  * sysctl knobs.
     75  *
     76  * Finally, to move the cursor, the driver takes the difference between
     77  * the old and new positions and accelerates it according to some
     78  * heuristic knobs that need to be reworked.
     79  *
     80  * Finally, there are some bells & whistles to detect tapping and to
     81  * emulate a three-button mouse by leaving two or three fingers on the
     82  * trackpad while pressing the button.
     83  */
     84 
     85 /*
     86  * Future work
     87  *
     88  * With the raw sensor data available, we could implement fancier bells
     89  * & whistles too, such as pinch-to-zoom.  However, wsmouse supports
     90  * only four-dimensional mice with buttons, and we already use two
     91  * dimensions for mousing and two dimensions for scrolling, so there's
     92  * no straightforward way to report zooming and other gestures to the
     93  * operating system.  Probably a better way to do this would be just to
     94  * attach uhid(4) instead of uatp(4) and to read the raw sensors data
     95  * yourself -- but that requires hairy mode switching for recent models
     96  * (see geyser34_enable_raw_mode).
     97  *
     98  * XXX Rework the acceleration knobs.
     99  * XXX Implement edge scrolling.
    100  * XXX Fix sysctl setup; preserve knobs across suspend/resume.
    101  *     (uatp0 detaches and reattaches across suspend/resume, so as
    102  *     written, the sysctl tree is torn down and rebuilt, losing any
    103  *     state the user may have set.)
    104  * XXX Refactor motion state so I can understand it again.
    105  *     Should make a struct uatp_motion for all that state.
    106  * XXX Add hooks for ignoring trackpad input while typing.
    107  */
    108 
    109 /*
    111  * Classifying devices
    112  *
    113  * I have only one MacBook to test this driver, but the driver should
    114  * be applicable to almost every Apple laptop made since the beginning
    115  * of 2005, so the driver reports lots of debugging output to help to
    116  * classify devices.  Boot with `boot -v' (verbose) and check the
    117  * output of `dmesg | grep uatp' to answer the following questions:
    118  *
    119  * - What devices (vendor, product, class, subclass, proto, USB HID
    120  *   report dump) fail to attach when you think they should work?
    121  *     (vendor not apple, class not hid, proto not mouse)
    122  *
    123  * - What devices have an unknown product id?
    124  *     `unknown vendor/product id'
    125  *
    126  * - What devices have the wrong screen-to-trackpad ratios?
    127  *     `... x sensors, scaled by ... for ... points on screen'
    128  *     `... y sensors, scaled by ... for ... points on screen'
    129  *   You can tweak hw.uatp0.x_ratio and hw.uatp0.y_ratio to adjust
    130  *   this, up to a maximum of 384 for each value.
    131  *
    132  * - What devices have the wrong input size?
    133  *     `expected input size ... but got ... for Apple trackpad'
    134  *
    135  * - What devices give wrong-sized packets?
    136  *     `discarding ...-byte input'
    137  *
    138  * - What devices split packets in chunks?
    139  *     `partial packet: ... bytes'
    140  *
    141  * - What devices develop large sensor readouts?
    142  *     `large sensor readout: ...'
    143  *
    144  * - What devices have the wrong number of sensors?  Are there parts of
    145  *   your trackpad that the system doesn't seem to notice?  You can
    146  *   tweak hw.uatp0.x_sensors and hw.uatp0.y_sensors, up to a maximum
    147  *   of 32 for each value.
    148  */
    149 
    150 #include <sys/cdefs.h>
    152 __KERNEL_RCSID(0, "$NetBSD: uatp.c,v 1.3.2.1 2014/05/18 17:45:47 rmind Exp $");
    153 
    154 #include <sys/types.h>
    155 #include <sys/param.h>
    156 #include <sys/atomic.h>
    157 #include <sys/device.h>
    158 #include <sys/errno.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/kernel.h>
    161 #include <sys/sysctl.h>
    162 #include <sys/systm.h>
    163 #include <sys/time.h>
    164 #include <sys/workqueue.h>
    165 
    166 /* Order is important here...sigh...  */
    167 #include <dev/usb/usb.h>
    168 #include <dev/usb/usbdi.h>
    169 #include <dev/usb/usbdi_util.h>
    170 #include <dev/usb/usbdevs.h>
    171 #include <dev/usb/uhidev.h>
    172 #include <dev/usb/hid.h>
    173 #include <dev/usb/usbhid.h>
    174 
    175 #include <dev/wscons/wsconsio.h>
    176 #include <dev/wscons/wsmousevar.h>
    177 
    178 #define CHECK(condition, fail) do {					\
    179 	if (! (condition)) {						\
    180 		aprint_error_dev(uatp_dev(sc), "%s: check failed: %s\n",\
    181 			__func__, #condition);				\
    182 		fail;							\
    183 	}								\
    184 } while (0)
    185 
    186 #define UATP_DEBUG_ATTACH	(1 << 0)
    188 #define UATP_DEBUG_MISC		(1 << 1)
    189 #define UATP_DEBUG_WSMOUSE	(1 << 2)
    190 #define UATP_DEBUG_IOCTL	(1 << 3)
    191 #define UATP_DEBUG_RESET	(1 << 4)
    192 #define UATP_DEBUG_INTR		(1 << 5)
    193 #define UATP_DEBUG_PARSE	(1 << 6)
    194 #define UATP_DEBUG_TAP		(1 << 7)
    195 #define UATP_DEBUG_EMUL_BUTTON	(1 << 8)
    196 #define UATP_DEBUG_ACCUMULATE	(1 << 9)
    197 #define UATP_DEBUG_STATUS	(1 << 10)
    198 #define UATP_DEBUG_SPURINTR	(1 << 11)
    199 #define UATP_DEBUG_MOVE		(1 << 12)
    200 #define UATP_DEBUG_ACCEL	(1 << 13)
    201 #define UATP_DEBUG_TRACK_DIST	(1 << 14)
    202 #define UATP_DEBUG_PALM		(1 << 15)
    203 
    204 #if UATP_DEBUG
    205 #  define DPRINTF(sc, flags, format) do {				\
    206 	if ((flags) & (sc)->sc_debug_flags) {				\
    207 		printf("%s: %s: ", device_xname(uatp_dev(sc)), __func__); \
    208 		printf format;						\
    209 	}								\
    210 } while (0)
    211 #else
    212 #  define DPRINTF(sc, flags, format) do {} while (0)
    213 #endif
    214 
    215 /* Maximum number of bytes in an incoming packet of sensor data.  */
    216 #define UATP_MAX_INPUT_SIZE	81
    217 
    218 /* Maximum number of sensors in each dimension.  */
    219 #define UATP_MAX_X_SENSORS	32
    220 #define UATP_MAX_Y_SENSORS	32
    221 #define UATP_MAX_SENSORS	32
    222 #define UATP_SENSORS		(UATP_MAX_X_SENSORS + UATP_MAX_Y_SENSORS)
    223 
    224 /* Maximum accumulated sensor value.  */
    225 #define UATP_MAX_ACC		0xff
    226 
    227 /* Maximum screen dimension to sensor dimension ratios.  */
    228 #define UATP_MAX_X_RATIO	0x180
    229 #define UATP_MAX_Y_RATIO	0x180
    230 #define UATP_MAX_RATIO		0x180
    231 
    232 /* Maximum weight for positions in motion calculation.  */
    233 #define UATP_MAX_WEIGHT		0x7f
    234 
    235 /* Maximum possible trackpad position in a single dimension.  */
    236 #define UATP_MAX_POSITION	(UATP_MAX_SENSORS * UATP_MAX_RATIO)
    237 
    238 /* Bounds on acceleration.  */
    239 #define UATP_MAX_MOTION_MULTIPLIER	16
    240 
    241 /* Status bits transmitted in the last byte of an input packet.  */
    242 #define UATP_STATUS_BUTTON	(1 << 0)	/* Button pressed */
    243 #define UATP_STATUS_BASE	(1 << 2)	/* Base sensor data */
    244 #define UATP_STATUS_POST_RESET	(1 << 4)	/* Post-reset */
    245 
    246 /* Forward declarations */
    248 
    249 struct uatp_softc;		/* Device driver state.  */
    250 struct uatp_descriptor;		/* Descriptor for a particular model.  */
    251 struct uatp_parameters;		/* Parameters common to a set of models.  */
    252 struct uatp_knobs;		/* User-settable configuration knobs.  */
    253 enum uatp_tap_state {
    254 	TAP_STATE_INITIAL,
    255 	TAP_STATE_TAPPING,
    256 	TAP_STATE_TAPPED,
    257 	TAP_STATE_DOUBLE_TAPPING,
    258 	TAP_STATE_DRAGGING_DOWN,
    259 	TAP_STATE_DRAGGING_UP,
    260 	TAP_STATE_TAPPING_IN_DRAG,
    261 };
    262 
    263 static const struct uatp_descriptor *find_uatp_descriptor
    264     (const struct uhidev_attach_arg *);
    265 static device_t uatp_dev(const struct uatp_softc *);
    266 static uint8_t *uatp_x_sample(struct uatp_softc *);
    267 static uint8_t *uatp_y_sample(struct uatp_softc *);
    268 static int *uatp_x_acc(struct uatp_softc *);
    269 static int *uatp_y_acc(struct uatp_softc *);
    270 static void uatp_clear_position(struct uatp_softc *);
    271 static unsigned int uatp_x_sensors(const struct uatp_softc *);
    272 static unsigned int uatp_y_sensors(const struct uatp_softc *);
    273 static unsigned int uatp_x_ratio(const struct uatp_softc *);
    274 static unsigned int uatp_y_ratio(const struct uatp_softc *);
    275 static unsigned int uatp_old_raw_weight(const struct uatp_softc *);
    276 static unsigned int uatp_old_smoothed_weight(const struct uatp_softc *);
    277 static unsigned int uatp_new_raw_weight(const struct uatp_softc *);
    278 static int scale_motion(const struct uatp_softc *, int, int *,
    279     const unsigned int *, const unsigned int *);
    280 static int uatp_scale_motion(const struct uatp_softc *, int, int *);
    281 static int uatp_scale_fast_motion(const struct uatp_softc *, int, int *);
    282 static int uatp_match(device_t, cfdata_t, void *);
    283 static void uatp_attach(device_t, device_t, void *);
    284 static void uatp_setup_sysctl(struct uatp_softc *);
    285 static bool uatp_setup_sysctl_knob(struct uatp_softc *, int *, const char *,
    286     const char *);
    287 static void uatp_childdet(device_t, device_t);
    288 static int uatp_detach(device_t, int);
    289 static int uatp_activate(device_t, enum devact);
    290 static int uatp_enable(void *);
    291 static void uatp_disable(void *);
    292 static int uatp_ioctl(void *, unsigned long, void *, int, struct lwp *);
    293 static void geyser34_enable_raw_mode(struct uatp_softc *);
    294 static void geyser34_initialize(struct uatp_softc *);
    295 static int geyser34_finalize(struct uatp_softc *);
    296 static void geyser34_deferred_reset(struct uatp_softc *);
    297 static void geyser34_reset_worker(struct work *, void *);
    298 static void uatp_intr(struct uhidev *, void *, unsigned int);
    299 static bool base_sample_softc_flag(const struct uatp_softc *, const uint8_t *);
    300 static bool base_sample_input_flag(const struct uatp_softc *, const uint8_t *);
    301 static void read_sample_1(uint8_t *, uint8_t *, const uint8_t *);
    302 static void read_sample_2(uint8_t *, uint8_t *, const uint8_t *);
    303 static void accumulate_sample_1(struct uatp_softc *);
    304 static void accumulate_sample_2(struct uatp_softc *);
    305 static void uatp_input(struct uatp_softc *, uint32_t, int, int, int, int);
    306 static uint32_t uatp_tapped_buttons(struct uatp_softc *);
    307 static bool interpret_input(struct uatp_softc *, int *, int *, int *, int *,
    308     uint32_t *);
    309 static unsigned int interpret_dimension(struct uatp_softc *, const int *,
    310     unsigned int, unsigned int, unsigned int *, unsigned int *);
    311 static void tap_initialize(struct uatp_softc *);
    312 static void tap_finalize(struct uatp_softc *);
    313 static void tap_enable(struct uatp_softc *);
    314 static void tap_disable(struct uatp_softc *);
    315 static void tap_transition(struct uatp_softc *, enum uatp_tap_state,
    316     const struct timeval *, unsigned int, unsigned int);
    317 static void tap_transition_initial(struct uatp_softc *);
    318 static void tap_transition_tapping(struct uatp_softc *, const struct timeval *,
    319     unsigned int);
    320 static void tap_transition_double_tapping(struct uatp_softc *,
    321     const struct timeval *, unsigned int);
    322 static void tap_transition_dragging_down(struct uatp_softc *);
    323 static void tap_transition_tapping_in_drag(struct uatp_softc *,
    324     const struct timeval *, unsigned int);
    325 static void tap_transition_tapped(struct uatp_softc *, const struct timeval *);
    326 static void tap_transition_dragging_up(struct uatp_softc *);
    327 static void tap_reset(struct uatp_softc *);
    328 static void tap_reset_wait(struct uatp_softc *);
    329 static void tap_touched(struct uatp_softc *, unsigned int);
    330 static bool tap_released(struct uatp_softc *);
    331 static void schedule_untap(struct uatp_softc *);
    332 static void untap_callout(void *);
    333 static uint32_t emulated_buttons(struct uatp_softc *, unsigned int);
    334 static void update_position(struct uatp_softc *, unsigned int,
    335     unsigned int, unsigned int, int *, int *, int *, int *);
    336 static void move_mouse(struct uatp_softc *, unsigned int, unsigned int,
    337     int *, int *);
    338 static void scroll_wheel(struct uatp_softc *, unsigned int, unsigned int,
    339     int *, int *);
    340 static void move(struct uatp_softc *, const char *, unsigned int, unsigned int,
    341     int *, int *, int *, int *, unsigned int *, unsigned int *, int *, int *);
    342 static int smooth(struct uatp_softc *, unsigned int, unsigned int,
    343     unsigned int);
    344 static bool motion_below_threshold(struct uatp_softc *, unsigned int,
    345     int, int);
    346 static int accelerate(struct uatp_softc *, unsigned int, unsigned int,
    347     unsigned int, unsigned int, bool, int *);
    348 
    349 struct uatp_knobs {
    351 	/*
    352 	 * Button emulation.  What do we do when two or three fingers
    353 	 * are on the trackpad when the user presses the button?
    354 	 */
    355 	unsigned int two_finger_buttons;
    356 	unsigned int three_finger_buttons;
    357 
    358 #if 0
    359 	/*
    360 	 * Edge scrolling.
    361 	 *
    362 	 * XXX Implement this.  What units should these be in?
    363 	 */
    364 	unsigned int top_edge;
    365 	unsigned int bottom_edge;
    366 	unsigned int left_edge;
    367 	unsigned int right_edge;
    368 #endif
    369 
    370 	/*
    371 	 * Multifinger tracking.  What do we do with multiple fingers?
    372 	 * 0. Ignore them.
    373 	 * 1. Try to interpret them as ordinary mousing.
    374 	 * 2. Act like a two-dimensional scroll wheel.
