umidi.c revision 1.53.2.6 1 /* $NetBSD: umidi.c,v 1.53.2.6 2012/06/02 11:09:30 mrg Exp $ */
2 /*
3 * Copyright (c) 2001, 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
8 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
9 * (mrg (at) eterna.com.au).
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.53.2.6 2012/06/02 11:09:30 mrg Exp $");
35
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/device.h>
42 #include <sys/ioctl.h>
43 #include <sys/conf.h>
44 #include <sys/file.h>
45 #include <sys/select.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/poll.h>
49 #include <sys/intr.h>
50
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54
55 #include <dev/auconv.h>
56 #include <dev/usb/usbdevs.h>
57 #include <dev/usb/uaudioreg.h>
58 #include <dev/usb/umidireg.h>
59 #include <dev/usb/umidivar.h>
60 #include <dev/usb/umidi_quirks.h>
61
62 #include <dev/midi_if.h>
63
64 #ifdef UMIDI_DEBUG
65 #define DPRINTF(x) if (umididebug) printf x
66 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
67 #include <sys/time.h>
68 static struct timeval umidi_tv;
69 int umididebug = 0;
70 #else
71 #define DPRINTF(x)
72 #define DPRINTFN(n,x)
73 #endif
74
75 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
76 (sc->sc_out_num_endpoints + \
77 sc->sc_in_num_endpoints))
78
79
80 static int umidi_open(void *, int,
81 void (*)(void *, int), void (*)(void *), void *);
82 static void umidi_close(void *);
83 static int umidi_channelmsg(void *, int, int, u_char *, int);
84 static int umidi_commonmsg(void *, int, u_char *, int);
85 static int umidi_sysex(void *, u_char *, int);
86 static int umidi_rtmsg(void *, int);
87 static void umidi_getinfo(void *, struct midi_info *);
88 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
89
90 static usbd_status alloc_pipe(struct umidi_endpoint *);
91 static void free_pipe(struct umidi_endpoint *);
92
93 static usbd_status alloc_all_endpoints(struct umidi_softc *);
94 static void free_all_endpoints(struct umidi_softc *);
95
96 static usbd_status alloc_all_jacks(struct umidi_softc *);
97 static void free_all_jacks(struct umidi_softc *);
98 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
99 struct umidi_jack *,
100 struct umidi_jack *,
101 struct umidi_mididev *);
102 static void unbind_jacks_from_mididev(struct umidi_mididev *);
103 static void unbind_all_jacks(struct umidi_softc *);
104 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
105 static usbd_status open_out_jack(struct umidi_jack *, void *,
106 void (*)(void *));
107 static usbd_status open_in_jack(struct umidi_jack *, void *,
108 void (*)(void *, int));
109 static void close_out_jack(struct umidi_jack *);
110 static void close_in_jack(struct umidi_jack *);
111
112 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
113 static usbd_status detach_mididev(struct umidi_mididev *, int);
114 static void deactivate_mididev(struct umidi_mididev *);
115 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
116 static void free_all_mididevs(struct umidi_softc *);
117 static usbd_status attach_all_mididevs(struct umidi_softc *);
118 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
119 static void deactivate_all_mididevs(struct umidi_softc *);
120 static void describe_mididev(struct umidi_mididev *);
121
122 #ifdef UMIDI_DEBUG
123 static void dump_sc(struct umidi_softc *);
124 static void dump_ep(struct umidi_endpoint *);
125 static void dump_jack(struct umidi_jack *);
126 #endif
127
128 static usbd_status start_input_transfer(struct umidi_endpoint *);
129 static usbd_status start_output_transfer(struct umidi_endpoint *);
130 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
131 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
132 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
133 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
134 static void out_solicit_locked(void *); /* pre-locked version */
135
136
137 const struct midi_hw_if umidi_hw_if = {
138 .open = umidi_open,
139 .close = umidi_close,
140 .output = umidi_rtmsg,
141 .getinfo = umidi_getinfo,
142 .get_locks = umidi_get_locks,
143 };
144
145 struct midi_hw_if_ext umidi_hw_if_ext = {
146 .channel = umidi_channelmsg,
147 .common = umidi_commonmsg,
148 .sysex = umidi_sysex,
149 };
150
151 struct midi_hw_if_ext umidi_hw_if_mm = {
152 .channel = umidi_channelmsg,
153 .common = umidi_commonmsg,
154 .sysex = umidi_sysex,
155 .compress = 1,
156 };
157
158 int umidi_match(device_t, cfdata_t, void *);
159 void umidi_attach(device_t, device_t, void *);
160 void umidi_childdet(device_t, device_t);
161 int umidi_detach(device_t, int);
162 int umidi_activate(device_t, enum devact);
163 extern struct cfdriver umidi_cd;
164 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
165 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
166
167 int
168 umidi_match(device_t parent, cfdata_t match, void *aux)
169 {
170 struct usbif_attach_arg *uaa = aux;
171
172 DPRINTFN(1,("umidi_match\n"));
173
174 if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
175 return UMATCH_IFACECLASS_IFACESUBCLASS;
176
177 if (uaa->class == UICLASS_AUDIO &&
178 uaa->subclass == UISUBCLASS_MIDISTREAM)
179 return UMATCH_IFACECLASS_IFACESUBCLASS;
180
181 return UMATCH_NONE;
182 }
183
184 void
185 umidi_attach(device_t parent, device_t self, void *aux)
186 {
187 usbd_status err;
188 struct umidi_softc *sc = device_private(self);
189 struct usbif_attach_arg *uaa = aux;
190 char *devinfop;
191
192 DPRINTFN(1,("umidi_attach\n"));
193
194 sc->sc_dev = self;
195
196 aprint_naive("\n");
197 aprint_normal("\n");
198
199 devinfop = usbd_devinfo_alloc(uaa->device, 0);
200 aprint_normal_dev(self, "%s\n", devinfop);
201 usbd_devinfo_free(devinfop);
202
203 sc->sc_iface = uaa->iface;
204 sc->sc_udev = uaa->device;
205
206 sc->sc_quirk =
207 umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
208 aprint_normal_dev(self, "");
209 umidi_print_quirk(sc->sc_quirk);
210
211 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
212 cv_init(&sc->sc_cv, "umidopcl");
213
214 err = alloc_all_endpoints(sc);
215 if (err != USBD_NORMAL_COMPLETION) {
216 aprint_error_dev(self,
217 "alloc_all_endpoints failed. (err=%d)\n", err);
218 goto error;
219 }
220 err = alloc_all_jacks(sc);
221 if (err != USBD_NORMAL_COMPLETION) {
222 free_all_endpoints(sc);
223 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
224 err);
225 goto error;
226 }
227 aprint_normal_dev(self, "out=%d, in=%d\n",
228 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
229
230 err = assign_all_jacks_automatically(sc);
231 if (err != USBD_NORMAL_COMPLETION) {
