umidi.c revision 1.53.2.4 1 /* $NetBSD: umidi.c,v 1.53.2.4 2012/02/20 05:24:42 mrg Exp $ */
2 /*
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org) and (full-size transfers, extended
8 * hw_if) Chapman Flack (chap (at) NetBSD.org).
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.53.2.4 2012/02/20 05:24:42 mrg Exp $");
34
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/kmem.h>
40 #include <sys/device.h>
41 #include <sys/ioctl.h>
42 #include <sys/conf.h>
43 #include <sys/file.h>
44 #include <sys/select.h>
45 #include <sys/proc.h>
46 #include <sys/vnode.h>
47 #include <sys/poll.h>
48 #include <sys/intr.h>
49
50 #include <dev/usb/usb.h>
51 #include <dev/usb/usbdi.h>
52 #include <dev/usb/usbdi_util.h>
53
54 #include <dev/usb/usbdevs.h>
55 #include <dev/usb/uaudioreg.h>
56 #include <dev/usb/umidireg.h>
57 #include <dev/usb/umidivar.h>
58 #include <dev/usb/umidi_quirks.h>
59
60 #include <dev/midi_if.h>
61
62 #ifdef UMIDI_DEBUG
63 #define DPRINTF(x) if (umididebug) printf x
64 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
65 #include <sys/time.h>
66 static struct timeval umidi_tv;
67 int umididebug = 0;
68 #else
69 #define DPRINTF(x)
70 #define DPRINTFN(n,x)
71 #endif
72
73 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
74 (sc->sc_out_num_endpoints + \
75 sc->sc_in_num_endpoints))
76
77
78 static int umidi_open(void *, int,
79 void (*)(void *, int), void (*)(void *), void *);
80 static void umidi_close(void *);
81 static int umidi_channelmsg(void *, int, int, u_char *, int);
82 static int umidi_commonmsg(void *, int, u_char *, int);
83 static int umidi_sysex(void *, u_char *, int);
84 static int umidi_rtmsg(void *, int);
85 static void umidi_getinfo(void *, struct midi_info *);
86 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
87
88 static usbd_status alloc_pipe(struct umidi_endpoint *);
89 static void free_pipe(struct umidi_endpoint *);
90
91 static usbd_status alloc_all_endpoints(struct umidi_softc *);
92 static void free_all_endpoints(struct umidi_softc *);
93
94 static usbd_status alloc_all_jacks(struct umidi_softc *);
95 static void free_all_jacks(struct umidi_softc *);
96 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
97 struct umidi_jack *,
98 struct umidi_jack *,
99 struct umidi_mididev *);
100 static void unbind_jacks_from_mididev(struct umidi_mididev *);
101 static void unbind_all_jacks(struct umidi_softc *);
102 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
103 static usbd_status open_out_jack(struct umidi_jack *, void *,
104 void (*)(void *));
105 static usbd_status open_in_jack(struct umidi_jack *, void *,
106 void (*)(void *, int));
107 static void close_out_jack(struct umidi_jack *);
108 static void close_in_jack(struct umidi_jack *);
109
110 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
111 static usbd_status detach_mididev(struct umidi_mididev *, int);
112 static void deactivate_mididev(struct umidi_mididev *);
113 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
114 static void free_all_mididevs(struct umidi_softc *);
115 static usbd_status attach_all_mididevs(struct umidi_softc *);
116 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
117 static void deactivate_all_mididevs(struct umidi_softc *);
118 static void describe_mididev(struct umidi_mididev *);
119
120 #ifdef UMIDI_DEBUG
121 static void dump_sc(struct umidi_softc *);
122 static void dump_ep(struct umidi_endpoint *);
123 static void dump_jack(struct umidi_jack *);
124 #endif
125
126 static usbd_status start_input_transfer(struct umidi_endpoint *);
127 static usbd_status start_output_transfer(struct umidi_endpoint *);
128 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
129 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
130 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
131 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
132 static void out_solicit_locked(void *); /* pre-locked version */
133
134
135 const struct midi_hw_if umidi_hw_if = {
136 .open = umidi_open,
137 .close = umidi_close,
138 .output = umidi_rtmsg,
139 .getinfo = umidi_getinfo,
140 .get_locks = umidi_get_locks,
141 };
142
143 struct midi_hw_if_ext umidi_hw_if_ext = {
144 .channel = umidi_channelmsg,
145 .common = umidi_commonmsg,
146 .sysex = umidi_sysex,
147 };
148
149 struct midi_hw_if_ext umidi_hw_if_mm = {
150 .channel = umidi_channelmsg,
151 .common = umidi_commonmsg,
152 .sysex = umidi_sysex,
153 .compress = 1,
154 };
155
156 int umidi_match(device_t, cfdata_t, void *);
157 void umidi_attach(device_t, device_t, void *);
158 void umidi_childdet(device_t, device_t);
159 int umidi_detach(device_t, int);
160 int umidi_activate(device_t, enum devact);
161 extern struct cfdriver umidi_cd;
162 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
163 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
164
165 int
166 umidi_match(device_t parent, cfdata_t match, void *aux)
167 {
168 struct usbif_attach_arg *uaa = aux;
169
170 DPRINTFN(1,("umidi_match\n"));
171
172 if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
173 return UMATCH_IFACECLASS_IFACESUBCLASS;
174
175 if (uaa->class == UICLASS_AUDIO &&
176 uaa->subclass == UISUBCLASS_MIDISTREAM)
177 return UMATCH_IFACECLASS_IFACESUBCLASS;
178
179 return UMATCH_NONE;
180 }
181
182 void
183 umidi_attach(device_t parent, device_t self, void *aux)
184 {
185 usbd_status err;
186 struct umidi_softc *sc = device_private(self);
187 struct usbif_attach_arg *uaa = aux;
188 char *devinfop;
189
190 DPRINTFN(1,("umidi_attach\n"));
191
192 sc->sc_dev = self;
193
194 aprint_naive("\n");
195 aprint_normal("\n");
196
197 devinfop = usbd_devinfo_alloc(uaa->device, 0);
198 aprint_normal_dev(self, "%s\n", devinfop);
199 usbd_devinfo_free(devinfop);
200
201 sc->sc_iface = uaa->iface;
202 sc->sc_udev = uaa->device;
203
204 sc->sc_quirk =
205 umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
206 aprint_normal_dev(self, "");
207 umidi_print_quirk(sc->sc_quirk);
208
209 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
210 cv_init(&sc->sc_cv, "umidopcl");
211
212 err = alloc_all_endpoints(sc);
213 if (err != USBD_NORMAL_COMPLETION) {
214 aprint_error_dev(self,
215 "alloc_all_endpoints failed. (err=%d)\n", err);
216 goto error;
217 }
218 err = alloc_all_jacks(sc);
219 if (err != USBD_NORMAL_COMPLETION) {
220 free_all_endpoints(sc);
221 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
222 err);
223 goto error;
224 }
225 aprint_normal_dev(self, "out=%d, in=%d\n",
226 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
227
228 err = assign_all_jacks_automatically(sc);
229 if (err != USBD_NORMAL_COMPLETION) {
