umidi.c revision 1.44.2.3 1 /* $NetBSD: umidi.c,v 1.44.2.3 2012/10/30 17:22:09 yamt Exp $ */
2 /*
3 * Copyright (c) 2001, 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
8 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
9 * (mrg (at) eterna.com.au).
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.44.2.3 2012/10/30 17:22:09 yamt Exp $");
35
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/device.h>
42 #include <sys/ioctl.h>
43 #include <sys/conf.h>
44 #include <sys/file.h>
45 #include <sys/select.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/poll.h>
49 #include <sys/intr.h>
50
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54
55 #include <dev/auconv.h>
56 #include <dev/usb/usbdevs.h>
57 #include <dev/usb/uaudioreg.h>
58 #include <dev/usb/umidireg.h>
59 #include <dev/usb/umidivar.h>
60 #include <dev/usb/umidi_quirks.h>
61
62 #include <dev/midi_if.h>
63
64 #ifdef UMIDI_DEBUG
65 #define DPRINTF(x) if (umididebug) printf x
66 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
67 #include <sys/time.h>
68 static struct timeval umidi_tv;
69 int umididebug = 0;
70 #else
71 #define DPRINTF(x)
72 #define DPRINTFN(n,x)
73 #endif
74
75 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
76 (sc->sc_out_num_endpoints + \
77 sc->sc_in_num_endpoints))
78
79
80 static int umidi_open(void *, int,
81 void (*)(void *, int), void (*)(void *), void *);
82 static void umidi_close(void *);
83 static int umidi_channelmsg(void *, int, int, u_char *, int);
84 static int umidi_commonmsg(void *, int, u_char *, int);
85 static int umidi_sysex(void *, u_char *, int);
86 static int umidi_rtmsg(void *, int);
87 static void umidi_getinfo(void *, struct midi_info *);
88 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
89
90 static usbd_status alloc_pipe(struct umidi_endpoint *);
91 static void free_pipe(struct umidi_endpoint *);
92
93 static usbd_status alloc_all_endpoints(struct umidi_softc *);
94 static void free_all_endpoints(struct umidi_softc *);
95
96 static usbd_status alloc_all_jacks(struct umidi_softc *);
97 static void free_all_jacks(struct umidi_softc *);
98 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
99 struct umidi_jack *,
100 struct umidi_jack *,
101 struct umidi_mididev *);
102 static void unbind_jacks_from_mididev(struct umidi_mididev *);
103 static void unbind_all_jacks(struct umidi_softc *);
104 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
105 static usbd_status open_out_jack(struct umidi_jack *, void *,
106 void (*)(void *));
107 static usbd_status open_in_jack(struct umidi_jack *, void *,
108 void (*)(void *, int));
109 static void close_out_jack(struct umidi_jack *);
110 static void close_in_jack(struct umidi_jack *);
111
112 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
113 static usbd_status detach_mididev(struct umidi_mididev *, int);
114 static void deactivate_mididev(struct umidi_mididev *);
115 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
116 static void free_all_mididevs(struct umidi_softc *);
117 static usbd_status attach_all_mididevs(struct umidi_softc *);
118 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
119 static void deactivate_all_mididevs(struct umidi_softc *);
120 static void describe_mididev(struct umidi_mididev *);
121
122 #ifdef UMIDI_DEBUG
123 static void dump_sc(struct umidi_softc *);
124 static void dump_ep(struct umidi_endpoint *);
125 static void dump_jack(struct umidi_jack *);
126 #endif
127
128 static usbd_status start_input_transfer(struct umidi_endpoint *);
129 static usbd_status start_output_transfer(struct umidi_endpoint *);
130 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
131 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
132 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
133 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
134 static void out_solicit_locked(void *); /* pre-locked version */
135
136
137 const struct midi_hw_if umidi_hw_if = {
138 .open = umidi_open,
139 .close = umidi_close,
140 .output = umidi_rtmsg,
141 .getinfo = umidi_getinfo,
142 .get_locks = umidi_get_locks,
143 };
144
145 struct midi_hw_if_ext umidi_hw_if_ext = {
146 .channel = umidi_channelmsg,
147 .common = umidi_commonmsg,
148 .sysex = umidi_sysex,
149 };
150
151 struct midi_hw_if_ext umidi_hw_if_mm = {
152 .channel = umidi_channelmsg,
153 .common = umidi_commonmsg,
154 .sysex = umidi_sysex,
155 .compress = 1,
156 };
157
158 int umidi_match(device_t, cfdata_t, void *);
159 void umidi_attach(device_t, device_t, void *);
160 void umidi_childdet(device_t, device_t);
161 int umidi_detach(device_t, int);
162 int umidi_activate(device_t, enum devact);
163 extern struct cfdriver umidi_cd;
164 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
165 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
166
167 int
168 umidi_match(device_t parent, cfdata_t match, void *aux)
169 {
170 struct usbif_attach_arg *uaa = aux;
171
172 DPRINTFN(1,("umidi_match\n"));
173
174 if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
175 return UMATCH_IFACECLASS_IFACESUBCLASS;
176
177 if (uaa->class == UICLASS_AUDIO &&
178 uaa->subclass == UISUBCLASS_MIDISTREAM)
179 return UMATCH_IFACECLASS_IFACESUBCLASS;
180
181 return UMATCH_NONE;
182 }
183
184 void
185 umidi_attach(device_t parent, device_t self, void *aux)
186 {
187 usbd_status err;
188 struct umidi_softc *sc = device_private(self);
189 struct usbif_attach_arg *uaa = aux;
190 char *devinfop;
191
192 DPRINTFN(1,("umidi_attach\n"));
193
194 sc->sc_dev = self;
195
196 aprint_naive("\n");
197 aprint_normal("\n");
198
199 devinfop = usbd_devinfo_alloc(uaa->device, 0);
200 aprint_normal_dev(self, "%s\n", devinfop);
201 usbd_devinfo_free(devinfop);
202
203 sc->sc_iface = uaa->iface;
204 sc->sc_udev = uaa->device;
205
206 sc->sc_quirk =
207 umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
208 aprint_normal_dev(self, "");
209 umidi_print_quirk(sc->sc_quirk);
210
211 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
212 cv_init(&sc->sc_cv, "umidopcl");
213
214 err = alloc_all_endpoints(sc);
215 if (err != USBD_NORMAL_COMPLETION) {
216 aprint_error_dev(self,
217 "alloc_all_endpoints failed. (err=%d)\n", err);
218 goto error;
219 }
220 err = alloc_all_jacks(sc);
221 if (err != USBD_NORMAL_COMPLETION) {
222 free_all_endpoints(sc);
223 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
224 err);
225 goto error;
226 }
227 aprint_normal_dev(self, "out=%d, in=%d\n",
228 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
229
230 err = assign_all_jacks_automatically(sc);
231 if (err != USBD_NORMAL_COMPLETION) {