232 unbind_all_jacks(sc);
233 free_all_jacks(sc);
234 free_all_endpoints(sc);
235 aprint_error_dev(self,
236 "assign_all_jacks_automatically failed. (err=%d)\n", err);
237 goto error;
238 }
239 err = attach_all_mididevs(sc);
240 if (err != USBD_NORMAL_COMPLETION) {
241 free_all_jacks(sc);
242 free_all_endpoints(sc);
243 aprint_error_dev(self,
244 "attach_all_mididevs failed. (err=%d)\n", err);
245 }
246
247 #ifdef UMIDI_DEBUG
248 dump_sc(sc);
249 #endif
250
251 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
252 sc->sc_udev, sc->sc_dev);
253
254 return;
255 error:
256 aprint_error_dev(self, "disabled.\n");
257 sc->sc_dying = 1;
258 KERNEL_UNLOCK_ONE(curlwp);
259 return;
260 }
261
262 void
263 umidi_childdet(device_t self, device_t child)
264 {
265 int i;
266 struct umidi_softc *sc = device_private(self);
267
268 KASSERT(sc->sc_mididevs != NULL);
269
270 for (i = 0; i < sc->sc_num_mididevs; i++) {
271 if (sc->sc_mididevs[i].mdev == child)
272 break;
273 }
274 KASSERT(i < sc->sc_num_mididevs);
275 sc->sc_mididevs[i].mdev = NULL;
276 }
277
278 int
279 umidi_activate(device_t self, enum devact act)
280 {
281 struct umidi_softc *sc = device_private(self);
282
283 switch (act) {
284 case DVACT_DEACTIVATE:
285 DPRINTFN(1,("umidi_activate (deactivate)\n"));
286 sc->sc_dying = 1;
287 deactivate_all_mididevs(sc);
288 return 0;
289 default:
290 DPRINTFN(1,("umidi_activate (%d)\n", act));
291 return EOPNOTSUPP;
292 }
293 }
294
295 int
296 umidi_detach(device_t self, int flags)
297 {
298 struct umidi_softc *sc = device_private(self);
299
300 DPRINTFN(1,("umidi_detach\n"));
301
302 sc->sc_dying = 1;
303 detach_all_mididevs(sc, flags);
304 free_all_mididevs(sc);
305 free_all_jacks(sc);
306 free_all_endpoints(sc);
307
308 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
309 sc->sc_dev);
310
311 mutex_destroy(&sc->sc_lock);
312 cv_destroy(&sc->sc_cv);
313
314 return 0;
315 }
316
317
318 /*
319 * midi_if stuffs
320 */
321 int
322 umidi_open(void *addr,
323 int flags,
324 void (*iintr)(void *, int),
325 void (*ointr)(void *),
326 void *arg)
327 {
328 struct umidi_mididev *mididev = addr;
329 struct umidi_softc *sc = mididev->sc;
330 usbd_status err;
331
332 DPRINTF(("umidi_open: sc=%p\n", sc));
333
334 if (!sc)
335 return ENXIO;
336 if (mididev->opened)
337 return EBUSY;
338 if (sc->sc_dying)
339 return EIO;
340
341 mididev->opened = 1;
342 mididev->closing = 0;
343 mididev->flags = flags;
344 if ((mididev->flags & FWRITE) && mididev->out_jack) {
345 err = open_out_jack(mididev->out_jack, arg, ointr);
346 if ( err != USBD_NORMAL_COMPLETION )
347 goto bad;
348 }
349 if ((mididev->flags & FREAD) && mididev->in_jack) {
350 err = open_in_jack(mididev->in_jack, arg, iintr);
351 if ( err != USBD_NORMAL_COMPLETION
352 && err != USBD_IN_PROGRESS )
353 goto bad;
354 }
355
356 return 0;
357 bad:
358 mididev->opened = 0;
359 DPRINTF(("umidi_open: usbd_status %d\n", err));
360 return USBD_IN_USE == err ? EBUSY : EIO;
361 }
362
363 void
364 umidi_close(void *addr)
365 {
366 struct umidi_mididev *mididev = addr;
367
368 mididev->closing = 1;
369
370 mutex_spin_exit(&mididev->sc->sc_lock);
371
372 if ((mididev->flags & FWRITE) && mididev->out_jack)
373 close_out_jack(mididev->out_jack);
374 if ((mididev->flags & FREAD) && mididev->in_jack)
375 close_in_jack(mididev->in_jack);
376
377 /* XXX SMP */
378 mutex_spin_enter(&mididev->sc->sc_lock);
379
380 mididev->opened = 0;
381 }
382
383 int
384 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
385 int len)
386 {
387 struct umidi_mididev *mididev = addr;
388
389 if (!mididev->out_jack || !mididev->opened || mididev->closing)
390 return EIO;
391
392 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
393 }
394
395 int
396 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
397 {
398 struct umidi_mididev *mididev = addr;
399 int cin;
400
401 if (!mididev->out_jack || !mididev->opened || mididev->closing)
402 return EIO;
403
404 switch ( len ) {
405 case 1: cin = 5; break;
406 case 2: cin = 2; break;
407 case 3: cin = 3; break;
408 default: return EIO; /* or gcc warns of cin uninitialized */
409 }
410
411 return out_jack_output(mididev->out_jack, msg, len, cin);
412 }
413
414 int
415 umidi_sysex(void *addr, u_char *msg, int len)
416 {
417 struct umidi_mididev *mididev = addr;
418 int cin;
419
420 if (!mididev->out_jack || !mididev->opened || mididev->closing)
421 return EIO;
422
423 switch ( len ) {
424 case 1: cin = 5; break;
425 case 2: cin = 6; break;
426 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
427 default: return EIO; /* or gcc warns of cin uninitialized */
428 }
429
430 return out_jack_output(mididev->out_jack, msg, len, cin);
431 }
432
433 int
434 umidi_rtmsg(void *addr, int d)
435 {
436 struct umidi_mididev *mididev = addr;
437 u_char msg = d;
438
439 if (!mididev->out_jack || !mididev->opened || mididev->closing)
440 return EIO;
441
442 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
443 }
444
445 void
446 umidi_getinfo(void *addr, struct midi_info *mi)
447 {
448 struct umidi_mididev *mididev = addr;
449 struct umidi_softc *sc = mididev->sc;
450 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
451
452 mi->name = mididev->label;
453 mi->props = MIDI_PROP_OUT_INTR;
454 if (mididev->in_jack)
455 mi->props |= MIDI_PROP_CAN_INPUT;
456 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
457 }
458
459 static void
460 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
461 {
462 struct umidi_mididev *mididev = addr;
463 struct umidi_softc *sc = mididev->sc;
464
465 *intr = NULL;
466 *thread = &sc->sc_lock;
467 }
468
469 /*
470 * each endpoint stuffs
471 */
472
473 /* alloc/free pipe */
474 static usbd_status
475 alloc_pipe(struct umidi_endpoint *ep)
476 {
477 struct umidi_softc *sc = ep->sc;
478 usbd_status err;
479 usb_endpoint_descriptor_t *epd;
480
481 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
482 /*
483 * For output, an improvement would be to have a buffer bigger than
484 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
485 * allow out_solicit to fill the buffer to the full packet size in
486 * all cases. But to use usbd_alloc_buffer to get a slightly larger
487 * buffer would not be a good way to do that, because if the addition
488 * would make the buffer exceed USB_MEM_SMALL then a substantially
489 * larger block may be wastefully allocated. Some flavor of double
490 * buffering could serve the same purpose, but would increase the
491 * code complexity, so for now I will live with the current slight
492 * penalty of reducing max transfer size by (num_open-num_scheduled)
493 * packet slots.