230 unbind_all_jacks(sc);
231 free_all_jacks(sc);
232 free_all_endpoints(sc);
233 aprint_error_dev(self,
234 "assign_all_jacks_automatically failed. (err=%d)\n", err);
235 goto error;
236 }
237 err = attach_all_mididevs(sc);
238 if (err != USBD_NORMAL_COMPLETION) {
239 free_all_jacks(sc);
240 free_all_endpoints(sc);
241 aprint_error_dev(self,
242 "attach_all_mididevs failed. (err=%d)\n", err);
243 }
244
245 #ifdef UMIDI_DEBUG
246 dump_sc(sc);
247 #endif
248
249 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
250 sc->sc_udev, sc->sc_dev);
251
252 return;
253 error:
254 aprint_error_dev(self, "disabled.\n");
255 sc->sc_dying = 1;
256 KERNEL_UNLOCK_ONE(curlwp);
257 return;
258 }
259
260 void
261 umidi_childdet(device_t self, device_t child)
262 {
263 int i;
264 struct umidi_softc *sc = device_private(self);
265
266 KASSERT(sc->sc_mididevs != NULL);
267
268 for (i = 0; i < sc->sc_num_mididevs; i++) {
269 if (sc->sc_mididevs[i].mdev == child)
270 break;
271 }
272 KASSERT(i < sc->sc_num_mididevs);
273 sc->sc_mididevs[i].mdev = NULL;
274 }
275
276 int
277 umidi_activate(device_t self, enum devact act)
278 {
279 struct umidi_softc *sc = device_private(self);
280
281 switch (act) {
282 case DVACT_DEACTIVATE:
283 DPRINTFN(1,("umidi_activate (deactivate)\n"));
284 sc->sc_dying = 1;
285 deactivate_all_mididevs(sc);
286 return 0;
287 default:
288 DPRINTFN(1,("umidi_activate (%d)\n", act));
289 return EOPNOTSUPP;
290 }
291 }
292
293 int
294 umidi_detach(device_t self, int flags)
295 {
296 struct umidi_softc *sc = device_private(self);
297
298 DPRINTFN(1,("umidi_detach\n"));
299
300 sc->sc_dying = 1;
301 detach_all_mididevs(sc, flags);
302 free_all_mididevs(sc);
303 free_all_jacks(sc);
304 free_all_endpoints(sc);
305
306 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
307 sc->sc_dev);
308
309 mutex_destroy(&sc->sc_lock);
310 cv_destroy(&sc->sc_cv);
311
312 return 0;
313 }
314
315
316 /*
317 * midi_if stuffs
318 */
319 int
320 umidi_open(void *addr,
321 int flags,
322 void (*iintr)(void *, int),
323 void (*ointr)(void *),
324 void *arg)
325 {
326 struct umidi_mididev *mididev = addr;
327 struct umidi_softc *sc = mididev->sc;
328 usbd_status err;
329
330 DPRINTF(("umidi_open: sc=%p\n", sc));
331
332 if (!sc)
333 return ENXIO;
334 if (mididev->opened)
335 return EBUSY;
336 if (sc->sc_dying)
337 return EIO;
338
339 mididev->opened = 1;
340 mididev->closing = 0;
341 mididev->flags = flags;
342 if ((mididev->flags & FWRITE) && mididev->out_jack) {
343 err = open_out_jack(mididev->out_jack, arg, ointr);
344 if ( err != USBD_NORMAL_COMPLETION )
345 goto bad;
346 }
347 if ((mididev->flags & FREAD) && mididev->in_jack) {
348 err = open_in_jack(mididev->in_jack, arg, iintr);
349 if ( err != USBD_NORMAL_COMPLETION
350 && err != USBD_IN_PROGRESS )
351 goto bad;
352 }
353
354 return 0;
355 bad:
356 mididev->opened = 0;
357 DPRINTF(("umidi_open: usbd_status %d\n", err));
358 return USBD_IN_USE == err ? EBUSY : EIO;
359 }
360
361 void
362 umidi_close(void *addr)
363 {
364 struct umidi_mididev *mididev = addr;
365
366 mididev->closing = 1;
367
368 mutex_spin_exit(&mididev->sc->sc_lock);
369
370 if ((mididev->flags & FWRITE) && mididev->out_jack)
371 close_out_jack(mididev->out_jack);
372 if ((mididev->flags & FREAD) && mididev->in_jack)
373 close_in_jack(mididev->in_jack);
374
375 /* XXX SMP */
376 mutex_spin_enter(&mididev->sc->sc_lock);
377
378 mididev->opened = 0;
379 }
380
381 int
382 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
383 int len)
384 {
385 struct umidi_mididev *mididev = addr;
386
387 if (!mididev->out_jack || !mididev->opened || mididev->closing)
388 return EIO;
389
390 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
391 }
392
393 int
394 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
395 {
396 struct umidi_mididev *mididev = addr;
397 int cin;
398
399 if (!mididev->out_jack || !mididev->opened || mididev->closing)
400 return EIO;
401
402 switch ( len ) {
403 case 1: cin = 5; break;
404 case 2: cin = 2; break;
405 case 3: cin = 3; break;
406 default: return EIO; /* or gcc warns of cin uninitialized */
407 }
408
409 return out_jack_output(mididev->out_jack, msg, len, cin);
410 }
411
412 int
413 umidi_sysex(void *addr, u_char *msg, int len)
414 {
415 struct umidi_mididev *mididev = addr;
416 int cin;
417
418 if (!mididev->out_jack || !mididev->opened || mididev->closing)
419 return EIO;
420
421 switch ( len ) {
422 case 1: cin = 5; break;
423 case 2: cin = 6; break;
424 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
425 default: return EIO; /* or gcc warns of cin uninitialized */
426 }
427
428 return out_jack_output(mididev->out_jack, msg, len, cin);
429 }
430
431 int
432 umidi_rtmsg(void *addr, int d)
433 {
434 struct umidi_mididev *mididev = addr;
435 u_char msg = d;
436
437 if (!mididev->out_jack || !mididev->opened || mididev->closing)
438 return EIO;
439
440 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
441 }
442
443 void
444 umidi_getinfo(void *addr, struct midi_info *mi)
445 {
446 struct umidi_mididev *mididev = addr;
447 struct umidi_softc *sc = mididev->sc;
448 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
449
450 mi->name = mididev->label;
451 mi->props = MIDI_PROP_OUT_INTR;
452 if (mididev->in_jack)
453 mi->props |= MIDI_PROP_CAN_INPUT;
454 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
455 }
456
457 static void
458 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
459 {
460 struct umidi_mididev *mididev = addr;
461 struct umidi_softc *sc = mididev->sc;
462
463 *intr = NULL;
464 *thread = &sc->sc_lock;
465 }
466
467 /*
468 * each endpoint stuffs
469 */
470
471 /* alloc/free pipe */
472 static usbd_status
473 alloc_pipe(struct umidi_endpoint *ep)
474 {
475 struct umidi_softc *sc = ep->sc;
476 usbd_status err;
477 usb_endpoint_descriptor_t *epd;
478
479 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
480 /*
481 * For output, an improvement would be to have a buffer bigger than
482 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
483 * allow out_solicit to fill the buffer to the full packet size in
484 * all cases. But to use usbd_alloc_buffer to get a slightly larger
485 * buffer would not be a good way to do that, because if the addition
486 * would make the buffer exceed USB_MEM_SMALL then a substantially
487 * larger block may be wastefully allocated. Some flavor of double
488 * buffering could serve the same purpose, but would increase the
489 * code complexity, so for now I will live with the current slight
490 * penalty of reducing max transfer size by (num_open-num_scheduled)
491 * packet slots.
