umcpmio.c revision 1.2 1 /* $NetBSD: umcpmio.c,v 1.2 2025/03/17 18:24:08 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2024 Brad Spencer <brad (at) anduin.eldar.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 #include <sys/cdefs.h>
20 __KERNEL_RCSID(0, "$NetBSD: umcpmio.c,v 1.2 2025/03/17 18:24:08 riastradh Exp $");
21
22 /*
23 * Driver for the Microchip MCP2221 / MCP2221A USB multi-io chip
24 */
25
26 #ifdef _KERNEL_OPT
27 #include "opt_usb.h"
28 #endif
29
30 #include <sys/param.h>
31 #include <sys/types.h>
32
33 #include <sys/conf.h>
34 #include <sys/device.h>
35 #include <sys/file.h>
36 #include <sys/gpio.h>
37 #include <sys/kauth.h>
38 #include <sys/kernel.h>
39 #include <sys/kmem.h>
40 #include <sys/lwp.h>
41 #include <sys/sysctl.h>
42 #include <sys/systm.h>
43 #include <sys/tty.h>
44 #include <sys/vnode.h>
45
46 #include <dev/i2c/i2cvar.h>
47
48 #include <dev/gpio/gpiovar.h>
49
50 #include <dev/hid/hid.h>
51
52 #include <dev/usb/uhidev.h>
53 #include <dev/usb/usb.h>
54 #include <dev/usb/usbdevs.h>
55 #include <dev/usb/usbdi.h>
56 #include <dev/usb/usbdi_util.h>
57 #include <dev/usb/usbhid.h>
58
59 #include <dev/usb/umcpmio.h>
60 #include <dev/usb/umcpmio_hid_reports.h>
61 #include <dev/usb/umcpmio_io.h>
62 #include <dev/usb/umcpmio_subr.h>
63
64 int umcpmio_send_report(struct umcpmio_softc *, uint8_t *, size_t, uint8_t *,
65 int);
66
67 static const struct usb_devno umcpmio_devs[] = {
68 { USB_VENDOR_MICROCHIP, USB_PRODUCT_MICROCHIP_MCP2221 },
69 };
70 #define umcpmio_lookup(v, p) usb_lookup(umcpmio_devs, v, p)
71
72 static int umcpmio_match(device_t, cfdata_t, void *);
73 static void umcpmio_attach(device_t, device_t, void *);
74 static int umcpmio_detach(device_t, int);
75 static int umcpmio_activate(device_t, enum devact);
76 static int umcpmio_verify_sysctl(SYSCTLFN_ARGS);
77 static int umcpmio_verify_dac_sysctl(SYSCTLFN_ARGS);
78 static int umcpmio_verify_adc_sysctl(SYSCTLFN_ARGS);
79 static int umcpmio_verify_gpioclock_dc_sysctl(SYSCTLFN_ARGS);
80 static int umcpmio_verify_gpioclock_cd_sysctl(SYSCTLFN_ARGS);
81
82 #define UMCPMIO_DEBUG 1
83 #ifdef UMCPMIO_DEBUG
84 #define DPRINTF(x) do { if (umcpmiodebug) printf x; } while (0)
85 #define DPRINTFN(n, x) do { if (umcpmiodebug > (n)) printf x; } while (0)
86 int umcpmiodebug = 0;
87 #else
88 #define DPRINTF(x) __nothing
89 #define DPRINTFN(n, x) __nothing
90 #endif
91
92 CFATTACH_DECL_NEW(umcpmio, sizeof(struct umcpmio_softc), umcpmio_match,
93 umcpmio_attach, umcpmio_detach, umcpmio_activate);
94
95 static void
96 WAITMS(int ms)
97 {
98 if (ms > 0)
99 delay(ms * 1000);
100 }
101
102 extern struct cfdriver umcpmio_cd;
103
104 static dev_type_open(umcpmio_dev_open);
105 static dev_type_read(umcpmio_dev_read);
106 static dev_type_write(umcpmio_dev_write);
107 static dev_type_close(umcpmio_dev_close);
108 static dev_type_ioctl(umcpmio_dev_ioctl);
109
110 const struct cdevsw umcpmio_cdevsw = {
111 .d_open = umcpmio_dev_open,
112 .d_close = umcpmio_dev_close,
113 .d_read = umcpmio_dev_read,
114 .d_write = umcpmio_dev_write,
115 .d_ioctl = umcpmio_dev_ioctl,
116 .d_stop = nostop,
117 .d_tty = notty,
118 .d_poll = nopoll,
119 .d_mmap = nommap,
120 .d_kqfilter = nokqfilter,
121 .d_discard = nodiscard,
122 .d_flag = D_OTHER
123 };
124
125 static const char umcpmio_valid_vrefs[] =
126 "4.096V, 2.048V, 1.024V, OFF, VDD";
127
128 static const char umcpmio_valid_dcs[] =
129 "75%, 50%, 25%, 0%";
130
131 static const char umcpmio_valid_cds[] =
132 "375kHz, 750kHz, 1.5MHz, 3MHz, 6MHz, 12MHz, 24MHz";
133
134 static void
135 umcpmio_dump_buffer(bool enabled, uint8_t *buf, u_int len, const char *name)
136 {
137 int i;
138
139 if (enabled) {
140 DPRINTF(("%s:", name));
141 for (i = 0; i < len; i++) {
142 DPRINTF((" %02x", buf[i]));
143 }
144 DPRINTF(("\n"));
145 }
146 }
147
148 /*
149 * Communication with the HID function requires sending a HID report
150 * request and then waiting for a response.
151 *
152 * The panic that occurs when trying to use the interrupt... i.e.
153 * attaching though this driver seems to be related to the fact that
154 * a spin lock is held and the USB stack wants to wait.
155 *
156 * The USB stack *IS* going to have to wait for the response from
157 * the device, somehow...
158 *
159 * It didn't seem possible to defer the uhidev_write to a thread.
160 * Attempts to yield() while spinning hard also did not work and
161 * not yield()ing didn't allow anything else to run.
162 *
163 */
164
165 /*
166 * This is the panic you will get:
167 *
168 * panic: kernel diagnostic assertion "ci->ci_mtx_count == -1" failed: file "../../../../kern/kern_synch.c", line 762 mi_switch: cpu0: ci_mtx_count (-2) != -1 (block with spin-mutex held)
169 */
170
171 static void
172 umcpmio_uhidev_intr(void *cookie, void *ibuf, u_int len)
173 {
174 struct umcpmio_softc *sc = cookie;
175
176 if (sc->sc_dying)
177 return;
178
179 DPRINTFN(30, ("umcpmio_uhidev_intr: len=%d\n", len));
180
181 mutex_enter(&sc->sc_res_mutex);
182 switch(len) {
183 case MCP2221_RES_BUFFER_SIZE:
184 if (sc->sc_res_buffer != NULL) {
185 memcpy(sc->sc_res_buffer, ibuf,
186 MCP2221_RES_BUFFER_SIZE);
187 sc->sc_res_ready = true;
188 cv_signal(&sc->sc_res_cv);
189 } else {
190 int d = umcpmiodebug;
191 device_printf(sc->sc_dev,
192 "umcpmio_uhidev_intr: NULL sc_res_buffer:"
193 " len=%d\n",
194 len);
195 umcpmiodebug = 20;
196 umcpmio_dump_buffer(true, (uint8_t *)ibuf, len,
197 "umcpmio_uhidev_intr: ibuf");
198 umcpmiodebug = d;
199 }
200
201 break;
202 default:
203 device_printf(sc->sc_dev,
204 "umcpmio_uhidev_intr: Unknown interrupt length: %d",
205 len);
206 break;
207 }
208 mutex_exit(&sc->sc_res_mutex);
209 }
210
211 /* Send a HID report. This needs to be called with the action mutex held */
212
213 int
214 umcpmio_send_report(struct umcpmio_softc *sc, uint8_t *sendbuf,
215 size_t sendlen, uint8_t *resbuf, int timeout)
216 {
217 int err = 0;
218 int err_count = 0;
219
220 if (sc->sc_dying)
221 return EIO;
222
223 KASSERT(mutex_owned(&sc->sc_action_mutex));
224
225 if (sc->sc_res_buffer != NULL) {
226 device_printf(sc->sc_dev,
227 "umcpmio_send_report: sc->sc_res_buffer is not NULL\n");
228 }
229 sc->sc_res_buffer = resbuf;
230 sc->sc_res_ready = false;
231
232 err = uhidev_write(sc->sc_hdev, sendbuf, sendlen);
233
234 if (err) {
235 DPRINTF(("umcpmio_send_report: uhidev_write errored with:"
236 " err=%d\n", err));
237 goto out;
238 }
239
240 DPRINTFN(30, ("umcpmio_send_report: about to wait on cv. err=%d\n",
241 err));
242
243 mutex_enter(&sc->sc_res_mutex);
244 while (!sc->sc_res_ready) {
245 DPRINTFN(20, ("umcpmio_send_report: LOOP for response."
246 " sc_res_ready=%d, err_count=%d, timeout=%d\n",
247 sc->sc_res_ready, err_count, mstohz(timeout)));
248
249 err = cv_timedwait_sig(&sc->sc_res_cv, &sc->sc_res_mutex,
250 mstohz(timeout));
251
252 /*
253 * We are only going to allow this to loop on an error,
254 * any error at all, so many times.
255 */
256 if (err) {
257 DPRINTF(("umcpmio_send_report:"
258 " cv_timedwait_sig reported an error:"
259 " err=%d, sc->sc_res_ready=%d\n",
260 err, sc->sc_res_ready));
261 err_count++;
262 }
263
264 /*
265 * The CV was interrupted, but the buffer is ready so,
266 * clear the error and break out.
267 */
268 if ((err == ERESTART) && (sc->sc_res_ready)) {
269 DPRINTF(("umcpmio_send_report:"
270 " ERESTART and buffer is ready\n"));
271 err = 0;
272 break;
273 }
274
275 /*
276 * Too many times though the loop, just break out. Turn
277 * a ERESTART (interruption) into a I/O error at this point.
278 */
279 if (err_count > sc->sc_response_errcnt) {
280 DPRINTF(("umcpmio_send_report: err_count exceeded:"
281 " err=%d\n", err));
282 if (err == ERESTART)
283 err = EIO;
284 break;
285 }
286
287 /* This is a normal timeout, without interruption, try again */
288 if (err == EWOULDBLOCK) {
289 DPRINTF(("umcpmio_send_report: EWOULDBLOCK:"
290 " err_count=%d\n", err_count));
291 continue;
292 }
293
294 /*
295 * The CV was interrupted and the buffer wasn't filled
296 * in, so try again
297 */
298 if ((err == ERESTART) && (!sc->sc_res_ready)) {
299 DPRINTF(("umcpmio_send_report:"
300 " ERESTART and buffer is NOT ready."
301 " err_count=%d\n", err_count));
302 continue;
303 }
304 }
305
306 sc->sc_res_buffer = NULL;
307 sc->sc_res_ready = false;
308 mutex_exit(&sc->sc_res_mutex);
309
310 /* Turn most errors into an I/O error */
311 if (err &&
312 err != ERESTART)
313 err = EIO;
314
315 out:
316 return err;
317 }
318
319 /* These are standard gpio reads and set calls */
320
321 static int
322 umcpmio_gpio_pin_read(void *arg, int pin)
323 {
324 struct umcpmio_softc *sc = arg;
325 int r = GPIO_PIN_LOW;
326
327 r = umcpmio_get_gpio_value(sc, pin, true);
328
329 return r;
330 }
331
332 static void
333 umcpmio_gpio_pin_write(void *arg, int pin, int value)
334 {
335 struct umcpmio_softc *sc = arg;
336
337 umcpmio_set_gpio_value_one(sc, pin, value, true);
338 }
339
340 /*
341 * Internal function that does the dirty work of setting a gpio
342 * pin to its "type".