494 */
495 ep->buffer_size = UGETW(epd->wMaxPacketSize);
496 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
497
498 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
499 device_xname(sc->sc_dev), ep, ep->buffer_size));
500 ep->num_scheduled = 0;
501 ep->this_schedule = 0;
502 ep->next_schedule = 0;
503 ep->soliciting = 0;
504 ep->armed = 0;
505 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
506 if (ep->xfer == NULL) {
507 err = USBD_NOMEM;
508 goto quit;
509 }
510 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
511 if (ep->buffer == NULL) {
512 usbd_free_xfer(ep->xfer);
513 err = USBD_NOMEM;
514 goto quit;
515 }
516 ep->next_slot = ep->buffer;
517 err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
518 if (err)
519 usbd_free_xfer(ep->xfer);
520 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK, out_solicit, ep);
521 quit:
522 return err;
523 }
524
525 static void
526 free_pipe(struct umidi_endpoint *ep)
527 {
528 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
529 usbd_abort_pipe(ep->pipe);
530 usbd_close_pipe(ep->pipe);
531 usbd_free_xfer(ep->xfer);
532 softint_disestablish(ep->solicit_cookie);
533 }
534
535
536 /* alloc/free the array of endpoint structures */
537
538 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
539 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
540 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
541
542 static usbd_status
543 alloc_all_endpoints(struct umidi_softc *sc)
544 {
545 usbd_status err;
546 struct umidi_endpoint *ep;
547 int i;
548
549 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
550 err = alloc_all_endpoints_fixed_ep(sc);
551 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
552 err = alloc_all_endpoints_yamaha(sc);
553 } else {
554 err = alloc_all_endpoints_genuine(sc);
555 }
556 if (err != USBD_NORMAL_COMPLETION)
557 return err;
558
559 ep = sc->sc_endpoints;
560 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
561 err = alloc_pipe(ep++);
562 if (err != USBD_NORMAL_COMPLETION) {
563 for (; ep != sc->sc_endpoints; ep--)
564 free_pipe(ep-1);
565 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
566 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
567 break;
568 }
569 }
570 return err;
571 }
572
573 static void
574 free_all_endpoints(struct umidi_softc *sc)
575 {
576 int i;
577
578 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
579 free_pipe(&sc->sc_endpoints[i]);
580 if (sc->sc_endpoints != NULL)
581 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
582 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
583 }
584
585 static usbd_status
586 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
587 {
588 usbd_status err;
589 const struct umq_fixed_ep_desc *fp;
590 struct umidi_endpoint *ep;
591 usb_endpoint_descriptor_t *epd;
592 int i;
593
594 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
595 UMQ_TYPE_FIXED_EP);
596 sc->sc_out_num_jacks = 0;
597 sc->sc_in_num_jacks = 0;
598 sc->sc_out_num_endpoints = fp->num_out_ep;
599 sc->sc_in_num_endpoints = fp->num_in_ep;
600 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
601 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
602 if (!sc->sc_endpoints)
603 return USBD_NOMEM;
604
605 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
606 sc->sc_in_ep =
607 sc->sc_in_num_endpoints ?
608 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
609
610 ep = &sc->sc_out_ep[0];
611 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
612 epd = usbd_interface2endpoint_descriptor(
613 sc->sc_iface,
614 fp->out_ep[i].ep);
615 if (!epd) {
616 aprint_error_dev(sc->sc_dev,
617 "cannot get endpoint descriptor(out:%d)\n",
618 fp->out_ep[i].ep);
619 err = USBD_INVAL;
620 goto error;
621 }
622 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
623 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
624 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
625 fp->out_ep[i].ep);
626 err = USBD_INVAL;
627 goto error;
628 }
629 ep->sc = sc;
630 ep->addr = epd->bEndpointAddress;
631 ep->num_jacks = fp->out_ep[i].num_jacks;
632 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
633 ep->num_open = 0;
634 ep++;
635 }
636 ep = &sc->sc_in_ep[0];
637 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
638 epd = usbd_interface2endpoint_descriptor(
639 sc->sc_iface,
640 fp->in_ep[i].ep);
641 if (!epd) {
642 aprint_error_dev(sc->sc_dev,
643 "cannot get endpoint descriptor(in:%d)\n",
644 fp->in_ep[i].ep);
645 err = USBD_INVAL;
646 goto error;
647 }
648 /*
649 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
650 * endpoint. The existing input logic in this driver seems
651 * to work successfully if we just stop treating an interrupt
652 * endpoint as illegal (or the in_progress status we get on
653 * the initial transfer). It does not seem necessary to
654 * actually use the interrupt flavor of alloc_pipe or make
655 * other serious rearrangements of logic. I like that.