492 */
493 ep->buffer_size = UGETW(epd->wMaxPacketSize);
494 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
495
496 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
497 device_xname(sc->sc_dev), ep, ep->buffer_size));
498 ep->num_scheduled = 0;
499 ep->this_schedule = 0;
500 ep->next_schedule = 0;
501 ep->soliciting = 0;
502 ep->armed = 0;
503 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
504 if (ep->xfer == NULL) {
505 err = USBD_NOMEM;
506 goto quit;
507 }
508 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
509 if (ep->buffer == NULL) {
510 usbd_free_xfer(ep->xfer);
511 err = USBD_NOMEM;
512 goto quit;
513 }
514 ep->next_slot = ep->buffer;
515 err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
516 if (err)
517 usbd_free_xfer(ep->xfer);
518 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK, out_solicit, ep);
519 quit:
520 return err;
521 }
522
523 static void
524 free_pipe(struct umidi_endpoint *ep)
525 {
526 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
527 usbd_abort_pipe(ep->pipe);
528 usbd_close_pipe(ep->pipe);
529 usbd_free_xfer(ep->xfer);
530 softint_disestablish(ep->solicit_cookie);
531 }
532
533
534 /* alloc/free the array of endpoint structures */
535
536 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
537 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
538 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
539
540 static usbd_status
541 alloc_all_endpoints(struct umidi_softc *sc)
542 {
543 usbd_status err;
544 struct umidi_endpoint *ep;
545 int i;
546
547 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
548 err = alloc_all_endpoints_fixed_ep(sc);
549 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
550 err = alloc_all_endpoints_yamaha(sc);
551 } else {
552 err = alloc_all_endpoints_genuine(sc);
553 }
554 if (err != USBD_NORMAL_COMPLETION)
555 return err;
556
557 ep = sc->sc_endpoints;
558 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
559 err = alloc_pipe(ep++);
560 if (err != USBD_NORMAL_COMPLETION) {
561 for (; ep != sc->sc_endpoints; ep--)
562 free_pipe(ep-1);
563 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
564 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
565 break;
566 }
567 }
568 return err;
569 }
570
571 static void
572 free_all_endpoints(struct umidi_softc *sc)
573 {
574 int i;
575
576 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
577 free_pipe(&sc->sc_endpoints[i]);
578 if (sc->sc_endpoints != NULL)
579 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
580 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
581 }
582
583 static usbd_status
584 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
585 {
586 usbd_status err;
587 const struct umq_fixed_ep_desc *fp;
588 struct umidi_endpoint *ep;
589 usb_endpoint_descriptor_t *epd;
590 int i;
591
592 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
593 UMQ_TYPE_FIXED_EP);
594 sc->sc_out_num_jacks = 0;
595 sc->sc_in_num_jacks = 0;
596 sc->sc_out_num_endpoints = fp->num_out_ep;
597 sc->sc_in_num_endpoints = fp->num_in_ep;
598 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
599 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
600 if (!sc->sc_endpoints)
601 return USBD_NOMEM;
602
603 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
604 sc->sc_in_ep =
605 sc->sc_in_num_endpoints ?
606 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
607
608 ep = &sc->sc_out_ep[0];
609 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
610 epd = usbd_interface2endpoint_descriptor(
611 sc->sc_iface,
612 fp->out_ep[i].ep);
613 if (!epd) {
614 aprint_error_dev(sc->sc_dev,
615 "cannot get endpoint descriptor(out:%d)\n",
616 fp->out_ep[i].ep);
617 err = USBD_INVAL;
618 goto error;
619 }
620 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
621 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
622 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
623 fp->out_ep[i].ep);
624 err = USBD_INVAL;
625 goto error;
626 }
627 ep->sc = sc;
628 ep->addr = epd->bEndpointAddress;
629 ep->num_jacks = fp->out_ep[i].num_jacks;
630 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
631 ep->num_open = 0;
632 ep++;
633 }
634 ep = &sc->sc_in_ep[0];
635 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
636 epd = usbd_interface2endpoint_descriptor(
637 sc->sc_iface,
638 fp->in_ep[i].ep);
639 if (!epd) {
640 aprint_error_dev(sc->sc_dev,
641 "cannot get endpoint descriptor(in:%d)\n",
642 fp->in_ep[i].ep);
643 err = USBD_INVAL;
644 goto error;
645 }
646 /*
647 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
648 * endpoint. The existing input logic in this driver seems
649 * to work successfully if we just stop treating an interrupt
650 * endpoint as illegal (or the in_progress status we get on
651 * the initial transfer). It does not seem necessary to
652 * actually use the interrupt flavor of alloc_pipe or make
653 * other serious rearrangements of logic. I like that.