232 unbind_all_jacks(sc);
233 free_all_jacks(sc);
234 free_all_endpoints(sc);
235 aprint_error_dev(self,
236 "assign_all_jacks_automatically failed. (err=%d)\n", err);
237 goto error;
238 }
239 err = attach_all_mididevs(sc);
240 if (err != USBD_NORMAL_COMPLETION) {
241 free_all_jacks(sc);
242 free_all_endpoints(sc);
243 aprint_error_dev(self,
244 "attach_all_mididevs failed. (err=%d)\n", err);
245 }
246
247 #ifdef UMIDI_DEBUG
248 dump_sc(sc);
249 #endif
250
251 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
252 sc->sc_udev, sc->sc_dev);
253
254 return;
255 error:
256 aprint_error_dev(self, "disabled.\n");
257 sc->sc_dying = 1;
258 KERNEL_UNLOCK_ONE(curlwp);
259 return;
260 }
261
262 void
263 umidi_childdet(device_t self, device_t child)
264 {
265 int i;
266 struct umidi_softc *sc = device_private(self);
267
268 KASSERT(sc->sc_mididevs != NULL);
269
270 for (i = 0; i < sc->sc_num_mididevs; i++) {
271 if (sc->sc_mididevs[i].mdev == child)
272 break;
273 }
274 KASSERT(i < sc->sc_num_mididevs);
275 sc->sc_mididevs[i].mdev = NULL;
276 }
277
278 int
279 umidi_activate(device_t self, enum devact act)
280 {
281 struct umidi_softc *sc = device_private(self);
282
283 switch (act) {
284 case DVACT_DEACTIVATE:
285 DPRINTFN(1,("umidi_activate (deactivate)\n"));
286 sc->sc_dying = 1;
287 deactivate_all_mididevs(sc);
288 return 0;
289 default:
290 DPRINTFN(1,("umidi_activate (%d)\n", act));
291 return EOPNOTSUPP;
292 }
293 }
294
295 int
296 umidi_detach(device_t self, int flags)
297 {
298 struct umidi_softc *sc = device_private(self);
299
300 DPRINTFN(1,("umidi_detach\n"));
301
302 sc->sc_dying = 1;
303 detach_all_mididevs(sc, flags);
304 free_all_mididevs(sc);
305 free_all_jacks(sc);
306 free_all_endpoints(sc);
307
308 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
309 sc->sc_dev);
310
311 mutex_destroy(&sc->sc_lock);
312 cv_destroy(&sc->sc_cv);
313
314 return 0;
315 }
316
317
318 /*
319 * midi_if stuffs
320 */
321 int
322 umidi_open(void *addr,
323 int flags,
324 void (*iintr)(void *, int),
325 void (*ointr)(void *),
326 void *arg)
327 {
328 struct umidi_mididev *mididev = addr;
329 struct umidi_softc *sc = mididev->sc;
330 usbd_status err;
331
332 DPRINTF(("umidi_open: sc=%p\n", sc));
333
334 if (!sc)
335 return ENXIO;
336 if (mididev->opened)
337 return EBUSY;
338 if (sc->sc_dying)
339 return EIO;
340
341 mididev->opened = 1;
342 mididev->closing = 0;
343 mididev->flags = flags;
344 if ((mididev->flags & FWRITE) && mididev->out_jack) {
345 err = open_out_jack(mididev->out_jack, arg, ointr);
346 if ( err != USBD_NORMAL_COMPLETION )
347 goto bad;
348 }
349 if ((mididev->flags & FREAD) && mididev->in_jack) {
350 err = open_in_jack(mididev->in_jack, arg, iintr);
351 if ( err != USBD_NORMAL_COMPLETION
352 && err != USBD_IN_PROGRESS )
353 goto bad;
354 }
355
356 return 0;
357 bad:
358 mididev->opened = 0;
359 DPRINTF(("umidi_open: usbd_status %d\n", err));
360 return USBD_IN_USE == err ? EBUSY : EIO;
361 }
362
363 void
364 umidi_close(void *addr)
365 {
366 struct umidi_mididev *mididev = addr;
367
368 mididev->closing = 1;
369
370 mutex_spin_exit(&mididev->sc->sc_lock);
371
372 if ((mididev->flags & FWRITE) && mididev->out_jack)
373 close_out_jack(mididev->out_jack);
374 if ((mididev->flags & FREAD) && mididev->in_jack)
375 close_in_jack(mididev->in_jack);
376
377 mutex_spin_enter(&mididev->sc->sc_lock);
378
379 mididev->opened = 0;
380 }
381
382 int
383 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
384 int len)
385 {
386 struct umidi_mididev *mididev = addr;
387
388 if (!mididev->out_jack || !mididev->opened || mididev->closing)
389 return EIO;
390
391 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
392 }
393
394 int
395 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
396 {
397 struct umidi_mididev *mididev = addr;
398 int cin;
399
400 if (!mididev->out_jack || !mididev->opened || mididev->closing)
401 return EIO;
402
403 switch ( len ) {
404 case 1: cin = 5; break;
405 case 2: cin = 2; break;
406 case 3: cin = 3; break;
407 default: return EIO; /* or gcc warns of cin uninitialized */
408 }
409
410 return out_jack_output(mididev->out_jack, msg, len, cin);
411 }
412
413 int
414 umidi_sysex(void *addr, u_char *msg, int len)
415 {
416 struct umidi_mididev *mididev = addr;
417 int cin;
418
419 if (!mididev->out_jack || !mididev->opened || mididev->closing)
420 return EIO;
421
422 switch ( len ) {
423 case 1: cin = 5; break;
424 case 2: cin = 6; break;
425 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
426 default: return EIO; /* or gcc warns of cin uninitialized */
427 }
428
429 return out_jack_output(mididev->out_jack, msg, len, cin);
430 }
431
432 int
433 umidi_rtmsg(void *addr, int d)
434 {
435 struct umidi_mididev *mididev = addr;
436 u_char msg = d;
437
438 if (!mididev->out_jack || !mididev->opened || mididev->closing)
439 return EIO;
440
441 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
442 }
443
444 void
445 umidi_getinfo(void *addr, struct midi_info *mi)
446 {
447 struct umidi_mididev *mididev = addr;
448 struct umidi_softc *sc = mididev->sc;
449 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
450
451 mi->name = mididev->label;
452 mi->props = MIDI_PROP_OUT_INTR;
453 if (mididev->in_jack)
454 mi->props |= MIDI_PROP_CAN_INPUT;
455 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
456 }
457
458 static void
459 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
460 {
461 struct umidi_mididev *mididev = addr;
462 struct umidi_softc *sc = mididev->sc;
463
464 *intr = NULL;
465 *thread = &sc->sc_lock;
466 }
467
468 /*
469 * each endpoint stuffs
470 */
471
472 /* alloc/free pipe */
473 static usbd_status
474 alloc_pipe(struct umidi_endpoint *ep)
475 {
476 struct umidi_softc *sc = ep->sc;
477 usbd_status err;
478 usb_endpoint_descriptor_t *epd;
479
480 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
481 /*
482 * For output, an improvement would be to have a buffer bigger than
483 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
484 * allow out_solicit to fill the buffer to the full packet size in
485 * all cases. But to use usbd_alloc_buffer to get a slightly larger
486 * buffer would not be a good way to do that, because if the addition
487 * would make the buffer exceed USB_MEM_SMALL then a substantially
488 * larger block may be wastefully allocated. Some flavor of double
489 * buffering could serve the same purpose, but would increase the
490 * code complexity, so for now I will live with the current slight
491 * penalty of reducing max transfer size by (num_open-num_scheduled)
492 * packet slots.