656 */
657 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
658 case UE_BULK:
659 case UE_INTERRUPT:
660 if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
661 break;
662 /*FALLTHROUGH*/
663 default:
664 aprint_error_dev(sc->sc_dev,
665 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
666 err = USBD_INVAL;
667 goto error;
668 }
669
670 ep->sc = sc;
671 ep->addr = epd->bEndpointAddress;
672 ep->num_jacks = fp->in_ep[i].num_jacks;
673 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
674 ep->num_open = 0;
675 ep++;
676 }
677
678 return USBD_NORMAL_COMPLETION;
679 error:
680 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
681 sc->sc_endpoints = NULL;
682 return err;
683 }
684
685 static usbd_status
686 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
687 {
688 /* This driver currently supports max 1in/1out bulk endpoints */
689 usb_descriptor_t *desc;
690 umidi_cs_descriptor_t *udesc;
691 usb_endpoint_descriptor_t *epd;
692 int out_addr, in_addr, i;
693 int dir;
694 size_t remain, descsize;
695
696 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
697 out_addr = in_addr = 0;
698
699 /* detect endpoints */
700 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
701 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
702 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
703 KASSERT(epd != NULL);
704 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
705 dir = UE_GET_DIR(epd->bEndpointAddress);
706 if (dir==UE_DIR_OUT && !out_addr)
707 out_addr = epd->bEndpointAddress;
708 else if (dir==UE_DIR_IN && !in_addr)
709 in_addr = epd->bEndpointAddress;
710 }
711 }
712 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
713
714 /* count jacks */
715 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
716 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
717 return USBD_INVAL;
718 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
719 (size_t)udesc->bLength;
720 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
721
722 while (remain >= sizeof(usb_descriptor_t)) {
723 descsize = udesc->bLength;
724 if (descsize>remain || descsize==0)
725 break;
726 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
727 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
728 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
729 sc->sc_out_num_jacks++;
730 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
731 sc->sc_in_num_jacks++;
732 }
733 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
734 remain -= descsize;
735 }
736
737 /* validate some parameters */
738 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
739 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
740 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
741 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
742 if (sc->sc_out_num_jacks && out_addr) {
743 sc->sc_out_num_endpoints = 1;
744 } else {
745 sc->sc_out_num_endpoints = 0;
746 sc->sc_out_num_jacks = 0;
747 }
748 if (sc->sc_in_num_jacks && in_addr) {
749 sc->sc_in_num_endpoints = 1;
750 } else {
751 sc->sc_in_num_endpoints = 0;
752 sc->sc_in_num_jacks = 0;
753 }
754 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
755 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
756 if (!sc->sc_endpoints)
757 return USBD_NOMEM;
758 if (sc->sc_out_num_endpoints) {
759 sc->sc_out_ep = sc->sc_endpoints;
760 sc->sc_out_ep->sc = sc;
761 sc->sc_out_ep->addr = out_addr;
762 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
763 sc->sc_out_ep->num_open = 0;
764 } else
765 sc->sc_out_ep = NULL;
766
767 if (sc->sc_in_num_endpoints) {
768 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
769 sc->sc_in_ep->sc = sc;
770 sc->sc_in_ep->addr = in_addr;
771 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
772 sc->sc_in_ep->num_open = 0;
773 } else
774 sc->sc_in_ep = NULL;
775
776 return USBD_NORMAL_COMPLETION;
777 }
778
779 static usbd_status
780 alloc_all_endpoints_genuine(struct umidi_softc *sc)
781 {
782 usb_interface_descriptor_t *interface_desc;
783 usb_config_descriptor_t *config_desc;
784 usb_descriptor_t *desc;
785 int num_ep;
786 size_t remain, descsize;
787 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
788 int epaddr;
789
790 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
791 num_ep = interface_desc->bNumEndpoints;
792 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
793 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
794 if (!p)
795 return USBD_NOMEM;
796
797 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
798 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
799 epaddr = -1;
800
801 /* get the list of endpoints for midi stream */
802 config_desc = usbd_get_config_descriptor(sc->sc_udev);
803 desc = (usb_descriptor_t *) config_desc;
804 remain = (size_t)UGETW(config_desc->wTotalLength);
805 while (remain>=sizeof(usb_descriptor_t)) {
806 descsize = desc->bLength;
807 if (descsize>remain || descsize==0)
808 break;
809 if (desc->bDescriptorType==UDESC_ENDPOINT &&
810 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
811 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
812 epaddr = TO_EPD(desc)->bEndpointAddress;
813 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
814 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
815 epaddr!=-1) {
816 if (num_ep>0) {
817 num_ep--;
818 p->sc = sc;
819 p->addr = epaddr;
820 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
821 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
822 sc->sc_out_num_endpoints++;
823 sc->sc_out_num_jacks += p->num_jacks;
824 } else {
825 sc->sc_in_num_endpoints++;
826 sc->sc_in_num_jacks += p->num_jacks;
827 }
828 p++;
829 }
830 } else
831 epaddr = -1;
832 desc = NEXT_D(desc);
833 remain-=descsize;
834 }
835
836 /* sort endpoints */
837 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
838 p = sc->sc_endpoints;
839 endep = p + num_ep;
840 while (p<endep) {
841 lowest = p;
842 for (q=p+1; q<endep; q++) {
843 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
844 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
845 ((UE_GET_DIR(lowest->addr)==
846 UE_GET_DIR(q->addr)) &&
847 (UE_GET_ADDR(lowest->addr)>
848 UE_GET_ADDR(q->addr))))
849 lowest = q;
850 }
851 if (lowest != p) {
852 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
853 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
854 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
855 }
856 p->num_open = 0;
857 p++;
858 }
859
860 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
861 sc->sc_in_ep =
862 sc->sc_in_num_endpoints ?
863 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
864
865 return USBD_NORMAL_COMPLETION;
866 }
867
868
869 /*
870 * jack stuffs
871 */
872
873 static usbd_status
874 alloc_all_jacks(struct umidi_softc *sc)
875 {
876 int i, j;
877 struct umidi_endpoint *ep;
878 struct umidi_jack *jack;
879 const unsigned char *cn_spec;
880
881 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
882 sc->cblnums_global = 0;
883 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
884 sc->cblnums_global = 1;
885 else {
886 /*
887 * I don't think this default is correct, but it preserves
888 * the prior behavior of the code. That's why I defined two
889 * complementary quirks. Any device for which the default
890 * behavior is wrong can be made to work by giving it an
891 * explicit quirk, and if a pattern ever develops (as I suspect
892 * it will) that a lot of otherwise standard USB MIDI devices
893 * need the CN_SEQ_PER_EP "quirk," then this default can be
894 * changed to 0, and the only devices that will break are those
895 * listing neither quirk, and they'll easily be fixed by giving
896 * them the CN_SEQ_GLOBAL quirk.