    375 	 */
    376 	unsigned int multifinger_track;
    377 
    378 	/*
    379 	 * Sensor parameters.
    380 	 */
    381 	unsigned int x_sensors;
    382 	unsigned int x_ratio;
    383 	unsigned int y_sensors;
    384 	unsigned int y_ratio;
    385 	unsigned int sensor_threshold;
    386 	unsigned int sensor_normalizer;
    387 	unsigned int palm_width;
    388 	unsigned int old_raw_weight;
    389 	unsigned int old_smoothed_weight;
    390 	unsigned int new_raw_weight;
    391 
    392 	/*
    393 	 * Motion parameters.
    394 	 *
    395 	 * XXX There should be a more principled model of acceleration.
    396 	 */
    397 	unsigned int motion_remainder;
    398 	unsigned int motion_threshold;
    399 	unsigned int motion_multiplier;
    400 	unsigned int motion_divisor;
    401 	unsigned int fast_motion_threshold;
    402 	unsigned int fast_motion_multiplier;
    403 	unsigned int fast_motion_divisor;
    404 	unsigned int fast_per_direction;
    405 	unsigned int motion_delay;
    406 
    407 	/*
    408 	 * Tapping.
    409 	 */
    410 	unsigned int tap_limit_msec;
    411 	unsigned int double_tap_limit_msec;
    412 	unsigned int one_finger_tap_buttons;
    413 	unsigned int two_finger_tap_buttons;
    414 	unsigned int three_finger_tap_buttons;
    415 	unsigned int tap_track_distance_limit;
    416 };
    417 
    418 static const struct uatp_knobs default_knobs = {
    420 	/*
    421 	 * Button emulation.  Fingers on the trackpad don't change it
    422 	 * by default -- it's still the left button.
    423 	 *
    424 	 * XXX The left button should have a name.
    425 	 */
    426 	 .two_finger_buttons	= 1,
    427 	 .three_finger_buttons	= 1,
    428 
    429 #if 0
    430 	/*
    431 	 * Edge scrolling.  Off by default.
    432 	 */
    433 	.top_edge		= 0,
    434 	.bottom_edge		= 0,
    435 	.left_edge		= 0,
    436 	.right_edge		= 0,
    437 #endif
    438 
    439 	/*
    440 	 * Multifinger tracking.  Ignore by default.
    441 	 */
    442 	 .multifinger_track	= 0,
    443 
    444 	/*
    445 	 * Sensor parameters.
    446 	 */
    447 	.x_sensors		= 0,	/* default for model */
    448 	.x_ratio		= 0,	/* default for model */
    449 	.y_sensors		= 0,	/* default for model */
    450 	.y_ratio		= 0,	/* default for model */
    451 	.sensor_threshold	= 5,
    452 	.sensor_normalizer	= 5,
    453 	.palm_width		= 0,	/* palm detection disabled */
    454 	.old_raw_weight		= 0,
    455 	.old_smoothed_weight	= 5,
    456 	.new_raw_weight		= 1,
    457 
    458 	/*
    459 	 * Motion parameters.
    460 	 */
    461 	.motion_remainder	= 1,
    462 	.motion_threshold	= 0,
    463 	.motion_multiplier	= 1,
    464 	.motion_divisor		= 1,
    465 	.fast_motion_threshold	= 10,
    466 	.fast_motion_multiplier	= 3,
    467 	.fast_motion_divisor	= 2,
    468 	.fast_per_direction	= 0,
    469 	.motion_delay		= 4,
    470 
    471 	/*
    472 	 * Tapping.  Disabled by default, with a reasonable time set
    473 	 * nevertheless so that you can just set the buttons to enable
    474 	 * it.
    475 	 */
    476 	.tap_limit_msec			= 100,
    477 	.double_tap_limit_msec		= 200,
    478 	.one_finger_tap_buttons		= 0,
    479 	.two_finger_tap_buttons		= 0,
    480 	.three_finger_tap_buttons	= 0,
    481 	.tap_track_distance_limit	= 200,
    482 };
    483 
    484 struct uatp_softc {
    486 	struct uhidev sc_hdev;		/* USB parent.  */
    487 	device_t sc_wsmousedev;		/* Attached wsmouse device.  */
    488 	const struct uatp_parameters *sc_parameters;
    489 	struct uatp_knobs sc_knobs;
    490 	struct sysctllog *sc_log;	/* Log for sysctl knobs.  */
    491 	const struct sysctlnode *sc_node;	/* Our sysctl node.  */
    492 	unsigned int sc_input_size;	/* Input packet size.  */
    493 	uint8_t sc_input[UATP_MAX_INPUT_SIZE];	/* Buffer for a packet.   */
    494 	unsigned int sc_input_index;	/* Current index into sc_input.  */
    495 	int sc_acc[UATP_SENSORS];	/* Accumulated sensor state.  */
    496 	uint8_t sc_base[UATP_SENSORS];	/* Base sample.  */
    497 	uint8_t sc_sample[UATP_SENSORS];/* Current sample.  */
    498 	unsigned int sc_motion_timer;	/* XXX describe; motion_delay  */
    499 	int sc_x_raw;			/* Raw horiz. mouse position.  */
    500 	int sc_y_raw;			/* Raw vert. mouse position.  */
    501 	int sc_z_raw;			/* Raw horiz. scroll position.  */
    502 	int sc_w_raw;			/* Raw vert. scroll position.  */
    503 	int sc_x_smoothed;		/* Smoothed horiz. mouse position.  */
    504 	int sc_y_smoothed;		/* Smoothed vert. mouse position.  */
    505 	int sc_z_smoothed;		/* Smoothed horiz. scroll position.  */
    506 	int sc_w_smoothed;		/* Smoothed vert. scroll position.  */
    507 	int sc_x_remainder;		/* Remainders from acceleration.  */
    508 	int sc_y_remainder;
    509 	int sc_z_remainder;
    510 	int sc_w_remainder;
    511 	unsigned int sc_track_distance;	/* Distance^2 finger has tracked,
    512 					 * squared to avoid sqrt in kernel.  */
    513 	uint32_t sc_status;		/* Status flags:  */
    514 #define UATP_ENABLED	(1 << 0)	/* . Is the wsmouse enabled?  */
    515 #define UATP_DYING	(1 << 1)	/* . Have we been deactivated?  */
    516 #define UATP_VALID	(1 << 2)	/* . Do we have valid sensor data?  */
    517 	struct workqueue *sc_reset_wq;	/* Workqueue for resetting.  */
    518 	struct work sc_reset_work;	/* Work for said workqueue.  */
    519 	unsigned int sc_reset_pending;	/* True if a reset is pending.  */
    520 
    521 	callout_t sc_untap_callout;	/* Releases button after tap.  */
    522 	kmutex_t sc_tap_mutex;		/* Protects the following fields.  */
    523 	kcondvar_t sc_tap_cv;		/* Signalled by untap callout.  */
    524 	enum uatp_tap_state sc_tap_state;	/* Current tap state.  */
    525 	unsigned int sc_tapping_fingers;	/* No. fingers tapping.  */
    526 	unsigned int sc_tapped_fingers;	/* No. fingers of last tap.  */
    527 	struct timeval sc_tap_timer;	/* Timer for tap state transitions.  */
    528 	uint32_t sc_buttons;		/* Physical buttons pressed.  */
    529 	uint32_t sc_all_buttons;	/* Buttons pressed or tapped.  */
    530 
    531 #if UATP_DEBUG
    532 	uint32_t sc_debug_flags;	/* Debugging output enabled.  */
    533 #endif
    534 };
    535 
    536 struct uatp_descriptor {
    538 	uint16_t vendor;
    539 	uint16_t product;
    540 	const char *description;
    541 	const struct uatp_parameters *parameters;
    542 };
    543 
    544 struct uatp_parameters {
    545 	unsigned int x_ratio;		/* Screen width / trackpad width.  */
    546 	unsigned int x_sensors;		/* Number of horizontal sensors.  */
    547 	unsigned int x_sensors_17;	/* XXX Same, on a 17" laptop.  */
    548 	unsigned int y_ratio;		/* Screen height / trackpad height.  */
    549 	unsigned int y_sensors;		/* Number of vertical sensors.  */
    550 	unsigned int input_size;	/* Size in bytes of input packets.  */
    551 
    552 	/* Device-specific initialization routine.  May be null.  */
    553 	void (*initialize)(struct uatp_softc *);
    554 
    555 	/* Device-specific finalization routine.  May be null.  May fail.  */
    556 	int (*finalize)(struct uatp_softc *);
    557 
    558 	/* Tests whether this is a base sample.  Second argument is
    559 	 * input_size bytes long.  */
    560 	bool (*base_sample)(const struct uatp_softc *, const uint8_t *);
    561 
    562 	/* Reads a sensor sample from an input packet.  First argument
    563 	 * is UATP_MAX_X_SENSORS bytes long; second, UATP_MAX_Y_SENSORS
    564 	 * bytes; third, input_size bytes.  */
    565 	void (*read_sample)(uint8_t *, uint8_t *, const uint8_t *);
    566 
    567 	/* Accumulates sensor state in sc->sc_acc.  */
    568 	void (*accumulate)(struct uatp_softc *);
    569 
    570 	/* Called on spurious interrupts to reset.  May be null.  */
    571 	void (*reset)(struct uatp_softc *);
    572 };
    573 
    574 /* Known device parameters */
    576 
    577 static const struct uatp_parameters fountain_parameters = {
    578 	.x_ratio	= 64,	.x_sensors = 16,	.x_sensors_17 = 26,
    579 	.y_ratio	= 43,	.y_sensors = 16,
    580 	.input_size	= 81,
    581 	.initialize	= NULL,
    582 	.finalize	= NULL,
    583 	.base_sample	= base_sample_softc_flag,
    584 	.read_sample	= read_sample_1,
    585 	.accumulate	= accumulate_sample_1,
    586 	.reset		= NULL,
    587 };
    588 
    589 static const struct uatp_parameters geyser_1_parameters = {
    590 	.x_ratio	= 64,	.x_sensors = 16,	.x_sensors_17 = 26,
    591 	.y_ratio	= 43,	.y_sensors = 16,
    592 	.input_size	= 81,
    593 	.initialize	= NULL,
    594 	.finalize	= NULL,
    595 	.base_sample	= base_sample_softc_flag,
    596 	.read_sample	= read_sample_1,
    597 	.accumulate	= accumulate_sample_1,
    598 	.reset		= NULL,
    599 };
    600 
    601 static const struct uatp_parameters geyser_2_parameters = {
    602 	.x_ratio	= 64,	.x_sensors = 15,	.x_sensors_17 = 20,
    603 	.y_ratio	= 43,	.y_sensors = 9,
    604 	.input_size	= 64,
    605 	.initialize	= NULL,
    606 	.finalize	= NULL,
    607 	.base_sample	= base_sample_softc_flag,
    608 	.read_sample	= read_sample_2,
    609 	.accumulate	= accumulate_sample_1,
    610 	.reset		= NULL,
    611 };
    612 
    613 /*
    614  * The Geyser 3 and Geyser 4 share parameters.  They also present
    615  * generic USB HID mice on a different report id, so we have smaller
    616  * packets by one byte (uhidev handles multiplexing report ids) and
    617  * extra initialization work to switch the mode from generic USB HID
    618  * mouse to Apple trackpad.