654 */
655 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
656 case UE_BULK:
657 case UE_INTERRUPT:
658 if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
659 break;
660 /*FALLTHROUGH*/
661 default:
662 aprint_error_dev(sc->sc_dev,
663 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
664 err = USBD_INVAL;
665 goto error;
666 }
667
668 ep->sc = sc;
669 ep->addr = epd->bEndpointAddress;
670 ep->num_jacks = fp->in_ep[i].num_jacks;
671 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
672 ep->num_open = 0;
673 ep++;
674 }
675
676 return USBD_NORMAL_COMPLETION;
677 error:
678 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
679 sc->sc_endpoints = NULL;
680 return err;
681 }
682
683 static usbd_status
684 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
685 {
686 /* This driver currently supports max 1in/1out bulk endpoints */
687 usb_descriptor_t *desc;
688 umidi_cs_descriptor_t *udesc;
689 usb_endpoint_descriptor_t *epd;
690 int out_addr, in_addr, i;
691 int dir;
692 size_t remain, descsize;
693
694 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
695 out_addr = in_addr = 0;
696
697 /* detect endpoints */
698 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
699 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
700 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
701 KASSERT(epd != NULL);
702 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
703 dir = UE_GET_DIR(epd->bEndpointAddress);
704 if (dir==UE_DIR_OUT && !out_addr)
705 out_addr = epd->bEndpointAddress;
706 else if (dir==UE_DIR_IN && !in_addr)
707 in_addr = epd->bEndpointAddress;
708 }
709 }
710 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
711
712 /* count jacks */
713 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
714 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
715 return USBD_INVAL;
716 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
717 (size_t)udesc->bLength;
718 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
719
720 while (remain >= sizeof(usb_descriptor_t)) {
721 descsize = udesc->bLength;
722 if (descsize>remain || descsize==0)
723 break;
724 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
725 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
726 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
727 sc->sc_out_num_jacks++;
728 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
729 sc->sc_in_num_jacks++;
730 }
731 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
732 remain -= descsize;
733 }
734
735 /* validate some parameters */
736 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
737 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
738 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
739 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
740 if (sc->sc_out_num_jacks && out_addr) {
741 sc->sc_out_num_endpoints = 1;
742 } else {
743 sc->sc_out_num_endpoints = 0;
744 sc->sc_out_num_jacks = 0;
745 }
746 if (sc->sc_in_num_jacks && in_addr) {
747 sc->sc_in_num_endpoints = 1;
748 } else {
749 sc->sc_in_num_endpoints = 0;
750 sc->sc_in_num_jacks = 0;
751 }
752 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
753 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
754 if (!sc->sc_endpoints)
755 return USBD_NOMEM;
756 if (sc->sc_out_num_endpoints) {
757 sc->sc_out_ep = sc->sc_endpoints;
758 sc->sc_out_ep->sc = sc;
759 sc->sc_out_ep->addr = out_addr;
760 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
761 sc->sc_out_ep->num_open = 0;
762 } else
763 sc->sc_out_ep = NULL;
764
765 if (sc->sc_in_num_endpoints) {
766 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
767 sc->sc_in_ep->sc = sc;
768 sc->sc_in_ep->addr = in_addr;
769 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
770 sc->sc_in_ep->num_open = 0;
771 } else
772 sc->sc_in_ep = NULL;
773
774 return USBD_NORMAL_COMPLETION;
775 }
776
777 static usbd_status
778 alloc_all_endpoints_genuine(struct umidi_softc *sc)
779 {
780 usb_interface_descriptor_t *interface_desc;
781 usb_config_descriptor_t *config_desc;
782 usb_descriptor_t *desc;
783 int num_ep;
784 size_t remain, descsize;
785 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
786 int epaddr;
787
788 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
789 num_ep = interface_desc->bNumEndpoints;
790 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
791 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
792 if (!p)
793 return USBD_NOMEM;
794
795 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
796 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
797 epaddr = -1;
798
799 /* get the list of endpoints for midi stream */
800 config_desc = usbd_get_config_descriptor(sc->sc_udev);
801 desc = (usb_descriptor_t *) config_desc;
802 remain = (size_t)UGETW(config_desc->wTotalLength);
803 while (remain>=sizeof(usb_descriptor_t)) {
804 descsize = desc->bLength;
805 if (descsize>remain || descsize==0)
806 break;
807 if (desc->bDescriptorType==UDESC_ENDPOINT &&
808 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
809 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
810 epaddr = TO_EPD(desc)->bEndpointAddress;
811 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
812 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
813 epaddr!=-1) {
814 if (num_ep>0) {
815 num_ep--;
816 p->sc = sc;
817 p->addr = epaddr;
818 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
819 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
820 sc->sc_out_num_endpoints++;
821 sc->sc_out_num_jacks += p->num_jacks;
822 } else {
823 sc->sc_in_num_endpoints++;
824 sc->sc_in_num_jacks += p->num_jacks;
825 }
826 p++;
827 }
828 } else
829 epaddr = -1;
830 desc = NEXT_D(desc);
831 remain-=descsize;
832 }
833
834 /* sort endpoints */
835 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
836 p = sc->sc_endpoints;
837 endep = p + num_ep;
838 while (p<endep) {
839 lowest = p;
840 for (q=p+1; q<endep; q++) {
841 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
842 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
843 ((UE_GET_DIR(lowest->addr)==
844 UE_GET_DIR(q->addr)) &&
845 (UE_GET_ADDR(lowest->addr)>
846 UE_GET_ADDR(q->addr))))
847 lowest = q;
848 }
849 if (lowest != p) {
850 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
851 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
852 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
853 }
854 p->num_open = 0;
855 p++;
856 }
857
858 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
859 sc->sc_in_ep =
860 sc->sc_in_num_endpoints ?
861 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
862
863 return USBD_NORMAL_COMPLETION;
864 }
865
866
867 /*
868 * jack stuffs
869 */
870
871 static usbd_status
872 alloc_all_jacks(struct umidi_softc *sc)
873 {
874 int i, j;
875 struct umidi_endpoint *ep;
876 struct umidi_jack *jack;
877 const unsigned char *cn_spec;
878
879 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
880 sc->cblnums_global = 0;
881 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
882 sc->cblnums_global = 1;
883 else {
884 /*
885 * I don't think this default is correct, but it preserves
886 * the prior behavior of the code. That's why I defined two
887 * complementary quirks. Any device for which the default
888 * behavior is wrong can be made to work by giving it an
889 * explicit quirk, and if a pattern ever develops (as I suspect
890 * it will) that a lot of otherwise standard USB MIDI devices
891 * need the CN_SEQ_PER_EP "quirk," then this default can be
892 * changed to 0, and the only devices that will break are those
893 * listing neither quirk, and they'll easily be fixed by giving
894 * them the CN_SEQ_GLOBAL quirk.