493 */
494 ep->buffer_size = UGETW(epd->wMaxPacketSize);
495 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
496
497 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
498 device_xname(sc->sc_dev), ep, ep->buffer_size));
499 ep->num_scheduled = 0;
500 ep->this_schedule = 0;
501 ep->next_schedule = 0;
502 ep->soliciting = 0;
503 ep->armed = 0;
504 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
505 if (ep->xfer == NULL) {
506 err = USBD_NOMEM;
507 goto quit;
508 }
509 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
510 if (ep->buffer == NULL) {
511 usbd_free_xfer(ep->xfer);
512 err = USBD_NOMEM;
513 goto quit;
514 }
515 ep->next_slot = ep->buffer;
516 err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
517 if (err)
518 usbd_free_xfer(ep->xfer);
519 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK, out_solicit, ep);
520 quit:
521 return err;
522 }
523
524 static void
525 free_pipe(struct umidi_endpoint *ep)
526 {
527 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
528 usbd_abort_pipe(ep->pipe);
529 usbd_close_pipe(ep->pipe);
530 usbd_free_xfer(ep->xfer);
531 softint_disestablish(ep->solicit_cookie);
532 }
533
534
535 /* alloc/free the array of endpoint structures */
536
537 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
538 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
539 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
540
541 static usbd_status
542 alloc_all_endpoints(struct umidi_softc *sc)
543 {
544 usbd_status err;
545 struct umidi_endpoint *ep;
546 int i;
547
548 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
549 err = alloc_all_endpoints_fixed_ep(sc);
550 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
551 err = alloc_all_endpoints_yamaha(sc);
552 } else {
553 err = alloc_all_endpoints_genuine(sc);
554 }
555 if (err != USBD_NORMAL_COMPLETION)
556 return err;
557
558 ep = sc->sc_endpoints;
559 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
560 err = alloc_pipe(ep++);
561 if (err != USBD_NORMAL_COMPLETION) {
562 for (; ep != sc->sc_endpoints; ep--)
563 free_pipe(ep-1);
564 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
565 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
566 break;
567 }
568 }
569 return err;
570 }
571
572 static void
573 free_all_endpoints(struct umidi_softc *sc)
574 {
575 int i;
576
577 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
578 free_pipe(&sc->sc_endpoints[i]);
579 if (sc->sc_endpoints != NULL)
580 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
581 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
582 }
583
584 static usbd_status
585 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
586 {
587 usbd_status err;
588 const struct umq_fixed_ep_desc *fp;
589 struct umidi_endpoint *ep;
590 usb_endpoint_descriptor_t *epd;
591 int i;
592
593 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
594 UMQ_TYPE_FIXED_EP);
595 sc->sc_out_num_jacks = 0;
596 sc->sc_in_num_jacks = 0;
597 sc->sc_out_num_endpoints = fp->num_out_ep;
598 sc->sc_in_num_endpoints = fp->num_in_ep;
599 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
600 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
601 if (!sc->sc_endpoints)
602 return USBD_NOMEM;
603
604 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
605 sc->sc_in_ep =
606 sc->sc_in_num_endpoints ?
607 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
608
609 ep = &sc->sc_out_ep[0];
610 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
611 epd = usbd_interface2endpoint_descriptor(
612 sc->sc_iface,
613 fp->out_ep[i].ep);
614 if (!epd) {
615 aprint_error_dev(sc->sc_dev,
616 "cannot get endpoint descriptor(out:%d)\n",
617 fp->out_ep[i].ep);
618 err = USBD_INVAL;
619 goto error;
620 }
621 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
622 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
623 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
624 fp->out_ep[i].ep);
625 err = USBD_INVAL;
626 goto error;
627 }
628 ep->sc = sc;
629 ep->addr = epd->bEndpointAddress;
630 ep->num_jacks = fp->out_ep[i].num_jacks;
631 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
632 ep->num_open = 0;
633 ep++;
634 }
635 ep = &sc->sc_in_ep[0];
636 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
637 epd = usbd_interface2endpoint_descriptor(
638 sc->sc_iface,
639 fp->in_ep[i].ep);
640 if (!epd) {
641 aprint_error_dev(sc->sc_dev,
642 "cannot get endpoint descriptor(in:%d)\n",
643 fp->in_ep[i].ep);
644 err = USBD_INVAL;
645 goto error;
646 }
647 /*
648 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
649 * endpoint. The existing input logic in this driver seems
650 * to work successfully if we just stop treating an interrupt
651 * endpoint as illegal (or the in_progress status we get on
652 * the initial transfer). It does not seem necessary to
653 * actually use the interrupt flavor of alloc_pipe or make
654 * other serious rearrangements of logic. I like that.