343 *
344 * There are really two ways to do some of this, one is to set the pin
345 * to input and output, or whatever, using SRAM calls, the other is to
346 * use the GPIO config calls to set input and output and SRAM for
347 * everything else. This just uses SRAM for everything.
348 */
349
350 static int
351 umcpmio_gpio_pin_ctlctl(void *arg, int pin, int flags, bool takemutex)
352 {
353 struct umcpmio_softc *sc = arg;
354 struct mcp2221_set_sram_req set_sram_req;
355 struct mcp2221_set_sram_res set_sram_res;
356 struct mcp2221_get_sram_res current_sram_res;
357 struct mcp2221_get_gpio_cfg_res current_gpio_cfg_res;
358 int err = 0;
359
360 if (sc->sc_dying)
361 return 0;
362
363 if (takemutex)
364 mutex_enter(&sc->sc_action_mutex);
365
366 err = umcpmio_get_sram(sc, ¤t_sram_res, false);
367 if (err)
368 goto out;
369
370 err = umcpmio_get_gpio_cfg(sc, ¤t_gpio_cfg_res, false);
371 if (err)
372 goto out;
373
374 /*
375 * You can't just set one pin, you must set all of them, so copy the
376 * current settings for the pin we are not messing with.
377 *
378 * And, yes, of course, if the MCP-2210 is ever supported with this
379 * driver, this sort of unrolling will need to be turned into
380 * something different, but for now, just unroll as there are only
381 * 4 pins to care about.
382 *
383 */
384
385 memset(&set_sram_req, 0, MCP2221_REQ_BUFFER_SIZE);
386 switch (pin) {
387 case 0:
388 set_sram_req.gp1_settings = current_sram_res.gp1_settings;
389 set_sram_req.gp2_settings = current_sram_res.gp2_settings;
390 set_sram_req.gp3_settings = current_sram_res.gp3_settings;
391 break;
392 case 1:
393 set_sram_req.gp0_settings = current_sram_res.gp0_settings;
394 set_sram_req.gp2_settings = current_sram_res.gp2_settings;
395 set_sram_req.gp3_settings = current_sram_res.gp3_settings;
396 break;
397 case 2:
398 set_sram_req.gp0_settings = current_sram_res.gp0_settings;
399 set_sram_req.gp1_settings = current_sram_res.gp1_settings;
400 set_sram_req.gp3_settings = current_sram_res.gp3_settings;
401 break;
402 case 3:
403 set_sram_req.gp0_settings = current_sram_res.gp0_settings;
404 set_sram_req.gp1_settings = current_sram_res.gp1_settings;
405 set_sram_req.gp2_settings = current_sram_res.gp2_settings;
406 break;
407 }
408 umcpmio_set_gpio_designation_sram(&set_sram_req, pin, flags);
409 umcpmio_set_gpio_dir_sram(&set_sram_req, pin, flags);
410
411 /*
412 * This part is unfortunate... if a pin is set to output, the
413 * value set on the pin is not mirrored by the chip into SRAM,
414 * but the chip will use the value from SRAM to set the value of
415 * the pin. What this means is that we have to learn the value
416 * from the GPIO config and make sure it is set properly when
417 * updating SRAM.
418 */
419
420 if (current_gpio_cfg_res.gp0_pin_dir == MCP2221_GPIO_CFG_DIR_OUTPUT) {
421 if (current_gpio_cfg_res.gp0_pin_value == 1) {
422 set_sram_req.gp0_settings |=
423 MCP2221_SRAM_GPIO_OUTPUT_HIGH;
424 } else {
425 set_sram_req.gp0_settings &=
426 ~MCP2221_SRAM_GPIO_OUTPUT_HIGH;
427 }
428 }
429 if (current_gpio_cfg_res.gp1_pin_dir == MCP2221_GPIO_CFG_DIR_OUTPUT) {
430 if (current_gpio_cfg_res.gp1_pin_value == 1) {
431 set_sram_req.gp1_settings |=
432 MCP2221_SRAM_GPIO_OUTPUT_HIGH;
433 } else {
434 set_sram_req.gp1_settings &=
435 ~MCP2221_SRAM_GPIO_OUTPUT_HIGH;
436 }
437 }
438 if (current_gpio_cfg_res.gp2_pin_dir == MCP2221_GPIO_CFG_DIR_OUTPUT) {
439 if (current_gpio_cfg_res.gp2_pin_value == 1) {
440 set_sram_req.gp2_settings |=
441 MCP2221_SRAM_GPIO_OUTPUT_HIGH;
442 } else {
443 set_sram_req.gp2_settings &=
444 ~MCP2221_SRAM_GPIO_OUTPUT_HIGH;
445 }
446 }
447 if (current_gpio_cfg_res.gp3_pin_dir == MCP2221_GPIO_CFG_DIR_OUTPUT) {
448 if (current_gpio_cfg_res.gp3_pin_value == 1) {
449 set_sram_req.gp3_settings |=
450 MCP2221_SRAM_GPIO_OUTPUT_HIGH;
451 } else {
452 set_sram_req.gp3_settings &=
453 ~MCP2221_SRAM_GPIO_OUTPUT_HIGH;
454 }
455 }
456
457 err = umcpmio_put_sram(sc, &set_sram_req, &set_sram_res, false);
458 if (! err) {
459 umcpmio_dump_buffer(sc->sc_dumpbuffer,
460 (uint8_t *)&set_sram_res, MCP2221_RES_BUFFER_SIZE,
461 "umcpmio_gpio_pin_ctlctl set sram buffer copy");
462 if (set_sram_res.cmd == MCP2221_CMD_SET_SRAM &&
463 set_sram_res.completion == MCP2221_CMD_COMPLETE_OK) {
464 sc->sc_gpio_pins[pin].pin_flags = flags;
465 } else {
466 device_printf(sc->sc_dev, "umcpmio_gpio_pin_ctlctl:"
467 " not the command desired, or error: %02x %02x\n",
468 set_sram_res.cmd,
469 set_sram_res.completion);
470 err = EIO;
471 }
472 }
473
474 out:
475 if (takemutex)
476 mutex_exit(&sc->sc_action_mutex);
477
478 return err;
479 }
480
481 static void
482 umcpmio_gpio_pin_ctl(void *arg, int pin, int flags)
483 {
484 struct umcpmio_softc *sc = arg;
485
486 if (sc->sc_dying)
487 return;
488
489 umcpmio_gpio_pin_ctlctl(sc, pin, flags, true);
490 }
491
492 /*
493 * XXX -
494 *
495 * Since testing of gpio interrupts wasn't possible, this part probably
496 * is not complete. At the very least, there is a scheduled callout
497 * that needs to exist to read the interrupt status. The chip does not
498 * send anything on its own when the interrupt happens.
499 */
500
501 static void *
502 umcpmio_gpio_intr_establish(void *vsc, int pin, int ipl, int irqmode,
503 int (*func)(void *), void *arg)
504 {
505 struct umcpmio_softc *sc = vsc;
506 struct umcpmio_irq *irq = &sc->sc_gpio_irqs[0];
507 struct mcp2221_set_sram_req set_sram_req;
508 struct mcp2221_set_sram_res set_sram_res;
509 struct mcp2221_get_sram_res current_sram_res;
510 int err = 0;
511
512 if (sc->sc_dying)
513 return NULL;
514
515 irq->sc_gpio_irqfunc = func;
516 irq->sc_gpio_irqarg = arg;
517
518 DPRINTF(("umcpmio_intr_establish: pin=%d, irqmode=%04x\n",
519 pin, irqmode));
520
521 mutex_enter(&sc->sc_action_mutex);
522
523 err = umcpmio_get_sram(sc, ¤t_sram_res, false);
524 if (err)
525 goto out;
526
527 memset(&set_sram_req, 0, MCP2221_REQ_BUFFER_SIZE);
528 set_sram_req.gp0_settings = current_sram_res.gp0_settings;
529 set_sram_req.gp2_settings = current_sram_res.gp2_settings;
530 set_sram_req.gp3_settings = current_sram_res.gp3_settings;
531 umcpmio_set_gpio_irq_sram(&set_sram_req, irqmode);
532 err = umcpmio_put_sram(sc, &set_sram_req, &set_sram_res, false);
533 if (! err) {
534 umcpmio_dump_buffer(sc->sc_dumpbuffer,
535 (uint8_t *)&set_sram_res, MCP2221_RES_BUFFER_SIZE,
536 "umcpmio_intr_establish set sram buffer copy");
537 if (set_sram_res.cmd == MCP2221_CMD_SET_SRAM &&
538 set_sram_res.completion == MCP2221_CMD_COMPLETE_OK) {
539 sc->sc_gpio_pins[1].pin_flags = GPIO_PIN_ALT2;
540 } else {
541 device_printf(sc->sc_dev, "umcpmio_intr_establish:"
542 " not the command desired, or error: %02x %02x\n",
543 set_sram_res.cmd,
544 set_sram_res.completion);
545 }
546 } else {
547 device_printf(sc->sc_dev, "umcpmio_intr_establish:"
548 " set sram error: err=%d\n",
549 err);
550 }
551
552 out:
553 mutex_exit(&sc->sc_action_mutex);
554
555 return irq;
556 }
557
558 static void
559 umcpmio_gpio_intr_disestablish(void *vsc, void *ih)
560 {
561 struct umcpmio_softc *sc = vsc;
562 struct mcp2221_set_sram_req set_sram_req;
563 struct mcp2221_set_sram_res set_sram_res;
564 struct mcp2221_get_sram_res current_sram_res;
565 int err = 0;
566
567 if (sc->sc_dying)
568 return;
569
570 DPRINTF(("umcpmio_intr_disestablish:\n"));
571
572 mutex_enter(&sc->sc_action_mutex);
573
574 err = umcpmio_get_sram(sc, ¤t_sram_res, false);
575 if (err)
576 goto out;
577
578 memset(&set_sram_req, 0, MCP2221_REQ_BUFFER_SIZE);
579 set_sram_req.gp0_settings = current_sram_res.gp0_settings;
580 set_sram_req.gp2_settings = current_sram_res.gp2_settings;
581 set_sram_req.gp3_settings = current_sram_res.gp3_settings;
582 umcpmio_set_gpio_irq_sram(&set_sram_req, 0);
583 err = umcpmio_put_sram(sc, &set_sram_req, &set_sram_res, true);
584 if (! err) {
585 umcpmio_dump_buffer(sc->sc_dumpbuffer,
586 (uint8_t *)&set_sram_res, MCP2221_RES_BUFFER_SIZE,
587 "umcpmio_intr_disestablish set sram buffer copy");
588 if (set_sram_res.cmd == MCP2221_CMD_SET_SRAM &&
589 set_sram_res.completion == MCP2221_CMD_COMPLETE_OK) {
590 sc->sc_gpio_pins[1].pin_flags = GPIO_PIN_INPUT;
591 } else {
592 device_printf(sc->sc_dev, "umcpmio_intr_disestablish:"
593 " not the command desired, or error: %02x %02x\n",
594 set_sram_res.cmd,
595 set_sram_res.completion);
596 }
597 } else {
598 device_printf(sc->sc_dev, "umcpmio_intr_disestablish:"
599 " set sram error: err=%d\n",
600 err);
601 }
602 out:
603 mutex_exit(&sc->sc_action_mutex);
604 }
605
606 static bool
607 umcpmio_gpio_intrstr(void *vsc, int pin, int irqmode, char *buf, size_t buflen)
608 {
609
610 if (pin < 0 || pin >= MCP2221_NPINS) {
611 DPRINTF(("umcpmio_gpio_intrstr:"
612 " pin %d less than zero or too big\n",
613 pin));
614 return false;
615 }
616
617 if (pin != 1) {
618 DPRINTF(("umcpmio_gpio_intrstr: pin %d was not 1\n",
619 pin));
620 return false;
621 }
622
623 snprintf(buf, buflen, "GPIO %d", pin);
624
625 return true;
626 }
627
628 /* Clear status of the I2C engine */
629
630 static int
631 umcpmio_i2c_clear(struct umcpmio_softc *sc, bool takemutex)
632 {
633 int err = 0;
634 struct mcp2221_status_req status_req;
635 struct mcp2221_status_res status_res;
636
637 memset(&status_req, 0, MCP2221_REQ_BUFFER_SIZE);
638 status_req.cmd = MCP2221_CMD_STATUS;
639 status_req.cancel_transfer = MCP2221_I2C_DO_CANCEL;
640
641 if (takemutex)
642 mutex_enter(&sc->sc_action_mutex);
643 err = umcpmio_send_report(sc,
644 (uint8_t *)&status_req, MCP2221_REQ_BUFFER_SIZE,
645 (uint8_t *)&status_res, sc->sc_cv_wait);
646 if (takemutex)
647 mutex_exit(&sc->sc_action_mutex);
648
649 if (! err) {
650 umcpmio_dump_buffer(sc->sc_dumpbuffer,
651 (uint8_t *)&status_res, MCP2221_RES_BUFFER_SIZE,
652 "umcpmio_i2c_clear buffer copy");
653 if (status_res.cmd == MCP2221_CMD_STATUS &&
654 status_res.completion == MCP2221_CMD_COMPLETE_OK) {
655 umcpmio_dump_buffer(true,
656 (uint8_t *)&status_res, MCP2221_RES_BUFFER_SIZE,
657 "umcpmio_i2c_clear res buffer");
658 } else {
659 device_printf(sc->sc_dev, "umcpmio_i2c_clear:"
660 " cmd exec: not the command desired, or error:"
661 " %02x %02x\n",
662 status_res.cmd,
663 status_res.completion);
664 err = EIO;
665 }
666 } else {
667 device_printf(sc->sc_dev, "umcpmio_i2c_clear: request error:"
668 " err=%d\n", err);
669 err = EIO;
670 }
671
672 return err;
673 }
674
675 /*
676 * There isn't much required to acquire or release the I2C bus, but the man
677 * pages says these are needed
678 */
679
680 static int
681 umcpmio_acquire_bus(void *v, int flags)
682 {
683 return 0;
684 }
685
686 static void
687 umcpmio_release_bus(void *v, int flags)
688 {
689 return;
690 }
691
692 /*
693 * The I2C write and I2C read functions mostly use an algorithm that Adafruit
694 * came up with in their Python based driver. A lot of other people have used
695 * this same algorithm to good effect. If changes are made to the I2C read and
696 * write functions, it is HIGHLY advisable that a MCP2221 or MCP2221A be on
697 * hand to test them.