    619  */
    620 
    621 static const struct uatp_parameters geyser_3_4_parameters = {
    622 	.x_ratio	= 64,	.x_sensors = 20, /* XXX */ .x_sensors_17 = 0,
    623 	.y_ratio	= 64,	.y_sensors = 9,
    624 	.input_size	= 63,	/* 64, minus one for the report id.  */
    625 	.initialize	= geyser34_initialize,
    626 	.finalize	= geyser34_finalize,
    627 	.base_sample	= base_sample_input_flag,
    628 	.read_sample	= read_sample_2,
    629 	.accumulate	= accumulate_sample_2,
    630 	.reset		= geyser34_deferred_reset,
    631 };
    632 
    633 /* Known device models */
    635 
    636 #define APPLE_TRACKPAD(PRODUCT, DESCRIPTION, PARAMETERS)		\
    637 	{								\
    638 		.vendor = USB_VENDOR_APPLE,				\
    639 		.product = (PRODUCT),					\
    640 		.description = "Apple " DESCRIPTION " trackpad",	\
    641 		.parameters = (& (PARAMETERS)),				\
    642 	}
    643 
    644 #define POWERBOOK_TRACKPAD(PRODUCT, PARAMETERS)				\
    645 	APPLE_TRACKPAD(PRODUCT, "PowerBook/iBook", PARAMETERS)
    646 #define MACBOOK_TRACKPAD(PRODUCT, PARAMETERS)				\
    647 	APPLE_TRACKPAD(PRODUCT, "MacBook/MacBook Pro", PARAMETERS)
    648 
    649 static const struct uatp_descriptor uatp_descriptors[] =
    650 {
    651 	POWERBOOK_TRACKPAD(0x020e, fountain_parameters),
    652 	POWERBOOK_TRACKPAD(0x020f, fountain_parameters),
    653 	POWERBOOK_TRACKPAD(0x030a, fountain_parameters),
    654 
    655 	POWERBOOK_TRACKPAD(0x030b, geyser_1_parameters),
    656 
    657 	POWERBOOK_TRACKPAD(0x0214, geyser_2_parameters),
    658 	POWERBOOK_TRACKPAD(0x0215, geyser_2_parameters),
    659 	POWERBOOK_TRACKPAD(0x0216, geyser_2_parameters),
    660 
    661 	MACBOOK_TRACKPAD(0x0217, geyser_3_4_parameters), /* 3 */
    662 	MACBOOK_TRACKPAD(0x0218, geyser_3_4_parameters), /* 3 */
    663 	MACBOOK_TRACKPAD(0x0219, geyser_3_4_parameters), /* 3 */
    664 
    665 	MACBOOK_TRACKPAD(0x021a, geyser_3_4_parameters), /* 4 */
    666 	MACBOOK_TRACKPAD(0x021b, geyser_3_4_parameters), /* 4 */
    667 	MACBOOK_TRACKPAD(0x021c, geyser_3_4_parameters), /* 4 */
    668 
    669 	MACBOOK_TRACKPAD(0x0229, geyser_3_4_parameters), /* 4 */
    670 	MACBOOK_TRACKPAD(0x022a, geyser_3_4_parameters), /* 4 */
    671 	MACBOOK_TRACKPAD(0x022b, geyser_3_4_parameters), /* 4 */
    672 };
    673 
    674 #undef MACBOOK_TRACKPAD
    675 #undef POWERBOOK_TRACKPAD
    676 #undef APPLE_TRACKPAD
    677 
    678 /* Miscellaneous utilities */
    680 
    681 static const struct uatp_descriptor *
    682 find_uatp_descriptor(const struct uhidev_attach_arg *uha)
    683 {
    684 	unsigned int i;
    685 
    686 	for (i = 0; i < __arraycount(uatp_descriptors); i++)
    687 		if ((uha->uaa->vendor == uatp_descriptors[i].vendor) &&
    688 		    (uha->uaa->product == uatp_descriptors[i].product))
    689 			return &uatp_descriptors[i];
    690 
    691 	return NULL;
    692 }
    693 
    694 static device_t
    695 uatp_dev(const struct uatp_softc *sc)
    696 {
    697 	return sc->sc_hdev.sc_dev;
    698 }
    699 
    700 static uint8_t *
    701 uatp_x_sample(struct uatp_softc *sc)
    702 {
    703 	return &sc->sc_sample[0];
    704 }
    705 
    706 static uint8_t *
    707 uatp_y_sample(struct uatp_softc *sc)
    708 {
    709 	return &sc->sc_sample[UATP_MAX_X_SENSORS];
    710 }
    711 
    712 static int *
    713 uatp_x_acc(struct uatp_softc *sc)
    714 {
    715 	return &sc->sc_acc[0];
    716 }
    717 
    718 static int *
    719 uatp_y_acc(struct uatp_softc *sc)
    720 {
    721 	return &sc->sc_acc[UATP_MAX_X_SENSORS];
    722 }
    723 
    724 static void
    725 uatp_clear_position(struct uatp_softc *sc)
    726 {
    727 	memset(sc->sc_acc, 0, sizeof(sc->sc_acc));
    728 	sc->sc_motion_timer = 0;
    729 	sc->sc_x_raw = sc->sc_x_smoothed = -1;
    730 	sc->sc_y_raw = sc->sc_y_smoothed = -1;
    731 	sc->sc_z_raw = sc->sc_z_smoothed = -1;
    732 	sc->sc_w_raw = sc->sc_w_smoothed = -1;
    733 	sc->sc_x_remainder = 0;
    734 	sc->sc_y_remainder = 0;
    735 	sc->sc_z_remainder = 0;
    736 	sc->sc_w_remainder = 0;
    737 	sc->sc_track_distance = 0;
    738 }
    739 
    740 static unsigned int
    742 uatp_x_sensors(const struct uatp_softc *sc)
    743 {
    744 	if ((0 < sc->sc_knobs.x_sensors) &&
    745 	    (sc->sc_knobs.x_sensors <= UATP_MAX_X_SENSORS))
    746 		return sc->sc_knobs.x_sensors;
    747 	else
    748 		return sc->sc_parameters->x_sensors;
    749 }
    750 
    751 static unsigned int
    752 uatp_y_sensors(const struct uatp_softc *sc)
    753 {
    754 	if ((0 < sc->sc_knobs.y_sensors) &&
    755 	    (sc->sc_knobs.y_sensors <= UATP_MAX_Y_SENSORS))
    756 		return sc->sc_knobs.y_sensors;
    757 	else
    758 		return sc->sc_parameters->y_sensors;
    759 }
    760 
    761 static unsigned int
    762 uatp_x_ratio(const struct uatp_softc *sc)
    763 {
    764 	/* XXX Reject bogus values in sysctl.  */
    765 	if ((0 < sc->sc_knobs.x_ratio) &&
    766 	    (sc->sc_knobs.x_ratio <= UATP_MAX_X_RATIO))
    767 		return sc->sc_knobs.x_ratio;
    768 	else
    769 		return sc->sc_parameters->x_ratio;
    770 }
    771 
    772 static unsigned int
    773 uatp_y_ratio(const struct uatp_softc *sc)
    774 {
    775 	/* XXX Reject bogus values in sysctl.  */
    776 	if ((0 < sc->sc_knobs.y_ratio) &&
    777 	    (sc->sc_knobs.y_ratio <= UATP_MAX_Y_RATIO))
    778 		return sc->sc_knobs.y_ratio;
    779 	else
    780 		return sc->sc_parameters->y_ratio;
    781 }
    782 
    783 static unsigned int
    785 uatp_old_raw_weight(const struct uatp_softc *sc)
    786 {
    787 	/* XXX Reject bogus values in sysctl.  */
    788 	if (sc->sc_knobs.old_raw_weight <= UATP_MAX_WEIGHT)
    789 		return sc->sc_knobs.old_raw_weight;
    790 	else
    791 		return 0;
    792 }
    793 
    794 static unsigned int
    795 uatp_old_smoothed_weight(const struct uatp_softc *sc)
    796 {
    797 	/* XXX Reject bogus values in sysctl.  */
    798 	if (sc->sc_knobs.old_smoothed_weight <= UATP_MAX_WEIGHT)
    799 		return sc->sc_knobs.old_smoothed_weight;
    800 	else
    801 		return 0;
    802 }
    803 
    804 static unsigned int
    805 uatp_new_raw_weight(const struct uatp_softc *sc)
    806 {
    807 	/* XXX Reject bogus values in sysctl.  */
    808 	if ((0 < sc->sc_knobs.new_raw_weight) &&
    809 	    (sc->sc_knobs.new_raw_weight <= UATP_MAX_WEIGHT))
    810 		return sc->sc_knobs.new_raw_weight;
    811 	else
    812 		return 1;
    813 }
    814 
    815 static int
    817 scale_motion(const struct uatp_softc *sc, int delta, int *remainder,
    818     const unsigned int *multiplier, const unsigned int *divisor)
    819 {
    820 	int product;
    821 
    822 	/* XXX Limit the divisor?  */
    823 	if (((*multiplier) == 0) ||
    824 	    ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
    825 	    ((*divisor) == 0))
    826 		DPRINTF(sc, UATP_DEBUG_ACCEL,
    827 		    ("bad knobs; %d (+ %d) --> %d, rem 0\n",
    828 			delta, *remainder, (delta + (*remainder))));
    829 	else
    830 		DPRINTF(sc, UATP_DEBUG_ACCEL,
    831 		    ("scale %d (+ %d) by %u/%u --> %d, rem %d\n",
    832 			delta, *remainder,
    833 			(*multiplier), (*divisor),
    834 			(((delta + (*remainder)) * ((int) (*multiplier)))
    835 			    / ((int) (*divisor))),
    836 			(((delta + (*remainder)) * ((int) (*multiplier)))
    837 			    % ((int) (*divisor)))));
    838 
    839 	if (sc->sc_knobs.motion_remainder)
    840 		delta += *remainder;
    841 	*remainder = 0;
    842 
    843 	if (((*multiplier) == 0) ||
    844 	    ((*multiplier) > UATP_MAX_MOTION_MULTIPLIER) ||
    845 	    ((*divisor) == 0))
    846 		return delta;
    847 
    848 	product = (delta * ((int) (*multiplier)));
    849 	*remainder = (product % ((int) (*divisor)));
    850 	return (product / ((int) (*divisor)));
    851 }
    852 
    853 static int
    854 uatp_scale_motion(const struct uatp_softc *sc, int delta, int *remainder)
    855 {
    856 	return scale_motion(sc, delta, remainder,
    857 	    &sc->sc_knobs.motion_multiplier,
    858 	    &sc->sc_knobs.motion_divisor);
    859 }
    860 
    861 static int
    862 uatp_scale_fast_motion(const struct uatp_softc *sc, int delta, int *remainder)
    863 {
    864 	return scale_motion(sc, delta, remainder,
    865 	    &sc->sc_knobs.fast_motion_multiplier,
    866 	    &sc->sc_knobs.fast_motion_divisor);
    867 }
    868 
    869 /* Driver goop */
    871 
    872 CFATTACH_DECL2_NEW(uatp, sizeof(struct uatp_softc), uatp_match, uatp_attach,
    873     uatp_detach, uatp_activate, NULL, uatp_childdet);
    874 
    875 static const struct wsmouse_accessops uatp_accessops = {
    876 	.enable = uatp_enable,
    877 	.disable = uatp_disable,
    878 	.ioctl = uatp_ioctl,
    879 };
    880 
    881 static int
    882 uatp_match(device_t parent, cfdata_t match, void *aux)
    883 {
    884 	const struct uhidev_attach_arg *uha = aux;
    885 	void *report_descriptor;
    886 	int report_size, input_size;
    887 	const struct uatp_descriptor *uatp_descriptor;
    888 
    889 	aprint_debug("%s: vendor 0x%04x, product 0x%04x\n", __func__,
    890 	    (unsigned int)uha->uaa->vendor,
    891 	    (unsigned int)uha->uaa->product);
    892 	aprint_debug("%s: class 0x%04x, subclass 0x%04x, proto 0x%04x\n",
    893 	    __func__,
    894 	    (unsigned int)uha->uaa->class,
    895 	    (unsigned int)uha->uaa->subclass,
    896 	    (unsigned int)uha->uaa->proto);
    897 
    898 	uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
    899 	input_size = hid_report_size(report_descriptor, report_size,
    900 	    hid_input, uha->reportid);
    901 	aprint_debug("%s: reportid %d, input size %d\n", __func__,
    902 	    (int)uha->reportid, input_size);
    903 
    904 	/*
    905 	 * Keyboards, trackpads, and eject buttons share common vendor
    906 	 * and product ids, but not protocols: only the trackpad
    907 	 * reports a mouse protocol.
    908 	 */
    909 	if (uha->uaa->proto != UIPROTO_MOUSE)
    910 		return UMATCH_NONE;
    911 
    912 	/* Check for a known vendor/product id.  */
    913 	uatp_descriptor = find_uatp_descriptor(uha);
    914 	if (uatp_descriptor == NULL) {
    915 		aprint_debug("%s: unknown vendor/product id\n", __func__);
    916 		return UMATCH_NONE;
    917 	}
    918 
    919 	/* Check for the expected input size.  */
    920 	if ((input_size < 0) ||
    921 	    ((unsigned int)input_size !=
    922 		uatp_descriptor->parameters->input_size)) {
    923 		aprint_debug("%s: expected input size %u\n", __func__,
    924 		    uatp_descriptor->parameters->input_size);
    925 		return UMATCH_NONE;
    926 	}
    927 
    928 	return UMATCH_VENDOR_PRODUCT_CONF_IFACE;
    929 }
    930 
    931 static void
    933 uatp_attach(device_t parent, device_t self, void *aux)
    934 {
    935 	struct uatp_softc *sc = device_private(self);
    936 	const struct uhidev_attach_arg *uha = aux;
    937 	const struct uatp_descriptor *uatp_descriptor;
    938 	void *report_descriptor;
    939 	int report_size, input_size;
    940 	struct wsmousedev_attach_args a;
    941 
    942 	/* Set up uhidev state.  (Why doesn't uhidev do most of this?)  */
    943 	sc->sc_hdev.sc_dev = self;
    944 	sc->sc_hdev.sc_intr = uatp_intr;
    945 	sc->sc_hdev.sc_parent = uha->parent;
    946 	sc->sc_hdev.sc_report_id = uha->reportid;
    947 
    948 	/* Identify ourselves to dmesg.  */
    949 	uatp_descriptor = find_uatp_descriptor(uha);
    950 	KASSERT(uatp_descriptor != NULL);
    951 	aprint_normal(": %s\n", uatp_descriptor->description);
    952 	aprint_naive(": %s\n", uatp_descriptor->description);
    953 	aprint_verbose_dev(self,
    954 	    "vendor 0x%04x, product 0x%04x, report id %d\n",
    955 	    (unsigned int)uha->uaa->vendor, (unsigned int)uha->uaa->product,
    956 	    (int)uha->reportid);
    957 
    958 	uhidev_get_report_desc(uha->parent, &report_descriptor, &report_size);
    959 	input_size = hid_report_size(report_descriptor, report_size, hid_input,
    960 	    uha->reportid);
    961 	KASSERT(0 < input_size);
    962 	sc->sc_input_size = input_size;
    963 
    964 	/* Initialize model-specific parameters.  */
    965 	sc->sc_parameters = uatp_descriptor->parameters;
    966 	KASSERT((int)sc->sc_parameters->input_size == input_size);
    967 	KASSERT(sc->sc_parameters->x_sensors <= UATP_MAX_X_SENSORS);
    968 	KASSERT(sc->sc_parameters->x_ratio <= UATP_MAX_X_RATIO);
    969 	KASSERT(sc->sc_parameters->y_sensors <= UATP_MAX_Y_SENSORS);
    970 	KASSERT(sc->sc_parameters->y_ratio <= UATP_MAX_Y_RATIO);
    971 	aprint_verbose_dev(self,
    972 	    "%u x sensors, scaled by %u for %u points on screen\n",
    973 	    sc->sc_parameters->x_sensors, sc->sc_parameters->x_ratio,
    974 	    sc->sc_parameters->x_sensors * sc->sc_parameters->x_ratio);
    975 	aprint_verbose_dev(self,
    976 	    "%u y sensors, scaled by %u for %u points on screen\n",
    977 	    sc->sc_parameters->y_sensors, sc->sc_parameters->y_ratio,
    978 	    sc->sc_parameters->y_sensors * sc->sc_parameters->y_ratio);
    979 	if (sc->sc_parameters->initialize)
    980 		sc->sc_parameters->initialize(sc);
    981 
    982 	/* Register with pmf.  Nothing special for suspend/resume.  */
    983 	if (!pmf_device_register(self, NULL, NULL))
    984 		aprint_error_dev(self, "couldn't establish power handler\n");
    985 
    986 	/* Initialize knobs and create sysctl subtree to tweak them.  */
    987 	sc->sc_knobs = default_knobs;
    988 	uatp_setup_sysctl(sc);
    989 
    990 	/* Initialize tapping.  */
    991 	tap_initialize(sc);
    992 
    993 	/* Attach wsmouse.  */
    994 	a.accessops = &uatp_accessops;
    995 	a.accesscookie = sc;
    996 	sc->sc_wsmousedev = config_found(self, &a, wsmousedevprint);
    997 }
    998 
    999 /* Sysctl setup */
   1001 
   1002 static void
   1003 uatp_setup_sysctl(struct uatp_softc *sc)
   1004 {
   1005 	int error;
   1006 
   1007 	error = sysctl_createv(&sc->sc_log, 0, NULL, &sc->sc_node, 0,
   1008 	    CTLTYPE_NODE, device_xname(uatp_dev(sc)),
   1009 	    SYSCTL_DESCR("uatp configuration knobs"),
   1010 	    NULL, 0, NULL, 0,
   1011 	    CTL_HW, CTL_CREATE, CTL_EOL);
   1012 	if (error != 0) {
   1013 		aprint_error_dev(uatp_dev(sc),
   1014 		    "unable to set up sysctl tree hw.%s: %d\n",
   1015 		    device_xname(uatp_dev(sc)), error);
   1016 		goto err;
   1017 	}
   1018 
   1019 #if UATP_DEBUG
   1020 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_debug_flags, "debug",
   1021 		"uatp(4) debug flags"))
   1022 		goto err;
   1023 #endif
   1024 
   1025 	/*
   1026 	 * Button emulation.
   1027 	 */
   1028 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_buttons,
   1029 		"two_finger_buttons",
   1030 		"buttons to emulate with two fingers on trackpad"))
   1031 		goto err;
   1032 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_buttons,
   1033 		"three_finger_buttons",
   1034 		"buttons to emulate with three fingers on trackpad"))
   1035 		goto err;
   1036 
   1037 #if 0
   1038 	/*
   1039 	 * Edge scrolling.