655 */
656 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
657 case UE_BULK:
658 case UE_INTERRUPT:
659 if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
660 break;
661 /*FALLTHROUGH*/
662 default:
663 aprint_error_dev(sc->sc_dev,
664 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
665 err = USBD_INVAL;
666 goto error;
667 }
668
669 ep->sc = sc;
670 ep->addr = epd->bEndpointAddress;
671 ep->num_jacks = fp->in_ep[i].num_jacks;
672 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
673 ep->num_open = 0;
674 ep++;
675 }
676
677 return USBD_NORMAL_COMPLETION;
678 error:
679 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
680 sc->sc_endpoints = NULL;
681 return err;
682 }
683
684 static usbd_status
685 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
686 {
687 /* This driver currently supports max 1in/1out bulk endpoints */
688 usb_descriptor_t *desc;
689 umidi_cs_descriptor_t *udesc;
690 usb_endpoint_descriptor_t *epd;
691 int out_addr, in_addr, i;
692 int dir;
693 size_t remain, descsize;
694
695 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
696 out_addr = in_addr = 0;
697
698 /* detect endpoints */
699 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
700 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
701 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
702 KASSERT(epd != NULL);
703 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
704 dir = UE_GET_DIR(epd->bEndpointAddress);
705 if (dir==UE_DIR_OUT && !out_addr)
706 out_addr = epd->bEndpointAddress;
707 else if (dir==UE_DIR_IN && !in_addr)
708 in_addr = epd->bEndpointAddress;
709 }
710 }
711 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
712
713 /* count jacks */
714 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
715 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
716 return USBD_INVAL;
717 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
718 (size_t)udesc->bLength;
719 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
720
721 while (remain >= sizeof(usb_descriptor_t)) {
722 descsize = udesc->bLength;
723 if (descsize>remain || descsize==0)
724 break;
725 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
726 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
727 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
728 sc->sc_out_num_jacks++;
729 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
730 sc->sc_in_num_jacks++;
731 }
732 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
733 remain -= descsize;
734 }
735
736 /* validate some parameters */
737 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
738 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
739 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
740 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
741 if (sc->sc_out_num_jacks && out_addr) {
742 sc->sc_out_num_endpoints = 1;
743 } else {
744 sc->sc_out_num_endpoints = 0;
745 sc->sc_out_num_jacks = 0;
746 }
747 if (sc->sc_in_num_jacks && in_addr) {
748 sc->sc_in_num_endpoints = 1;
749 } else {
750 sc->sc_in_num_endpoints = 0;
751 sc->sc_in_num_jacks = 0;
752 }
753 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
754 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
755 if (!sc->sc_endpoints)
756 return USBD_NOMEM;
757 if (sc->sc_out_num_endpoints) {
758 sc->sc_out_ep = sc->sc_endpoints;
759 sc->sc_out_ep->sc = sc;
760 sc->sc_out_ep->addr = out_addr;
761 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
762 sc->sc_out_ep->num_open = 0;
763 } else
764 sc->sc_out_ep = NULL;
765
766 if (sc->sc_in_num_endpoints) {
767 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
768 sc->sc_in_ep->sc = sc;
769 sc->sc_in_ep->addr = in_addr;
770 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
771 sc->sc_in_ep->num_open = 0;
772 } else
773 sc->sc_in_ep = NULL;
774
775 return USBD_NORMAL_COMPLETION;
776 }
777
778 static usbd_status
779 alloc_all_endpoints_genuine(struct umidi_softc *sc)
780 {
781 usb_interface_descriptor_t *interface_desc;
782 usb_config_descriptor_t *config_desc;
783 usb_descriptor_t *desc;
784 int num_ep;
785 size_t remain, descsize;
786 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
787 int epaddr;
788
789 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
790 num_ep = interface_desc->bNumEndpoints;
791 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
792 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
793 if (!p)
794 return USBD_NOMEM;
795
796 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
797 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
798 epaddr = -1;
799
800 /* get the list of endpoints for midi stream */
801 config_desc = usbd_get_config_descriptor(sc->sc_udev);
802 desc = (usb_descriptor_t *) config_desc;
803 remain = (size_t)UGETW(config_desc->wTotalLength);
804 while (remain>=sizeof(usb_descriptor_t)) {
805 descsize = desc->bLength;
806 if (descsize>remain || descsize==0)
807 break;
808 if (desc->bDescriptorType==UDESC_ENDPOINT &&
809 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
810 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
811 epaddr = TO_EPD(desc)->bEndpointAddress;
812 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
813 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
814 epaddr!=-1) {
815 if (num_ep>0) {
816 num_ep--;
817 p->sc = sc;
818 p->addr = epaddr;
819 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
820 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
821 sc->sc_out_num_endpoints++;
822 sc->sc_out_num_jacks += p->num_jacks;
823 } else {
824 sc->sc_in_num_endpoints++;
825 sc->sc_in_num_jacks += p->num_jacks;
826 }
827 p++;
828 }
829 } else
830 epaddr = -1;
831 desc = NEXT_D(desc);
832 remain-=descsize;
833 }
834
835 /* sort endpoints */
836 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
837 p = sc->sc_endpoints;
838 endep = p + num_ep;
839 while (p<endep) {
840 lowest = p;
841 for (q=p+1; q<endep; q++) {
842 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
843 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
844 ((UE_GET_DIR(lowest->addr)==
845 UE_GET_DIR(q->addr)) &&
846 (UE_GET_ADDR(lowest->addr)>
847 UE_GET_ADDR(q->addr))))
848 lowest = q;
849 }
850 if (lowest != p) {
851 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
852 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
853 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
854 }
855 p->num_open = 0;
856 p++;
857 }
858
859 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
860 sc->sc_in_ep =
861 sc->sc_in_num_endpoints ?
862 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
863
864 return USBD_NORMAL_COMPLETION;
865 }
866
867
868 /*
869 * jack stuffs
870 */
871
872 static usbd_status
873 alloc_all_jacks(struct umidi_softc *sc)
874 {
875 int i, j;
876 struct umidi_endpoint *ep;
877 struct umidi_jack *jack;
878 const unsigned char *cn_spec;
879
880 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
881 sc->cblnums_global = 0;
882 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
883 sc->cblnums_global = 1;
884 else {
885 /*
886 * I don't think this default is correct, but it preserves
887 * the prior behavior of the code. That's why I defined two
888 * complementary quirks. Any device for which the default
889 * behavior is wrong can be made to work by giving it an
890 * explicit quirk, and if a pattern ever develops (as I suspect
891 * it will) that a lot of otherwise standard USB MIDI devices
892 * need the CN_SEQ_PER_EP "quirk," then this default can be
893 * changed to 0, and the only devices that will break are those
894 * listing neither quirk, and they'll easily be fixed by giving
895 * them the CN_SEQ_GLOBAL quirk.