895 */
896 sc->cblnums_global = 1;
897 }
898
899 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
900 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
901 UMQ_TYPE_CN_FIXED);
902 else
903 cn_spec = NULL;
904
905 /* allocate/initialize structures */
906 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
907 sc->sc_out_num_jacks), KM_SLEEP);
908 if (!sc->sc_jacks)
909 return USBD_NOMEM;
910 sc->sc_out_jacks =
911 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
912 sc->sc_in_jacks =
913 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
914
915 jack = &sc->sc_out_jacks[0];
916 for (i = 0; i < sc->sc_out_num_jacks; i++) {
917 jack->opened = 0;
918 jack->binded = 0;
919 jack->arg = NULL;
920 jack->u.out.intr = NULL;
921 jack->midiman_ppkt = NULL;
922 if (sc->cblnums_global)
923 jack->cable_number = i;
924 jack++;
925 }
926 jack = &sc->sc_in_jacks[0];
927 for (i = 0; i < sc->sc_in_num_jacks; i++) {
928 jack->opened = 0;
929 jack->binded = 0;
930 jack->arg = NULL;
931 jack->u.in.intr = NULL;
932 if (sc->cblnums_global)
933 jack->cable_number = i;
934 jack++;
935 }
936
937 /* assign each jacks to each endpoints */
938 jack = &sc->sc_out_jacks[0];
939 ep = &sc->sc_out_ep[0];
940 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
941 for (j = 0; j < ep->num_jacks; j++) {
942 jack->endpoint = ep;
943 if (cn_spec != NULL)
944 jack->cable_number = *cn_spec++;
945 else if (!sc->cblnums_global)
946 jack->cable_number = j;
947 ep->jacks[jack->cable_number] = jack;
948 jack++;
949 }
950 ep++;
951 }
952 jack = &sc->sc_in_jacks[0];
953 ep = &sc->sc_in_ep[0];
954 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
955 for (j = 0; j < ep->num_jacks; j++) {
956 jack->endpoint = ep;
957 if (cn_spec != NULL)
958 jack->cable_number = *cn_spec++;
959 else if (!sc->cblnums_global)
960 jack->cable_number = j;
961 ep->jacks[jack->cable_number] = jack;
962 jack++;
963 }
964 ep++;
965 }
966
967 return USBD_NORMAL_COMPLETION;
968 }
969
970 static void
971 free_all_jacks(struct umidi_softc *sc)
972 {
973 struct umidi_jack *jacks;
974 size_t len;
975
976 mutex_enter(&sc->sc_lock);
977 jacks = sc->sc_jacks;
978 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
979 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
980 mutex_exit(&sc->sc_lock);
981
982 if (jacks)
983 kmem_free(jacks, len);
984 }
985
986 static usbd_status
987 bind_jacks_to_mididev(struct umidi_softc *sc,
988 struct umidi_jack *out_jack,
989 struct umidi_jack *in_jack,
990 struct umidi_mididev *mididev)
991 {
992 if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
993 return USBD_IN_USE;
994 if (mididev->out_jack || mididev->in_jack)
995 return USBD_IN_USE;
996
997 if (out_jack)
998 out_jack->binded = 1;
999 if (in_jack)
1000 in_jack->binded = 1;
1001 mididev->in_jack = in_jack;
1002 mididev->out_jack = out_jack;
1003
1004 return USBD_NORMAL_COMPLETION;
1005 }
1006
1007 static void
1008 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1009 {
1010
1011 if ((mididev->flags & FWRITE) && mididev->out_jack)
1012 close_out_jack(mididev->out_jack);
1013 if ((mididev->flags & FREAD) && mididev->in_jack)
1014 close_in_jack(mididev->in_jack);
1015
1016 if (mididev->out_jack)
1017 mididev->out_jack->binded = 0;
1018 if (mididev->in_jack)
1019 mididev->in_jack->binded = 0;
1020 mididev->out_jack = mididev->in_jack = NULL;
1021 }
1022
1023 static void
1024 unbind_all_jacks(struct umidi_softc *sc)
1025 {
1026 int i;
1027
1028 if (sc->sc_mididevs)
1029 for (i = 0; i < sc->sc_num_mididevs; i++)
1030 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1031 }
1032
1033 static usbd_status
1034 assign_all_jacks_automatically(struct umidi_softc *sc)
1035 {
1036 usbd_status err;
1037 int i;
1038 struct umidi_jack *out, *in;
1039 const signed char *asg_spec;
1040
1041 err =
1042 alloc_all_mididevs(sc,
1043 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1044 if (err!=USBD_NORMAL_COMPLETION)
1045 return err;
1046
1047 if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1048 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1049 UMQ_TYPE_MD_FIXED);
1050 else
1051 asg_spec = NULL;
1052
1053 for (i = 0; i < sc->sc_num_mididevs; i++) {
1054 if (asg_spec != NULL) {
1055 if (*asg_spec == -1)
1056 out = NULL;
1057 else
1058 out = &sc->sc_out_jacks[*asg_spec];
1059 ++ asg_spec;
1060 if (*asg_spec == -1)
1061 in = NULL;
1062 else
1063 in = &sc->sc_in_jacks[*asg_spec];
1064 ++ asg_spec;
1065 } else {
1066 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1067 : NULL;
1068 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1069 : NULL;
1070 }
1071 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1072 if (err!=USBD_NORMAL_COMPLETION) {
1073 free_all_mididevs(sc);
1074 return err;
1075 }
1076 }
1077
1078 return USBD_NORMAL_COMPLETION;
1079 }
1080
1081 static usbd_status
1082 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1083 {
1084 struct umidi_endpoint *ep = jack->endpoint;
1085 struct umidi_softc *sc = ep->sc;
1086 umidi_packet_bufp end;
1087 int err;
1088
1089 KASSERT(mutex_owned(&sc->sc_lock));
1090
1091 if (jack->opened)
1092 return USBD_IN_USE;
1093
1094 jack->arg = arg;
1095 jack->u.out.intr = intr;
1096 jack->midiman_ppkt = NULL;
1097 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1098 jack->opened = 1;
1099 ep->num_open++;
1100 /*
1101 * out_solicit maintains an invariant that there will always be
1102 * (num_open - num_scheduled) slots free in the buffer. as we have
1103 * just incremented num_open, the buffer may be too full to satisfy
1104 * the invariant until a transfer completes, for which we must wait.
1105 */
1106 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1107 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1108 mstohz(10));
1109 if (err) {
1110 ep->num_open--;
1111 jack->opened = 0;
1112 return USBD_IOERROR;
1113 }
1114 }
1115
1116 return USBD_NORMAL_COMPLETION;
1117 }
1118
1119 static usbd_status
1120 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1121 {
1122 usbd_status err = USBD_NORMAL_COMPLETION;
1123 struct umidi_endpoint *ep = jack->endpoint;
1124
1125 KASSERT(mutex_owned(&ep->sc->sc_lock));
1126
1127 if (jack->opened)
1128 return USBD_IN_USE;
1129
1130 jack->arg = arg;
1131 jack->u.in.intr = intr;
1132 jack->opened = 1;
1133 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1134 err = start_input_transfer(ep);
1135 if (err != USBD_NORMAL_COMPLETION &&
1136 err != USBD_IN_PROGRESS) {
1137 ep->num_open--;
1138 }
1139 }
1140
1141 return err;
1142 }
1143
1144 static void
1145 close_out_jack(struct umidi_jack *jack)
1146 {
1147 struct umidi_endpoint *ep;
1148 struct umidi_softc *sc;
1149 u_int16_t mask;
1150 int err;
1151
1152 if (jack->opened) {
1153 ep = jack->endpoint;
1154 sc = ep->sc;
1155 mutex_spin_enter(&sc->sc_lock);
1156 mask = 1 << (jack->cable_number);
1157 while (mask & (ep->this_schedule | ep->next_schedule)) {
1158 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1159 mstohz(10));
1160 if (err)
1161 break;
1162 }
1163 /*
1164 * We can re-enter this function from both close() and
1165 * detach(). Make sure only one of them does this part.