   1040 	 */
   1041 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.top_edge, "top_edge",
   1042 		"width of top edge for edge scrolling"))
   1043 		goto err;
   1044 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.bottom_edge,
   1045 		"bottom_edge", "width of bottom edge for edge scrolling"))
   1046 		goto err;
   1047 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.left_edge, "left_edge",
   1048 		"width of left edge for edge scrolling"))
   1049 		goto err;
   1050 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.right_edge, "right_edge",
   1051 		"width of right edge for edge scrolling"))
   1052 		goto err;
   1053 #endif
   1054 
   1055 	/*
   1057 	 * Multifinger tracking.
   1058 	 */
   1059 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.multifinger_track,
   1060 		"multifinger_track",
   1061 		"0 to ignore multiple fingers, 1 to reset, 2 to scroll"))
   1062 		goto err;
   1063 
   1064 	/*
   1065 	 * Sensor parameters.
   1066 	 */
   1067 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_sensors, "x_sensors",
   1068 		"number of x sensors"))
   1069 		goto err;
   1070 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.x_ratio, "x_ratio",
   1071 		"screen width to trackpad width ratio"))
   1072 		goto err;
   1073 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_sensors, "y_sensors",
   1074 		"number of y sensors"))
   1075 		goto err;
   1076 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.y_ratio, "y_ratio",
   1077 		"screen height to trackpad height ratio"))
   1078 		goto err;
   1079 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_threshold,
   1080 		"sensor_threshold", "sensor threshold"))
   1081 		goto err;
   1082 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.sensor_normalizer,
   1083 		"sensor_normalizer", "sensor normalizer"))
   1084 		goto err;
   1085 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.palm_width,
   1086 		"palm_width", "lower bound on width/height of palm"))
   1087 		goto err;
   1088 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_raw_weight,
   1089 		"old_raw_weight", "weight of old raw position"))
   1090 		goto err;
   1091 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.old_smoothed_weight,
   1092 		"old_smoothed_weight", "weight of old smoothed position"))
   1093 		goto err;
   1094 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.new_raw_weight,
   1095 		"new_raw_weight", "weight of new raw position"))
   1096 		goto err;
   1097 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_remainder,
   1098 		"motion_remainder", "remember motion division remainder"))
   1099 		goto err;
   1100 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_threshold,
   1101 		"motion_threshold", "threshold before finger moves cursor"))
   1102 		goto err;
   1103 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_multiplier,
   1104 		"motion_multiplier", "numerator of motion scale"))
   1105 		goto err;
   1106 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_divisor,
   1107 		"motion_divisor", "divisor of motion scale"))
   1108 		goto err;
   1109 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_threshold,
   1110 		"fast_motion_threshold", "threshold before fast motion"))
   1111 		goto err;
   1112 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_multiplier,
   1113 		"fast_motion_multiplier", "numerator of fast motion scale"))
   1114 		goto err;
   1115 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_motion_divisor,
   1116 		"fast_motion_divisor", "divisor of fast motion scale"))
   1117 		goto err;
   1118 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.fast_per_direction,
   1119 		"fast_per_direction", "don't frobnitz the veeblefitzer!"))
   1120 		goto err;
   1121 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.motion_delay,
   1122 		"motion_delay", "number of packets before motion kicks in"))
   1123 		goto err;
   1124 
   1125 	/*
   1127 	 * Tapping.
   1128 	 */
   1129 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_limit_msec,
   1130 		"tap_limit_msec", "milliseconds before a touch is not a tap"))
   1131 		goto err;
   1132 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.double_tap_limit_msec,
   1133 		"double_tap_limit_msec",
   1134 		"milliseconds before a second tap keeps the button down"))
   1135 		goto err;
   1136 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.one_finger_tap_buttons,
   1137 		"one_finger_tap_buttons", "buttons for one-finger taps"))
   1138 		goto err;
   1139 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.two_finger_tap_buttons,
   1140 		"two_finger_tap_buttons", "buttons for two-finger taps"))
   1141 		goto err;
   1142 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.three_finger_tap_buttons,
   1143 		"three_finger_tap_buttons", "buttons for three-finger taps"))
   1144 		goto err;
   1145 	if (!uatp_setup_sysctl_knob(sc, &sc->sc_knobs.tap_track_distance_limit,
   1146 		"tap_track_distance_limit",
   1147 		"maximum distance^2 of tracking during tap"))
   1148 		goto err;
   1149 
   1150 	return;
   1151 
   1152 err:
   1153 	sysctl_teardown(&sc->sc_log);
   1154 	sc->sc_node = NULL;
   1155 }
   1156 
   1157 static bool
   1158 uatp_setup_sysctl_knob(struct uatp_softc *sc, int *ptr, const char *name,
   1159     const char *description)
   1160 {
   1161 	int error;
   1162 
   1163 	error = sysctl_createv(&sc->sc_log, 0, NULL, NULL, CTLFLAG_READWRITE,
   1164 	    CTLTYPE_INT, name, SYSCTL_DESCR(description),
   1165 	    NULL, 0, ptr, 0,
   1166 	    CTL_HW, sc->sc_node->sysctl_num, CTL_CREATE, CTL_EOL);
   1167 	if (error != 0) {
   1168 		aprint_error_dev(uatp_dev(sc),
   1169 		    "unable to setup sysctl node hw.%s.%s: %d\n",
   1170 		    device_xname(uatp_dev(sc)), name, error);
   1171 		return false;
   1172 	}
   1173 
   1174 	return true;
   1175 }
   1176 
   1177 /* More driver goop */
   1179 
   1180 static void
   1181 uatp_childdet(device_t self, device_t child)
   1182 {
   1183 	struct uatp_softc *sc = device_private(self);
   1184 
   1185 	DPRINTF(sc, UATP_DEBUG_MISC, ("detaching child %s\n",
   1186 	    device_xname(child)));
   1187 
   1188 	/* Our only child is the wsmouse device.  */
   1189 	if (child == sc->sc_wsmousedev)
   1190 		sc->sc_wsmousedev = NULL;
   1191 }
   1192 
   1193 static int
   1194 uatp_detach(device_t self, int flags)
   1195 {
   1196 	struct uatp_softc *sc = device_private(self);
   1197 
   1198 	DPRINTF(sc, UATP_DEBUG_MISC, ("detaching with flags %d\n", flags));
   1199 
   1200         if (sc->sc_status & UATP_ENABLED) {
   1201 		aprint_error_dev(uatp_dev(sc), "can't detach while enabled\n");
   1202 		return EBUSY;
   1203         }
   1204 
   1205 	if (sc->sc_parameters->finalize) {
   1206 		int error = sc->sc_parameters->finalize(sc);
   1207 		if (error != 0)
   1208 			return error;
   1209 	}
   1210 
   1211 	pmf_device_deregister(self);
   1212 
   1213 	sysctl_teardown(&sc->sc_log);
   1214 	sc->sc_node = NULL;
   1215 
   1216 	tap_finalize(sc);
   1217 
   1218 	return config_detach_children(self, flags);
   1219 }
   1220 
   1221 static int
   1222 uatp_activate(device_t self, enum devact act)
   1223 {
   1224 	struct uatp_softc *sc = device_private(self);
   1225 
   1226 	DPRINTF(sc, UATP_DEBUG_MISC, ("act %d\n", (int)act));
   1227 
   1228 	if (act != DVACT_DEACTIVATE)
   1229 		return EOPNOTSUPP;
   1230 
   1231 	sc->sc_status |= UATP_DYING;
   1232 
   1233 	return 0;
   1234 }
   1235 
   1236 /* wsmouse routines */
   1238 
   1239 static int
   1240 uatp_enable(void *v)
   1241 {
   1242 	struct uatp_softc *sc = v;
   1243 
   1244 	DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("enabling wsmouse\n"));
   1245 
   1246 	/* Refuse to enable if we've been deactivated.  */
   1247 	if (sc->sc_status & UATP_DYING) {
   1248 		DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("busy dying\n"));
   1249 		return EIO;
   1250 	}
   1251 
   1252 	/* Refuse to enable if we already are enabled.  */
   1253 	if (sc->sc_status & UATP_ENABLED) {
   1254 		DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("already enabled\n"));
   1255 		return EBUSY;
   1256 	}
   1257 
   1258 	sc->sc_status |= UATP_ENABLED;
   1259 	sc->sc_status &=~ UATP_VALID;
   1260 	sc->sc_input_index = 0;
   1261 	tap_enable(sc);
   1262 	uatp_clear_position(sc);
   1263 
   1264 	DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_open(%p)\n", &sc->sc_hdev));
   1265 	return uhidev_open(&sc->sc_hdev);
   1266 }
   1267 
   1268 static void
   1269 uatp_disable(void *v)
   1270 {
   1271 	struct uatp_softc *sc = v;
   1272 
   1273 	DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("disabling wsmouse\n"));
   1274 
   1275 	if (!(sc->sc_status & UATP_ENABLED)) {
   1276 		DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("not enabled\n"));
   1277 		return;
   1278 	}
   1279 
   1280 	tap_disable(sc);
   1281 	sc->sc_status &=~ UATP_ENABLED;
   1282 
   1283 	DPRINTF(sc, UATP_DEBUG_MISC, ("uhidev_close(%p)\n", &sc->sc_hdev));
   1284 	uhidev_close(&sc->sc_hdev);
   1285 }
   1286 
   1287 static int
   1288 uatp_ioctl(void *v, unsigned long cmd, void *data, int flag, struct lwp *p)
   1289 {
   1290 
   1291 	DPRINTF((struct uatp_softc*)v, UATP_DEBUG_IOCTL,
   1292 	    ("cmd %lx, data %p, flag %x, lwp %p\n", cmd, data, flag, p));
   1293 
   1294 	/* XXX Implement any relevant wsmouse(4) ioctls.  */
   1295 	return EPASSTHROUGH;
   1296 }
   1297 
   1298 /*
   1300  * The Geyser 3 and 4 models talk the generic USB HID mouse protocol by
   1301  * default.  This mode switch makes them give raw sensor data instead
   1302  * so that we can implement tapping, two-finger scrolling, &c.
   1303  */
   1304 
   1305 #define GEYSER34_RAW_MODE		0x04
   1306 #define GEYSER34_MODE_REPORT_ID		0
   1307 #define GEYSER34_MODE_INTERFACE		0
   1308 #define GEYSER34_MODE_PACKET_SIZE	8
   1309 
   1310 static void
   1311 geyser34_enable_raw_mode(struct uatp_softc *sc)
   1312 {
   1313 	usbd_device_handle udev = sc->sc_hdev.sc_parent->sc_udev;
   1314 	usb_device_request_t req;
   1315 	usbd_status status;
   1316 	uint8_t report[GEYSER34_MODE_PACKET_SIZE];
   1317 
   1318 	req.bmRequestType = UT_READ_CLASS_INTERFACE;
   1319 	req.bRequest = UR_GET_REPORT;
   1320 	USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
   1321 	USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
   1322 	USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
   1323 
   1324 	DPRINTF(sc, UATP_DEBUG_RESET, ("get feature report\n"));
   1325 	status = usbd_do_request(udev, &req, report);
   1326 	if (status != USBD_NORMAL_COMPLETION) {
   1327 		aprint_error_dev(uatp_dev(sc),
   1328 		    "error reading feature report: %s\n", usbd_errstr(status));
   1329 		return;
   1330 	}
   1331 
   1332 #if UATP_DEBUG
   1334 	if (sc->sc_debug_flags & UATP_DEBUG_RESET) {
   1335 		unsigned int i;
   1336 		DPRINTF(sc, UATP_DEBUG_RESET, ("old feature report:"));
   1337 		for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
   1338 			printf(" %02x", (unsigned int)report[i]);
   1339 		printf("\n");
   1340 		/* Doing this twice is harmless here and lets this be
   1341 		 * one ifdef.  */
   1342 		report[0] = GEYSER34_RAW_MODE;
   1343 		DPRINTF(sc, UATP_DEBUG_RESET, ("new feature report:"));
   1344 		for (i = 0; i < GEYSER34_MODE_PACKET_SIZE; i++)
   1345 			printf(" %02x", (unsigned int)report[i]);
   1346 		printf("\n");
   1347 	}
   1348 #endif
   1349 
   1350 	report[0] = GEYSER34_RAW_MODE;
   1351 
   1352 	req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
   1353 	req.bRequest = UR_SET_REPORT;
   1354 	USETW2(req.wValue, UHID_FEATURE_REPORT, GEYSER34_MODE_REPORT_ID);
   1355 	USETW(req.wIndex, GEYSER34_MODE_INTERFACE);
   1356 	USETW(req.wLength, GEYSER34_MODE_PACKET_SIZE);
   1357 
   1358 	DPRINTF(sc, UATP_DEBUG_RESET, ("set feature report\n"));
   1359 	status = usbd_do_request(udev, &req, report);
   1360 	if (status != USBD_NORMAL_COMPLETION) {
   1361 		aprint_error_dev(uatp_dev(sc),
   1362 		    "error writing feature report: %s\n", usbd_errstr(status));
   1363 		return;
   1364 	}
   1365 }
   1366 
   1367 /*
   1369  * The Geyser 3 and 4 need to be reset periodically after we detect a
   1370  * continual flow of spurious interrupts.  We use a workqueue for this.
   1371  * The flag avoids deferring a reset more than once before it has run,
   1372  * or detaching the device while there is a deferred reset pending.
   1373  */
   1374 
   1375 static void
   1376 geyser34_initialize(struct uatp_softc *sc)
   1377 {
   1378 	DPRINTF(sc, UATP_DEBUG_MISC, ("initializing\n"));
   1379 
   1380 	geyser34_enable_raw_mode(sc);
   1381 	sc->sc_reset_pending = 0;
   1382 
   1383 	if (workqueue_create(&sc->sc_reset_wq, "uatprstq",
   1384 		geyser34_reset_worker, sc, PRI_NONE, IPL_USB, WQ_MPSAFE)
   1385             != 0) {
   1386 		sc->sc_reset_wq = NULL;
   1387 		aprint_error_dev(uatp_dev(sc),
   1388 		    "couldn't create Geyser 3/4 reset workqueue\n");
   1389 	}
   1390 }
   1391 
   1392 static int
   1393 geyser34_finalize(struct uatp_softc *sc)
   1394 {
   1395 	DPRINTF(sc, UATP_DEBUG_MISC, ("finalizing\n"));
   1396 
   1397 	/* Can't destroy the work queue if there is work pending.  */
   1398 	if (sc->sc_reset_pending) {
   1399 		DPRINTF(sc, UATP_DEBUG_MISC, ("EBUSY -- reset pending\n"));
   1400 		return EBUSY;
   1401 	}
   1402 
   1403 	if (sc->sc_reset_wq != NULL)
   1404 		workqueue_destroy(sc->sc_reset_wq);
   1405 
   1406 	return 0;
   1407 }
   1408 
   1409 static void
   1410 geyser34_deferred_reset(struct uatp_softc *sc)
   1411 {
   1412 	DPRINTF(sc, UATP_DEBUG_RESET, ("deferring reset\n"));
   1413 
   1414 	/* Initialization can fail, so make sure we have a work queue.  */
   1415 	if (sc->sc_reset_wq == NULL)
   1416 		DPRINTF(sc, UATP_DEBUG_RESET, ("no work queue\n"));
   1417 	/* Check for pending work.  */
   1418 	else if (atomic_swap_uint(&sc->sc_reset_pending, 1))
   1419 		DPRINTF(sc, UATP_DEBUG_RESET, ("already pending\n"));
   1420 	/* No work was pending; flag is now set.  */
   1421 	else
   1422 		workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
   1423 }
   1424 
   1425 static void
   1426 geyser34_reset_worker(struct work *work, void *arg)
   1427 {
   1428 	struct uatp_softc *sc = arg;
   1429 
   1430 	DPRINTF(sc, UATP_DEBUG_RESET, ("resetting\n"));
   1431 
   1432 	/* Reset by putting it into raw mode.  Not sure why.  */
   1433 	geyser34_enable_raw_mode(sc);
   1434 
   1435 	/* Mark the device ready for new work.  */
   1436 	(void)atomic_swap_uint(&sc->sc_reset_pending, 0);
   1437 }
   1438 
   1439 /* Interrupt handler */
   1441 
   1442 static void
   1443 uatp_intr(struct uhidev *addr, void *ibuf, unsigned int len)
   1444 {
   1445 	struct uatp_softc *sc = (struct uatp_softc *)addr;
   1446 	uint8_t *input;
   1447 	int dx, dy, dz, dw;
   1448 	uint32_t buttons;
   1449 
   1450 	DPRINTF(sc, UATP_DEBUG_INTR, ("softc %p, ibuf %p, len %u\n",
   1451 	    addr, ibuf, len));
   1452 
   1453 	/*
   1454 	 * Some devices break packets up into chunks, so we accumulate
   1455 	 * input up to the expected packet length, or if it would
   1456 	 * overflow, discard the whole packet and start over.