698 */
699
700 /* This is what is considered a fatal return from the engine. */
701
702 static bool
703 umcpmio_i2c_fatal(uint8_t state)
704 {
705 int r = false;
706
707 if (state == MCP2221_ENGINE_ADDRNACK ||
708 state == MCP2221_ENGINE_STARTTIMEOUT ||
709 state == MCP2221_ENGINE_REPSTARTTIMEOUT ||
710 state == MCP2221_ENGINE_STOPTIMEOUT ||
711 state == MCP2221_ENGINE_READTIMEOUT ||
712 state == MCP2221_ENGINE_WRITETIMEOUT ||
713 state == MCP2221_ENGINE_ADDRTIMEOUT)
714 r = true;
715 return r;
716 }
717
718 static int
719 umcpmio_i2c_write(struct umcpmio_softc *sc, i2c_op_t op, i2c_addr_t addr,
720 const void *cmdbuf, size_t cmdlen, void *databuf, size_t datalen,
721 int flags)
722 {
723 struct mcp2221_i2c_req i2c_req;
724 struct mcp2221_i2c_res i2c_res;
725 struct mcp2221_status_res status_res;
726 int remaining;
727 int err = 0;
728 uint8_t cmd;
729 size_t totallen = 0;
730 int wretry = sc->sc_retry_busy_write;
731 int wsretry = sc->sc_retry_busy_write;
732
733 err = umcpmio_get_status(sc, &status_res, true);
734 if (err)
735 goto out;
736 if (status_res.internal_i2c_state != 0) {
737 DPRINTF(("umcpmio_i2c_write: internal state not zero,"
738 " clearing. internal_i2c_state=%02x\n",
739 status_res.internal_i2c_state));
740 err = umcpmio_i2c_clear(sc, true);
741 }
742 if (err)
743 goto out;
744
745 if (cmdbuf != NULL)
746 totallen += cmdlen;
747 if (databuf != NULL)
748 totallen += datalen;
749
750 again:
751 memset(&i2c_req, 0, MCP2221_REQ_BUFFER_SIZE);
752 cmd = MCP2221_I2C_WRITE_DATA_NS;
753 if (I2C_OP_STOP_P(op))
754 cmd = MCP2221_I2C_WRITE_DATA;
755 i2c_req.cmd = cmd;
756 i2c_req.lsblen = totallen;
757 i2c_req.msblen = 0;
758 i2c_req.slaveaddr = addr << 1;
759
760 remaining = 0;
761 if (cmdbuf != NULL) {
762 memcpy(&i2c_req.data[0], cmdbuf, cmdlen);
763 remaining = cmdlen;
764 }
765 if (databuf != NULL)
766 memcpy(&i2c_req.data[remaining], databuf, datalen);
767
768 DPRINTF(("umcpmio_i2c_write: I2C WRITE: cmd: %02x\n", cmd));
769 umcpmio_dump_buffer(sc->sc_dumpbuffer,
770 (uint8_t *)&i2c_req, MCP2221_REQ_BUFFER_SIZE,
771 "umcpmio_i2c_write: write req buffer copy");
772
773 mutex_enter(&sc->sc_action_mutex);
774 err = umcpmio_send_report(sc,
775 (uint8_t *)&i2c_req, MCP2221_REQ_BUFFER_SIZE,
776 (uint8_t *)&i2c_res, sc->sc_cv_wait);
777 mutex_exit(&sc->sc_action_mutex);
778 if (! err) {
779 umcpmio_dump_buffer(sc->sc_dumpbuffer,
780 (uint8_t *)&i2c_res, MCP2221_RES_BUFFER_SIZE,
781 "umcpmio_i2c_write: write res buffer copy");
782 if (i2c_res.cmd == cmd &&
783 i2c_res.completion == MCP2221_CMD_COMPLETE_OK) {
784 /*
785 * Adafruit does a read back of the status at
786 * this point. We choose not to do that. That
787 * is done later anyway, and it seemed to be
788 * redundent.
789 */
790 } else {
791 if (i2c_res.cmd == cmd &&
792 i2c_res.completion == MCP2221_I2C_ENGINE_BUSY) {
793 DPRINTF(("umcpmio_i2c_write:"
794 " I2C engine busy\n"));
795
796 const uint8_t state =
797 i2c_res.internal_i2c_state;
798 if (umcpmio_i2c_fatal(state)) {
799 err = EIO;
800 } else {
801 wretry--;
802 if (wretry > 0) {
803 WAITMS(sc->sc_busy_delay);
804 goto again;
805 } else {
806 err = EBUSY;
807 }
808 }
809 } else {
810 device_printf(sc->sc_dev, "umcpmio_i2c_write:"
811 " not the command desired, or error:"
812 " %02x %02x\n",
813 i2c_res.cmd,
814 i2c_res.completion);
815 err = EIO;
816 }
817 }
818 } else {
819 device_printf(sc->sc_dev, "umcpmio_i2c_write request error:"
820 " err=%d\n", err);
821 err = EIO;
822 }
823
824 if (! err) {
825 while (wsretry > 0) {
826 wsretry--;
827
828 DPRINTF(("umcpmio_i2c_write: checking status loop:"
829 " wcretry=%d\n", wsretry));
830
831 err = umcpmio_get_status(sc, &status_res, true);
832 if (! err) {
833 umcpmio_dump_buffer(sc->sc_dumpbuffer,
834 (uint8_t *)&status_res,
835 MCP2221_RES_BUFFER_SIZE,
836 "umcpmio_i2c_write post check status");
837 /*
838 * Since there isn't any documentation on what
839 * some of the internal state means, it isn't
840 * clear that this is any different than than
841 * MCP2221_ENGINE_ADDRNACK in the other state
842 * register.
843 */
844
845 const uint8_t state20 =
846 status_res.internal_i2c_state20;
847 if (state20 & MCP2221_ENGINE_T1_MASK_NACK) {
848 DPRINTF(("umcpmio_i2c_write"
849 " post check:"
850 " engine internal state T1"
851 " says NACK\n"));
852 err = EIO;
853 break;
854 }
855 if (status_res.internal_i2c_state == 0) {
856 DPRINTF(("umcpmio_i2c_write"
857 " post check:"
858 " engine internal state"
859 " is ZERO\n"));
860 err = 0;
861 break;
862 }
863 if (status_res.internal_i2c_state ==
864 MCP2221_ENGINE_WRITINGNOSTOP &&
865 cmd == MCP2221_I2C_WRITE_DATA_NS) {
866 DPRINTF(("umcpmio_i2c_write"
867 " post check:"
868 " engine internal state"
869 " is WRITINGNOSTOP\n"));
870 err = 0;
871 break;
872 }
873 const uint8_t state =
874 status_res.internal_i2c_state;
875 if (umcpmio_i2c_fatal(state)) {
876 DPRINTF(("umcpmio_i2c_write"
877 " post check:"
878 " engine internal state"
879 " is fatal: %02x\n",
880 state));
881 err = EIO;
882 break;
883 }
884 WAITMS(sc->sc_busy_delay);
885 } else {
886 err = EIO;
887 break;
888 }
889 }
890 }
891
892 out:
893 return err;
894 }
895
896 /*
897 * This one deviates a bit from Adafruit in that is supports a straight
898 * read and a write + read. That is, write a register to read from and
899 * then do the read.
900 */
901
902 static int
903 umcpmio_i2c_read(struct umcpmio_softc *sc, i2c_op_t op, i2c_addr_t addr,
904 const void *cmdbuf, size_t cmdlen, void *databuf, size_t datalen, int
905 flags)
906 {
907 struct mcp2221_i2c_req i2c_req;
908 struct mcp2221_i2c_res i2c_res;
909 struct mcp2221_i2c_fetch_req i2c_fetch_req;
910 struct mcp2221_i2c_fetch_res i2c_fetch_res;
911 struct mcp2221_status_res status_res;
912 int err = 0;
913 uint8_t cmd;
914 int rretry = sc->sc_retry_busy_read;
915
916 if (cmdbuf != NULL) {
917 DPRINTF(("umcpmio_i2c_read: has a cmdbuf, doing write first:"
918 " addr=%02x\n", addr));
919 err = umcpmio_i2c_write(sc, I2C_OP_WRITE, addr, cmdbuf, cmdlen,
920 NULL, 0, flags);
921 }
922 if (err)
923 goto out;
924
925 err = umcpmio_get_status(sc, &status_res, true);
926 if (err)
927 goto out;
928
929 if (status_res.internal_i2c_state != 0 &&
930 status_res.internal_i2c_state != MCP2221_ENGINE_WRITINGNOSTOP) {
931 DPRINTF(("umcpmio_i2c_read:"
932 " internal state not zero and not WRITINGNOSTOP,"
933 " clearing. internal_i2c_state=%02x\n",
934 status_res.internal_i2c_state));
935 err = umcpmio_i2c_clear(sc, true);
936 }
937 if (err)
938 goto out;
939
940 memset(&i2c_req, 0, MCP2221_REQ_BUFFER_SIZE);
941 if (cmdbuf == NULL &&
942 status_res.internal_i2c_state != MCP2221_ENGINE_WRITINGNOSTOP) {
943 cmd = MCP2221_I2C_READ_DATA;
944 } else {
945 cmd = MCP2221_I2C_READ_DATA_RS;
946 }
947
948 /*
949 * The chip apparently can't do a READ without a STOP
950 * operation. Report that, and try treating it like a READ
951 * with a STOP. This won't work for a lot of devices.
