umidi.c revision 1.55 1 /* $NetBSD: umidi.c,v 1.55 2011/12/23 00:51:47 jakllsch Exp $ */
2 /*
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org) and (full-size transfers, extended
8 * hw_if) Chapman Flack (chap (at) NetBSD.org).
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.55 2011/12/23 00:51:47 jakllsch Exp $");
34
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/kmem.h>
40 #include <sys/device.h>
41 #include <sys/ioctl.h>
42 #include <sys/conf.h>
43 #include <sys/file.h>
44 #include <sys/select.h>
45 #include <sys/proc.h>
46 #include <sys/vnode.h>
47 #include <sys/poll.h>
48 #include <sys/intr.h>
49
50 #include <dev/usb/usb.h>
51 #include <dev/usb/usbdi.h>
52 #include <dev/usb/usbdi_util.h>
53
54 #include <dev/usb/usbdevs.h>
55 #include <dev/usb/uaudioreg.h>
56 #include <dev/usb/umidireg.h>
57 #include <dev/usb/umidivar.h>
58 #include <dev/usb/umidi_quirks.h>
59
60 #include <dev/midi_if.h>
61
62 #ifdef UMIDI_DEBUG
63 #define DPRINTF(x) if (umididebug) printf x
64 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
65 #include <sys/time.h>
66 static struct timeval umidi_tv;
67 int umididebug = 0;
68 #else
69 #define DPRINTF(x)
70 #define DPRINTFN(n,x)
71 #endif
72
73 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
74 (sc->sc_out_num_endpoints + \
75 sc->sc_in_num_endpoints))
76
77
78 static int umidi_open(void *, int,
79 void (*)(void *, int), void (*)(void *), void *);
80 static void umidi_close(void *);
81 static int umidi_channelmsg(void *, int, int, u_char *, int);
82 static int umidi_commonmsg(void *, int, u_char *, int);
83 static int umidi_sysex(void *, u_char *, int);
84 static int umidi_rtmsg(void *, int);
85 static void umidi_getinfo(void *, struct midi_info *);
86 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
87
88 static usbd_status alloc_pipe(struct umidi_endpoint *);
89 static void free_pipe(struct umidi_endpoint *);
90
91 static usbd_status alloc_all_endpoints(struct umidi_softc *);
92 static void free_all_endpoints(struct umidi_softc *);
93
94 static usbd_status alloc_all_jacks(struct umidi_softc *);
95 static void free_all_jacks(struct umidi_softc *);
96 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
97 struct umidi_jack *,
98 struct umidi_jack *,
99 struct umidi_mididev *);
100 static void unbind_jacks_from_mididev(struct umidi_mididev *);
101 static void unbind_all_jacks(struct umidi_softc *);
102 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
103 static usbd_status open_out_jack(struct umidi_jack *, void *,
104 void (*)(void *));
105 static usbd_status open_in_jack(struct umidi_jack *, void *,
106 void (*)(void *, int));
107 static void close_out_jack(struct umidi_jack *);
108 static void close_in_jack(struct umidi_jack *);
109
110 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
111 static usbd_status detach_mididev(struct umidi_mididev *, int);
112 static void deactivate_mididev(struct umidi_mididev *);
113 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
114 static void free_all_mididevs(struct umidi_softc *);
115 static usbd_status attach_all_mididevs(struct umidi_softc *);
116 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
117 static void deactivate_all_mididevs(struct umidi_softc *);
118 static void describe_mididev(struct umidi_mididev *);
119
120 #ifdef UMIDI_DEBUG
121 static void dump_sc(struct umidi_softc *);
122 static void dump_ep(struct umidi_endpoint *);
123 static void dump_jack(struct umidi_jack *);
124 #endif
125
126 static usbd_status start_input_transfer(struct umidi_endpoint *);
127 static usbd_status start_output_transfer(struct umidi_endpoint *);
128 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
129 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
130 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
131 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
132 static void out_solicit_locked(void *); /* pre-locked version */
133
134
135 const struct midi_hw_if umidi_hw_if = {
136 .open = umidi_open,
137 .close = umidi_close,
138 .output = umidi_rtmsg,
139 .getinfo = umidi_getinfo,