   1457 	 */
   1458 	if (sc->sc_input_size < len) {
   1459 		aprint_error_dev(uatp_dev(sc),
   1460 		    "discarding %u-byte input packet\n", len);
   1461 		sc->sc_input_index = 0;
   1462 		return;
   1463 	} else if (sc->sc_input_size < (sc->sc_input_index + len)) {
   1464 		aprint_error_dev(uatp_dev(sc), "discarding %u-byte input\n",
   1465 		    (sc->sc_input_index + len));
   1466 		sc->sc_input_index = 0;
   1467 		return;
   1468 	}
   1469 
   1470 #if UATP_DEBUG
   1471 	if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
   1472 		unsigned int i;
   1473 		uint8_t *bytes = ibuf;
   1474 		DPRINTF(sc, UATP_DEBUG_INTR, ("raw"));
   1475 		for (i = 0; i < len; i++)
   1476 			printf(" %02x", (unsigned int)bytes[i]);
   1477 		printf("\n");
   1478 	}
   1479 #endif
   1480 
   1481 	memcpy(&sc->sc_input[sc->sc_input_index], ibuf, len);
   1482 	sc->sc_input_index += len;
   1483 	if (sc->sc_input_index != sc->sc_input_size) {
   1484 		/* Wait until packet is complete.  */
   1485 		aprint_verbose_dev(uatp_dev(sc), "partial packet: %u bytes\n",
   1486 		    len);
   1487 		return;
   1488 	}
   1489 
   1490 	/* Clear the buffer and process the now complete packet.  */
   1491 	sc->sc_input_index = 0;
   1492 	input = sc->sc_input;
   1493 
   1494 	/* The last byte's first bit is set iff the button is pressed.
   1495 	 * XXX Left button should have a name.  */
   1496 	buttons = ((input[sc->sc_input_size - 1] & UATP_STATUS_BUTTON)
   1497 	    ? 1 : 0);
   1498 
   1499 	/* Read the sample.  */
   1500 	memset(uatp_x_sample(sc), 0, UATP_MAX_X_SENSORS);
   1501 	memset(uatp_y_sample(sc), 0, UATP_MAX_Y_SENSORS);
   1502 	sc->sc_parameters->read_sample(uatp_x_sample(sc), uatp_y_sample(sc),
   1503 	    input);
   1504 
   1505 #if UATP_DEBUG
   1507 	if (sc->sc_debug_flags & UATP_DEBUG_INTR) {
   1508 		unsigned int i;
   1509 		DPRINTF(sc, UATP_DEBUG_INTR, ("x sensors"));
   1510 		for (i = 0; i < uatp_x_sensors(sc); i++)
   1511 			printf(" %02x", (unsigned int)uatp_x_sample(sc)[i]);
   1512 		printf("\n");
   1513 		DPRINTF(sc, UATP_DEBUG_INTR, ("y sensors"));
   1514 		for (i = 0; i < uatp_y_sensors(sc); i++)
   1515 			printf(" %02x", (unsigned int)uatp_y_sample(sc)[i]);
   1516 		printf("\n");
   1517 	} else if ((sc->sc_debug_flags & UATP_DEBUG_STATUS) &&
   1518 		(input[sc->sc_input_size - 1] &~
   1519 		    (UATP_STATUS_BUTTON | UATP_STATUS_BASE |
   1520 			UATP_STATUS_POST_RESET)))
   1521 		DPRINTF(sc, UATP_DEBUG_STATUS, ("status byte: %02x\n",
   1522 		    input[sc->sc_input_size - 1]));
   1523 #endif
   1524 
   1525 	/*
   1526 	 * If this is a base sample, initialize the state to interpret
   1527 	 * subsequent samples relative to it, and stop here.
   1528 	 */
   1529 	if (sc->sc_parameters->base_sample(sc, input)) {
   1530 		DPRINTF(sc, UATP_DEBUG_PARSE,
   1531 		    ("base sample, buttons %"PRIx32"\n", buttons));
   1532 		/* XXX Should the valid bit ever be reset?  */
   1533 		sc->sc_status |= UATP_VALID;
   1534 		uatp_clear_position(sc);
   1535 		memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
   1536 		/* XXX Perform 17" size detection like Linux?  */
   1537 		return;
   1538 	}
   1539 
   1540 	/* If not, accumulate the change in the sensors.  */
   1541 	sc->sc_parameters->accumulate(sc);
   1542 
   1543 #if UATP_DEBUG
   1544 	if (sc->sc_debug_flags & UATP_DEBUG_ACCUMULATE) {
   1545 		unsigned int i;
   1546 		DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated x state:"));
   1547 		for (i = 0; i < uatp_x_sensors(sc); i++)
   1548 			printf(" %02x", (unsigned int)uatp_x_acc(sc)[i]);
   1549 		printf("\n");
   1550 		DPRINTF(sc, UATP_DEBUG_ACCUMULATE, ("accumulated y state:"));
   1551 		for (i = 0; i < uatp_y_sensors(sc); i++)
   1552 			printf(" %02x", (unsigned int)uatp_y_acc(sc)[i]);
   1553 		printf("\n");
   1554 	}
   1555 #endif
   1556 
   1557 	/* Compute the change in coordinates and buttons.  */
   1558 	dx = dy = dz = dw = 0;
   1559 	if ((!interpret_input(sc, &dx, &dy, &dz, &dw, &buttons)) &&
   1560 	    /* If there's no input because we're releasing a button,
   1561 	     * then it's not spurious.  XXX Mutex?  */
   1562 	    (sc->sc_buttons == 0)) {
   1563 		DPRINTF(sc, UATP_DEBUG_SPURINTR, ("spurious interrupt\n"));
   1564 		if (sc->sc_parameters->reset)
   1565 			sc->sc_parameters->reset(sc);
   1566 		return;
   1567 	}
   1568 
   1569 	/* Report to wsmouse.  */
   1570 	DPRINTF(sc, UATP_DEBUG_INTR,
   1571 	    ("buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
   1572 		buttons, dx, dy, dz, dw));
   1573 	mutex_enter(&sc->sc_tap_mutex);
   1574 	uatp_input(sc, buttons, dx, dy, dz, dw);
   1575 	mutex_exit(&sc->sc_tap_mutex);
   1576 }
   1577 
   1578 /*
   1580  * Different ways to discern the base sample initializing the state.
   1581  * `base_sample_softc_flag' uses a state flag stored in the softc;
   1582  * `base_sample_input_flag' checks a flag at the end of the input
   1583  * packet.
   1584  */
   1585 
   1586 static bool
   1587 base_sample_softc_flag(const struct uatp_softc *sc, const uint8_t *input)
   1588 {
   1589 	return !(sc->sc_status & UATP_VALID);
   1590 }
   1591 
   1592 static bool
   1593 base_sample_input_flag(const struct uatp_softc *sc, const uint8_t *input)
   1594 {
   1595 	/* XXX Should we also check the valid flag?  */
   1596 	return !!(input[sc->sc_input_size - 1] & UATP_STATUS_BASE);
   1597 }
   1598 
   1599 /*
   1600  * Pick apart the horizontal sensors from the vertical sensors.
   1601  * Different models interleave them in different orders.
   1602  */
   1603 
   1604 static void
   1605 read_sample_1(uint8_t *x, uint8_t *y, const uint8_t *input)
   1606 {
   1607 	unsigned int i;
   1608 
   1609 	for (i = 0; i < 8; i++) {
   1610 		x[i] = input[5 * i + 2];
   1611 		x[i + 8] = input[5 * i + 4];
   1612 		x[i + 16] = input[5 * i + 42];
   1613 		if (i < 2)
   1614 			x[i + 24] = input[5 * i + 44];
   1615 
   1616 		y[i] = input[5 * i + 1];
   1617 		y[i + 8] = input[5 * i + 3];
   1618 	}
   1619 }
   1620 
   1621 static void
   1622 read_sample_2(uint8_t *x, uint8_t *y, const uint8_t *input)
   1623 {
   1624 	unsigned int i, j;
   1625 
   1626 	for (i = 0, j = 19; i < 20; i += 2, j += 3) {
   1627 		x[i] = input[j];
   1628 		x[i + 1] = input[j + 1];
   1629 	}
   1630 
   1631 	for (i = 0, j = 1; i < 9; i += 2, j += 3) {
   1632 		y[i] = input[j];
   1633 		y[i + 1] = input[j + 1];
   1634 	}
   1635 }
   1636 
   1637 static void
   1639 accumulate_sample_1(struct uatp_softc *sc)
   1640 {
   1641 	unsigned int i;
   1642 
   1643 	for (i = 0; i < UATP_SENSORS; i++) {
   1644 		sc->sc_acc[i] += (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
   1645 		if (sc->sc_acc[i] < 0) {
   1646 			sc->sc_acc[i] = 0;
   1647 		} else if (UATP_MAX_ACC < sc->sc_acc[i]) {
   1648 			DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
   1649 			    ("overflow %d\n", sc->sc_acc[i]));
   1650 			sc->sc_acc[i] = UATP_MAX_ACC;
   1651 		}
   1652 	}
   1653 
   1654 	memcpy(sc->sc_base, sc->sc_sample, sizeof(sc->sc_base));
   1655 }
   1656 
   1657 static void
   1658 accumulate_sample_2(struct uatp_softc *sc)
   1659 {
   1660 	unsigned int i;
   1661 
   1662 	for (i = 0; i < UATP_SENSORS; i++) {
   1663 		sc->sc_acc[i] = (int8_t)(sc->sc_sample[i] - sc->sc_base[i]);
   1664 		if (sc->sc_acc[i] < -0x80) {
   1665 			DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
   1666 			    ("underflow %u - %u = %d\n",
   1667 				(unsigned int)sc->sc_sample[i],
   1668 				(unsigned int)sc->sc_base[i],
   1669 				sc->sc_acc[i]));
   1670 			sc->sc_acc[i] += 0x100;
   1671 		}
   1672 		if (0x7f < sc->sc_acc[i]) {
   1673 			DPRINTF(sc, UATP_DEBUG_ACCUMULATE,
   1674 			    ("overflow %u - %u = %d\n",
   1675 				(unsigned int)sc->sc_sample[i],
   1676 				(unsigned int)sc->sc_base[i],
   1677 				sc->sc_acc[i]));
   1678 			sc->sc_acc[i] -= 0x100;
   1679 		}
   1680 		if (sc->sc_acc[i] < 0)
   1681 			sc->sc_acc[i] = 0;
   1682 	}
   1683 }
   1684 
   1685 /*
   1687  * Report input to wsmouse, if there is anything interesting to report.
   1688  * We must take into consideration the current tap-and-drag button
   1689  * state.
   1690  */
   1691 
   1692 static void
   1693 uatp_input(struct uatp_softc *sc, uint32_t buttons,
   1694     int dx, int dy, int dz, int dw)
   1695 {
   1696 	uint32_t all_buttons;
   1697 
   1698 	KASSERT(mutex_owned(&sc->sc_tap_mutex));
   1699 	all_buttons = buttons | uatp_tapped_buttons(sc);
   1700 
   1701 	if ((sc->sc_wsmousedev != NULL) &&
   1702 	    ((dx != 0) || (dy != 0) || (dz != 0) || (dw != 0) ||
   1703 		(all_buttons != sc->sc_all_buttons))) {
   1704 		int s = spltty();
   1705 		DPRINTF(sc, UATP_DEBUG_WSMOUSE, ("wsmouse input:"
   1706 		    " buttons %"PRIx32", dx %d, dy %d, dz %d, dw %d\n",
   1707 		    all_buttons, dx, -dy, dz, -dw));
   1708 		wsmouse_input(sc->sc_wsmousedev, all_buttons, dx, -dy, dz, -dw,
   1709 		    WSMOUSE_INPUT_DELTA);
   1710 		splx(s);
   1711 	}
   1712 	sc->sc_buttons = buttons;
   1713 	sc->sc_all_buttons = all_buttons;
   1714 }
   1715 
   1716 /*
   1717  * Interpret the current tap state to decide whether the tap buttons
   1718  * are currently pressed.
   1719  */
   1720 
   1721 static uint32_t
   1722 uatp_tapped_buttons(struct uatp_softc *sc)
   1723 {
   1724 	KASSERT(mutex_owned(&sc->sc_tap_mutex));
   1725 	switch (sc->sc_tap_state) {
   1726 	case TAP_STATE_INITIAL:
   1727 	case TAP_STATE_TAPPING:
   1728 		return 0;
   1729 
   1730 	case TAP_STATE_TAPPED:
   1731 	case TAP_STATE_DOUBLE_TAPPING:
   1732 	case TAP_STATE_DRAGGING_DOWN:
   1733 	case TAP_STATE_DRAGGING_UP:
   1734 	case TAP_STATE_TAPPING_IN_DRAG:
   1735 		CHECK((0 < sc->sc_tapped_fingers), return 0);
   1736 		switch (sc->sc_tapped_fingers) {
   1737 		case 1: return sc->sc_knobs.one_finger_tap_buttons;
   1738 		case 2: return sc->sc_knobs.two_finger_tap_buttons;
   1739 		case 3:
   1740 		default: return sc->sc_knobs.three_finger_tap_buttons;
   1741 		}
   1742 
   1743 	default:
   1744 		aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
   1745 		    __func__, sc->sc_tap_state);
   1746 		return 0;
   1747 	}
   1748 }
   1749 
   1750 /*
   1752  * Interpret the current input state to find a difference in all the
   1753  * relevant coordinates and buttons to pass on to wsmouse, and update
   1754  * any internal driver state necessary to interpret subsequent input
   1755  * relative to this one.