952 */
953
954 if (!I2C_OP_STOP_P(op) &&
955 sc->sc_reportreadnostop) {
956 device_printf(sc->sc_dev,
957 "umcpmio_i2c_read: ************ called with READ"
958 " without STOP ***************\n");
959 }
960
961 i2c_req.cmd = cmd;
962 i2c_req.lsblen = datalen;
963 i2c_req.msblen = 0;
964 i2c_req.slaveaddr = (addr << 1) | 0x01;
965
966 DPRINTF(("umcpmio_i2c_read: I2C READ normal read:"
967 " cmd=%02x, addr=%02x\n", cmd, addr));
968
969 umcpmio_dump_buffer(sc->sc_dumpbuffer,
970 (uint8_t *)&i2c_req, MCP2221_RES_BUFFER_SIZE,
971 "umcpmio_i2c_read normal read req buffer copy");
972
973 mutex_enter(&sc->sc_action_mutex);
974 err = umcpmio_send_report(sc,
975 (uint8_t *)&i2c_req, MCP2221_REQ_BUFFER_SIZE,
976 (uint8_t *)&i2c_res, sc->sc_cv_wait);
977 mutex_exit(&sc->sc_action_mutex);
978
979 if (! err) {
980 umcpmio_dump_buffer(sc->sc_dumpbuffer,
981 (uint8_t *)&i2c_res, MCP2221_RES_BUFFER_SIZE,
982 "umcpmio_i2c_read read-request response buffer copy");
983
984 while (rretry > 0) {
985 rretry--;
986 DPRINTF(("umcpmio_i2c_read: fetch loop: rretry=%d\n",
987 rretry));
988 err = 0;
989 memset(&i2c_fetch_req, 0, MCP2221_REQ_BUFFER_SIZE);
990 i2c_fetch_req.cmd = MCP2221_CMD_I2C_FETCH_READ_DATA;
991 mutex_enter(&sc->sc_action_mutex);
992 err = umcpmio_send_report(sc,
993 (uint8_t *)&i2c_fetch_req, MCP2221_REQ_BUFFER_SIZE,
994 (uint8_t *)&i2c_fetch_res, sc->sc_cv_wait);
995 mutex_exit(&sc->sc_action_mutex);
996 umcpmio_dump_buffer(sc->sc_dumpbuffer,
997 (uint8_t *)&i2c_fetch_req, MCP2221_RES_BUFFER_SIZE,
998 "umcpmio_i2c_read fetch res buffer copy");
999
1000 if (i2c_fetch_res.cmd ==
1001 MCP2221_CMD_I2C_FETCH_READ_DATA) {
1002 if (i2c_fetch_res.completion ==
1003 MCP2221_FETCH_READ_PARTIALDATA ||
1004 i2c_fetch_res.fetchlen ==
1005 MCP2221_FETCH_READERROR) {
1006 DPRINTF(("umcpmio_i2c_read:"
1007 " fetch loop:"
1008 " partial data or read error:"
1009 " completion=%02x,"
1010 " fetchlen=%02x\n",
1011 i2c_fetch_res.completion,
1012 i2c_fetch_res.fetchlen));
1013 WAITMS(sc->sc_busy_delay);
1014 err = EAGAIN;
1015 continue;
1016 }
1017 if (i2c_fetch_res.internal_i2c_state ==
1018 MCP2221_ENGINE_ADDRNACK) {
1019 DPRINTF(("umcpmio_i2c_read:"
1020 " fetch loop: engine NACK\n"));
1021 err = EIO;
1022 break;
1023 }
1024 if (i2c_fetch_res.internal_i2c_state == 0 &&
1025 i2c_fetch_res.fetchlen == 0) {
1026 DPRINTF(("umcpmio_i2c_read:"
1027 " fetch loop:"
1028 " internal state and"
1029 " fetch len are ZERO\n"));
1030 err = 0;
1031 break;
1032 }
1033 if (i2c_fetch_res.internal_i2c_state ==
1034 MCP2221_ENGINE_READPARTIAL ||
1035 i2c_fetch_res.internal_i2c_state ==
1036 MCP2221_ENGINE_READCOMPLETE) {
1037 int state =
1038 i2c_fetch_res.internal_i2c_state;
1039 DPRINTF(("umcpmio_i2c_read:"
1040 " fetch loop: read partial or"
1041 " read complete:"
1042 " internal_i2c_state=%02x\n",
1043 state));
1044 err = 0;
1045 break;
1046 }
1047 } else {
1048 device_printf(sc->sc_dev, "umcpmio_i2c_read:"
1049 " fetch2: not the command desired: %02x\n",
1050 i2c_fetch_res.cmd);
1051 err = EIO;
1052 break;
1053 }
1054 }
1055 if (err == EAGAIN)
1056 err = ETIMEDOUT;
1057
1058 if (! err) {
1059 if (databuf != NULL &&
1060 i2c_fetch_res.fetchlen !=
1061 MCP2221_FETCH_READERROR) {
1062 int size = uimin(i2c_fetch_res.fetchlen,
1063 datalen);
1064 DPRINTF(("umcpmio_i2c_read: copy data:"
1065 " size=%d, fetchlen=%d\n",
1066 size, i2c_fetch_res.fetchlen));
1067 if (size > 0) {
1068 memcpy(databuf, &i2c_fetch_res.data[0],
1069 size);
1070 }
1071 } else {
1072 DPRINTF(("umcpmio_i2c_read: copy data:"
1073 " databuf is NULL\n"));
1074 }
1075 }
1076 } else {
1077 device_printf(sc->sc_dev, "umcpmio_i2c_read request error:"
1078 " cmd=%02x, err=%d\n", cmd, err);
1079 err = EIO;
1080 }
1081 out:
1082 return err;
1083 }
1084
1085 static int
1086 umcpmio_i2c_exec(void *v, i2c_op_t op, i2c_addr_t addr, const void *cmdbuf,
1087 size_t cmdlen, void *databuf, size_t datalen, int flags)
1088 {
1089 struct umcpmio_softc *sc = v;
1090 size_t totallen = 0;
1091 int err = 0;
1092
1093 if (addr > 0x7f)
1094 return ENOTSUP;
1095
1096 if (cmdbuf != NULL)
1097 totallen += cmdlen;
1098 if (databuf != NULL)
1099 totallen += datalen;
1100
1101 /*
1102 * There is a way to do a transfer that is larger than 60 bytes,
1103 * but it requires that your break the transfer up into pieces and
1104 * send them in 60 byte chunks. We just won't support that right now.
1105 * It would be somewhat unusual for there to be a transfer that big,
1106 * unless you are trying to do block transfers and that isn't natively
1107 * supported by the chip anyway... so those have to be broken up and
1108 * sent as bytes.
1109 */
1110
1111 if (totallen > 60)
1112 return ENOTSUP;
1113
1114 if (I2C_OP_WRITE_P(op)) {
1115 err = umcpmio_i2c_write(sc, op, addr, cmdbuf, cmdlen,
1116 databuf, datalen, flags);
1117
1118 DPRINTF(("umcpmio_exec: I2C WRITE: err=%d\n", err));
1119 } else {
1120 err = umcpmio_i2c_read(sc, op, addr, cmdbuf, cmdlen,
1121 databuf, datalen, flags);
1122
1123 DPRINTF(("umcpmio_exec: I2C READ: err=%d\n", err));
1124 }
1125
1126 return err;
1127 }
1128
1129 /* Accessing the ADC and DAC part of the chip */
1130
1131 #define UMCPMIO_DEV_UNIT(m) ((m) & 0x80 ? ((m) & 0x7f) / 3 : (m))
1132 #define UMCPMIO_DEV_WHAT(m) ((m) & 0x80 ? (((m) & 0x7f) % 3) + 1 : CONTROL_DEV)
1133
1134 static int
1135 umcpmio_dev_open(dev_t dev, int flags, int fmt, struct lwp *l)
1136 {
1137 struct umcpmio_softc *sc;
1138 int dunit;
1139 int pin = -1;
1140 int error = 0;
1141
1142 sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
1143 if (!sc)
1144 return ENXIO;
1145
1146 dunit = UMCPMIO_DEV_WHAT(minor(dev));
1147
1148 if (sc->sc_dev_open[dunit]) {
1149 DPRINTF(("umcpmio_dev_open: dunit=%d BUSY\n", dunit));
1150 return EBUSY;
1151 }
1152
1153 /*
1154 * The control device only allows for ioctl calls, so pretty
1155 * much allow any sort of access. For the ADC, you perform a
1156 * strict O_RDONLY and for the DAC a strict O_WRONLY. It is an
1157 * error to try and do a O_RDWR It makes little sense to try
1158 * and support select or poll. The ADC and DAC are always
1159 * available for use.
1160 */
1161
1162 if (dunit != CONTROL_DEV &&
1163 ((flags & FREAD) && (flags & FWRITE))) {
1164 DPRINTF(("umcpmio_dev_open: Not CONTROL device and trying to"
1165 " do READ and WRITE\n"));
1166 return EINVAL;
1167 }
1168
1169 /*
1170 * Ya, this unrolling will also have to be changed if the MCP-2210 is
1171 * supported. There are currently only 4 pins, so don't worry too much
1172 * about it. The MCP-2210 has RAM, so there would be a fifth for it.
1173 */
1174
1175 mutex_enter(&sc->sc_action_mutex);
1176 if (dunit != CONTROL_DEV) {
1177 switch (dunit) {
1178 case GP1_DEV:
1179 pin = 1;
1180 break;
1181 case GP2_DEV:
1182 pin = 2;
1183 break;
1184 case GP3_DEV:
1185 pin = 3;
1186 break;
1187 default:
1188 error = EINVAL;
1189 break;
1190 }
1191 if (! error) {
1192 /*
1193 * XXX - we can probably do better here... it
1194 * doesn't remember what the pin was set to and
1195 * probably should.