897 */
898 sc->cblnums_global = 1;
899 }
900
901 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
902 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
903 UMQ_TYPE_CN_FIXED);
904 else
905 cn_spec = NULL;
906
907 /* allocate/initialize structures */
908 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
909 sc->sc_out_num_jacks), KM_SLEEP);
910 if (!sc->sc_jacks)
911 return USBD_NOMEM;
912 sc->sc_out_jacks =
913 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
914 sc->sc_in_jacks =
915 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
916
917 jack = &sc->sc_out_jacks[0];
918 for (i = 0; i < sc->sc_out_num_jacks; i++) {
919 jack->opened = 0;
920 jack->binded = 0;
921 jack->arg = NULL;
922 jack->u.out.intr = NULL;
923 jack->midiman_ppkt = NULL;
924 if (sc->cblnums_global)
925 jack->cable_number = i;
926 jack++;
927 }
928 jack = &sc->sc_in_jacks[0];
929 for (i = 0; i < sc->sc_in_num_jacks; i++) {
930 jack->opened = 0;
931 jack->binded = 0;
932 jack->arg = NULL;
933 jack->u.in.intr = NULL;
934 if (sc->cblnums_global)
935 jack->cable_number = i;
936 jack++;
937 }
938
939 /* assign each jacks to each endpoints */
940 jack = &sc->sc_out_jacks[0];
941 ep = &sc->sc_out_ep[0];
942 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
943 for (j = 0; j < ep->num_jacks; j++) {
944 jack->endpoint = ep;
945 if (cn_spec != NULL)
946 jack->cable_number = *cn_spec++;
947 else if (!sc->cblnums_global)
948 jack->cable_number = j;
949 ep->jacks[jack->cable_number] = jack;
950 jack++;
951 }
952 ep++;
953 }
954 jack = &sc->sc_in_jacks[0];
955 ep = &sc->sc_in_ep[0];
956 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
957 for (j = 0; j < ep->num_jacks; j++) {
958 jack->endpoint = ep;
959 if (cn_spec != NULL)
960 jack->cable_number = *cn_spec++;
961 else if (!sc->cblnums_global)
962 jack->cable_number = j;
963 ep->jacks[jack->cable_number] = jack;
964 jack++;
965 }
966 ep++;
967 }
968
969 return USBD_NORMAL_COMPLETION;
970 }
971
972 static void
973 free_all_jacks(struct umidi_softc *sc)
974 {
975 struct umidi_jack *jacks;
976 size_t len;
977
978 mutex_enter(&sc->sc_lock);
979 jacks = sc->sc_jacks;
980 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
981 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
982 mutex_exit(&sc->sc_lock);
983
984 if (jacks)
985 kmem_free(jacks, len);
986 }
987
988 static usbd_status
989 bind_jacks_to_mididev(struct umidi_softc *sc,
990 struct umidi_jack *out_jack,
991 struct umidi_jack *in_jack,
992 struct umidi_mididev *mididev)
993 {
994 if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
995 return USBD_IN_USE;
996 if (mididev->out_jack || mididev->in_jack)
997 return USBD_IN_USE;
998
999 if (out_jack)
1000 out_jack->binded = 1;
1001 if (in_jack)
1002 in_jack->binded = 1;
1003 mididev->in_jack = in_jack;
1004 mididev->out_jack = out_jack;
1005
1006 return USBD_NORMAL_COMPLETION;
1007 }
1008
1009 static void
1010 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1011 {
1012
1013 if ((mididev->flags & FWRITE) && mididev->out_jack)
1014 close_out_jack(mididev->out_jack);
1015 if ((mididev->flags & FREAD) && mididev->in_jack)
1016 close_in_jack(mididev->in_jack);
1017
1018 if (mididev->out_jack)
1019 mididev->out_jack->binded = 0;
1020 if (mididev->in_jack)
1021 mididev->in_jack->binded = 0;
1022 mididev->out_jack = mididev->in_jack = NULL;
1023 }
1024
1025 static void
1026 unbind_all_jacks(struct umidi_softc *sc)
1027 {
1028 int i;
1029
1030 if (sc->sc_mididevs)
1031 for (i = 0; i < sc->sc_num_mididevs; i++)
1032 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1033 }
1034
1035 static usbd_status
1036 assign_all_jacks_automatically(struct umidi_softc *sc)
1037 {
1038 usbd_status err;
1039 int i;
1040 struct umidi_jack *out, *in;
1041 const signed char *asg_spec;
1042
1043 err =
1044 alloc_all_mididevs(sc,
1045 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1046 if (err!=USBD_NORMAL_COMPLETION)
1047 return err;
1048
1049 if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1050 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1051 UMQ_TYPE_MD_FIXED);
1052 else
1053 asg_spec = NULL;
1054
1055 for (i = 0; i < sc->sc_num_mididevs; i++) {
1056 if (asg_spec != NULL) {
1057 if (*asg_spec == -1)
1058 out = NULL;
1059 else
1060 out = &sc->sc_out_jacks[*asg_spec];
1061 ++ asg_spec;
1062 if (*asg_spec == -1)
1063 in = NULL;
1064 else
1065 in = &sc->sc_in_jacks[*asg_spec];
1066 ++ asg_spec;
1067 } else {
1068 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1069 : NULL;
1070 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1071 : NULL;
1072 }
1073 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1074 if (err!=USBD_NORMAL_COMPLETION) {
1075 free_all_mididevs(sc);
1076 return err;
1077 }
1078 }
1079
1080 return USBD_NORMAL_COMPLETION;
1081 }
1082
1083 static usbd_status
1084 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1085 {
1086 struct umidi_endpoint *ep = jack->endpoint;
1087 struct umidi_softc *sc = ep->sc;
1088 umidi_packet_bufp end;
1089 int err;
1090
1091 KASSERT(mutex_owned(&sc->sc_lock));
1092
1093 if (jack->opened)
1094 return USBD_IN_USE;
1095
1096 jack->arg = arg;
1097 jack->u.out.intr = intr;
1098 jack->midiman_ppkt = NULL;
1099 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1100 jack->opened = 1;
1101 ep->num_open++;
1102 /*
1103 * out_solicit maintains an invariant that there will always be
1104 * (num_open - num_scheduled) slots free in the buffer. as we have
1105 * just incremented num_open, the buffer may be too full to satisfy
1106 * the invariant until a transfer completes, for which we must wait.
1107 */
1108 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1109 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1110 mstohz(10));
1111 if (err) {
1112 ep->num_open--;
1113 jack->opened = 0;
1114 return USBD_IOERROR;
1115 }
1116 }
1117
1118 return USBD_NORMAL_COMPLETION;
1119 }
1120
1121 static usbd_status
1122 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1123 {
1124 usbd_status err = USBD_NORMAL_COMPLETION;
1125 struct umidi_endpoint *ep = jack->endpoint;
1126
1127 KASSERT(mutex_owned(&ep->sc->sc_lock));
1128
1129 if (jack->opened)
1130 return USBD_IN_USE;
1131
1132 jack->arg = arg;
1133 jack->u.in.intr = intr;
1134 jack->opened = 1;
1135 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1136 err = start_input_transfer(ep);
1137 if (err != USBD_NORMAL_COMPLETION &&
1138 err != USBD_IN_PROGRESS) {
1139 ep->num_open--;
1140 }
1141 }
1142
1143 return err;
1144 }
1145
1146 static void
1147 close_out_jack(struct umidi_jack *jack)
1148 {
1149 struct umidi_endpoint *ep;
1150 struct umidi_softc *sc;
1151 u_int16_t mask;
1152 int err;
1153
1154 if (jack->opened) {
1155 ep = jack->endpoint;
1156 sc = ep->sc;
1157 mutex_spin_enter(&sc->sc_lock);
1158 mask = 1 << (jack->cable_number);
1159 while (mask & (ep->this_schedule | ep->next_schedule)) {
1160 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1161 mstohz(10));
1162 if (err)
1163 break;
1164 }
1165 /*
1166 * We can re-enter this function from both close() and
1167 * detach(). Make sure only one of them does this part.