   1756  */
   1757 
   1758 static bool
   1759 interpret_input(struct uatp_softc *sc, int *dx, int *dy, int *dz, int *dw,
   1760     uint32_t *buttons)
   1761 {
   1762 	unsigned int x_pressure, x_raw, x_fingers;
   1763 	unsigned int y_pressure, y_raw, y_fingers;
   1764 	unsigned int fingers;
   1765 
   1766 	x_pressure = interpret_dimension(sc, uatp_x_acc(sc),
   1767 	    uatp_x_sensors(sc), uatp_x_ratio(sc), &x_raw, &x_fingers);
   1768 	y_pressure = interpret_dimension(sc, uatp_y_acc(sc),
   1769 	    uatp_y_sensors(sc), uatp_y_ratio(sc), &y_raw, &y_fingers);
   1770 
   1771 	DPRINTF(sc, UATP_DEBUG_PARSE,
   1772 	    ("x %u @ %u, %uf; y %u @ %u, %uf; buttons %"PRIx32"\n",
   1773 		x_pressure, x_raw, x_fingers,
   1774 		y_pressure, y_raw, y_fingers,
   1775 		*buttons));
   1776 
   1777 	if ((x_pressure == 0) && (y_pressure == 0)) {
   1778 		bool ok;
   1779 		/* No fingers: clear position and maybe report a tap.  */
   1780 		DPRINTF(sc, UATP_DEBUG_INTR,
   1781 		    ("no position detected; clearing position\n"));
   1782 		if (*buttons == 0) {
   1783 			ok = tap_released(sc);
   1784 		} else {
   1785 			tap_reset(sc);
   1786 			/* Button pressed: interrupt is not spurious.  */
   1787 			ok = true;
   1788 		}
   1789 		/*
   1790 		 * Don't clear the position until after tap_released,
   1791 		 * which needs to know the track distance.
   1792 		 */
   1793 		uatp_clear_position(sc);
   1794 		return ok;
   1795 	} else if ((x_pressure == 0) || (y_pressure == 0)) {
   1796 		/* XXX What to do here?  */
   1797 		DPRINTF(sc, UATP_DEBUG_INTR,
   1798 		    ("pressure in only one dimension; ignoring\n"));
   1799 		return true;
   1800 	} else if ((x_pressure == 1) && (y_pressure == 1)) {
   1801 		fingers = max(x_fingers, y_fingers);
   1802 		CHECK((0 < fingers), return false);
   1803 		if (*buttons == 0)
   1804 			tap_touched(sc, fingers);
   1805 		else if (fingers == 1)
   1806 			tap_reset(sc);
   1807 		else		/* Multiple fingers, button pressed.  */
   1808 			*buttons = emulated_buttons(sc, fingers);
   1809 		update_position(sc, fingers, x_raw, y_raw, dx, dy, dz, dw);
   1810 		return true;
   1811 	} else {
   1812 		/* Palm detected in either or both of the dimensions.  */
   1813 		DPRINTF(sc, UATP_DEBUG_INTR, ("palm detected; ignoring\n"));
   1814 		return true;
   1815 	}
   1816 }
   1817 
   1818 /*
   1820  * Interpret the accumulated sensor state along one dimension to find
   1821  * the number, mean position, and pressure of fingers.  Returns 0 to
   1822  * indicate no pressure, returns 1 and sets *position and *fingers to
   1823  * indicate fingers, and returns 2 to indicate palm.
   1824  *
   1825  * XXX Give symbolic names to the return values.
   1826  */
   1827 
   1828 static unsigned int
   1829 interpret_dimension(struct uatp_softc *sc, const int *acc,
   1830     unsigned int n_sensors, unsigned int ratio,
   1831     unsigned int *position, unsigned int *fingers)
   1832 {
   1833 	unsigned int i, v, n_fingers, sum;
   1834 	unsigned int total[UATP_MAX_SENSORS];
   1835 	unsigned int weighted[UATP_MAX_SENSORS];
   1836 	unsigned int sensor_threshold = sc->sc_knobs.sensor_threshold;
   1837 	unsigned int sensor_normalizer = sc->sc_knobs.sensor_normalizer;
   1838 	unsigned int width = 0;	/* GCC is not smart enough.  */
   1839 	unsigned int palm_width = sc->sc_knobs.palm_width;
   1840 	enum { none, nondecreasing, decreasing } state = none;
   1841 
   1842 	if (sensor_threshold < sensor_normalizer)
   1843 		sensor_normalizer = sensor_threshold;
   1844 	if (palm_width == 0)	/* Effectively disable palm detection.  */
   1845 		palm_width = UATP_MAX_POSITION;
   1846 
   1847 #define CHECK_(condition) CHECK(condition, return 0)
   1848 
   1849 	/*
   1850 	 * Arithmetic bounds:
   1851 	 * . n_sensors is at most UATP_MAX_SENSORS,
   1852 	 * . n_fingers is at most UATP_MAX_SENSORS,
   1853 	 * . i is at most UATP_MAX_SENSORS,
   1854 	 * . sc->sc_acc[i] is at most UATP_MAX_ACC,
   1855 	 * . i * sc->sc_acc[i] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
   1856 	 * . each total[j] is at most UATP_MAX_SENSORS * UATP_MAX_ACC,
   1857 	 * . each weighted[j] is at most UATP_MAX_SENSORS^2 * UATP_MAX_ACC,
   1858 	 * . ratio is at most UATP_MAX_RATIO,
   1859 	 * . each weighted[j] * ratio is at most
   1860 	 *     UATP_MAX_SENSORS^2 * UATP_MAX_ACC * UATP_MAX_RATIO,
   1861 	 *   which is #x5fa0000 with the current values of the constants,
   1862 	 *   and
   1863 	 * . the sum of the positions is at most
   1864 	 *     UATP_MAX_SENSORS * UATP_MAX_POSITION,
   1865 	 *   which is #x60000 with the current values of the constants.
   1866 	 * Hence all of the arithmetic here fits in int (and thus also
   1867 	 * unsigned int).  If you change the constants, though, you
   1868 	 * must update the analysis.
   1869 	 */
   1870 	__CTASSERT(0x5fa0000 == (UATP_MAX_SENSORS * UATP_MAX_SENSORS *
   1871 		UATP_MAX_ACC * UATP_MAX_RATIO));
   1872 	__CTASSERT(0x60000 == (UATP_MAX_SENSORS * UATP_MAX_POSITION));
   1873 	CHECK_(n_sensors <= UATP_MAX_SENSORS);
   1874 	CHECK_(ratio <= UATP_MAX_RATIO);
   1875 
   1876 	/*
   1877 	 * Detect each finger by looking for a consecutive sequence of
   1878 	 * increasing and then decreasing pressures above the sensor
   1879 	 * threshold.  Compute the finger's position as the weighted
   1880 	 * average of positions, weighted by the pressure at that
   1881 	 * position.  Finally, return the average finger position.
   1882 	 */
   1883 
   1884 	n_fingers = 0;
   1885 	memset(weighted, 0, sizeof weighted);
   1886 	memset(total, 0, sizeof total);
   1887 
   1888 	for (i = 0; i < n_sensors; i++) {
   1890 		CHECK_(0 <= acc[i]);
   1891 		v = acc[i];
   1892 
   1893 		/* Ignore values outside a sensible interval.  */
   1894 		if (v <= sensor_threshold) {
   1895 			state = none;
   1896 			continue;
   1897 		} else if (UATP_MAX_ACC < v) {
   1898 			aprint_verbose_dev(uatp_dev(sc),
   1899 			    "ignoring large accumulated sensor state: %u\n",
   1900 			    v);
   1901 			continue;
   1902 		}
   1903 
   1904 		switch (state) {
   1905 		case none:
   1906 			n_fingers += 1;
   1907 			CHECK_(n_fingers <= n_sensors);
   1908 			state = nondecreasing;
   1909 			width = 1;
   1910 			break;
   1911 
   1912 		case nondecreasing:
   1913 		case decreasing:
   1914 			CHECK_(0 < i);
   1915 			CHECK_(0 <= acc[i - 1]);
   1916 			width += 1;
   1917 			if (palm_width <= (width * ratio)) {
   1918 				DPRINTF(sc, UATP_DEBUG_PALM,
   1919 				    ("palm detected\n"));
   1920 				return 2;
   1921 			} else if ((state == nondecreasing) &&
   1922 			    ((unsigned int)acc[i - 1] > v)) {
   1923 				state = decreasing;
   1924 			} else if ((state == decreasing) &&
   1925 			    ((unsigned int)acc[i - 1] < v)) {
   1926 				n_fingers += 1;
   1927 				CHECK_(n_fingers <= n_sensors);
   1928 				state = nondecreasing;
   1929 				width = 1;
   1930 			}
   1931 			break;
   1932 
   1933 		default:
   1934 			aprint_error_dev(uatp_dev(sc),
   1935 			    "bad finger detection state: %d", state);
   1936 			return 0;
   1937 		}
   1938 
   1939 		v -= sensor_normalizer;
   1940 		total[n_fingers - 1] += v;
   1941 		weighted[n_fingers - 1] += (i * v);
   1942 		CHECK_(total[n_fingers - 1] <=
   1943 		    (UATP_MAX_SENSORS * UATP_MAX_ACC));
   1944 		CHECK_(weighted[n_fingers - 1] <=
   1945 		    (UATP_MAX_SENSORS * UATP_MAX_SENSORS * UATP_MAX_ACC));
   1946 	}
   1947 
   1948 	if (n_fingers == 0)
   1949 		return 0;
   1950 
   1951 	sum = 0;
   1952 	for (i = 0; i < n_fingers; i++) {
   1953 		DPRINTF(sc, UATP_DEBUG_PARSE,
   1954 		    ("finger at %u\n", ((weighted[i] * ratio) / total[i])));
   1955 		sum += ((weighted[i] * ratio) / total[i]);
   1956 		CHECK_(sum <= UATP_MAX_SENSORS * UATP_MAX_POSITION);
   1957 	}
   1958 
   1959 	*fingers = n_fingers;
   1960 	*position = (sum / n_fingers);
   1961 	return 1;
   1962 
   1963 #undef CHECK_
   1964 }
   1965 
   1966 /* Tapping */
   1968 
   1969 /*
   1970  * There is a very hairy state machine for detecting taps.  At every
   1971  * touch, we record the maximum number of fingers touched, and don't
   1972  * reset it to zero until the finger is released.
   1973  *
   1974  * INITIAL STATE
   1975  * (no tapping fingers; no tapped fingers)
   1976  * - On touch, go to TAPPING STATE.
   1977  * - On any other input, remain in INITIAL STATE.
   1978  *
   1979  * TAPPING STATE: Finger touched; might be tap.
   1980  * (tapping fingers; no tapped fingers)
   1981  * - On release within the tap limit, go to TAPPED STATE.
   1982  * - On release after the tap limit, go to INITIAL STATE.
   1983  * - On any other input, remain in TAPPING STATE.
   1984  *
   1985  * TAPPED STATE: Finger recently tapped, and might double-tap.
   1986  * (no tapping fingers; tapped fingers)
   1987  * - On touch within the double-tap limit, go to DOUBLE-TAPPING STATE.
   1988  * - On touch after the double-tap limit, go to TAPPING STATE.
   1989  * - On no event after the double-tap limit, go to INITIAL STATE.
   1990  * - On any other input, remain in TAPPED STATE.
   1991  *
   1992  * DOUBLE-TAPPING STATE: Finger touched soon after tap; might be double-tap.
   1993  * (tapping fingers; tapped fingers)
   1994  * - On release within the tap limit, release button and go to TAPPED STATE.
   1995  * - On release after the tap limit, go to DRAGGING UP STATE.
   1996  * - On touch after the tap limit, go to DRAGGING DOWN STATE.
   1997  * - On any other input, remain in DOUBLE-TAPPING STATE.
   1998  *
   1999  * DRAGGING DOWN STATE: Finger has double-tapped and is dragging, not tapping.
   2000  * (no tapping fingers; tapped fingers)
   2001  * - On release, go to DRAGGING UP STATE.
   2002  * - On any other input, remain in DRAGGING DOWN STATE.
   2003  *
   2004  * DRAGGING UP STATE: Finger has double-tapped and is up.
   2005  * (no tapping fingers; tapped fingers)
   2006  * - On touch, go to TAPPING IN DRAG STATE.
   2007  * - On any other input, remain in DRAGGING UP STATE.
   2008  *
   2009  * TAPPING IN DRAG STATE: Tap-dancing while cross-dressed.
   2010  * (tapping fingers; tapped fingers)
   2011  * - On release within the tap limit, go to TAPPED STATE.
   2012  * - On release after the tap limit, go to DRAGGING UP STATE.
   2013  * - On any other input, remain in TAPPING IN DRAG STATE.
   2014  *
   2015  * Warning:  The graph of states is split into two components, those
   2016  * with tapped fingers and those without.  The only path from any state
   2017  * without tapped fingers to a state with tapped fingers must pass
   2018  * through TAPPED STATE.  Also, the only transitions into TAPPED STATE
   2019  * must be from states with tapping fingers, which become the tapped
   2020  * fingers.  If you edit the state machine, you must either preserve
   2021  * these properties, or globally transform the state machine to avoid
   2022  * the bad consequences of violating these properties.