896 */
897 sc->cblnums_global = 1;
898 }
899
900 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
901 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
902 UMQ_TYPE_CN_FIXED);
903 else
904 cn_spec = NULL;
905
906 /* allocate/initialize structures */
907 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
908 sc->sc_out_num_jacks), KM_SLEEP);
909 if (!sc->sc_jacks)
910 return USBD_NOMEM;
911 sc->sc_out_jacks =
912 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
913 sc->sc_in_jacks =
914 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
915
916 jack = &sc->sc_out_jacks[0];
917 for (i = 0; i < sc->sc_out_num_jacks; i++) {
918 jack->opened = 0;
919 jack->binded = 0;
920 jack->arg = NULL;
921 jack->u.out.intr = NULL;
922 jack->midiman_ppkt = NULL;
923 if (sc->cblnums_global)
924 jack->cable_number = i;
925 jack++;
926 }
927 jack = &sc->sc_in_jacks[0];
928 for (i = 0; i < sc->sc_in_num_jacks; i++) {
929 jack->opened = 0;
930 jack->binded = 0;
931 jack->arg = NULL;
932 jack->u.in.intr = NULL;
933 if (sc->cblnums_global)
934 jack->cable_number = i;
935 jack++;
936 }
937
938 /* assign each jacks to each endpoints */
939 jack = &sc->sc_out_jacks[0];
940 ep = &sc->sc_out_ep[0];
941 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
942 for (j = 0; j < ep->num_jacks; j++) {
943 jack->endpoint = ep;
944 if (cn_spec != NULL)
945 jack->cable_number = *cn_spec++;
946 else if (!sc->cblnums_global)
947 jack->cable_number = j;
948 ep->jacks[jack->cable_number] = jack;
949 jack++;
950 }
951 ep++;
952 }
953 jack = &sc->sc_in_jacks[0];
954 ep = &sc->sc_in_ep[0];
955 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
956 for (j = 0; j < ep->num_jacks; j++) {
957 jack->endpoint = ep;
958 if (cn_spec != NULL)
959 jack->cable_number = *cn_spec++;
960 else if (!sc->cblnums_global)
961 jack->cable_number = j;
962 ep->jacks[jack->cable_number] = jack;
963 jack++;
964 }
965 ep++;
966 }
967
968 return USBD_NORMAL_COMPLETION;
969 }
970
971 static void
972 free_all_jacks(struct umidi_softc *sc)
973 {
974 struct umidi_jack *jacks;
975 size_t len;
976
977 mutex_enter(&sc->sc_lock);
978 jacks = sc->sc_jacks;
979 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
980 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
981 mutex_exit(&sc->sc_lock);
982
983 if (jacks)
984 kmem_free(jacks, len);
985 }
986
987 static usbd_status
988 bind_jacks_to_mididev(struct umidi_softc *sc,
989 struct umidi_jack *out_jack,
990 struct umidi_jack *in_jack,
991 struct umidi_mididev *mididev)
992 {
993 if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
994 return USBD_IN_USE;
995 if (mididev->out_jack || mididev->in_jack)
996 return USBD_IN_USE;
997
998 if (out_jack)
999 out_jack->binded = 1;
1000 if (in_jack)
1001 in_jack->binded = 1;
1002 mididev->in_jack = in_jack;
1003 mididev->out_jack = out_jack;
1004
1005 return USBD_NORMAL_COMPLETION;
1006 }
1007
1008 static void
1009 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1010 {
1011
1012 if ((mididev->flags & FWRITE) && mididev->out_jack)
1013 close_out_jack(mididev->out_jack);
1014 if ((mididev->flags & FREAD) && mididev->in_jack)
1015 close_in_jack(mididev->in_jack);
1016
1017 if (mididev->out_jack)
1018 mididev->out_jack->binded = 0;
1019 if (mididev->in_jack)
1020 mididev->in_jack->binded = 0;
1021 mididev->out_jack = mididev->in_jack = NULL;
1022 }
1023
1024 static void
1025 unbind_all_jacks(struct umidi_softc *sc)
1026 {
1027 int i;
1028
1029 if (sc->sc_mididevs)
1030 for (i = 0; i < sc->sc_num_mididevs; i++)
1031 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1032 }
1033
1034 static usbd_status
1035 assign_all_jacks_automatically(struct umidi_softc *sc)
1036 {
1037 usbd_status err;
1038 int i;
1039 struct umidi_jack *out, *in;
1040 const signed char *asg_spec;
1041
1042 err =
1043 alloc_all_mididevs(sc,
1044 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1045 if (err!=USBD_NORMAL_COMPLETION)
1046 return err;
1047
1048 if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1049 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1050 UMQ_TYPE_MD_FIXED);
1051 else
1052 asg_spec = NULL;
1053
1054 for (i = 0; i < sc->sc_num_mididevs; i++) {
1055 if (asg_spec != NULL) {
1056 if (*asg_spec == -1)
1057 out = NULL;
1058 else
1059 out = &sc->sc_out_jacks[*asg_spec];
1060 ++ asg_spec;
1061 if (*asg_spec == -1)
1062 in = NULL;
1063 else
1064 in = &sc->sc_in_jacks[*asg_spec];
1065 ++ asg_spec;
1066 } else {
1067 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1068 : NULL;
1069 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1070 : NULL;
1071 }
1072 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1073 if (err!=USBD_NORMAL_COMPLETION) {
1074 free_all_mididevs(sc);
1075 return err;
1076 }
1077 }
1078
1079 return USBD_NORMAL_COMPLETION;
1080 }
1081
1082 static usbd_status
1083 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1084 {
1085 struct umidi_endpoint *ep = jack->endpoint;
1086 struct umidi_softc *sc = ep->sc;
1087 umidi_packet_bufp end;
1088 int err;
1089
1090 KASSERT(mutex_owned(&sc->sc_lock));
1091
1092 if (jack->opened)
1093 return USBD_IN_USE;
1094
1095 jack->arg = arg;
1096 jack->u.out.intr = intr;
1097 jack->midiman_ppkt = NULL;
1098 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1099 jack->opened = 1;
1100 ep->num_open++;
1101 /*
1102 * out_solicit maintains an invariant that there will always be
1103 * (num_open - num_scheduled) slots free in the buffer. as we have
1104 * just incremented num_open, the buffer may be too full to satisfy
1105 * the invariant until a transfer completes, for which we must wait.
1106 */
1107 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1108 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1109 mstohz(10));
1110 if (err) {
1111 ep->num_open--;
1112 jack->opened = 0;
1113 return USBD_IOERROR;
1114 }
1115 }
1116
1117 return USBD_NORMAL_COMPLETION;
1118 }
1119
1120 static usbd_status
1121 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1122 {
1123 usbd_status err = USBD_NORMAL_COMPLETION;
1124 struct umidi_endpoint *ep = jack->endpoint;
1125
1126 KASSERT(mutex_owned(&ep->sc->sc_lock));
1127
1128 if (jack->opened)
1129 return USBD_IN_USE;
1130
1131 jack->arg = arg;
1132 jack->u.in.intr = intr;
1133 jack->opened = 1;
1134 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1135 err = start_input_transfer(ep);
1136 if (err != USBD_NORMAL_COMPLETION &&
1137 err != USBD_IN_PROGRESS) {
1138 ep->num_open--;
1139 }
1140 }
1141
1142 return err;
1143 }
1144
1145 static void
1146 close_out_jack(struct umidi_jack *jack)
1147 {
1148 struct umidi_endpoint *ep;
1149 struct umidi_softc *sc;
1150 u_int16_t mask;
1151 int err;
1152
1153 if (jack->opened) {
1154 ep = jack->endpoint;
1155 sc = ep->sc;
1156 mutex_spin_enter(&sc->sc_lock);
1157 mask = 1 << (jack->cable_number);
1158 while (mask & (ep->this_schedule | ep->next_schedule)) {
1159 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1160 mstohz(10));
1161 if (err)
1162 break;
1163 }
1164 /*
1165 * We can re-enter this function from both close() and
1166 * detach(). Make sure only one of them does this part.