140 .get_locks = umidi_get_locks,
141 };
142
143 struct midi_hw_if_ext umidi_hw_if_ext = {
144 .channel = umidi_channelmsg,
145 .common = umidi_commonmsg,
146 .sysex = umidi_sysex,
147 };
148
149 struct midi_hw_if_ext umidi_hw_if_mm = {
150 .channel = umidi_channelmsg,
151 .common = umidi_commonmsg,
152 .sysex = umidi_sysex,
153 .compress = 1,
154 };
155
156 int umidi_match(device_t, cfdata_t, void *);
157 void umidi_attach(device_t, device_t, void *);
158 void umidi_childdet(device_t, device_t);
159 int umidi_detach(device_t, int);
160 int umidi_activate(device_t, enum devact);
161 extern struct cfdriver umidi_cd;
162 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
163 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
164
165 int
166 umidi_match(device_t parent, cfdata_t match, void *aux)
167 {
168 struct usbif_attach_arg *uaa = aux;
169
170 DPRINTFN(1,("umidi_match\n"));
171
172 if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
173 return UMATCH_IFACECLASS_IFACESUBCLASS;
174
175 if (uaa->class == UICLASS_AUDIO &&
176 uaa->subclass == UISUBCLASS_MIDISTREAM)
177 return UMATCH_IFACECLASS_IFACESUBCLASS;
178
179 return UMATCH_NONE;
180 }
181
182 void
183 umidi_attach(device_t parent, device_t self, void *aux)
184 {
185 usbd_status err;
186 struct umidi_softc *sc = device_private(self);
187 struct usbif_attach_arg *uaa = aux;
188 char *devinfop;
189
190 DPRINTFN(1,("umidi_attach\n"));
191
192 sc->sc_dev = self;
193
194 aprint_naive("\n");
195 aprint_normal("\n");
196
197 devinfop = usbd_devinfo_alloc(uaa->device, 0);
198 aprint_normal_dev(self, "%s\n", devinfop);
199 usbd_devinfo_free(devinfop);
200
201 sc->sc_iface = uaa->iface;
202 sc->sc_udev = uaa->device;
203
204 sc->sc_quirk =
205 umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
206 aprint_normal_dev(self, "");
207 umidi_print_quirk(sc->sc_quirk);
208
209 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
210 cv_init(&sc->sc_cv, "umidopcl");
211
212 KERNEL_LOCK(1, curlwp);
213 err = alloc_all_endpoints(sc);
214 if (err != USBD_NORMAL_COMPLETION) {
215 aprint_error_dev(self,
216 "alloc_all_endpoints failed. (err=%d)\n", err);
217 goto error;
218 }
219 err = alloc_all_jacks(sc);
220 if (err != USBD_NORMAL_COMPLETION) {
221 free_all_endpoints(sc);
222 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
223 err);
224 goto error;
225 }
226 aprint_normal_dev(self, "out=%d, in=%d\n",
227 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
228
229 err = assign_all_jacks_automatically(sc);
230 if (err != USBD_NORMAL_COMPLETION) {
231 unbind_all_jacks(sc);
232 free_all_jacks(sc);
233 free_all_endpoints(sc);
234 aprint_error_dev(self,
235 "assign_all_jacks_automatically failed. (err=%d)\n", err);
236 goto error;
237 }
238 err = attach_all_mididevs(sc);
239 if (err != USBD_NORMAL_COMPLETION) {
240 free_all_jacks(sc);
241 free_all_endpoints(sc);
242 aprint_error_dev(self,
243 "attach_all_mididevs failed. (err=%d)\n", err);
244 }
245 KERNEL_UNLOCK_ONE(curlwp);
246
247 #ifdef UMIDI_DEBUG
248 dump_sc(sc);
249 #endif
250
251 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
252 sc->sc_udev, sc->sc_dev);
253
254 return;
255 error:
256 aprint_error_dev(self, "disabled.\n");
257 sc->sc_dying = 1;
258 return;
259 }
260
261 void
262 umidi_childdet(device_t self, device_t child)
263 {
264 int i;
265 struct umidi_softc *sc = device_private(self);
266
267 KASSERT(sc->sc_mididevs != NULL);
268
269 for (i = 0; i < sc->sc_num_mididevs; i++) {
270 if (sc->sc_mididevs[i].mdev == child)
271 break;
272 }
273 KASSERT(i < sc->sc_num_mididevs);
274 sc->sc_mididevs[i].mdev = NULL;
275 }
276
277 int
278 umidi_activate(device_t self, enum devact act)
279 {
280 struct umidi_softc *sc = device_private(self);
281
282 switch (act) {
283 case DVACT_DEACTIVATE:
284 DPRINTFN(1,("umidi_activate (deactivate)\n"));
285 sc->sc_dying = 1;
286 deactivate_all_mididevs(sc);
287 return 0;
288 default:
289 DPRINTFN(1,("umidi_activate (%d)\n", act));
290 return EOPNOTSUPP;
291 }
292 }
293
294 int
295 umidi_detach(device_t self, int flags)
296 {
297 struct umidi_softc *sc = device_private(self);