   2023  */
   2024 
   2025 static void
   2027 uatp_tap_limit(const struct uatp_softc *sc, struct timeval *limit)
   2028 {
   2029 	unsigned int msec = sc->sc_knobs.tap_limit_msec;
   2030 	limit->tv_sec = 0;
   2031 	limit->tv_usec = ((msec < 1000) ? (1000 * msec) : 100000);
   2032 }
   2033 
   2034 #if UATP_DEBUG
   2035 
   2036 #  define TAP_DEBUG_PRE(sc)	tap_debug((sc), __func__, "")
   2037 #  define TAP_DEBUG_POST(sc)	tap_debug((sc), __func__, " ->")
   2038 
   2039 static void
   2040 tap_debug(struct uatp_softc *sc, const char *caller, const char *prefix)
   2041 {
   2042 	char buffer[128];
   2043 	const char *state;
   2044 
   2045 	KASSERT(mutex_owned(&sc->sc_tap_mutex));
   2046 	switch (sc->sc_tap_state) {
   2047 	case TAP_STATE_INITIAL:		state = "initial";		break;
   2048 	case TAP_STATE_TAPPING:		state = "tapping";		break;
   2049 	case TAP_STATE_TAPPED:		state = "tapped";		break;
   2050 	case TAP_STATE_DOUBLE_TAPPING:	state = "double-tapping";	break;
   2051 	case TAP_STATE_DRAGGING_DOWN:	state = "dragging-down";	break;
   2052 	case TAP_STATE_DRAGGING_UP:	state = "dragging-up";		break;
   2053 	case TAP_STATE_TAPPING_IN_DRAG:	state = "tapping-in-drag";	break;
   2054 	default:
   2055 		snprintf(buffer, sizeof buffer, "unknown (%d)",
   2056 		    sc->sc_tap_state);
   2057 		state = buffer;
   2058 		break;
   2059 	}
   2060 
   2061 	DPRINTF(sc, UATP_DEBUG_TAP,
   2062 	    ("%s:%s state %s, %u tapping, %u tapped\n",
   2063 		caller, prefix, state,
   2064 		sc->sc_tapping_fingers, sc->sc_tapped_fingers));
   2065 }
   2066 
   2067 #else	/* !UATP_DEBUG */
   2068 
   2069 #  define TAP_DEBUG_PRE(sc)	do {} while (0)
   2070 #  define TAP_DEBUG_POST(sc)	do {} while (0)
   2071 
   2072 #endif
   2073 
   2074 static void
   2076 tap_initialize(struct uatp_softc *sc)
   2077 {
   2078 	callout_init(&sc->sc_untap_callout, CALLOUT_MPSAFE);
   2079 	callout_setfunc(&sc->sc_untap_callout, untap_callout, sc);
   2080 	mutex_init(&sc->sc_tap_mutex, MUTEX_DEFAULT, IPL_USB);
   2081 	cv_init(&sc->sc_tap_cv, "uatptap");
   2082 }
   2083 
   2084 static void
   2085 tap_finalize(struct uatp_softc *sc)
   2086 {
   2087 	/* XXX Can the callout still be scheduled here?  */
   2088 	callout_destroy(&sc->sc_untap_callout);
   2089 	mutex_destroy(&sc->sc_tap_mutex);
   2090 	cv_destroy(&sc->sc_tap_cv);
   2091 }
   2092 
   2093 static void
   2094 tap_enable(struct uatp_softc *sc)
   2095 {
   2096 	mutex_enter(&sc->sc_tap_mutex);
   2097 	tap_transition_initial(sc);
   2098 	sc->sc_buttons = 0;	/* XXX Not the right place?  */
   2099 	sc->sc_all_buttons = 0;
   2100 	mutex_exit(&sc->sc_tap_mutex);
   2101 }
   2102 
   2103 static void
   2104 tap_disable(struct uatp_softc *sc)
   2105 {
   2106 	/* Reset tapping, and wait for any callouts to complete.  */
   2107 	tap_reset_wait(sc);
   2108 }
   2109 
   2110 /*
   2111  * Reset tap state.  If the untap callout has just fired, it may signal
   2112  * a harmless button release event before this returns.
   2113  */
   2114 
   2115 static void
   2116 tap_reset(struct uatp_softc *sc)
   2117 {
   2118 	callout_stop(&sc->sc_untap_callout);
   2119 	mutex_enter(&sc->sc_tap_mutex);
   2120 	tap_transition_initial(sc);
   2121 	mutex_exit(&sc->sc_tap_mutex);
   2122 }
   2123 
   2124 /* Reset, but don't return until the callout is done running.  */
   2125 
   2126 static void
   2127 tap_reset_wait(struct uatp_softc *sc)
   2128 {
   2129 	bool fired = callout_stop(&sc->sc_untap_callout);
   2130 
   2131 	mutex_enter(&sc->sc_tap_mutex);
   2132 	if (fired)
   2133 		while (sc->sc_tap_state == TAP_STATE_TAPPED)
   2134 			if (cv_timedwait(&sc->sc_tap_cv, &sc->sc_tap_mutex,
   2135 				mstohz(1000))) {
   2136 				aprint_error_dev(uatp_dev(sc),
   2137 				    "tap timeout\n");
   2138 				break;
   2139 			}
   2140 	if (sc->sc_tap_state == TAP_STATE_TAPPED)
   2141 		aprint_error_dev(uatp_dev(sc), "%s error\n", __func__);
   2142 	tap_transition_initial(sc);
   2143 	mutex_exit(&sc->sc_tap_mutex);
   2144 }
   2145 
   2146 static const struct timeval zero_timeval;
   2148 
   2149 static void
   2150 tap_transition(struct uatp_softc *sc, enum uatp_tap_state tap_state,
   2151     const struct timeval *start_time,
   2152     unsigned int tapping_fingers, unsigned int tapped_fingers)
   2153 {
   2154 	KASSERT(mutex_owned(&sc->sc_tap_mutex));
   2155 	sc->sc_tap_state = tap_state;
   2156 	sc->sc_tap_timer = *start_time;
   2157 	sc->sc_tapping_fingers = tapping_fingers;
   2158 	sc->sc_tapped_fingers = tapped_fingers;
   2159 }
   2160 
   2161 static void
   2162 tap_transition_initial(struct uatp_softc *sc)
   2163 {
   2164 	/*
   2165 	 * No checks.  This state is always kosher, and sometimes a
   2166 	 * fallback in case of failure.
   2167 	 */
   2168 	tap_transition(sc, TAP_STATE_INITIAL, &zero_timeval, 0, 0);
   2169 }
   2170 
   2171 /* Touch transitions */
   2172 
   2173 static void
   2174 tap_transition_tapping(struct uatp_softc *sc, const struct timeval *start_time,
   2175     unsigned int fingers)
   2176 {
   2177 	CHECK((sc->sc_tapping_fingers <= fingers),
   2178 	    do { tap_transition_initial(sc); return; } while (0));
   2179 	tap_transition(sc, TAP_STATE_TAPPING, start_time, fingers, 0);
   2180 }
   2181 
   2182 static void
   2183 tap_transition_double_tapping(struct uatp_softc *sc,
   2184     const struct timeval *start_time, unsigned int fingers)
   2185 {
   2186 	CHECK((sc->sc_tapping_fingers <= fingers),
   2187 	    do { tap_transition_initial(sc); return; } while (0));
   2188 	CHECK((0 < sc->sc_tapped_fingers),
   2189 	    do { tap_transition_initial(sc); return; } while (0));
   2190 	tap_transition(sc, TAP_STATE_DOUBLE_TAPPING, start_time, fingers,
   2191 	    sc->sc_tapped_fingers);
   2192 }
   2193 
   2194 static void
   2196 tap_transition_dragging_down(struct uatp_softc *sc)
   2197 {
   2198 	CHECK((0 < sc->sc_tapped_fingers),
   2199 	    do { tap_transition_initial(sc); return; } while (0));
   2200 	tap_transition(sc, TAP_STATE_DRAGGING_DOWN, &zero_timeval, 0,
   2201 	    sc->sc_tapped_fingers);
   2202 }
   2203 
   2204 static void
   2205 tap_transition_tapping_in_drag(struct uatp_softc *sc,
   2206     const struct timeval *start_time, unsigned int fingers)
   2207 {
   2208 	CHECK((sc->sc_tapping_fingers <= fingers),
   2209 	    do { tap_transition_initial(sc); return; } while (0));
   2210 	CHECK((0 < sc->sc_tapped_fingers),
   2211 	    do { tap_transition_initial(sc); return; } while (0));
   2212 	tap_transition(sc, TAP_STATE_TAPPING_IN_DRAG, start_time, fingers,
   2213 	    sc->sc_tapped_fingers);
   2214 }
   2215 
   2216 /* Release transitions */
   2217 
   2218 static void
   2219 tap_transition_tapped(struct uatp_softc *sc, const struct timeval *start_time)
   2220 {
   2221 	/*
   2222 	 * The fingers that were tapping -- of which there must have
   2223 	 * been at least one -- are now the fingers that have tapped,
   2224 	 * and there are no longer fingers tapping.
   2225 	 */
   2226 	CHECK((0 < sc->sc_tapping_fingers),
   2227 	    do { tap_transition_initial(sc); return; } while (0));
   2228 	tap_transition(sc, TAP_STATE_TAPPED, start_time, 0,
   2229 	    sc->sc_tapping_fingers);
   2230 	schedule_untap(sc);
   2231 }
   2232 
   2233 static void
   2234 tap_transition_dragging_up(struct uatp_softc *sc)
   2235 {
   2236 	CHECK((0 < sc->sc_tapped_fingers),
   2237 	    do { tap_transition_initial(sc); return; } while (0));
   2238 	tap_transition(sc, TAP_STATE_DRAGGING_UP, &zero_timeval, 0,
   2239 	    sc->sc_tapped_fingers);
   2240 }
   2241 
   2242 static void
   2244 tap_touched(struct uatp_softc *sc, unsigned int fingers)
   2245 {
   2246 	struct timeval now, diff, limit;
   2247 
   2248 	CHECK((0 < fingers), return);
   2249 	callout_stop(&sc->sc_untap_callout);
   2250 	mutex_enter(&sc->sc_tap_mutex);
   2251 	TAP_DEBUG_PRE(sc);
   2252 	/*
   2253 	 * Guarantee that the number of tapping fingers never decreases
   2254 	 * except when it is reset to zero on release.
   2255 	 */
   2256 	if (fingers < sc->sc_tapping_fingers)
   2257 		fingers = sc->sc_tapping_fingers;
   2258 	switch (sc->sc_tap_state) {
   2259 	case TAP_STATE_INITIAL:
   2260 		getmicrouptime(&now);
   2261 		tap_transition_tapping(sc, &now, fingers);
   2262 		break;
   2263 
   2264 	case TAP_STATE_TAPPING:
   2265 		/*
   2266 		 * Number of fingers may have increased, so transition
   2267 		 * even though we're already in TAPPING.
   2268 		 */
   2269 		tap_transition_tapping(sc, &sc->sc_tap_timer, fingers);
   2270 		break;
   2271 
   2272 	case TAP_STATE_TAPPED:
   2273 		getmicrouptime(&now);
   2274 		/*
   2275 		 * If the double-tap time limit has passed, it's the
   2276 		 * callout's responsibility to handle that event, so we
   2277 		 * assume the limit has not passed yet.
   2278 		 */
   2279 		tap_transition_double_tapping(sc, &now, fingers);
   2280 		break;
   2281 
   2282 	case TAP_STATE_DOUBLE_TAPPING:
   2283 		getmicrouptime(&now);
   2284 		timersub(&now, &sc->sc_tap_timer, &diff);
   2285 		uatp_tap_limit(sc, &limit);
   2286 		if (timercmp(&diff, &limit, >) ||
   2287 		    (sc->sc_track_distance >
   2288 			sc->sc_knobs.tap_track_distance_limit))
   2289 			tap_transition_dragging_down(sc);
   2290 		break;
   2291 
   2292 	case TAP_STATE_DRAGGING_DOWN:
   2293 		break;
   2294 
   2295 	case TAP_STATE_DRAGGING_UP:
   2296 		getmicrouptime(&now);
   2297 		tap_transition_tapping_in_drag(sc, &now, fingers);
   2298 		break;
   2299 
   2300 	case TAP_STATE_TAPPING_IN_DRAG:
   2301 		/*
   2302 		 * Number of fingers may have increased, so transition
   2303 		 * even though we're already in TAPPING IN DRAG.
   2304 		 */
   2305 		tap_transition_tapping_in_drag(sc, &sc->sc_tap_timer, fingers);
   2306 		break;
   2307 
   2308 	default:
   2309 		aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
   2310 		    __func__, sc->sc_tap_state);
   2311 		tap_transition_initial(sc);
   2312 		break;
   2313 	}
   2314 	TAP_DEBUG_POST(sc);
   2315 	mutex_exit(&sc->sc_tap_mutex);
   2316 }
   2317 
   2318 static bool
   2320 tap_released(struct uatp_softc *sc)
   2321 {
   2322 	struct timeval now, diff, limit;
   2323 	void (*non_tapped_transition)(struct uatp_softc *);
   2324 	bool ok, temporary_release;
   2325 
   2326 	mutex_enter(&sc->sc_tap_mutex);
   2327 	TAP_DEBUG_PRE(sc);
   2328 	switch (sc->sc_tap_state) {
   2329 	case TAP_STATE_INITIAL:
   2330 	case TAP_STATE_TAPPED:
   2331 	case TAP_STATE_DRAGGING_UP:
   2332 		/* Spurious interrupt: fingers are already off.  */
   2333 		ok = false;
   2334 		break;
   2335 
   2336 	case TAP_STATE_TAPPING:
   2337 		temporary_release = false;
   2338 		non_tapped_transition = &tap_transition_initial;
   2339 		goto maybe_tap;
   2340 
   2341 	case TAP_STATE_DOUBLE_TAPPING:
   2342 		temporary_release = true;
   2343 		non_tapped_transition = &tap_transition_dragging_up;
   2344 		goto maybe_tap;
   2345 
   2346 	case TAP_STATE_TAPPING_IN_DRAG:
   2347 		temporary_release = false;
   2348 		non_tapped_transition = &tap_transition_dragging_up;
   2349 		goto maybe_tap;
   2350 
   2351 	maybe_tap:
   2352 		getmicrouptime(&now);
   2353 		timersub(&now, &sc->sc_tap_timer, &diff);
   2354 		uatp_tap_limit(sc, &limit);
   2355 		if (timercmp(&diff, &limit, <=) &&
   2356 		    (sc->sc_track_distance <=
   2357 			sc->sc_knobs.tap_track_distance_limit)) {
   2358 			if (temporary_release) {
   2359 				/*
   2360 				 * XXX Kludge: Temporarily transition
   2361 				 * to a tap state that uatp_input will
   2362 				 * interpret as `no buttons tapped',
   2363 				 * saving the tapping fingers.  There
   2364 				 * should instead be a separate routine
   2365 				 * uatp_input_untapped.
   2366 				 */
   2367 				unsigned int fingers = sc->sc_tapping_fingers;
   2368 				tap_transition_initial(sc);
   2369 				uatp_input(sc, 0, 0, 0, 0, 0);
   2370 				sc->sc_tapping_fingers = fingers;
   2371 			}
   2372 			tap_transition_tapped(sc, &now);
   2373 		} else {
   2374 			(*non_tapped_transition)(sc);
   2375 		}
   2376 		ok = true;
   2377 		break;
   2378 
   2379 	case TAP_STATE_DRAGGING_DOWN:
   2380 		tap_transition_dragging_up(sc);
   2381 		ok = true;
   2382 		break;
   2383 
   2384 	default:
   2385 		aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
   2386 		    __func__, sc->sc_tap_state);
   2387 		tap_transition_initial(sc);
   2388 		ok = false;
   2389 		break;
   2390 	}
   2391 	TAP_DEBUG_POST(sc);
   2392 	mutex_exit(&sc->sc_tap_mutex);
   2393 	return ok;
   2394 }
   2395 
   2396 /* Untapping: Releasing the button after a tap */
   2398 
   2399 static void
   2400 schedule_untap(struct uatp_softc *sc)
   2401 {
   2402 	unsigned int ms = sc->sc_knobs.double_tap_limit_msec;
   2403 	if (ms <= 1000)
   2404 		callout_schedule(&sc->sc_untap_callout, mstohz(ms));
   2405 	else			/* XXX Reject bogus values in sysctl.  */
   2406 		aprint_error_dev(uatp_dev(sc),
   2407 		    "double-tap delay too long: %ums\n", ms);
   2408 }
   2409 
   2410 static void
   2411 untap_callout(void *arg)
   2412 {
   2413 	struct uatp_softc *sc = arg;
   2414 
   2415 	mutex_enter(&sc->sc_tap_mutex);
   2416 	TAP_DEBUG_PRE(sc);
   2417 	switch (sc->sc_tap_state) {
   2418 	case TAP_STATE_TAPPED:
   2419 		tap_transition_initial(sc);
   2420 		/*
   2421 		 * XXX Kludge: Call uatp_input after the state transition
   2422 		 * to make sure that it will actually release the button.