1168 */
1169 if (jack->opened) {
1170 jack->opened = 0;
1171 jack->endpoint->num_open--;
1172 ep->this_schedule &= ~mask;
1173 ep->next_schedule &= ~mask;
1174 }
1175 mutex_spin_exit(&sc->sc_lock);
1176 }
1177 }
1178
1179 static void
1180 close_in_jack(struct umidi_jack *jack)
1181 {
1182 if (jack->opened) {
1183 jack->opened = 0;
1184 if (--jack->endpoint->num_open == 0) {
1185 usbd_abort_pipe(jack->endpoint->pipe);
1186 }
1187 }
1188 }
1189
1190 static usbd_status
1191 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1192 {
1193 if (mididev->sc)
1194 return USBD_IN_USE;
1195
1196 mididev->sc = sc;
1197
1198 describe_mididev(mididev);
1199
1200 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1201
1202 return USBD_NORMAL_COMPLETION;
1203 }
1204
1205 static usbd_status
1206 detach_mididev(struct umidi_mididev *mididev, int flags)
1207 {
1208 if (!mididev->sc)
1209 return USBD_NO_ADDR;
1210
1211 if (mididev->opened) {
1212 umidi_close(mididev);
1213 }
1214 unbind_jacks_from_mididev(mididev);
1215
1216 if (mididev->mdev != NULL)
1217 config_detach(mididev->mdev, flags);
1218
1219 if (NULL != mididev->label) {
1220 kmem_free(mididev->label, mididev->label_len);
1221 mididev->label = NULL;
1222 }
1223
1224 mididev->sc = NULL;
1225
1226 return USBD_NORMAL_COMPLETION;
1227 }
1228
1229 static void
1230 deactivate_mididev(struct umidi_mididev *mididev)
1231 {
1232 if (mididev->out_jack)
1233 mididev->out_jack->binded = 0;
1234 if (mididev->in_jack)
1235 mididev->in_jack->binded = 0;
1236 }
1237
1238 static usbd_status
1239 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1240 {
1241 sc->sc_num_mididevs = nmidi;
1242 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1243 if (!sc->sc_mididevs)
1244 return USBD_NOMEM;
1245
1246 return USBD_NORMAL_COMPLETION;
1247 }
1248
1249 static void
1250 free_all_mididevs(struct umidi_softc *sc)
1251 {
1252 if (sc->sc_mididevs)
1253 kmem_free(sc->sc_mididevs,
1254 sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
1255 sc->sc_num_mididevs = 0;
1256 }
1257
1258 static usbd_status
1259 attach_all_mididevs(struct umidi_softc *sc)
1260 {
1261 usbd_status err;
1262 int i;
1263
1264 if (sc->sc_mididevs)
1265 for (i = 0; i < sc->sc_num_mididevs; i++) {
1266 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1267 if (err != USBD_NORMAL_COMPLETION)
1268 return err;
1269 }
1270
1271 return USBD_NORMAL_COMPLETION;
1272 }
1273
1274 static usbd_status
1275 detach_all_mididevs(struct umidi_softc *sc, int flags)
1276 {
1277 usbd_status err;
1278 int i;
1279
1280 if (sc->sc_mididevs)
1281 for (i = 0; i < sc->sc_num_mididevs; i++) {
1282 err = detach_mididev(&sc->sc_mididevs[i], flags);
1283 if (err != USBD_NORMAL_COMPLETION)
1284 return err;
1285 }
1286
1287 return USBD_NORMAL_COMPLETION;
1288 }
1289
1290 static void
1291 deactivate_all_mididevs(struct umidi_softc *sc)
1292 {
1293 int i;
1294
1295 if (sc->sc_mididevs) {
1296 for (i = 0; i < sc->sc_num_mididevs; i++)
1297 deactivate_mididev(&sc->sc_mididevs[i]);
1298 }
1299 }
1300
1301 /*
1302 * TODO: the 0-based cable numbers will often not match the labeling of the
1303 * equipment. Ideally:
1304 * For class-compliant devices: get the iJack string from the jack descriptor.
1305 * Otherwise:
1306 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1307 * number for display)
1308 * - support an array quirk explictly giving a char * for each jack.
1309 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1310 * the CNs are not globally unique, each is shown with its associated endpoint
1311 * address in hex also. That should not be necessary when using iJack values
1312 * or a quirk array.