1196 */
1197 if (flags & FREAD) {
1198 error = umcpmio_gpio_pin_ctlctl(sc, pin,
1199 GPIO_PIN_ALT0, false);
1200 } else {
1201 if (pin == 1) {
1202 error = EINVAL;
1203 } else {
1204 error = umcpmio_gpio_pin_ctlctl(sc,
1205 pin, GPIO_PIN_ALT1, false);
1206 }
1207 }
1208 }
1209 }
1210 if (! error)
1211 sc->sc_dev_open[dunit] = true;
1212 mutex_exit(&sc->sc_action_mutex);
1213
1214 DPRINTF(("umcpmio_dev_open: Opened dunit=%d, pin=%d, error=%d\n",
1215 dunit, pin, error));
1216
1217 return error;
1218 }
1219
1220 /* Read an ADC value */
1221
1222 static int
1223 umcpmio_dev_read(dev_t dev, struct uio *uio, int flags)
1224 {
1225 struct umcpmio_softc *sc;
1226 struct mcp2221_status_res status_res;
1227 int dunit;
1228 int error = 0;
1229 uint8_t adc_lsb;
1230 uint8_t adc_msb;
1231 uint16_t buf;
1232
1233 sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
1234 if (sc == NULL)
1235 return ENXIO;
1236
1237 dunit = UMCPMIO_DEV_WHAT(minor(dev));
1238
1239 if (dunit != CONTROL_DEV) {
1240 while (uio->uio_resid &&
1241 !sc->sc_dying) {
1242 error = umcpmio_get_status(sc, &status_res, true);
1243 if (! error) {
1244 switch (dunit) {
1245 case GP1_DEV:
1246 adc_lsb = status_res.adc_channel0_lsb;
1247 adc_msb = status_res.adc_channel0_msb;
1248 break;
1249 case GP2_DEV:
1250 adc_lsb = status_res.adc_channel1_lsb;
1251 adc_msb = status_res.adc_channel1_msb;
1252 break;
1253 case GP3_DEV:
1254 adc_lsb = status_res.adc_channel2_lsb;
1255 adc_msb = status_res.adc_channel2_msb;
1256 break;
1257 default:
1258 error = EINVAL;
1259 break;
1260 }
1261
1262 if (! error) {
1263 if (sc->sc_dying)
1264 break;
1265
1266 buf = adc_msb << 8;
1267 buf |= adc_lsb;
1268 error = uiomove(&buf, 2, uio);
1269 }
1270 }
1271 }
1272 } else {
1273 error = EINVAL;
1274 }
1275
1276 return error;
1277 }
1278
1279 /* Write to the DAC */
1280
1281 static int
1282 umcpmio_dev_write(dev_t dev, struct uio *uio, int flags)
1283 {
1284 struct umcpmio_softc *sc;
1285 int dunit;
1286 int error = 0;
1287
1288 sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
1289 if (sc == NULL)
1290 return ENXIO;
1291
1292 dunit = UMCPMIO_DEV_WHAT(minor(dev));
1293
1294 if (dunit != CONTROL_DEV) {
1295 while (uio->uio_resid &&
1296 !sc->sc_dying) {
1297 uint8_t buf;
1298
1299 if ((error = uiomove(&buf, 1, uio)) != 0)
1300 break;
1301
1302 if (sc->sc_dying)
1303 break;
1304
1305 error = umcpmio_set_dac_value_one(sc, buf, true);
1306 if (error)
1307 break;
1308 }
1309 } else {
1310 error = EINVAL;
1311 }
1312
1313 return error;
1314 }
1315
1316 /* Close everything up */
1317
1318 static int
1319 umcpmio_dev_close(dev_t dev, int flags, int fmt, struct lwp *l)
1320 {
1321 struct umcpmio_softc *sc;
1322 int dunit;
1323 int pin;
1324 int error = 0;
1325
1326 sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
1327 if (sc->sc_dying)
1328 return EIO;
1329
1330 dunit = UMCPMIO_DEV_WHAT(minor(dev));
1331
1332 mutex_enter(&sc->sc_action_mutex);
1333 if (dunit != CONTROL_DEV) {
1334 switch (dunit) {
1335 case GP1_DEV:
1336 pin = 1;
1337 break;
1338 case GP2_DEV:
1339 pin = 2;
1340 break;
1341 case GP3_DEV:
1342 pin = 3;
1343 break;
1344 default:
1345 error = EINVAL;
1346 break;
1347 }
1348 if (! error) {
1349 /*
1350 * XXX - Ya, this really could be done better.
1351 * Probably should read the sram config and
1352 * maybe the gpio config and save out what the
1353 * pin was set to.
1354 */
1355
1356 error = umcpmio_gpio_pin_ctlctl(sc, pin,
1357 GPIO_PIN_INPUT, false);
1358 }
1359 }
1360 sc->sc_dev_open[dunit] = false;
1361 mutex_exit(&sc->sc_action_mutex);
1362
1363 return error;
1364 }
1365
1366 static int
1367 umcpmio_dev_ioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1368 {
1369 struct umcpmio_softc *sc;
1370 struct mcp2221_status_res get_status_res;
1371 struct mcp2221_get_sram_res get_sram_res;
1372 struct mcp2221_get_gpio_cfg_res get_gpio_cfg_res;
1373 struct mcp2221_get_flash_res get_flash_res;
1374 struct mcp2221_status_res *ioctl_get_status;
1375 struct mcp2221_get_sram_res *ioctl_get_sram;
1376 struct mcp2221_get_gpio_cfg_res *ioctl_get_gpio_cfg;
1377 struct umcpmio_ioctl_get_flash *ioctl_get_flash;
1378 struct umcpmio_ioctl_put_flash *ioctl_put_flash;
1379 struct mcp2221_put_flash_req put_flash_req;
1380 struct mcp2221_put_flash_res put_flash_res;
1381 int dunit;
1382 int error = 0;
1383
1384 sc = device_lookup_private(&umcpmio_cd, UMCPMIO_DEV_UNIT(minor(dev)));
1385 if (sc->sc_dying)
1386 return EIO;
1387
1388 dunit = UMCPMIO_DEV_WHAT(minor(dev));
1389
1390 if (dunit != CONTROL_DEV) {
1391 /*
1392 * It actually is fine to call ioctl with a unsupported
1393 * cmd, but be a little noisy if debug is enabled.
1394 */
1395 DPRINTF(("umcpmio_dev_ioctl: dunit is not the CONTROL device:"
1396 " dunit=%d, cmd=%ld\n", dunit, cmd));
1397 return EINVAL;
1398 }
1399
1400 mutex_enter(&sc->sc_action_mutex);
1401
1402 switch (cmd) {
1403 /*
1404 * The GET calls use a shadow buffer for each type of
1405 * call. That probably isn't actually needed and the
1406 * memcpy could be avoided. but... it is only ever 64
1407 * bytes, so maybe not a big deal.
1408 */
1409 case UMCPMIO_GET_STATUS:
1410 ioctl_get_status = (struct mcp2221_status_res *)data;
1411 error = umcpmio_get_status(sc, &get_status_res, false);
1412 umcpmio_dump_buffer(sc->sc_dumpbuffer,
1413 (uint8_t *)&get_status_res, MCP2221_RES_BUFFER_SIZE,
1414 "umcpmio_dev_ioctl: UMCPMIO_GET_STATUS: get_status_res");
1415 DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_GET_STATUS:"
1416 " umcpmio_get_status error=%d\n", error));
1417 if (! error) {
1418 memcpy(ioctl_get_status, &get_status_res,
1419 MCP2221_RES_BUFFER_SIZE);
1420 }
1421 break;
1422
1423 case UMCPMIO_GET_SRAM:
1424 ioctl_get_sram = (struct mcp2221_get_sram_res *)data;
1425 error = umcpmio_get_sram(sc, &get_sram_res, false);
1426 umcpmio_dump_buffer(sc->sc_dumpbuffer,
1427 (uint8_t *)&get_sram_res, MCP2221_RES_BUFFER_SIZE,
1428 "umcpmio_dev_ioctl: UMCPMIO_GET_SRAM: get_sram_res");
1429 DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_GET_SRAM:"
1430 " umcpmio_get_sram error=%d\n", error));
1431 if (! error) {
1432 memcpy(ioctl_get_sram, &get_sram_res,
1433 MCP2221_RES_BUFFER_SIZE);
1434 }
1435 break;
1436
1437 case UMCPMIO_GET_GP_CFG:
1438 ioctl_get_gpio_cfg = (struct mcp2221_get_gpio_cfg_res *)data;
1439 error = umcpmio_get_gpio_cfg(sc, &get_gpio_cfg_res, false);
1440 umcpmio_dump_buffer(sc->sc_dumpbuffer,
1441 (uint8_t *)&get_gpio_cfg_res, MCP2221_RES_BUFFER_SIZE,
1442 "umcpmio_dev_ioctl: UMCPMIO_GET_GP_CFG: get_gpio_cfg_res");
1443 DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_GET_GP_CFG:"
1444 " umcpmio_get_gpio_cfg error=%d\n", error));
1445 if (! error) {
1446 memcpy(ioctl_get_gpio_cfg, &get_gpio_cfg_res,
1447 MCP2221_RES_BUFFER_SIZE);
1448 }
1449 break;
1450
1451 case UMCPMIO_GET_FLASH:
1452 ioctl_get_flash = (struct umcpmio_ioctl_get_flash *)data;
1453 error = umcpmio_get_flash(sc, ioctl_get_flash->subcode,
1454 &get_flash_res, false);
1455 umcpmio_dump_buffer(sc->sc_dumpbuffer,
1456 (uint8_t *)&get_flash_res, MCP2221_RES_BUFFER_SIZE,
1457 "umcpmio_dev_ioctl: UMCPMIO_GET_FLASH: get_flash_res");
1458 DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_GET_FLASH:"
1459 " umcpmio_get_flash subcode=%d, error=%d\n",
1460 ioctl_get_flash->subcode, error));
1461 if (!error) {
1462 memcpy(&ioctl_get_flash->get_flash_res, &get_flash_res,
1463 MCP2221_RES_BUFFER_SIZE);
1464 }
1465 break;
1466
1467 case UMCPMIO_PUT_FLASH:
1468 /*
1469 * We only allow the flash parts related to gpio to be changed.
1470 * Bounce any attempt to do something else. Also use a shadow
1471 * buffer for the put, so we get to control just literally
1472 * everything about the write to flash.
1473 */
1474 ioctl_put_flash = (struct umcpmio_ioctl_put_flash *)data;
1475 DPRINTF(("umcpmio_dev_ioctl: UMCPMIO_PUT_FLASH:"
1476 " umcpmio_put_flash subcode=%d\n",
1477 ioctl_put_flash->subcode));
1478 if (ioctl_put_flash->subcode == MCP2221_FLASH_SUBCODE_GP) {
1479 memset(&put_flash_req, 0, MCP2221_REQ_BUFFER_SIZE);
1480 put_flash_req.subcode = ioctl_put_flash->subcode;
1481 put_flash_req.u.gp.gp0_settings =
1482 ioctl_put_flash->put_flash_req.u.gp.gp0_settings;
1483 put_flash_req.u.gp.gp1_settings =
1484 ioctl_put_flash->put_flash_req.u.gp.gp1_settings;
1485 put_flash_req.u.gp.gp2_settings =
1486 ioctl_put_flash->put_flash_req.u.gp.gp2_settings;
1487 put_flash_req.u.gp.gp3_settings =
1488 ioctl_put_flash->put_flash_req.u.gp.gp3_settings;
1489 umcpmio_dump_buffer(sc->sc_dumpbuffer,
1490 (uint8_t *)&ioctl_put_flash->put_flash_req,
1491 MCP2221_REQ_BUFFER_SIZE,
1492 "umcpmio_dev_ioctl: UMCPMIO_PUT_FLASH:"
1493 " ioctl put_flash_req");
1494 umcpmio_dump_buffer(sc->sc_dumpbuffer,
1495 (uint8_t *)&put_flash_req, MCP2221_REQ_BUFFER_SIZE,
1496 "umcpmio_dev_ioctl:"
1497 " UMCPMIO_PUT_FLASH: put_flash_req");
1498 memset(&put_flash_res, 0, MCP2221_RES_BUFFER_SIZE);
1499 error = umcpmio_put_flash(sc, &put_flash_req,
1500 &put_flash_res, false);
1501 umcpmio_dump_buffer(sc->sc_dumpbuffer,
1502 (uint8_t *)&put_flash_res, MCP2221_RES_BUFFER_SIZE,
1503 "umcpmio_dev_ioctl: UMCPMIO_PUT_FLASH:"
1504 " put_flash_res");
1505 memcpy(&ioctl_put_flash->put_flash_res, &put_flash_res,
1506 MCP2221_RES_BUFFER_SIZE);
1507 } else {
1508 error = EINVAL;
1509 }
1510 break;
1511 default:
1512 error = EINVAL;
1513 }
1514
1515 mutex_exit(&sc->sc_action_mutex);
1516
1517 return error;
1518 }
1519
1520 /* This is for sysctl variables that don't actually change the chip. */
1521
1522 int
1523 umcpmio_verify_sysctl(SYSCTLFN_ARGS)
1524 {
1525 int error, t;
1526 struct sysctlnode node;
1527
1528 node = *rnode;
1529 t = *(int *)rnode->sysctl_data;
1530 node.sysctl_data = &t;
1531 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1532 if (error || newp == NULL)
1533 return error;
1534
1535 if (t < 0)
1536 return EINVAL;
1537
1538 *(int *)rnode->sysctl_data = t;
1539
1540 return 0;
1541 }
1542
1543 /*
1544 * sysctl validation for stuff that interacts with the chip needs to
1545 * happen in a transaction. The read of the current state and the
1546 * update to new state can't allow for someone to sneak in between the
1547 * two.