298
299 DPRINTFN(1,("umidi_detach\n"));
300
301 sc->sc_dying = 1;
302 KERNEL_LOCK(1, curlwp);
303 detach_all_mididevs(sc, flags);
304 free_all_mididevs(sc);
305 free_all_jacks(sc);
306 free_all_endpoints(sc);
307
308 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
309 sc->sc_dev);
310 KERNEL_UNLOCK_ONE(curlwp);
311
312 mutex_destroy(&sc->sc_lock);
313 cv_destroy(&sc->sc_cv);
314
315 return 0;
316 }
317
318
319 /*
320 * midi_if stuffs
321 */
322 int
323 umidi_open(void *addr,
324 int flags,
325 void (*iintr)(void *, int),
326 void (*ointr)(void *),
327 void *arg)
328 {
329 struct umidi_mididev *mididev = addr;
330 struct umidi_softc *sc = mididev->sc;
331 usbd_status err;
332
333 DPRINTF(("umidi_open: sc=%p\n", sc));
334
335 if (!sc)
336 return ENXIO;
337 if (mididev->opened)
338 return EBUSY;
339 if (sc->sc_dying)
340 return EIO;
341
342 mididev->opened = 1;
343 mididev->flags = flags;
344 if ((mididev->flags & FWRITE) && mididev->out_jack) {
345 err = open_out_jack(mididev->out_jack, arg, ointr);
346 if ( err != USBD_NORMAL_COMPLETION )
347 goto bad;
348 }
349 if ((mididev->flags & FREAD) && mididev->in_jack) {
350 err = open_in_jack(mididev->in_jack, arg, iintr);
351 if ( err != USBD_NORMAL_COMPLETION
352 && err != USBD_IN_PROGRESS )
353 goto bad;
354 }
355
356 return 0;
357 bad:
358 mididev->opened = 0;
359 DPRINTF(("umidi_open: usbd_status %d\n", err));
360 return USBD_IN_USE == err ? EBUSY : EIO;
361 }
362
363 void
364 umidi_close(void *addr)
365 {
366 struct umidi_mididev *mididev = addr;
367
368 if ((mididev->flags & FWRITE) && mididev->out_jack)
369 close_out_jack(mididev->out_jack);
370 if ((mididev->flags & FREAD) && mididev->in_jack)
371 close_in_jack(mididev->in_jack);
372 mididev->opened = 0;
373 }
374
375 int
376 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
377 int len)
378 {
379 struct umidi_mididev *mididev = addr;
380
381 if (!mididev->out_jack || !mididev->opened)
382 return EIO;
383
384 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
385 }
386
387 int
388 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
389 {
390 struct umidi_mididev *mididev = addr;
391 int cin;
392
393 if (!mididev->out_jack || !mididev->opened)
394 return EIO;
395
396 switch ( len ) {
397 case 1: cin = 5; break;
398 case 2: cin = 2; break;
399 case 3: cin = 3; break;
400 default: return EIO; /* or gcc warns of cin uninitialized */
401 }
402
403 return out_jack_output(mididev->out_jack, msg, len, cin);
404 }
405
406 int
407 umidi_sysex(void *addr, u_char *msg, int len)
408 {
409 struct umidi_mididev *mididev = addr;
410 int cin;
411
412 if (!mididev->out_jack || !mididev->opened)
413 return EIO;
414
415 switch ( len ) {
416 case 1: cin = 5; break;
417 case 2: cin = 6; break;
418 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
419 default: return EIO; /* or gcc warns of cin uninitialized */
420 }
421
422 return out_jack_output(mididev->out_jack, msg, len, cin);
423 }
424
425 int
426 umidi_rtmsg(void *addr, int d)
427 {
428 struct umidi_mididev *mididev = addr;
429 u_char msg = d;
430
431 if (!mididev->out_jack || !mididev->opened)
432 return EIO;
433
434 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
435 }
436
437 void
438 umidi_getinfo(void *addr, struct midi_info *mi)
439 {
440 struct umidi_mididev *mididev = addr;
441 struct umidi_softc *sc = mididev->sc;
442 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
443
444 mi->name = mididev->label;
445 mi->props = MIDI_PROP_OUT_INTR;
446 if (mididev->in_jack)
447 mi->props |= MIDI_PROP_CAN_INPUT;
448 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
449 }
450
451 static void
452 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
453 {
454 struct umidi_mididev *mididev = addr;
455 struct umidi_softc *sc = mididev->sc;
456
457 *intr = NULL;
458 *thread = &sc->sc_lock;
459 }
460
461 /*
462 * each endpoint stuffs
463 */
464
465 /* alloc/free pipe */
466 static usbd_status
467 alloc_pipe(struct umidi_endpoint *ep)
468 {
469 struct umidi_softc *sc = ep->sc;
470 usbd_status err;
471 usb_endpoint_descriptor_t *epd;
472