1166 */
1167 if (jack->opened) {
1168 jack->opened = 0;
1169 jack->endpoint->num_open--;
1170 ep->this_schedule &= ~mask;
1171 ep->next_schedule &= ~mask;
1172 }
1173 mutex_spin_exit(&sc->sc_lock);
1174 }
1175 }
1176
1177 static void
1178 close_in_jack(struct umidi_jack *jack)
1179 {
1180 if (jack->opened) {
1181 jack->opened = 0;
1182 if (--jack->endpoint->num_open == 0) {
1183 usbd_abort_pipe(jack->endpoint->pipe);
1184 }
1185 }
1186 }
1187
1188 static usbd_status
1189 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1190 {
1191 if (mididev->sc)
1192 return USBD_IN_USE;
1193
1194 mididev->sc = sc;
1195
1196 describe_mididev(mididev);
1197
1198 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1199
1200 return USBD_NORMAL_COMPLETION;
1201 }
1202
1203 static usbd_status
1204 detach_mididev(struct umidi_mididev *mididev, int flags)
1205 {
1206 if (!mididev->sc)
1207 return USBD_NO_ADDR;
1208
1209 if (mididev->opened) {
1210 umidi_close(mididev);
1211 }
1212 unbind_jacks_from_mididev(mididev);
1213
1214 if (mididev->mdev != NULL)
1215 config_detach(mididev->mdev, flags);
1216
1217 if (NULL != mididev->label) {
1218 kmem_free(mididev->label, mididev->label_len);
1219 mididev->label = NULL;
1220 }
1221
1222 mididev->sc = NULL;
1223
1224 return USBD_NORMAL_COMPLETION;
1225 }
1226
1227 static void
1228 deactivate_mididev(struct umidi_mididev *mididev)
1229 {
1230 if (mididev->out_jack)
1231 mididev->out_jack->binded = 0;
1232 if (mididev->in_jack)
1233 mididev->in_jack->binded = 0;
1234 }
1235
1236 static usbd_status
1237 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1238 {
1239 sc->sc_num_mididevs = nmidi;
1240 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1241 if (!sc->sc_mididevs)
1242 return USBD_NOMEM;
1243
1244 return USBD_NORMAL_COMPLETION;
1245 }
1246
1247 static void
1248 free_all_mididevs(struct umidi_softc *sc)
1249 {
1250 if (sc->sc_mididevs)
1251 kmem_free(sc->sc_mididevs,
1252 sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
1253 sc->sc_num_mididevs = 0;
1254 }
1255
1256 static usbd_status
1257 attach_all_mididevs(struct umidi_softc *sc)
1258 {
1259 usbd_status err;
1260 int i;
1261
1262 if (sc->sc_mididevs)
1263 for (i = 0; i < sc->sc_num_mididevs; i++) {
1264 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1265 if (err != USBD_NORMAL_COMPLETION)
1266 return err;
1267 }
1268
1269 return USBD_NORMAL_COMPLETION;
1270 }
1271
1272 static usbd_status
1273 detach_all_mididevs(struct umidi_softc *sc, int flags)
1274 {
1275 usbd_status err;
1276 int i;
1277
1278 if (sc->sc_mididevs)
1279 for (i = 0; i < sc->sc_num_mididevs; i++) {
1280 err = detach_mididev(&sc->sc_mididevs[i], flags);
1281 if (err != USBD_NORMAL_COMPLETION)
1282 return err;
1283 }
1284
1285 return USBD_NORMAL_COMPLETION;
1286 }
1287
1288 static void
1289 deactivate_all_mididevs(struct umidi_softc *sc)
1290 {
1291 int i;
1292
1293 if (sc->sc_mididevs) {
1294 for (i = 0; i < sc->sc_num_mididevs; i++)
1295 deactivate_mididev(&sc->sc_mididevs[i]);
1296 }
1297 }
1298
1299 /*
1300 * TODO: the 0-based cable numbers will often not match the labeling of the
1301 * equipment. Ideally:
1302 * For class-compliant devices: get the iJack string from the jack descriptor.
1303 * Otherwise:
1304 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1305 * number for display)
1306 * - support an array quirk explictly giving a char * for each jack.
1307 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1308 * the CNs are not globally unique, each is shown with its associated endpoint
1309 * address in hex also. That should not be necessary when using iJack values
1310 * or a quirk array.