1548 *
1549 * We use text for the values of a lot of these variables so you don't
1550 * need the datasheet in front of you. You get to do that with
1551 * umcpmioctl(8).
1552 */
1553
1554 static struct umcpmio_sysctl_name umcpmio_vref_names[] = {
1555 {
1556 .text = "4.096V",
1557 },
1558 {
1559 .text = "2.048V",
1560 },
1561 {
1562 .text = "1.024V",
1563 },
1564 {
1565 .text = "OFF",
1566 },
1567 {
1568 .text = "VDD",
1569 }
1570 };
1571
1572 int
1573 umcpmio_verify_dac_sysctl(SYSCTLFN_ARGS)
1574 {
1575 char buf[UMCPMIO_VREF_NAME];
1576 char cbuf[UMCPMIO_VREF_NAME];
1577 struct umcpmio_softc *sc;
1578 struct sysctlnode node;
1579 int error = 0;
1580 int vrm;
1581 size_t i;
1582 struct mcp2221_get_sram_res sram_res;
1583
1584 node = *rnode;
1585 sc = node.sysctl_data;
1586
1587 mutex_enter(&sc->sc_action_mutex);
1588
1589 error = umcpmio_get_sram(sc, &sram_res, false);
1590 if (error)
1591 goto out;
1592
1593 umcpmio_dump_buffer(sc->sc_dumpbuffer,
1594 (uint8_t *)&sram_res, MCP2221_RES_BUFFER_SIZE,
1595 "umcpmio_verify_dac_sysctl SRAM res buffer");
1596
1597 if (sram_res.dac_reference_voltage & MCP2221_SRAM_DAC_IS_VRM) {
1598 vrm = sram_res.dac_reference_voltage &
1599 MCP2221_SRAM_DAC_VRM_MASK;
1600 switch (vrm) {
1601 case MCP2221_SRAM_DAC_VRM_4096V:
1602 strncpy(buf, "4.096V", UMCPMIO_VREF_NAME);
1603 break;
1604 case MCP2221_SRAM_DAC_VRM_2048V:
1605 strncpy(buf, "2.048V", UMCPMIO_VREF_NAME);
1606 break;
1607 case MCP2221_SRAM_DAC_VRM_1024V:
1608 strncpy(buf, "1.024V", UMCPMIO_VREF_NAME);
1609 break;
1610 case MCP2221_SRAM_DAC_VRM_OFF:
1611 default:
1612 strncpy(buf, "OFF", UMCPMIO_VREF_NAME);
1613 break;
1614 }
1615 } else {
1616 strncpy(buf, "VDD", UMCPMIO_VREF_NAME);
1617 }
1618 strncpy(cbuf, buf, UMCPMIO_VREF_NAME);
1619 node.sysctl_data = buf;
1620 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1621 if (error || newp == NULL)
1622 goto out;
1623
1624 for (i = 0; i < __arraycount(umcpmio_vref_names); i++) {
1625 if (strncmp(node.sysctl_data, umcpmio_vref_names[i].text,
1626 UMCPMIO_VREF_NAME) == 0) {
1627 break;
1628 }
1629 }
1630
1631 if (i == __arraycount(umcpmio_vref_names))
1632 error = EINVAL;
1633
1634 if (! error) {
1635 if (strncmp(cbuf, buf, UMCPMIO_VREF_NAME) != 0) {
1636 DPRINTF(("umcpmio_verify_dac_sysctl: setting DAC vref:"
1637 " %s\n", buf));
1638 error = umcpmio_set_dac_vref_one(sc, buf, false);
1639 }
1640 }
1641
1642 out:
1643 mutex_exit(&sc->sc_action_mutex);
1644 return error;
1645 }
1646
1647 int
1648 umcpmio_verify_adc_sysctl(SYSCTLFN_ARGS)
1649 {
1650 char buf[UMCPMIO_VREF_NAME];
1651 char cbuf[UMCPMIO_VREF_NAME];
1652 struct umcpmio_softc *sc;
1653 struct sysctlnode node;
1654 int error = 0;
1655 int vrm;
1656 size_t i;
1657 struct mcp2221_get_sram_res sram_res;
1658
1659 node = *rnode;
1660 sc = node.sysctl_data;
1661
1662 mutex_enter(&sc->sc_action_mutex);
1663
1664 error = umcpmio_get_sram(sc, &sram_res, false);
1665 if (error)
1666 goto out;
1667
1668 if (sram_res.irq_adc_reference_voltage & MCP2221_SRAM_ADC_IS_VRM) {
1669 vrm = sram_res.irq_adc_reference_voltage &
1670 MCP2221_SRAM_ADC_VRM_MASK;
1671 switch (vrm) {
1672 case MCP2221_SRAM_ADC_VRM_4096V:
1673 strncpy(buf, "4.096V", UMCPMIO_VREF_NAME);
1674 break;
1675 case MCP2221_SRAM_ADC_VRM_2048V:
1676 strncpy(buf, "2.048V", UMCPMIO_VREF_NAME);
1677 break;
1678 case MCP2221_SRAM_ADC_VRM_1024V:
1679 strncpy(buf, "1.024V", UMCPMIO_VREF_NAME);
1680 break;
1681 case MCP2221_SRAM_ADC_VRM_OFF:
1682 default:
1683 strncpy(buf, "OFF", UMCPMIO_VREF_NAME);
1684 break;
1685 }
1686 } else {
1687 strncpy(buf, "VDD", UMCPMIO_VREF_NAME);
1688 }
1689 strncpy(cbuf, buf, UMCPMIO_VREF_NAME);
1690 node.sysctl_data = buf;
1691 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1692 if (error || newp == NULL)
1693 goto out;
1694
1695 for (i = 0; i < __arraycount(umcpmio_vref_names); i++) {
1696 if (strncmp(node.sysctl_data, umcpmio_vref_names[i].text,
1697 UMCPMIO_VREF_NAME) == 0) {
1698 break;
1699 }
1700 }
1701
1702 if (i == __arraycount(umcpmio_vref_names))
1703 error = EINVAL;
1704
1705 if (! error) {
1706 if (strncmp(cbuf, buf, UMCPMIO_VREF_NAME) != 0) {
1707 DPRINTF(("umcpmio_verify_adc_sysctl: setting ADC vref:"
1708 " %s\n", buf));
1709 error = umcpmio_set_adc_vref_one(sc, buf, false);
1710 }
1711 }
1712
1713 out:
1714 mutex_exit(&sc->sc_action_mutex);
1715 return error;
1716 }
1717
1718 static struct umcpmio_sysctl_name umcpmio_dc_names[] = {
1719 {
1720 .text = "75%",
1721 },
1722 {
1723 .text = "50%",
1724 },
1725 {
1726 .text = "25%",
1727 },
1728 {
1729 .text = "0%",
1730 }
1731 };
1732
1733 static int
1734 umcpmio_verify_gpioclock_dc_sysctl(SYSCTLFN_ARGS)
1735 {
1736 char buf[UMCPMIO_VREF_NAME];
1737 char cbuf[UMCPMIO_VREF_NAME];
1738 struct umcpmio_softc *sc;
1739 struct sysctlnode node;
1740 int error = 0;
1741 uint8_t duty_cycle;
1742 size_t i;
1743 struct mcp2221_get_sram_res sram_res;
1744
1745 node = *rnode;
1746 sc = node.sysctl_data;
1747
1748 mutex_enter(&sc->sc_action_mutex);
1749
1750 error = umcpmio_get_sram(sc, &sram_res, false);
1751 if (error)
1752 goto out;
1753
1754 duty_cycle = sram_res.clock_divider & MCP2221_SRAM_GPIO_CLOCK_DC_MASK;
1755 DPRINTF(("umcpmio_verify_gpioclock_dc_sysctl: current duty cycle:"
1756 " %02x\n", duty_cycle));
1757 switch (duty_cycle) {
1758 case MCP2221_SRAM_GPIO_CLOCK_DC_75:
1759 strncpy(buf, "75%", UMCPMIO_DC_NAME);
1760 break;
1761 case MCP2221_SRAM_GPIO_CLOCK_DC_50:
1762 strncpy(buf, "50%", UMCPMIO_DC_NAME);
1763 break;
1764 case MCP2221_SRAM_GPIO_CLOCK_DC_25:
1765 strncpy(buf, "25%", UMCPMIO_DC_NAME);
1766 break;
1767 case MCP2221_SRAM_GPIO_CLOCK_DC_0:
1768 default:
1769 strncpy(buf, "0%", UMCPMIO_DC_NAME);
1770 break;
1771 }
1772 strncpy(cbuf, buf, UMCPMIO_VREF_NAME);
1773 node.sysctl_data = buf;
1774 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1775 if (error || newp == NULL)
1776 goto out;
1777
1778 for (i = 0; i < __arraycount(umcpmio_dc_names); i++) {
1779 if (strncmp(node.sysctl_data, umcpmio_dc_names[i].text,
1780 UMCPMIO_VREF_NAME) == 0) {
1781 break;
1782 }
1783 }
1784
1785 if (i == __arraycount(umcpmio_dc_names))
1786 error = EINVAL;
1787
1788 if (! error) {
1789 if (strncmp(cbuf, buf, UMCPMIO_VREF_NAME) != 0) {
1790 DPRINTF(("umcpmio_verify_gpioclock_dc_sysctl:"
1791 " setting GPIO clock duty cycle: %s\n", buf));
1792 error = umcpmio_set_gpioclock_dc_one(sc, buf, false);
1793 }
1794 }
1795
1796 out:
1797 mutex_exit(&sc->sc_action_mutex);
1798 return error;
1799 }
1800
1801 static struct umcpmio_sysctl_name umcpmio_cd_names[] = {
1802 {
1803 .text = "375kHz",
1804 },
1805 {
1806 .text = "750kHz",
1807 },
1808 {
1809 .text = "1.5MHz",
1810 },
1811 {
1812 .text = "3MHz",
1813 },
1814 {
1815 .text = "6MHz",
1816 },
1817 {
1818 .text = "12MHz",
1819 },
1820 {
1821 .text = "24MHz",
1822 }
1823 };
1824
1825 static int
1826 umcpmio_verify_gpioclock_cd_sysctl(SYSCTLFN_ARGS)
1827 {
1828 char buf[UMCPMIO_CD_NAME];
1829 char cbuf[UMCPMIO_CD_NAME];
1830 struct umcpmio_softc *sc;
1831 struct sysctlnode node;
1832 int error = 0;
1833 uint8_t clock_divider;
1834 size_t i;
1835 struct mcp2221_get_sram_res sram_res;
1836
1837 node = *rnode;
1838 sc = node.sysctl_data;
1839
1840 mutex_enter(&sc->sc_action_mutex);
1841
1842 error = umcpmio_get_sram(sc, &sram_res, false);
1843 if (error)
1844 goto out;
1845
1846 clock_divider = sram_res.clock_divider &
1847 MCP2221_SRAM_GPIO_CLOCK_CD_MASK;
1848 DPRINTF(("umcpmio_verify_gpioclock_cd_sysctl: current clock divider:"
1849 " %02x\n", clock_divider));
1850 switch (clock_divider) {
1851 case MCP2221_SRAM_GPIO_CLOCK_CD_375KHZ:
1852 strncpy(buf, "375kHz", UMCPMIO_CD_NAME);
1853 break;
1854 case MCP2221_SRAM_GPIO_CLOCK_CD_750KHZ:
1855 strncpy(buf, "750kHz", UMCPMIO_CD_NAME);
1856 break;
1857 case MCP2221_SRAM_GPIO_CLOCK_CD_1P5MHZ:
1858 strncpy(buf, "1.5MHz", UMCPMIO_CD_NAME);
1859 break;
1860 case MCP2221_SRAM_GPIO_CLOCK_CD_3MHZ:
1861 strncpy(buf, "3MHz", UMCPMIO_CD_NAME);
1862 break;
1863 case MCP2221_SRAM_GPIO_CLOCK_CD_6MHZ:
1864 strncpy(buf, "6MHz", UMCPMIO_CD_NAME);
1865 break;
1866 case MCP2221_SRAM_GPIO_CLOCK_CD_12MHZ:
1867 strncpy(buf, "12MHz", UMCPMIO_CD_NAME);
1868 break;
1869 case MCP2221_SRAM_GPIO_CLOCK_CD_24MHZ:
1870 strncpy(buf, "24MHz", UMCPMIO_CD_NAME);
1871 break;
1872 default:
1873 strncpy(buf, "12MHz", UMCPMIO_CD_NAME);
1874 break;
1875 }
1876 strncpy(cbuf, buf, UMCPMIO_CD_NAME);
1877 node.sysctl_data = buf;
1878 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1879 if (error || newp == NULL)