473 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
474 /*
475 * For output, an improvement would be to have a buffer bigger than
476 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
477 * allow out_solicit to fill the buffer to the full packet size in
478 * all cases. But to use usbd_alloc_buffer to get a slightly larger
479 * buffer would not be a good way to do that, because if the addition
480 * would make the buffer exceed USB_MEM_SMALL then a substantially
481 * larger block may be wastefully allocated. Some flavor of double
482 * buffering could serve the same purpose, but would increase the
483 * code complexity, so for now I will live with the current slight
484 * penalty of reducing max transfer size by (num_open-num_scheduled)
485 * packet slots.
486 */
487 ep->buffer_size = UGETW(epd->wMaxPacketSize);
488 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
489
490 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
491 device_xname(sc->sc_dev), ep, ep->buffer_size));
492 ep->num_scheduled = 0;
493 ep->this_schedule = 0;
494 ep->next_schedule = 0;
495 ep->soliciting = 0;
496 ep->armed = 0;
497 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
498 if (ep->xfer == NULL) {
499 err = USBD_NOMEM;
500 goto quit;
501 }
502 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
503 if (ep->buffer == NULL) {
504 usbd_free_xfer(ep->xfer);
505 err = USBD_NOMEM;
506 goto quit;
507 }
508 ep->next_slot = ep->buffer;
509 err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
510 if (err)
511 usbd_free_xfer(ep->xfer);
512 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK, out_solicit, ep);
513 quit:
514 return err;
515 }
516
517 static void
518 free_pipe(struct umidi_endpoint *ep)
519 {
520 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
521 usbd_abort_pipe(ep->pipe);
522 usbd_close_pipe(ep->pipe);
523 usbd_free_xfer(ep->xfer);
524 softint_disestablish(ep->solicit_cookie);
525 }
526
527
528 /* alloc/free the array of endpoint structures */
529
530 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
531 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
532 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
533
534 static usbd_status
535 alloc_all_endpoints(struct umidi_softc *sc)
536 {
537 usbd_status err;
538 struct umidi_endpoint *ep;
539 int i;
540
541 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
542 err = alloc_all_endpoints_fixed_ep(sc);
543 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
544 err = alloc_all_endpoints_yamaha(sc);
545 } else {
546 err = alloc_all_endpoints_genuine(sc);
547 }
548 if (err != USBD_NORMAL_COMPLETION)
549 return err;
550
551 ep = sc->sc_endpoints;
552 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
553 err = alloc_pipe(ep++);
554 if (err != USBD_NORMAL_COMPLETION) {
555 for (; ep != sc->sc_endpoints; ep--)
556 free_pipe(ep-1);
557 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
558 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
559 break;
560 }
561 }
562 return err;
563 }
564
565 static void
566 free_all_endpoints(struct umidi_softc *sc)
567 {
568 int i;
569
570 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
571 free_pipe(&sc->sc_endpoints[i]);
572 if (sc->sc_endpoints != NULL)
573 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
574 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
575 }
576
577 static usbd_status
578 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
579 {
580 usbd_status err;
581 const struct umq_fixed_ep_desc *fp;
582 struct umidi_endpoint *ep;
583 usb_endpoint_descriptor_t *epd;
584 int i;
585
586 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
587 UMQ_TYPE_FIXED_EP);
588 sc->sc_out_num_jacks = 0;
589 sc->sc_in_num_jacks = 0;
590 sc->sc_out_num_endpoints = fp->num_out_ep;
591 sc->sc_in_num_endpoints = fp->num_in_ep;
592 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
593 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
594 if (!sc->sc_endpoints)
595 return USBD_NOMEM;
596
597 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
598 sc->sc_in_ep =
599 sc->sc_in_num_endpoints ?