1311 */
1312 void
1313 describe_mididev(struct umidi_mididev *md)
1314 {
1315 char in_label[16];
1316 char out_label[16];
1317 const char *unit_label;
1318 char *final_label;
1319 struct umidi_softc *sc;
1320 int show_ep_in;
1321 int show_ep_out;
1322 size_t len;
1323
1324 sc = md->sc;
1325 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1326 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1327
1328 if ( NULL == md->in_jack )
1329 in_label[0] = '\0';
1330 else if ( show_ep_in )
1331 snprintf(in_label, sizeof in_label, "<%d(%x) ",
1332 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1333 else
1334 snprintf(in_label, sizeof in_label, "<%d ",
1335 md->in_jack->cable_number);
1336
1337 if ( NULL == md->out_jack )
1338 out_label[0] = '\0';
1339 else if ( show_ep_out )
1340 snprintf(out_label, sizeof out_label, ">%d(%x) ",
1341 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1342 else
1343 snprintf(out_label, sizeof out_label, ">%d ",
1344 md->out_jack->cable_number);
1345
1346 unit_label = device_xname(sc->sc_dev);
1347
1348 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1349
1350 final_label = kmem_alloc(len, KM_SLEEP);
1351
1352 snprintf(final_label, len, "%s%son %s",
1353 in_label, out_label, unit_label);
1354
1355 md->label = final_label;
1356 md->label_len = len;
1357 }
1358
1359 #ifdef UMIDI_DEBUG
1360 static void
1361 dump_sc(struct umidi_softc *sc)
1362 {
1363 int i;
1364
1365 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1366 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1367 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1368 dump_ep(&sc->sc_out_ep[i]);
1369 }
1370 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1371 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1372 dump_ep(&sc->sc_in_ep[i]);
1373 }
1374 }
1375
1376 static void
1377 dump_ep(struct umidi_endpoint *ep)
1378 {
1379 int i;
1380 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1381 if (NULL==ep->jacks[i])
1382 continue;
1383 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1384 dump_jack(ep->jacks[i]);
1385 }
1386 }
1387 static void
1388 dump_jack(struct umidi_jack *jack)
1389 {
1390 DPRINTFN(10, ("\t\t\tep=%p\n",
1391 jack->endpoint));
1392 }
1393
1394 #endif /* UMIDI_DEBUG */
1395
1396
1397
1398 /*
1399 * MUX MIDI PACKET
1400 */
1401
1402 static const int packet_length[16] = {
1403 /*0*/ -1,
1404 /*1*/ -1,
1405 /*2*/ 2,
1406 /*3*/ 3,
1407 /*4*/ 3,
1408 /*5*/ 1,
1409 /*6*/ 2,
1410 /*7*/ 3,
1411 /*8*/ 3,
1412 /*9*/ 3,
1413 /*A*/ 3,
1414 /*B*/ 3,
1415 /*C*/ 2,
1416 /*D*/ 2,
1417 /*E*/ 3,
1418 /*F*/ 1,
1419 };
1420
1421 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1422 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1423 #define MIX_CN_CIN(cn, cin) \
1424 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1425 ((unsigned char)(cin)&0x0F)))
1426
1427 static usbd_status
1428 start_input_transfer(struct umidi_endpoint *ep)
1429 {
1430 usbd_setup_xfer(ep->xfer, ep->pipe,
1431 (usbd_private_handle)ep,
1432 ep->buffer, ep->buffer_size,
1433 USBD_SHORT_XFER_OK | USBD_NO_COPY,
1434 USBD_NO_TIMEOUT, in_intr);
1435 return usbd_transfer(ep->xfer);
1436 }
1437
1438 static usbd_status
1439 start_output_transfer(struct umidi_endpoint *ep)
1440 {
1441 usbd_status rv;
1442 u_int32_t length;
1443 int i;
1444
1445 length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1446 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1447 ep->buffer, ep->next_slot, length));
1448 usbd_setup_xfer(ep->xfer, ep->pipe,
1449 (usbd_private_handle)ep,
1450 ep->buffer, length,
1451 USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1452 rv = usbd_transfer(ep->xfer);
1453
1454 /*
1455 * Once the transfer is scheduled, no more adding to partial
1456 * packets within it.
1457 */
1458 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1459 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1460 if (NULL != ep->jacks[i])
1461 ep->jacks[i]->midiman_ppkt = NULL;
1462 }
1463
1464 return rv;
1465 }
1466
1467 #ifdef UMIDI_DEBUG
1468 #define DPR_PACKET(dir, sc, p) \
1469 if ((unsigned char)(p)[1]!=0xFE) \
1470 DPRINTFN(500, \
1471 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1472 device_xname(sc->sc_dev), \
1473 (unsigned char)(p)[0], \
1474 (unsigned char)(p)[1], \
1475 (unsigned char)(p)[2], \
1476 (unsigned char)(p)[3]));
1477 #else
1478 #define DPR_PACKET(dir, sc, p)
1479 #endif
1480
1481 /*
1482 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1483 * with the cable number and length in the last byte instead of the first,
1484 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1485 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1486 * with a cable nybble and a length nybble (which, unlike the CIN of a
1487 * real USB MIDI packet, has no semantics at all besides the length).
1488 * A packet received from a Midiman may contain part of a MIDI message,
1489 * more than one MIDI message, or parts of more than one MIDI message. A
1490 * three-byte MIDI message may arrive in three packets of data length 1, and
1491 * running status may be used. Happily, the midi(4) driver above us will put
1492 * it all back together, so the only cost is in USB bandwidth. The device
1493 * has an easier time with what it receives from us: we'll pack messages in
1494 * and across packets, but filling the packets whenever possible and,
1495 * as midi(4) hands us a complete message at a time, we'll never send one
1496 * in a dribble of short packets.
1497 */
1498
1499 static int
1500 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1501 {
1502 struct umidi_endpoint *ep = out_jack->endpoint;
1503 struct umidi_softc *sc = ep->sc;
1504 unsigned char *packet;
1505 int plen;
1506 int poff;
1507
1508 if (sc->sc_dying)
1509 return EIO;
1510
1511 if (!out_jack->opened)
1512 return ENODEV; /* XXX as it was, is this the right errno? */
1513
1514 #ifdef UMIDI_DEBUG
1515 if ( umididebug >= 100 )
1516 microtime(&umidi_tv);
1517 #endif
1518 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1519 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1520 ep, out_jack->cable_number, len, cin));
1521
1522 packet = *ep->next_slot++;
1523 KASSERT(ep->buffer_size >=
1524 (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1525 memset(packet, 0, UMIDI_PACKET_SIZE);
1526 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1527 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1528 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1529 plen = 3 - poff;
1530 if (plen > len)
1531 plen = len;
1532 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1533 src += plen;
1534 len -= plen;
1535 plen += poff;
1536 out_jack->midiman_ppkt[3] =
1537 MIX_CN_CIN(out_jack->cable_number, plen);
1538 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1539 if (3 == plen)
1540 out_jack->midiman_ppkt = NULL; /* no more */
1541 }
1542 if (0 == len)
1543 ep->next_slot--; /* won't be needed, nevermind */
1544 else {
1545 memcpy(packet, src, len);
1546 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1547 DPR_PACKET(out, sc, packet);
1548 if (len < 3)
1549 out_jack->midiman_ppkt = packet;
1550 }
1551 } else { /* the nice simple USB class-compliant case */
1552 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1553 memcpy(packet+1, src, len);
1554 DPR_PACKET(out, sc, packet);
1555 }
1556 ep->next_schedule |= 1<<(out_jack->cable_number);
1557 ++ ep->num_scheduled;
1558 if ( !ep->armed && !ep->soliciting ) {
1559 /*
1560 * It would be bad to call out_solicit directly here (the
1561 * caller need not be reentrant) but a soft interrupt allows
1562 * solicit to run immediately the caller exits its critical
1563 * section, and if the caller has more to write we can get it
1564 * before starting the USB transfer, and send a longer one.