1313 */
1314 void
1315 describe_mididev(struct umidi_mididev *md)
1316 {
1317 char in_label[16];
1318 char out_label[16];
1319 const char *unit_label;
1320 char *final_label;
1321 struct umidi_softc *sc;
1322 int show_ep_in;
1323 int show_ep_out;
1324 size_t len;
1325
1326 sc = md->sc;
1327 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1328 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1329
1330 if ( NULL == md->in_jack )
1331 in_label[0] = '\0';
1332 else if ( show_ep_in )
1333 snprintf(in_label, sizeof in_label, "<%d(%x) ",
1334 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1335 else
1336 snprintf(in_label, sizeof in_label, "<%d ",
1337 md->in_jack->cable_number);
1338
1339 if ( NULL == md->out_jack )
1340 out_label[0] = '\0';
1341 else if ( show_ep_out )
1342 snprintf(out_label, sizeof out_label, ">%d(%x) ",
1343 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1344 else
1345 snprintf(out_label, sizeof out_label, ">%d ",
1346 md->out_jack->cable_number);
1347
1348 unit_label = device_xname(sc->sc_dev);
1349
1350 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1351
1352 final_label = kmem_alloc(len, KM_SLEEP);
1353
1354 snprintf(final_label, len, "%s%son %s",
1355 in_label, out_label, unit_label);
1356
1357 md->label = final_label;
1358 md->label_len = len;
1359 }
1360
1361 #ifdef UMIDI_DEBUG
1362 static void
1363 dump_sc(struct umidi_softc *sc)
1364 {
1365 int i;
1366
1367 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1368 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1369 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1370 dump_ep(&sc->sc_out_ep[i]);
1371 }
1372 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1373 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1374 dump_ep(&sc->sc_in_ep[i]);
1375 }
1376 }
1377
1378 static void
1379 dump_ep(struct umidi_endpoint *ep)
1380 {
1381 int i;
1382 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1383 if (NULL==ep->jacks[i])
1384 continue;
1385 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1386 dump_jack(ep->jacks[i]);
1387 }
1388 }
1389 static void
1390 dump_jack(struct umidi_jack *jack)
1391 {
1392 DPRINTFN(10, ("\t\t\tep=%p\n",
1393 jack->endpoint));
1394 }
1395
1396 #endif /* UMIDI_DEBUG */
1397
1398
1399
1400 /*
1401 * MUX MIDI PACKET
1402 */
1403
1404 static const int packet_length[16] = {
1405 /*0*/ -1,
1406 /*1*/ -1,
1407 /*2*/ 2,
1408 /*3*/ 3,
1409 /*4*/ 3,
1410 /*5*/ 1,
1411 /*6*/ 2,
1412 /*7*/ 3,
1413 /*8*/ 3,
1414 /*9*/ 3,
1415 /*A*/ 3,
1416 /*B*/ 3,
1417 /*C*/ 2,
1418 /*D*/ 2,
1419 /*E*/ 3,
1420 /*F*/ 1,
1421 };
1422
1423 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1424 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1425 #define MIX_CN_CIN(cn, cin) \
1426 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1427 ((unsigned char)(cin)&0x0F)))
1428
1429 static usbd_status
1430 start_input_transfer(struct umidi_endpoint *ep)
1431 {
1432 usbd_setup_xfer(ep->xfer, ep->pipe,
1433 (usbd_private_handle)ep,
1434 ep->buffer, ep->buffer_size,
1435 USBD_SHORT_XFER_OK | USBD_NO_COPY,
1436 USBD_NO_TIMEOUT, in_intr);
1437 return usbd_transfer(ep->xfer);
1438 }
1439
1440 static usbd_status
1441 start_output_transfer(struct umidi_endpoint *ep)
1442 {
1443 usbd_status rv;
1444 u_int32_t length;
1445 int i;
1446
1447 length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1448 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1449 ep->buffer, ep->next_slot, length));
1450 usbd_setup_xfer(ep->xfer, ep->pipe,
1451 (usbd_private_handle)ep,
1452 ep->buffer, length,
1453 USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1454 rv = usbd_transfer(ep->xfer);
1455
1456 /*
1457 * Once the transfer is scheduled, no more adding to partial
1458 * packets within it.
1459 */
1460 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1461 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1462 if (NULL != ep->jacks[i])
1463 ep->jacks[i]->midiman_ppkt = NULL;
1464 }
1465
1466 return rv;
1467 }
1468
1469 #ifdef UMIDI_DEBUG
1470 #define DPR_PACKET(dir, sc, p) \
1471 if ((unsigned char)(p)[1]!=0xFE) \
1472 DPRINTFN(500, \
1473 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1474 device_xname(sc->sc_dev), \
1475 (unsigned char)(p)[0], \
1476 (unsigned char)(p)[1], \
1477 (unsigned char)(p)[2], \
1478 (unsigned char)(p)[3]));
1479 #else
1480 #define DPR_PACKET(dir, sc, p)
1481 #endif
1482
1483 /*
1484 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1485 * with the cable number and length in the last byte instead of the first,
1486 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1487 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1488 * with a cable nybble and a length nybble (which, unlike the CIN of a
1489 * real USB MIDI packet, has no semantics at all besides the length).
1490 * A packet received from a Midiman may contain part of a MIDI message,
1491 * more than one MIDI message, or parts of more than one MIDI message. A
1492 * three-byte MIDI message may arrive in three packets of data length 1, and
1493 * running status may be used. Happily, the midi(4) driver above us will put
1494 * it all back together, so the only cost is in USB bandwidth. The device
1495 * has an easier time with what it receives from us: we'll pack messages in
1496 * and across packets, but filling the packets whenever possible and,
1497 * as midi(4) hands us a complete message at a time, we'll never send one
1498 * in a dribble of short packets.
1499 */
1500
1501 static int
1502 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1503 {
1504 struct umidi_endpoint *ep = out_jack->endpoint;
1505 struct umidi_softc *sc = ep->sc;
1506 unsigned char *packet;
1507 int plen;
1508 int poff;
1509
1510 if (sc->sc_dying)
1511 return EIO;
1512
1513 if (!out_jack->opened)
1514 return ENODEV; /* XXX as it was, is this the right errno? */
1515
1516 #ifdef UMIDI_DEBUG
1517 if ( umididebug >= 100 )
1518 microtime(&umidi_tv);
1519 #endif
1520 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1521 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1522 ep, out_jack->cable_number, len, cin));
1523
1524 packet = *ep->next_slot++;
1525 KASSERT(ep->buffer_size >=
1526 (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1527 memset(packet, 0, UMIDI_PACKET_SIZE);
1528 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1529 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1530 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1531 plen = 3 - poff;
1532 if (plen > len)
1533 plen = len;
1534 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1535 src += plen;
1536 len -= plen;
1537 plen += poff;
1538 out_jack->midiman_ppkt[3] =
1539 MIX_CN_CIN(out_jack->cable_number, plen);
1540 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1541 if (3 == plen)
1542 out_jack->midiman_ppkt = NULL; /* no more */
1543 }
1544 if (0 == len)
1545 ep->next_slot--; /* won't be needed, nevermind */
1546 else {
1547 memcpy(packet, src, len);
1548 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1549 DPR_PACKET(out, sc, packet);
1550 if (len < 3)
1551 out_jack->midiman_ppkt = packet;
1552 }
1553 } else { /* the nice simple USB class-compliant case */
1554 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1555 memcpy(packet+1, src, len);
1556 DPR_PACKET(out, sc, packet);
1557 }
1558 ep->next_schedule |= 1<<(out_jack->cable_number);
1559 ++ ep->num_scheduled;
1560 if ( !ep->armed && !ep->soliciting ) {
1561 /*
1562 * It would be bad to call out_solicit directly here (the
1563 * caller need not be reentrant) but a soft interrupt allows
1564 * solicit to run immediately the caller exits its critical
1565 * section, and if the caller has more to write we can get it
1566 * before starting the USB transfer, and send a longer one.