1167 */
1168 if (jack->opened) {
1169 jack->opened = 0;
1170 jack->endpoint->num_open--;
1171 ep->this_schedule &= ~mask;
1172 ep->next_schedule &= ~mask;
1173 }
1174 mutex_spin_exit(&sc->sc_lock);
1175 }
1176 }
1177
1178 static void
1179 close_in_jack(struct umidi_jack *jack)
1180 {
1181 if (jack->opened) {
1182 jack->opened = 0;
1183 if (--jack->endpoint->num_open == 0) {
1184 usbd_abort_pipe(jack->endpoint->pipe);
1185 }
1186 }
1187 }
1188
1189 static usbd_status
1190 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1191 {
1192 if (mididev->sc)
1193 return USBD_IN_USE;
1194
1195 mididev->sc = sc;
1196
1197 describe_mididev(mididev);
1198
1199 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1200
1201 return USBD_NORMAL_COMPLETION;
1202 }
1203
1204 static usbd_status
1205 detach_mididev(struct umidi_mididev *mididev, int flags)
1206 {
1207 if (!mididev->sc)
1208 return USBD_NO_ADDR;
1209
1210 if (mididev->opened) {
1211 umidi_close(mididev);
1212 }
1213 unbind_jacks_from_mididev(mididev);
1214
1215 if (mididev->mdev != NULL)
1216 config_detach(mididev->mdev, flags);
1217
1218 if (NULL != mididev->label) {
1219 kmem_free(mididev->label, mididev->label_len);
1220 mididev->label = NULL;
1221 }
1222
1223 mididev->sc = NULL;
1224
1225 return USBD_NORMAL_COMPLETION;
1226 }
1227
1228 static void
1229 deactivate_mididev(struct umidi_mididev *mididev)
1230 {
1231 if (mididev->out_jack)
1232 mididev->out_jack->binded = 0;
1233 if (mididev->in_jack)
1234 mididev->in_jack->binded = 0;
1235 }
1236
1237 static usbd_status
1238 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1239 {
1240 sc->sc_num_mididevs = nmidi;
1241 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1242 if (!sc->sc_mididevs)
1243 return USBD_NOMEM;
1244
1245 return USBD_NORMAL_COMPLETION;
1246 }
1247
1248 static void
1249 free_all_mididevs(struct umidi_softc *sc)
1250 {
1251 if (sc->sc_mididevs)
1252 kmem_free(sc->sc_mididevs,
1253 sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
1254 sc->sc_num_mididevs = 0;
1255 }
1256
1257 static usbd_status
1258 attach_all_mididevs(struct umidi_softc *sc)
1259 {
1260 usbd_status err;
1261 int i;
1262
1263 if (sc->sc_mididevs)
1264 for (i = 0; i < sc->sc_num_mididevs; i++) {
1265 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1266 if (err != USBD_NORMAL_COMPLETION)
1267 return err;
1268 }
1269
1270 return USBD_NORMAL_COMPLETION;
1271 }
1272
1273 static usbd_status
1274 detach_all_mididevs(struct umidi_softc *sc, int flags)
1275 {
1276 usbd_status err;
1277 int i;
1278
1279 if (sc->sc_mididevs)
1280 for (i = 0; i < sc->sc_num_mididevs; i++) {
1281 err = detach_mididev(&sc->sc_mididevs[i], flags);
1282 if (err != USBD_NORMAL_COMPLETION)
1283 return err;
1284 }
1285
1286 return USBD_NORMAL_COMPLETION;
1287 }
1288
1289 static void
1290 deactivate_all_mididevs(struct umidi_softc *sc)
1291 {
1292 int i;
1293
1294 if (sc->sc_mididevs) {
1295 for (i = 0; i < sc->sc_num_mididevs; i++)
1296 deactivate_mididev(&sc->sc_mididevs[i]);
1297 }
1298 }
1299
1300 /*
1301 * TODO: the 0-based cable numbers will often not match the labeling of the
1302 * equipment. Ideally:
1303 * For class-compliant devices: get the iJack string from the jack descriptor.
1304 * Otherwise:
1305 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1306 * number for display)
1307 * - support an array quirk explictly giving a char * for each jack.
1308 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1309 * the CNs are not globally unique, each is shown with its associated endpoint
1310 * address in hex also. That should not be necessary when using iJack values
1311 * or a quirk array.