1880 goto out;
1881
1882 for (i = 0; i < __arraycount(umcpmio_cd_names); i++) {
1883 if (strncmp(node.sysctl_data, umcpmio_cd_names[i].text,
1884 UMCPMIO_CD_NAME) == 0) {
1885 break;
1886 }
1887 }
1888
1889 if (i == __arraycount(umcpmio_cd_names))
1890 error = EINVAL;
1891
1892 if (! error) {
1893 if (strncmp(cbuf, buf, UMCPMIO_CD_NAME) != 0) {
1894 DPRINTF(("umcpmio_verify_gpioclock_cd_sysctl:"
1895 " setting GPIO clock clock divider: %s\n",
1896 buf));
1897 error = umcpmio_set_gpioclock_cd_one(sc, buf, false);
1898 }
1899 }
1900
1901 out:
1902 mutex_exit(&sc->sc_action_mutex);
1903 return error;
1904 }
1905
1906 static int
1907 umcpmio_sysctl_init(struct umcpmio_softc *sc)
1908 {
1909 int error;
1910 const struct sysctlnode *cnode;
1911 int sysctlroot_num, i2c_num, adc_dac_num, adc_num, dac_num, gpio_num;
1912
1913 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1914 0, CTLTYPE_NODE, device_xname(sc->sc_dev),
1915 SYSCTL_DESCR("mcpmio controls"),
1916 NULL, 0, NULL, 0,
1917 CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
1918 return error;
1919
1920 sysctlroot_num = cnode->sysctl_num;
1921
1922 #ifdef UMCPMIO_DEBUG
1923 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1924 CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
1925 SYSCTL_DESCR("Debug level"),
1926 umcpmio_verify_sysctl, 0, &umcpmiodebug, 0,
1927 CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
1928 return error;
1929
1930 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1931 CTLFLAG_READWRITE, CTLTYPE_BOOL, "dump_buffers",
1932 SYSCTL_DESCR("Dump buffer when debugging"),
1933 NULL, 0, &sc->sc_dumpbuffer, 0,
1934 CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
1935 return error;
1936 #endif
1937
1938 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1939 CTLFLAG_READWRITE, CTLTYPE_INT, "response_wait",
1940 SYSCTL_DESCR("How long to wait in ms for a response"
1941 " for a HID report"),
1942 umcpmio_verify_sysctl, 0, &sc->sc_cv_wait, 0,
1943 CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
1944 return error;
1945
1946 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1947 CTLFLAG_READWRITE, CTLTYPE_INT, "response_errcnt",
1948 SYSCTL_DESCR("How many errors to allow on a response"),
1949 umcpmio_verify_sysctl, 0, &sc->sc_response_errcnt, 0,
1950 CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
1951 return error;
1952
1953 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1954 0, CTLTYPE_NODE, "i2c",
1955 SYSCTL_DESCR("I2C controls"),
1956 NULL, 0, NULL, 0,
1957 CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
1958 return error;
1959
1960 i2c_num = cnode->sysctl_num;
1961
1962 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1963 0, CTLTYPE_NODE, "adcdac",
1964 SYSCTL_DESCR("ADC and DAC controls"),
1965 NULL, 0, NULL, 0,
1966 CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
1967 return error;
1968
1969 adc_dac_num = cnode->sysctl_num;
1970
1971 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1972 0, CTLTYPE_NODE, "adc",
1973 SYSCTL_DESCR("ADC controls"),
1974 NULL, 0, NULL, 0,
1975 CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
1976 return error;
1977
1978 adc_num = cnode->sysctl_num;
1979
1980 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1981 0, CTLTYPE_NODE, "dac",
1982 SYSCTL_DESCR("DAC controls"),
1983 NULL, 0, NULL, 0,
1984 CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
1985 return error;
1986
1987 dac_num = cnode->sysctl_num;
1988
1989 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
1990 0, CTLTYPE_NODE, "gpio",
1991 SYSCTL_DESCR("GPIO controls"),
1992 NULL, 0, NULL, 0,
1993 CTL_HW, sysctlroot_num, CTL_CREATE, CTL_EOL)) != 0)
1994 return error;
1995
1996 gpio_num = cnode->sysctl_num;
1997
1998 /* I2C */
1999 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2000 CTLFLAG_READWRITE, CTLTYPE_BOOL, "reportreadnostop",
2001 SYSCTL_DESCR("Report that a READ without STOP was attempted"
2002 " by a device"),
2003 NULL, 0, &sc->sc_reportreadnostop, 0,
2004 CTL_HW, sysctlroot_num, i2c_num, CTL_CREATE, CTL_EOL)) != 0)
2005 return error;
2006
2007 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2008 CTLFLAG_READWRITE, CTLTYPE_INT, "busy_delay",
2009 SYSCTL_DESCR("How long to wait in ms when the I2C engine is busy"),
2010 umcpmio_verify_sysctl, 0, &sc->sc_busy_delay, 0,
2011 CTL_HW, sysctlroot_num, i2c_num, CTL_CREATE, CTL_EOL)) != 0)
2012 return error;
2013
2014 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2015 CTLFLAG_READWRITE, CTLTYPE_INT, "retry_busy_read",
2016 SYSCTL_DESCR("How many times to retry a busy I2C read"),
2017 umcpmio_verify_sysctl, 0, &sc->sc_retry_busy_read, 0,
2018 CTL_HW, sysctlroot_num, i2c_num, CTL_CREATE, CTL_EOL)) != 0)
2019 return error;
2020
2021 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2022 CTLFLAG_READWRITE, CTLTYPE_INT, "retry_busy_write",
2023 SYSCTL_DESCR("How many times to retry a busy I2C write"),
2024 umcpmio_verify_sysctl, 0, &sc->sc_retry_busy_write, 0,
2025 CTL_HW, sysctlroot_num, i2c_num, CTL_CREATE, CTL_EOL)) != 0)
2026 return error;
2027
2028 /* GPIO */
2029 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2030 CTLFLAG_READWRITE, CTLTYPE_INT, "irq_poll",
2031 SYSCTL_DESCR("How often to poll for a IRQ change"),
2032 umcpmio_verify_sysctl, 0, &sc->sc_irq_poll, 0,
2033 CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
2034 return error;
2035
2036 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2037 CTLFLAG_READONLY, CTLTYPE_STRING, "clock_duty_cycles",
2038 SYSCTL_DESCR("Valid duty cycles for GPIO clock on"
2039 " GP1 ALT3 duty cycle"),
2040 0, 0, __UNCONST(umcpmio_valid_dcs), sizeof(umcpmio_valid_dcs) + 1,
2041 CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
2042 return error;
2043
2044 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2045 CTLFLAG_READWRITE, CTLTYPE_STRING, "clock_duty_cycle",
2046 SYSCTL_DESCR("GPIO clock on GP1 ALT3 duty cycle"),
2047 umcpmio_verify_gpioclock_dc_sysctl, 0, (void *)sc, UMCPMIO_DC_NAME,
2048 CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
2049 return error;
2050
2051 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2052 CTLFLAG_READONLY, CTLTYPE_STRING, "clock_dividers",
2053 SYSCTL_DESCR("Valid clock dividers for GPIO clock on GP1"
2054 " with ALT3"),
2055 0, 0, __UNCONST(umcpmio_valid_cds), sizeof(umcpmio_valid_cds) + 1,
2056 CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
2057 return error;
2058
2059 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2060 CTLFLAG_READWRITE, CTLTYPE_STRING, "clock_divider",
2061 SYSCTL_DESCR("GPIO clock on GP1 ALT3 clock divider"),
2062 umcpmio_verify_gpioclock_cd_sysctl, 0, (void *)sc, UMCPMIO_CD_NAME,
2063 CTL_HW, sysctlroot_num, gpio_num, CTL_CREATE, CTL_EOL)) != 0)
2064 return error;
2065
2066 /* ADC and DAC */
2067 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2068 CTLFLAG_READONLY, CTLTYPE_STRING, "vrefs",
2069 SYSCTL_DESCR("Valid vref values for ADC and DAC"),
2070 0, 0,
2071 __UNCONST(umcpmio_valid_vrefs), sizeof(umcpmio_valid_vrefs) + 1,
2072 CTL_HW, sysctlroot_num, adc_dac_num, CTL_CREATE, CTL_EOL)) != 0)
2073 return error;
2074
2075 /* ADC */
2076 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2077 CTLFLAG_READWRITE, CTLTYPE_STRING, "vref",
2078 SYSCTL_DESCR("ADC voltage reference"),
2079 umcpmio_verify_adc_sysctl, 0, (void *)sc, UMCPMIO_VREF_NAME,
2080 CTL_HW, sysctlroot_num, adc_num, CTL_CREATE, CTL_EOL)) != 0)
2081 return error;
2082
2083 /* DAC */
2084 if ((error = sysctl_createv(&sc->sc_umcpmiolog, 0, NULL, &cnode,
2085 CTLFLAG_READWRITE, CTLTYPE_STRING, "vref",
2086 SYSCTL_DESCR("DAC voltage reference"),
2087 umcpmio_verify_dac_sysctl, 0, (void *)sc, UMCPMIO_VREF_NAME,
2088 CTL_HW, sysctlroot_num, dac_num, CTL_CREATE, CTL_EOL)) != 0)
2089 return error;
2090
2091 return 0;
2092 }
2093
2094 static int
2095 umcpmio_match(device_t parent, cfdata_t match, void *aux)
2096 {
2097 struct uhidev_attach_arg *uha = aux;
2098
2099 return umcpmio_lookup(uha->uiaa->uiaa_vendor, uha->uiaa->uiaa_product)
2100 != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
2101 }
2102
2103 /*
2104 * This driver could be extended to support the MCP-2210 which is MCP's
2105 * USB to SPI / gpio chip. It also appears to be a something like the
2106 * PIC16F1455 used in the MCP2221 / MCP2221A. It is likely that a lot
2107 * of this could use tables to drive behavior.