1567 */
1568 ep->soliciting = 1;
1569 softint_schedule(ep->solicit_cookie);
1570 }
1571
1572 return 0;
1573 }
1574
1575 static void
1576 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1577 usbd_status status)
1578 {
1579 int cn, len, i;
1580 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1581 struct umidi_softc *sc = ep->sc;
1582 struct umidi_jack *jack;
1583 unsigned char *packet;
1584 umidi_packet_bufp slot;
1585 umidi_packet_bufp end;
1586 unsigned char *data;
1587 u_int32_t count;
1588
1589 if (ep->sc->sc_dying || !ep->num_open)
1590 return;
1591
1592 mutex_enter(&sc->sc_lock);
1593 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1594 if (0 == count % UMIDI_PACKET_SIZE) {
1595 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1596 device_xname(ep->sc->sc_dev), ep, count));
1597 } else {
1598 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1599 device_xname(ep->sc->sc_dev), ep, count));
1600 }
1601
1602 slot = ep->buffer;
1603 end = slot + count / sizeof *slot;
1604
1605 for (packet = *slot; slot < end; packet = *++slot) {
1606
1607 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1608 cn = (0xf0&(packet[3]))>>4;
1609 len = 0x0f&(packet[3]);
1610 data = packet;
1611 } else {
1612 cn = GET_CN(packet[0]);
1613 len = packet_length[GET_CIN(packet[0])];
1614 data = packet + 1;
1615 }
1616 /* 0 <= cn <= 15 by inspection of above code */
1617 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1618 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1619 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1620 device_xname(ep->sc->sc_dev), ep, cn, len,
1621 (unsigned)data[0],
1622 (unsigned)data[1],
1623 (unsigned)data[2]));
1624 mutex_exit(&sc->sc_lock);
1625 return;
1626 }
1627
1628 if (!jack->binded || !jack->opened)
1629 continue;
1630
1631 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1632 "%02X %02X %02X\n",
1633 device_xname(ep->sc->sc_dev), ep, cn, len,
1634 (unsigned)data[0],
1635 (unsigned)data[1],
1636 (unsigned)data[2]));
1637
1638 if (jack->u.in.intr) {
1639 for (i = 0; i < len; i++) {
1640 (*jack->u.in.intr)(jack->arg, data[i]);
1641 }
1642 }
1643
1644 }
1645
1646 (void)start_input_transfer(ep);
1647 mutex_exit(&sc->sc_lock);
1648 }
1649
1650 static void
1651 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1652 usbd_status status)
1653 {
1654 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1655 struct umidi_softc *sc = ep->sc;
1656 u_int32_t count;
1657
1658 if (sc->sc_dying)
1659 return;
1660
1661 mutex_enter(&sc->sc_lock);
1662 #ifdef UMIDI_DEBUG
1663 if ( umididebug >= 200 )
1664 microtime(&umidi_tv);
1665 #endif
1666 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1667 if ( 0 == count % UMIDI_PACKET_SIZE ) {
1668 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1669 device_xname(ep->sc->sc_dev),
1670 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1671 } else {
1672 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1673 device_xname(ep->sc->sc_dev), ep, count));
1674 }
1675 count /= UMIDI_PACKET_SIZE;
1676
1677 /*
1678 * If while the transfer was pending we buffered any new messages,
1679 * move them to the start of the buffer.
1680 */
1681 ep->next_slot -= count;
1682 if (ep->buffer < ep->next_slot) {
1683 memcpy(ep->buffer, ep->buffer + count,
1684 (char *)ep->next_slot - (char *)ep->buffer);
1685 }
1686 cv_broadcast(&sc->sc_cv);
1687 /*
1688 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1689 * Running at IPL_USB so the following should happen to be safe.
1690 */
1691 ep->armed = 0;
1692 if (!ep->soliciting) {
1693 ep->soliciting = 1;
1694 out_solicit_locked(ep);
1695 }
1696 mutex_exit(&sc->sc_lock);
1697 }
1698
1699 /*
1700 * A jack on which we have received a packet must be called back on its
1701 * out.intr handler before it will send us another; it is considered
1702 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1703 * we need no extra buffer space for it.
1704 *
1705 * In contrast, a jack that is open but not scheduled may supply us a packet
1706 * at any time, driven by the top half, and we must be able to accept it, no
1707 * excuses. So we must ensure that at any point in time there are at least
1708 * (num_open - num_scheduled) slots free.
1709 *
1710 * As long as there are more slots free than that minimum, we can loop calling
1711 * scheduled jacks back on their "interrupt" handlers, soliciting more
1712 * packets, starting the USB transfer only when the buffer space is down to
1713 * the minimum or no jack has any more to send.
1714 */
1715
1716 static void
1717 out_solicit_locked(void *arg)
1718 {
1719 struct umidi_endpoint *ep = arg;
1720 umidi_packet_bufp end;
1721 u_int16_t which;
1722 struct umidi_jack *jack;
1723
1724 KASSERT(mutex_owned(&ep->sc->sc_lock));
1725
1726 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1727
1728 for ( ;; ) {
1729 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1730 break; /* at IPL_USB */
1731 if (ep->this_schedule == 0) {
1732 if (ep->next_schedule == 0)
1733 break; /* at IPL_USB */
1734 ep->this_schedule = ep->next_schedule;
1735 ep->next_schedule = 0;
1736 }
1737 /*
1738 * At least one jack is scheduled. Find and mask off the least
1739 * set bit in this_schedule and decrement num_scheduled.
1740 * Convert mask to bit index to find the corresponding jack,
1741 * and call its intr handler. If it has a message, it will call
1742 * back one of the output methods, which will set its bit in
1743 * next_schedule (not copied into this_schedule until the
1744 * latter is empty). In this way we round-robin the jacks that
1745 * have messages to send, until the buffer is as full as we
1746 * dare, and then start a transfer.
1747 */
1748 which = ep->this_schedule;
1749 which &= (~which)+1; /* now mask of least set bit */
1750 ep->this_schedule &= ~which;
1751 --ep->num_scheduled;
1752
1753 --which; /* now 1s below mask - count 1s to get index */
1754 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1755 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1756 which = (((which >> 4) + which) & 0x0f0f);
1757 which += (which >> 8);
1758 which &= 0x1f; /* the bit index a/k/a jack number */
1759
1760 jack = ep->jacks[which];
1761 if (jack->u.out.intr)
1762 (*jack->u.out.intr)(jack->arg);
1763 }
1764 /* intr lock held at loop exit */
1765 if (!ep->armed && ep->next_slot > ep->buffer)
1766 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1767 ep->soliciting = 0;
1768 }
1769
1770 /* Entry point for the softintr. */
1771 static void
1772 out_solicit(void *arg)
1773 {
1774 struct umidi_endpoint *ep = arg;
1775 struct umidi_softc *sc = ep->sc;
1776
1777 mutex_enter(&sc->sc_lock);
1778 out_solicit_locked(arg);
1779 mutex_exit(&sc->sc_lock);
1780 }
1781