1312 */
1313 void
1314 describe_mididev(struct umidi_mididev *md)
1315 {
1316 char in_label[16];
1317 char out_label[16];
1318 const char *unit_label;
1319 char *final_label;
1320 struct umidi_softc *sc;
1321 int show_ep_in;
1322 int show_ep_out;
1323 size_t len;
1324
1325 sc = md->sc;
1326 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1327 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1328
1329 if ( NULL == md->in_jack )
1330 in_label[0] = '\0';
1331 else if ( show_ep_in )
1332 snprintf(in_label, sizeof in_label, "<%d(%x) ",
1333 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1334 else
1335 snprintf(in_label, sizeof in_label, "<%d ",
1336 md->in_jack->cable_number);
1337
1338 if ( NULL == md->out_jack )
1339 out_label[0] = '\0';
1340 else if ( show_ep_out )
1341 snprintf(out_label, sizeof out_label, ">%d(%x) ",
1342 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1343 else
1344 snprintf(out_label, sizeof out_label, ">%d ",
1345 md->out_jack->cable_number);
1346
1347 unit_label = device_xname(sc->sc_dev);
1348
1349 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1350
1351 final_label = kmem_alloc(len, KM_SLEEP);
1352
1353 snprintf(final_label, len, "%s%son %s",
1354 in_label, out_label, unit_label);
1355
1356 md->label = final_label;
1357 md->label_len = len;
1358 }
1359
1360 #ifdef UMIDI_DEBUG
1361 static void
1362 dump_sc(struct umidi_softc *sc)
1363 {
1364 int i;
1365
1366 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1367 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1368 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1369 dump_ep(&sc->sc_out_ep[i]);
1370 }
1371 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1372 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1373 dump_ep(&sc->sc_in_ep[i]);
1374 }
1375 }
1376
1377 static void
1378 dump_ep(struct umidi_endpoint *ep)
1379 {
1380 int i;
1381 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1382 if (NULL==ep->jacks[i])
1383 continue;
1384 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1385 dump_jack(ep->jacks[i]);
1386 }
1387 }
1388 static void
1389 dump_jack(struct umidi_jack *jack)
1390 {
1391 DPRINTFN(10, ("\t\t\tep=%p\n",
1392 jack->endpoint));
1393 }
1394
1395 #endif /* UMIDI_DEBUG */
1396
1397
1398
1399 /*
1400 * MUX MIDI PACKET
1401 */
1402
1403 static const int packet_length[16] = {
1404 /*0*/ -1,
1405 /*1*/ -1,
1406 /*2*/ 2,
1407 /*3*/ 3,
1408 /*4*/ 3,
1409 /*5*/ 1,
1410 /*6*/ 2,
1411 /*7*/ 3,
1412 /*8*/ 3,
1413 /*9*/ 3,
1414 /*A*/ 3,
1415 /*B*/ 3,
1416 /*C*/ 2,
1417 /*D*/ 2,
1418 /*E*/ 3,
1419 /*F*/ 1,
1420 };
1421
1422 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1423 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1424 #define MIX_CN_CIN(cn, cin) \
1425 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1426 ((unsigned char)(cin)&0x0F)))
1427
1428 static usbd_status
1429 start_input_transfer(struct umidi_endpoint *ep)
1430 {
1431 usbd_setup_xfer(ep->xfer, ep->pipe,
1432 (usbd_private_handle)ep,
1433 ep->buffer, ep->buffer_size,
1434 USBD_SHORT_XFER_OK | USBD_NO_COPY,
1435 USBD_NO_TIMEOUT, in_intr);
1436 return usbd_transfer(ep->xfer);
1437 }
1438
1439 static usbd_status
1440 start_output_transfer(struct umidi_endpoint *ep)
1441 {
1442 usbd_status rv;
1443 u_int32_t length;
1444 int i;
1445
1446 length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1447 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1448 ep->buffer, ep->next_slot, length));
1449 usbd_setup_xfer(ep->xfer, ep->pipe,
1450 (usbd_private_handle)ep,
1451 ep->buffer, length,
1452 USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1453 rv = usbd_transfer(ep->xfer);
1454
1455 /*
1456 * Once the transfer is scheduled, no more adding to partial
1457 * packets within it.
1458 */
1459 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1460 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1461 if (NULL != ep->jacks[i])
1462 ep->jacks[i]->midiman_ppkt = NULL;
1463 }
1464
1465 return rv;
1466 }
1467
1468 #ifdef UMIDI_DEBUG
1469 #define DPR_PACKET(dir, sc, p) \
1470 if ((unsigned char)(p)[1]!=0xFE) \
1471 DPRINTFN(500, \
1472 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1473 device_xname(sc->sc_dev), \
1474 (unsigned char)(p)[0], \
1475 (unsigned char)(p)[1], \
1476 (unsigned char)(p)[2], \
1477 (unsigned char)(p)[3]));
1478 #else
1479 #define DPR_PACKET(dir, sc, p)
1480 #endif
1481
1482 /*
1483 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1484 * with the cable number and length in the last byte instead of the first,
1485 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1486 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1487 * with a cable nybble and a length nybble (which, unlike the CIN of a
1488 * real USB MIDI packet, has no semantics at all besides the length).
1489 * A packet received from a Midiman may contain part of a MIDI message,
1490 * more than one MIDI message, or parts of more than one MIDI message. A
1491 * three-byte MIDI message may arrive in three packets of data length 1, and
1492 * running status may be used. Happily, the midi(4) driver above us will put
1493 * it all back together, so the only cost is in USB bandwidth. The device
1494 * has an easier time with what it receives from us: we'll pack messages in
1495 * and across packets, but filling the packets whenever possible and,
1496 * as midi(4) hands us a complete message at a time, we'll never send one
1497 * in a dribble of short packets.
1498 */
1499
1500 static int
1501 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1502 {
1503 struct umidi_endpoint *ep = out_jack->endpoint;
1504 struct umidi_softc *sc = ep->sc;
1505 unsigned char *packet;
1506 int plen;
1507 int poff;
1508
1509 if (sc->sc_dying)
1510 return EIO;
1511
1512 if (!out_jack->opened)
1513 return ENODEV; /* XXX as it was, is this the right errno? */
1514
1515 #ifdef UMIDI_DEBUG
1516 if ( umididebug >= 100 )
1517 microtime(&umidi_tv);
1518 #endif
1519 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1520 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1521 ep, out_jack->cable_number, len, cin));
1522
1523 packet = *ep->next_slot++;
1524 KASSERT(ep->buffer_size >=
1525 (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1526 memset(packet, 0, UMIDI_PACKET_SIZE);
1527 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1528 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1529 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1530 plen = 3 - poff;
1531 if (plen > len)
1532 plen = len;
1533 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1534 src += plen;
1535 len -= plen;
1536 plen += poff;
1537 out_jack->midiman_ppkt[3] =
1538 MIX_CN_CIN(out_jack->cable_number, plen);
1539 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1540 if (3 == plen)
1541 out_jack->midiman_ppkt = NULL; /* no more */
1542 }
1543 if (0 == len)
1544 ep->next_slot--; /* won't be needed, nevermind */
1545 else {
1546 memcpy(packet, src, len);
1547 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1548 DPR_PACKET(out, sc, packet);
1549 if (len < 3)
1550 out_jack->midiman_ppkt = packet;
1551 }
1552 } else { /* the nice simple USB class-compliant case */
1553 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1554 memcpy(packet+1, src, len);
1555 DPR_PACKET(out, sc, packet);
1556 }
1557 ep->next_schedule |= 1<<(out_jack->cable_number);
1558 ++ ep->num_scheduled;
1559 if ( !ep->armed && !ep->soliciting ) {
1560 /*
1561 * It would be bad to call out_solicit directly here (the
1562 * caller need not be reentrant) but a soft interrupt allows
1563 * solicit to run immediately the caller exits its critical
1564 * section, and if the caller has more to write we can get it
1565 * before starting the USB transfer, and send a longer one.