   2423 		 */
   2424 		uatp_input(sc, 0, 0, 0, 0, 0);
   2425 
   2426 	case TAP_STATE_INITIAL:
   2427 	case TAP_STATE_TAPPING:
   2428 	case TAP_STATE_DOUBLE_TAPPING:
   2429 	case TAP_STATE_DRAGGING_UP:
   2430 	case TAP_STATE_DRAGGING_DOWN:
   2431 	case TAP_STATE_TAPPING_IN_DRAG:
   2432 		/*
   2433 		 * Somebody else got in and changed the state before we
   2434 		 * untapped.  Let them take over; do nothing here.
   2435 		 */
   2436 		break;
   2437 
   2438 	default:
   2439 		aprint_error_dev(uatp_dev(sc), "%s: invalid tap state: %d\n",
   2440 		    __func__, sc->sc_tap_state);
   2441 		tap_transition_initial(sc);
   2442 		/* XXX Just in case...?  */
   2443 		uatp_input(sc, 0, 0, 0, 0, 0);
   2444 		break;
   2445 	}
   2446 	TAP_DEBUG_POST(sc);
   2447 	/* XXX Broadcast only if state was TAPPED?  */
   2448 	cv_broadcast(&sc->sc_tap_cv);
   2449 	mutex_exit(&sc->sc_tap_mutex);
   2450 }
   2451 
   2452 /*
   2454  * Emulate different buttons if the user holds down n fingers while
   2455  * pressing the physical button.  (This is unrelated to tapping.)
   2456  */
   2457 
   2458 static uint32_t
   2459 emulated_buttons(struct uatp_softc *sc, unsigned int fingers)
   2460 {
   2461 	CHECK((1 < fingers), return 0);
   2462 
   2463 	switch (fingers) {
   2464 	case 2:
   2465 		DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
   2466 		    ("2-finger emulated button: %"PRIx32"\n",
   2467 			sc->sc_knobs.two_finger_buttons));
   2468 		return sc->sc_knobs.two_finger_buttons;
   2469 
   2470 	case 3:
   2471 	default:
   2472 		DPRINTF(sc, UATP_DEBUG_EMUL_BUTTON,
   2473 		    ("3-finger emulated button: %"PRIx32"\n",
   2474 			sc->sc_knobs.three_finger_buttons));
   2475 		return sc->sc_knobs.three_finger_buttons;
   2476 	}
   2477 }
   2478 
   2479 /*
   2481  * Update the position known to the driver based on the position and
   2482  * number of fingers.  dx, dy, dz, and dw are expected to hold zero;
   2483  * update_position may store nonzero changes in position in them.
   2484  */
   2485 
   2486 static void
   2487 update_position(struct uatp_softc *sc, unsigned int fingers,
   2488     unsigned int x_raw, unsigned int y_raw,
   2489     int *dx, int *dy, int *dz, int *dw)
   2490 {
   2491 	CHECK((0 < fingers), return);
   2492 
   2493 	if ((fingers == 1) || (sc->sc_knobs.multifinger_track == 1))
   2494 		move_mouse(sc, x_raw, y_raw, dx, dy);
   2495 	else if (sc->sc_knobs.multifinger_track == 2)
   2496 		scroll_wheel(sc, x_raw, y_raw, dz, dw);
   2497 }
   2498 
   2499 /*
   2500  * XXX Scrolling needs to use a totally different motion model.
   2501  */
   2502 
   2503 static void
   2504 move_mouse(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
   2505     int *dx, int *dy)
   2506 {
   2507 	move(sc, "mouse", x_raw, y_raw, &sc->sc_x_raw, &sc->sc_y_raw,
   2508 	    &sc->sc_x_smoothed, &sc->sc_y_smoothed,
   2509 	    &sc->sc_x_remainder, &sc->sc_y_remainder,
   2510 	    dx, dy);
   2511 }
   2512 
   2513 static void
   2514 scroll_wheel(struct uatp_softc *sc, unsigned int x_raw, unsigned int y_raw,
   2515     int *dz, int *dw)
   2516 {
   2517 	move(sc, "scroll", x_raw, y_raw, &sc->sc_z_raw, &sc->sc_w_raw,
   2518 	    &sc->sc_z_smoothed, &sc->sc_w_smoothed,
   2519 	    &sc->sc_z_remainder, &sc->sc_w_remainder,
   2520 	    dz, dw);
   2521 }
   2522 
   2523 static void
   2525 move(struct uatp_softc *sc, const char *ctx, unsigned int a, unsigned int b,
   2526     int *a_raw, int *b_raw,
   2527     int *a_smoothed, int *b_smoothed,
   2528     unsigned int *a_remainder, unsigned int *b_remainder,
   2529     int *da, int *db)
   2530 {
   2531 #define CHECK_(condition) CHECK(condition, return)
   2532 
   2533 	int old_a_raw = *a_raw, old_a_smoothed = *a_smoothed;
   2534 	int old_b_raw = *b_raw, old_b_smoothed = *b_smoothed;
   2535 	unsigned int a_dist, b_dist, dist_squared;
   2536 	bool a_fast, b_fast;
   2537 
   2538 	/*
   2539 	 * Make sure the quadratics in motion_below_threshold and
   2540 	 * tracking distance don't overflow int arithmetic.
   2541 	 */
   2542 	__CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
   2543 
   2544 	CHECK_(a <= UATP_MAX_POSITION);
   2545 	CHECK_(b <= UATP_MAX_POSITION);
   2546 	*a_raw = a;
   2547 	*b_raw = b;
   2548 	if ((old_a_raw < 0) || (old_b_raw < 0)) {
   2549 		DPRINTF(sc, UATP_DEBUG_MOVE,
   2550 		    ("initialize %s position (%d, %d) -> (%d, %d)\n", ctx,
   2551 			old_a_raw, old_b_raw, a, b));
   2552 		return;
   2553 	}
   2554 
   2555 	if ((old_a_smoothed < 0) || (old_b_smoothed < 0)) {
   2556 		/* XXX Does this make sense?  */
   2557 		old_a_smoothed = old_a_raw;
   2558 		old_b_smoothed = old_b_raw;
   2559 	}
   2560 
   2561 	CHECK_(0 <= old_a_raw);
   2562 	CHECK_(0 <= old_b_raw);
   2563 	CHECK_(old_a_raw <= UATP_MAX_POSITION);
   2564 	CHECK_(old_b_raw <= UATP_MAX_POSITION);
   2565 	CHECK_(0 <= old_a_smoothed);
   2566 	CHECK_(0 <= old_b_smoothed);
   2567 	CHECK_(old_a_smoothed <= UATP_MAX_POSITION);
   2568 	CHECK_(old_b_smoothed <= UATP_MAX_POSITION);
   2569 	CHECK_(0 <= *a_raw);
   2570 	CHECK_(0 <= *b_raw);
   2571 	CHECK_(*a_raw <= UATP_MAX_POSITION);
   2572 	CHECK_(*b_raw <= UATP_MAX_POSITION);
   2573 	*a_smoothed = smooth(sc, old_a_raw, old_a_smoothed, *a_raw);
   2574 	*b_smoothed = smooth(sc, old_b_raw, old_b_smoothed, *b_raw);
   2575 	CHECK_(0 <= *a_smoothed);
   2576 	CHECK_(0 <= *b_smoothed);
   2577 	CHECK_(*a_smoothed <= UATP_MAX_POSITION);
   2578 	CHECK_(*b_smoothed <= UATP_MAX_POSITION);
   2579 
   2580 	if (sc->sc_motion_timer < sc->sc_knobs.motion_delay) {
   2582 		DPRINTF(sc, UATP_DEBUG_MOVE, ("delay motion %u\n",
   2583 			sc->sc_motion_timer));
   2584 		sc->sc_motion_timer += 1;
   2585 		return;
   2586 	}
   2587 
   2588 	/* XXX Use raw distances or smoothed distances?  Acceleration?  */
   2589 	if (*a_smoothed < old_a_smoothed)
   2590 		a_dist = old_a_smoothed - *a_smoothed;
   2591 	else
   2592 		a_dist = *a_smoothed - old_a_smoothed;
   2593 
   2594 	if (*b_smoothed < old_b_smoothed)
   2595 		b_dist = old_b_smoothed - *b_smoothed;
   2596 	else
   2597 		b_dist = *b_smoothed - old_b_smoothed;
   2598 
   2599 	dist_squared = (a_dist * a_dist) + (b_dist * b_dist);
   2600 	if (dist_squared < ((2 * UATP_MAX_POSITION * UATP_MAX_POSITION)
   2601 		- sc->sc_track_distance))
   2602 		sc->sc_track_distance += dist_squared;
   2603 	else
   2604 		sc->sc_track_distance = (2 * UATP_MAX_POSITION *
   2605 		    UATP_MAX_POSITION);
   2606 	DPRINTF(sc, UATP_DEBUG_TRACK_DIST, ("finger has tracked %u units^2\n",
   2607 		sc->sc_track_distance));
   2608 
   2609 	/*
   2610 	 * The checks above guarantee that the differences here are at
   2611 	 * most UATP_MAX_POSITION in magnitude, since both minuend and
   2612 	 * subtrahend are nonnegative and at most UATP_MAX_POSITION.
   2613 	 */
   2614 	if (motion_below_threshold(sc, sc->sc_knobs.motion_threshold,
   2615 		(int)(*a_smoothed - old_a_smoothed),
   2616 		(int)(*b_smoothed - old_b_smoothed))) {
   2617 		DPRINTF(sc, UATP_DEBUG_MOVE,
   2618 		    ("%s motion too small: (%d, %d) -> (%d, %d)\n", ctx,
   2619 			old_a_smoothed, old_b_smoothed,
   2620 			*a_smoothed, *b_smoothed));
   2621 		return;
   2622 	}
   2623 	if (sc->sc_knobs.fast_per_direction == 0) {
   2624 		a_fast = b_fast = !motion_below_threshold(sc,
   2625 		    sc->sc_knobs.fast_motion_threshold,
   2626 		    (int)(*a_smoothed - old_a_smoothed),
   2627 		    (int)(*b_smoothed - old_b_smoothed));
   2628 	} else {
   2629 		a_fast = !motion_below_threshold(sc,
   2630 		    sc->sc_knobs.fast_motion_threshold,
   2631 		    (int)(*a_smoothed - old_a_smoothed),
   2632 		    0);
   2633 		b_fast = !motion_below_threshold(sc,
   2634 		    sc->sc_knobs.fast_motion_threshold,
   2635 		    0,
   2636 		    (int)(*b_smoothed - old_b_smoothed));
   2637 	}
   2638 	*da = accelerate(sc, old_a_raw, *a_raw, old_a_smoothed, *a_smoothed,
   2639 	    a_fast, a_remainder);
   2640 	*db = accelerate(sc, old_b_raw, *b_raw, old_b_smoothed, *b_smoothed,
   2641 	    b_fast, b_remainder);
   2642 	DPRINTF(sc, UATP_DEBUG_MOVE,
   2643 	    ("update %s position (%d, %d) -> (%d, %d), move by (%d, %d)\n",
   2644 		ctx, old_a_smoothed, old_b_smoothed, *a_smoothed, *b_smoothed,
   2645 		*da, *db));
   2646 
   2647 #undef CHECK_
   2648 }
   2649 
   2650 static int
   2652 smooth(struct uatp_softc *sc, unsigned int old_raw, unsigned int old_smoothed,
   2653     unsigned int raw)
   2654 {
   2655 #define CHECK_(condition) CHECK(condition, return old_raw)
   2656 
   2657 	/*
   2658 	 * Arithmetic bounds:
   2659 	 * . the weights are at most UATP_MAX_WEIGHT;
   2660 	 * . the positions are at most UATP_MAX_POSITION; and so
   2661 	 * . the numerator of the average is at most
   2662 	 *     3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION,
   2663 	 *   which is #x477000, fitting comfortably in an int.
   2664 	 */
   2665 	__CTASSERT(0x477000 == (3 * UATP_MAX_WEIGHT * UATP_MAX_POSITION));
   2666 	unsigned int old_raw_weight = uatp_old_raw_weight(sc);
   2667 	unsigned int old_smoothed_weight = uatp_old_smoothed_weight(sc);
   2668 	unsigned int new_raw_weight = uatp_new_raw_weight(sc);
   2669 	CHECK_(old_raw_weight <= UATP_MAX_WEIGHT);
   2670 	CHECK_(old_smoothed_weight <= UATP_MAX_WEIGHT);
   2671 	CHECK_(new_raw_weight <= UATP_MAX_WEIGHT);
   2672 	CHECK_(old_raw <= UATP_MAX_POSITION);
   2673 	CHECK_(old_smoothed <= UATP_MAX_POSITION);
   2674 	CHECK_(raw <= UATP_MAX_POSITION);
   2675 	return (((old_raw_weight * old_raw) +
   2676 		(old_smoothed_weight * old_smoothed) +
   2677 		(new_raw_weight * raw))
   2678 	    / (old_raw_weight + old_smoothed_weight + new_raw_weight));
   2679 
   2680 #undef CHECK_
   2681 }
   2682 
   2683 static bool
   2684 motion_below_threshold(struct uatp_softc *sc, unsigned int threshold,
   2685     int x, int y)
   2686 {
   2687 	unsigned int x_squared, y_squared;
   2688 
   2689 	/* Caller guarantees the multiplication will not overflow.  */
   2690 	KASSERT(-UATP_MAX_POSITION <= x);
   2691 	KASSERT(-UATP_MAX_POSITION <= y);
   2692 	KASSERT(x <= UATP_MAX_POSITION);
   2693 	KASSERT(y <= UATP_MAX_POSITION);
   2694 	__CTASSERT(0x12000000 == (2 * UATP_MAX_POSITION * UATP_MAX_POSITION));
   2695 
   2696 	x_squared = (x * x);
   2697 	y_squared = (y * y);
   2698 
   2699 	return ((x_squared + y_squared) < threshold);
   2700 }
   2701 
   2702 static int
   2703 accelerate(struct uatp_softc *sc, unsigned int old_raw, unsigned int raw,
   2704     unsigned int old_smoothed, unsigned int smoothed, bool fast,
   2705     int *remainder)
   2706 {
   2707 #define CHECK_(condition) CHECK(condition, return 0)
   2708 
   2709 	/* Guarantee that the scaling won't overflow.  */
   2710 	__CTASSERT(0x30000 ==
   2711 	    (UATP_MAX_POSITION * UATP_MAX_MOTION_MULTIPLIER));
   2712 
   2713 	CHECK_(old_raw <= UATP_MAX_POSITION);
   2714 	CHECK_(raw <= UATP_MAX_POSITION);
   2715 	CHECK_(old_smoothed <= UATP_MAX_POSITION);
   2716 	CHECK_(smoothed <= UATP_MAX_POSITION);
   2717 
   2718 	return (fast ? uatp_scale_fast_motion : uatp_scale_motion)
   2719 	    (sc, (((int) smoothed) - ((int) old_smoothed)), remainder);
   2720 
   2721 #undef CHECK_
   2722 }
   2723