2108 */
2109
2110 static void
2111 umcpmio_attach(device_t parent, device_t self, void *aux)
2112 {
2113 struct umcpmio_softc *sc = device_private(self);
2114 struct uhidev_attach_arg *uha = aux;
2115 struct gpiobus_attach_args gba;
2116 struct i2cbus_attach_args iba;
2117 int err;
2118 struct mcp2221_status_res status_res;
2119
2120 sc->sc_dev = self;
2121 sc->sc_hdev = uha->parent;
2122 sc->sc_udev = uha->uiaa->uiaa_device;
2123
2124 sc->sc_umcpmiolog = NULL;
2125 sc->sc_dumpbuffer = false;
2126
2127 sc->sc_reportreadnostop = true;
2128 sc->sc_cv_wait = 2500;
2129 sc->sc_response_errcnt = 5;
2130 sc->sc_busy_delay = 1;
2131 sc->sc_retry_busy_read = 50;
2132 sc->sc_retry_busy_write = 50;
2133 sc->sc_irq_poll = 10;
2134 sc->sc_dev_open[CONTROL_DEV] = false;
2135 sc->sc_dev_open[GP1_DEV] = false;
2136 sc->sc_dev_open[GP2_DEV] = false;
2137 sc->sc_dev_open[GP3_DEV] = false;
2138
2139 aprint_normal("\n");
2140
2141 if ((err = umcpmio_sysctl_init(sc)) != 0) {
2142 aprint_error_dev(self, "Can't setup sysctl tree (%d)\n", err);
2143 return;
2144 }
2145
2146 mutex_init(&sc->sc_action_mutex, MUTEX_DEFAULT, IPL_NONE);
2147 cv_init(&sc->sc_res_cv, "mcpres");
2148 mutex_init(&sc->sc_res_mutex, MUTEX_DEFAULT, IPL_NONE);
2149 sc->sc_res_buffer = NULL;
2150 sc->sc_res_ready = false;
2151
2152 err = uhidev_open(sc->sc_hdev, &umcpmio_uhidev_intr, sc);
2153
2154 /*
2155 * It is not clear that this should be needed, but it was noted
2156 * that the device would sometimes not be ready if this delay
2157 * was not present. In fact, the attempts to set stuff a
2158 * little later would sometimes fail.
2159 */
2160
2161 delay(1000);
2162
2163 if (err) {
2164 aprint_error_dev(sc->sc_dev, "umcpmio_attach: "
2165 " open uhidev_open: err=%d\n", err);
2166 }
2167
2168 if (!err)
2169 err = umcpmio_get_status(sc, &status_res, true);
2170
2171 if (!err) {
2172 aprint_normal_dev(sc->sc_dev,
2173 "Hardware revision: %d.%d, Firmware revision: %d.%d\n",
2174 status_res.mcp2221_hardware_rev_major,
2175 status_res.mcp2221_hardware_rev_minor,
2176 status_res.mcp2221_firmware_rev_major,
2177 status_res.mcp2221_firmware_rev_minor);
2178
2179 /*
2180 * The datasheet suggests that it is possble for this
2181 * to fail if the I2C port is currently being used.
2182 * However... since you just plugged in the chip, the
2183 * I2C port should not really be in use at that moment.
2184 * In any case, try hard to set this and don't make it
2185 * fatal if it did not get set.
2186 */
2187 int i2cspeed = 0;
2188 while (! err && i2cspeed < 3) {
2189 err = umcpmio_set_i2c_speed_one(sc, I2C_SPEED_SM, true);
2190 if (err) {
2191 aprint_error_dev(sc->sc_dev, "umcpmio_attach:"
2192 " set I2C speed: err=%d\n",
2193 err);
2194 delay(300);
2195 }
2196 i2cspeed++;
2197 }
2198
2199 struct mcp2221_get_sram_res get_sram_res;
2200 err = umcpmio_get_sram(sc, &get_sram_res, true);
2201
2202 if (! err) {
2203 umcpmio_dump_buffer(sc->sc_dumpbuffer,
2204 (uint8_t *)&get_sram_res, MCP2221_RES_BUFFER_SIZE,
2205 "umcpmio_attach get sram buffer copy");
2206
2207 /*
2208 * There are only 4 pins right now, just unroll
2209 * any loops
2210 */
2211
2212 sc->sc_gpio_pins[0].pin_num = 0;
2213 sc->sc_gpio_pins[0].pin_caps = GPIO_PIN_INPUT;
2214 sc->sc_gpio_pins[0].pin_caps |= GPIO_PIN_OUTPUT;
2215 sc->sc_gpio_pins[0].pin_caps |= GPIO_PIN_ALT0;
2216 sc->sc_gpio_pins[0].pin_caps |= GPIO_PIN_ALT3;
2217 sc->sc_gpio_pins[0].pin_flags =
2218 umcpmio_sram_gpio_to_flags(
2219 get_sram_res.gp0_settings);
2220 sc->sc_gpio_pins[0].pin_intrcaps = 0;
2221 snprintf(sc->sc_gpio_pins[0].pin_defname, 4, "GP0");
2222
2223 sc->sc_gpio_pins[1].pin_num = 1;
2224 sc->sc_gpio_pins[1].pin_caps = GPIO_PIN_INPUT;
2225 sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_OUTPUT;
2226 sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_ALT0;
2227 sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_ALT1;
2228 sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_ALT2;
2229 sc->sc_gpio_pins[1].pin_caps |= GPIO_PIN_ALT3;
2230 sc->sc_gpio_pins[1].pin_flags =
2231 umcpmio_sram_gpio_to_flags(
2232 get_sram_res.gp1_settings);
2233 /* XXX - lets not advertise this right now... */
2234 #if 0
2235 sc->sc_gpio_pins[1].pin_intrcaps = GPIO_INTR_POS_EDGE;
2236 sc->sc_gpio_pins[1].pin_intrcaps |= GPIO_INTR_NEG_EDGE;
2237 sc->sc_gpio_pins[1].pin_intrcaps |=
2238 GPIO_INTR_DOUBLE_EDGE;
2239 sc->sc_gpio_pins[1].pin_intrcaps |= GPIO_INTR_MPSAFE;
2240 #endif
2241 sc->sc_gpio_pins[1].pin_intrcaps = 0;
2242 snprintf(sc->sc_gpio_pins[1].pin_defname, 4, "GP1");
2243
2244 sc->sc_gpio_pins[2].pin_num = 2;
2245 sc->sc_gpio_pins[2].pin_caps = GPIO_PIN_INPUT;
2246 sc->sc_gpio_pins[2].pin_caps |= GPIO_PIN_OUTPUT;
2247 sc->sc_gpio_pins[2].pin_caps |= GPIO_PIN_ALT0;
2248 sc->sc_gpio_pins[2].pin_caps |= GPIO_PIN_ALT1;
2249 sc->sc_gpio_pins[2].pin_caps |= GPIO_PIN_ALT3;
2250 sc->sc_gpio_pins[2].pin_flags =
2251 umcpmio_sram_gpio_to_flags(
2252 get_sram_res.gp2_settings);
2253 sc->sc_gpio_pins[2].pin_intrcaps = 0;
2254 snprintf(sc->sc_gpio_pins[2].pin_defname, 4, "GP2");
2255
2256 sc->sc_gpio_pins[3].pin_num = 3;
2257 sc->sc_gpio_pins[3].pin_caps = GPIO_PIN_INPUT;
2258 sc->sc_gpio_pins[3].pin_caps |= GPIO_PIN_OUTPUT;
2259 sc->sc_gpio_pins[3].pin_caps |= GPIO_PIN_ALT0;
2260 sc->sc_gpio_pins[3].pin_caps |= GPIO_PIN_ALT1;
2261 sc->sc_gpio_pins[3].pin_caps |= GPIO_PIN_ALT3;
2262 sc->sc_gpio_pins[3].pin_flags =
2263 umcpmio_sram_gpio_to_flags(
2264 get_sram_res.gp3_settings);
2265 sc->sc_gpio_pins[3].pin_intrcaps = 0;
2266 snprintf(sc->sc_gpio_pins[3].pin_defname, 4, "GP3");
2267
2268 sc->sc_gpio_gc.gp_cookie = sc;
2269 sc->sc_gpio_gc.gp_pin_read = umcpmio_gpio_pin_read;
2270 sc->sc_gpio_gc.gp_pin_write = umcpmio_gpio_pin_write;
2271 sc->sc_gpio_gc.gp_pin_ctl = umcpmio_gpio_pin_ctl;
2272
2273 sc->sc_gpio_gc.gp_intr_establish =
2274 umcpmio_gpio_intr_establish;
2275 sc->sc_gpio_gc.gp_intr_disestablish =
2276 umcpmio_gpio_intr_disestablish;
2277 sc->sc_gpio_gc.gp_intr_str = umcpmio_gpio_intrstr;
2278
2279 gba.gba_gc = &sc->sc_gpio_gc;
2280 gba.gba_pins = sc->sc_gpio_pins;
2281 gba.gba_npins = MCP2221_NPINS;
2282
2283 sc->sc_gpio_dev =
2284 config_found(self, &gba, gpiobus_print,
2285 CFARGS(.iattr = "gpiobus"));
2286
2287 iic_tag_init(&sc->sc_i2c_tag);
2288 sc->sc_i2c_tag.ic_cookie = sc;
2289 sc->sc_i2c_tag.ic_acquire_bus = umcpmio_acquire_bus;
2290 sc->sc_i2c_tag.ic_release_bus = umcpmio_release_bus;
2291 sc->sc_i2c_tag.ic_exec = umcpmio_i2c_exec;
2292
2293 memset(&iba, 0, sizeof(iba));
2294 iba.iba_tag = &sc->sc_i2c_tag;
2295 sc->sc_i2c_dev = config_found(self, &iba, iicbus_print,
2296 CFARGS(.iattr = "i2cbus"));
2297 } else {
2298 aprint_error_dev(sc->sc_dev, "umcpmio_attach:"
2299 " get sram error: err=%d\n",
2300 err);
2301 }
2302 } else {
2303 aprint_error_dev(sc->sc_dev, "umcpmio_attach:"
2304 " open uhidev_open: err=%d\n", err);
2305 }
2306 }
2307
2308 static int
2309 umcpmio_detach(device_t self, int flags)
2310 {
2311 struct umcpmio_softc *sc = device_private(self);
2312 int err;
2313
2314 DPRINTF(("umcpmio_detach: sc=%p flags=%d\n", sc, flags));
2315
2316 mutex_enter(&sc->sc_action_mutex);
2317 sc->sc_dying = 1;
2318
2319 err = config_detach_children(self, flags);
2320 if (err)
2321 return err;
2322
2323 uhidev_close(sc->sc_hdev);
2324
2325 mutex_destroy(&sc->sc_res_mutex);
2326 cv_destroy(&sc->sc_res_cv);
2327
2328 sysctl_teardown(&sc->sc_umcpmiolog);
2329
2330 mutex_exit(&sc->sc_action_mutex);
2331 mutex_destroy(&sc->sc_action_mutex);
2332
2333 return 0;
2334 }
2335
2336 static int
2337 umcpmio_activate(device_t self, enum devact act)
2338 {
2339 struct umcpmio_softc *sc = device_private(self);
2340
2341 DPRINTFN(5, ("umcpmio_activate: %d\n", act));
2342
2343 switch (act) {
2344 case DVACT_DEACTIVATE:
2345 sc->sc_dying = 1;
2346 return 0;
2347 default:
2348 return EOPNOTSUPP;
2349 }
2350 }
2351