1566 */
1567 ep->soliciting = 1;
1568 softint_schedule(ep->solicit_cookie);
1569 }
1570
1571 return 0;
1572 }
1573
1574 static void
1575 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1576 usbd_status status)
1577 {
1578 int cn, len, i;
1579 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1580 struct umidi_softc *sc = ep->sc;
1581 struct umidi_jack *jack;
1582 unsigned char *packet;
1583 umidi_packet_bufp slot;
1584 umidi_packet_bufp end;
1585 unsigned char *data;
1586 u_int32_t count;
1587
1588 if (ep->sc->sc_dying || !ep->num_open)
1589 return;
1590
1591 mutex_enter(&sc->sc_lock);
1592 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1593 if (0 == count % UMIDI_PACKET_SIZE) {
1594 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1595 device_xname(ep->sc->sc_dev), ep, count));
1596 } else {
1597 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1598 device_xname(ep->sc->sc_dev), ep, count));
1599 }
1600
1601 slot = ep->buffer;
1602 end = slot + count / sizeof *slot;
1603
1604 for (packet = *slot; slot < end; packet = *++slot) {
1605
1606 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1607 cn = (0xf0&(packet[3]))>>4;
1608 len = 0x0f&(packet[3]);
1609 data = packet;
1610 } else {
1611 cn = GET_CN(packet[0]);
1612 len = packet_length[GET_CIN(packet[0])];
1613 data = packet + 1;
1614 }
1615 /* 0 <= cn <= 15 by inspection of above code */
1616 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1617 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1618 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1619 device_xname(ep->sc->sc_dev), ep, cn, len,
1620 (unsigned)data[0],
1621 (unsigned)data[1],
1622 (unsigned)data[2]));
1623 mutex_exit(&sc->sc_lock);
1624 return;
1625 }
1626
1627 if (!jack->binded || !jack->opened)
1628 continue;
1629
1630 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1631 "%02X %02X %02X\n",
1632 device_xname(ep->sc->sc_dev), ep, cn, len,
1633 (unsigned)data[0],
1634 (unsigned)data[1],
1635 (unsigned)data[2]));
1636
1637 if (jack->u.in.intr) {
1638 for (i = 0; i < len; i++) {
1639 (*jack->u.in.intr)(jack->arg, data[i]);
1640 }
1641 }
1642
1643 }
1644
1645 (void)start_input_transfer(ep);
1646 mutex_exit(&sc->sc_lock);
1647 }
1648
1649 static void
1650 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1651 usbd_status status)
1652 {
1653 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1654 struct umidi_softc *sc = ep->sc;
1655 u_int32_t count;
1656
1657 if (sc->sc_dying)
1658 return;
1659
1660 mutex_enter(&sc->sc_lock);
1661 #ifdef UMIDI_DEBUG
1662 if ( umididebug >= 200 )
1663 microtime(&umidi_tv);
1664 #endif
1665 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1666 if ( 0 == count % UMIDI_PACKET_SIZE ) {
1667 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1668 device_xname(ep->sc->sc_dev),
1669 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1670 } else {
1671 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1672 device_xname(ep->sc->sc_dev), ep, count));
1673 }
1674 count /= UMIDI_PACKET_SIZE;
1675
1676 /*
1677 * If while the transfer was pending we buffered any new messages,
1678 * move them to the start of the buffer.
1679 */
1680 ep->next_slot -= count;
1681 if (ep->buffer < ep->next_slot) {
1682 memcpy(ep->buffer, ep->buffer + count,
1683 (char *)ep->next_slot - (char *)ep->buffer);
1684 }
1685 cv_broadcast(&sc->sc_cv);
1686 /*
1687 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1688 * Running at IPL_USB so the following should happen to be safe.
1689 */
1690 ep->armed = 0;
1691 if (!ep->soliciting) {
1692 ep->soliciting = 1;
1693 out_solicit_locked(ep);
1694 }
1695 mutex_exit(&sc->sc_lock);
1696 }
1697
1698 /*
1699 * A jack on which we have received a packet must be called back on its
1700 * out.intr handler before it will send us another; it is considered
1701 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1702 * we need no extra buffer space for it.
1703 *
1704 * In contrast, a jack that is open but not scheduled may supply us a packet
1705 * at any time, driven by the top half, and we must be able to accept it, no
1706 * excuses. So we must ensure that at any point in time there are at least
1707 * (num_open - num_scheduled) slots free.
1708 *
1709 * As long as there are more slots free than that minimum, we can loop calling
1710 * scheduled jacks back on their "interrupt" handlers, soliciting more
1711 * packets, starting the USB transfer only when the buffer space is down to
1712 * the minimum or no jack has any more to send.
1713 */
1714
1715 static void
1716 out_solicit_locked(void *arg)
1717 {
1718 struct umidi_endpoint *ep = arg;
1719 umidi_packet_bufp end;
1720 u_int16_t which;
1721 struct umidi_jack *jack;
1722
1723 KASSERT(mutex_owned(&ep->sc->sc_lock));
1724
1725 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1726
1727 for ( ;; ) {
1728 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1729 break; /* at IPL_USB */
1730 if (ep->this_schedule == 0) {
1731 if (ep->next_schedule == 0)
1732 break; /* at IPL_USB */
1733 ep->this_schedule = ep->next_schedule;
1734 ep->next_schedule = 0;
1735 }
1736 /*
1737 * At least one jack is scheduled. Find and mask off the least
1738 * set bit in this_schedule and decrement num_scheduled.
1739 * Convert mask to bit index to find the corresponding jack,
1740 * and call its intr handler. If it has a message, it will call
1741 * back one of the output methods, which will set its bit in
1742 * next_schedule (not copied into this_schedule until the
1743 * latter is empty). In this way we round-robin the jacks that
1744 * have messages to send, until the buffer is as full as we
1745 * dare, and then start a transfer.
1746 */
1747 which = ep->this_schedule;
1748 which &= (~which)+1; /* now mask of least set bit */
1749 ep->this_schedule &= ~which;
1750 --ep->num_scheduled;
1751
1752 --which; /* now 1s below mask - count 1s to get index */
1753 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1754 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1755 which = (((which >> 4) + which) & 0x0f0f);
1756 which += (which >> 8);
1757 which &= 0x1f; /* the bit index a/k/a jack number */
1758
1759 jack = ep->jacks[which];
1760 if (jack->u.out.intr)
1761 (*jack->u.out.intr)(jack->arg);
1762 }
1763 /* intr lock held at loop exit */
1764 if (!ep->armed && ep->next_slot > ep->buffer)
1765 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1766 ep->soliciting = 0;
1767 }
1768
1769 /* Entry point for the softintr. */
1770 static void
1771 out_solicit(void *arg)
1772 {
1773 struct umidi_endpoint *ep = arg;
1774 struct umidi_softc *sc = ep->sc;
1775
1776 mutex_enter(&sc->sc_lock);
1777 out_solicit_locked(arg);
1778 mutex_exit(&sc->sc_lock);
1779 }
1780