1565 */
1566 ep->soliciting = 1;
1567 softint_schedule(ep->solicit_cookie);
1568 }
1569
1570 return 0;
1571 }
1572
1573 static void
1574 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1575 usbd_status status)
1576 {
1577 int cn, len, i;
1578 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1579 struct umidi_softc *sc = ep->sc;
1580 struct umidi_jack *jack;
1581 unsigned char *packet;
1582 umidi_packet_bufp slot;
1583 umidi_packet_bufp end;
1584 unsigned char *data;
1585 u_int32_t count;
1586
1587 if (ep->sc->sc_dying || !ep->num_open)
1588 return;
1589
1590 mutex_enter(&sc->sc_lock);
1591 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1592 if (0 == count % UMIDI_PACKET_SIZE) {
1593 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1594 device_xname(ep->sc->sc_dev), ep, count));
1595 } else {
1596 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1597 device_xname(ep->sc->sc_dev), ep, count));
1598 }
1599
1600 slot = ep->buffer;
1601 end = slot + count / sizeof *slot;
1602
1603 for (packet = *slot; slot < end; packet = *++slot) {
1604
1605 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1606 cn = (0xf0&(packet[3]))>>4;
1607 len = 0x0f&(packet[3]);
1608 data = packet;
1609 } else {
1610 cn = GET_CN(packet[0]);
1611 len = packet_length[GET_CIN(packet[0])];
1612 data = packet + 1;
1613 }
1614 /* 0 <= cn <= 15 by inspection of above code */
1615 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1616 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1617 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1618 device_xname(ep->sc->sc_dev), ep, cn, len,
1619 (unsigned)data[0],
1620 (unsigned)data[1],
1621 (unsigned)data[2]));
1622 mutex_exit(&sc->sc_lock);
1623 return;
1624 }
1625
1626 if (!jack->binded || !jack->opened)
1627 continue;
1628
1629 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1630 "%02X %02X %02X\n",
1631 device_xname(ep->sc->sc_dev), ep, cn, len,
1632 (unsigned)data[0],
1633 (unsigned)data[1],
1634 (unsigned)data[2]));
1635
1636 if (jack->u.in.intr) {
1637 for (i = 0; i < len; i++) {
1638 (*jack->u.in.intr)(jack->arg, data[i]);
1639 }
1640 }
1641
1642 }
1643
1644 (void)start_input_transfer(ep);
1645 mutex_exit(&sc->sc_lock);
1646 }
1647
1648 static void
1649 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1650 usbd_status status)
1651 {
1652 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1653 struct umidi_softc *sc = ep->sc;
1654 u_int32_t count;
1655
1656 if (sc->sc_dying)
1657 return;
1658
1659 mutex_enter(&sc->sc_lock);
1660 #ifdef UMIDI_DEBUG
1661 if ( umididebug >= 200 )
1662 microtime(&umidi_tv);
1663 #endif
1664 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1665 if ( 0 == count % UMIDI_PACKET_SIZE ) {
1666 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1667 device_xname(ep->sc->sc_dev),
1668 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1669 } else {
1670 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1671 device_xname(ep->sc->sc_dev), ep, count));
1672 }
1673 count /= UMIDI_PACKET_SIZE;
1674
1675 /*
1676 * If while the transfer was pending we buffered any new messages,
1677 * move them to the start of the buffer.
1678 */
1679 ep->next_slot -= count;
1680 if (ep->buffer < ep->next_slot) {
1681 memcpy(ep->buffer, ep->buffer + count,
1682 (char *)ep->next_slot - (char *)ep->buffer);
1683 }
1684 cv_broadcast(&sc->sc_cv);
1685 /*
1686 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1687 * Running at IPL_USB so the following should happen to be safe.
1688 */
1689 ep->armed = 0;
1690 if (!ep->soliciting) {
1691 ep->soliciting = 1;
1692 out_solicit_locked(ep);
1693 }
1694 mutex_exit(&sc->sc_lock);
1695 }
1696
1697 /*
1698 * A jack on which we have received a packet must be called back on its
1699 * out.intr handler before it will send us another; it is considered
1700 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1701 * we need no extra buffer space for it.
1702 *
1703 * In contrast, a jack that is open but not scheduled may supply us a packet
1704 * at any time, driven by the top half, and we must be able to accept it, no
1705 * excuses. So we must ensure that at any point in time there are at least
1706 * (num_open - num_scheduled) slots free.
1707 *
1708 * As long as there are more slots free than that minimum, we can loop calling
1709 * scheduled jacks back on their "interrupt" handlers, soliciting more
1710 * packets, starting the USB transfer only when the buffer space is down to
1711 * the minimum or no jack has any more to send.
1712 */
1713
1714 static void
1715 out_solicit_locked(void *arg)
1716 {
1717 struct umidi_endpoint *ep = arg;
1718 umidi_packet_bufp end;
1719 u_int16_t which;
1720 struct umidi_jack *jack;
1721
1722 KASSERT(mutex_owned(&ep->sc->sc_lock));
1723
1724 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1725
1726 for ( ;; ) {
1727 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1728 break; /* at IPL_USB */
1729 if (ep->this_schedule == 0) {
1730 if (ep->next_schedule == 0)
1731 break; /* at IPL_USB */
1732 ep->this_schedule = ep->next_schedule;
1733 ep->next_schedule = 0;
1734 }
1735 /*
1736 * At least one jack is scheduled. Find and mask off the least
1737 * set bit in this_schedule and decrement num_scheduled.
1738 * Convert mask to bit index to find the corresponding jack,
1739 * and call its intr handler. If it has a message, it will call
1740 * back one of the output methods, which will set its bit in
1741 * next_schedule (not copied into this_schedule until the
1742 * latter is empty). In this way we round-robin the jacks that
1743 * have messages to send, until the buffer is as full as we
1744 * dare, and then start a transfer.
1745 */
1746 which = ep->this_schedule;
1747 which &= (~which)+1; /* now mask of least set bit */
1748 ep->this_schedule &= ~which;
1749 --ep->num_scheduled;
1750
1751 --which; /* now 1s below mask - count 1s to get index */
1752 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1753 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1754 which = (((which >> 4) + which) & 0x0f0f);
1755 which += (which >> 8);
1756 which &= 0x1f; /* the bit index a/k/a jack number */
1757
1758 jack = ep->jacks[which];
1759 if (jack->u.out.intr)
1760 (*jack->u.out.intr)(jack->arg);
1761 }
1762 /* intr lock held at loop exit */
1763 if (!ep->armed && ep->next_slot > ep->buffer)
1764 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1765 ep->soliciting = 0;
1766 }
1767
1768 /* Entry point for the softintr. */
1769 static void
1770 out_solicit(void *arg)
1771 {
1772 struct umidi_endpoint *ep = arg;
1773 struct umidi_softc *sc = ep->sc;
1774
1775 mutex_enter(&sc->sc_lock);
1776 out_solicit_locked(arg);
1777 mutex_exit(&sc->sc_lock);
1778 }
1779