600 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
601
602 ep = &sc->sc_out_ep[0];
603 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
604 epd = usbd_interface2endpoint_descriptor(
605 sc->sc_iface,
606 fp->out_ep[i].ep);
607 if (!epd) {
608 aprint_error_dev(sc->sc_dev,
609 "cannot get endpoint descriptor(out:%d)\n",
610 fp->out_ep[i].ep);
611 err = USBD_INVAL;
612 goto error;
613 }
614 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
615 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
616 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
617 fp->out_ep[i].ep);
618 err = USBD_INVAL;
619 goto error;
620 }
621 ep->sc = sc;
622 ep->addr = epd->bEndpointAddress;
623 ep->num_jacks = fp->out_ep[i].num_jacks;
624 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
625 ep->num_open = 0;
626 ep++;
627 }
628 ep = &sc->sc_in_ep[0];
629 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
630 epd = usbd_interface2endpoint_descriptor(
631 sc->sc_iface,
632 fp->in_ep[i].ep);
633 if (!epd) {
634 aprint_error_dev(sc->sc_dev,
635 "cannot get endpoint descriptor(in:%d)\n",
636 fp->in_ep[i].ep);
637 err = USBD_INVAL;
638 goto error;
639 }
640 /*
641 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
642 * endpoint. The existing input logic in this driver seems
643 * to work successfully if we just stop treating an interrupt
644 * endpoint as illegal (or the in_progress status we get on
645 * the initial transfer). It does not seem necessary to
646 * actually use the interrupt flavor of alloc_pipe or make
647 * other serious rearrangements of logic. I like that.
648 */
649 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
650 case UE_BULK:
651 case UE_INTERRUPT:
652 if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
653 break;
654 /*FALLTHROUGH*/
655 default:
656 aprint_error_dev(sc->sc_dev,
657 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
658 err = USBD_INVAL;
659 goto error;
660 }
661
662 ep->sc = sc;
663 ep->addr = epd->bEndpointAddress;
664 ep->num_jacks = fp->in_ep[i].num_jacks;
665 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
666 ep->num_open = 0;
667 ep++;
668 }
669
670 return USBD_NORMAL_COMPLETION;
671 error:
672 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
673 sc->sc_endpoints = NULL;
674 return err;
675 }
676
677 static usbd_status
678 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
679 {
680 /* This driver currently supports max 1in/1out bulk endpoints */
681 usb_descriptor_t *desc;
682 umidi_cs_descriptor_t *udesc;
683 usb_endpoint_descriptor_t *epd;
684 int out_addr, in_addr, i;
685 int dir;
686 size_t remain, descsize;
687
688 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
689 out_addr = in_addr = 0;
690
691 /* detect endpoints */
692 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
693 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
694 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
695 KASSERT(epd != NULL);
696 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
697 dir = UE_GET_DIR(epd->bEndpointAddress);
698 if (dir==UE_DIR_OUT && !out_addr)
699 out_addr = epd->bEndpointAddress;
700 else if (dir==UE_DIR_IN && !in_addr)
701 in_addr = epd->bEndpointAddress;
702 }
703 }
704 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
705
706 /* count jacks */
707 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
708 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
709 return USBD_INVAL;
710 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
711 (size_t)udesc->bLength;
712 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
713
714 while (remain >= sizeof(usb_descriptor_t)) {
715 descsize = udesc->bLength;
716 if (descsize>remain || descsize==0)
717 break;
718 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
719 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
720 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
721 sc->sc_out_num_jacks++;
722 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
723 sc->sc_in_num_jacks++;
724 }
725 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
726 remain -= descsize;
727 }
728
729 /* validate some parameters */
730 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
731 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
732 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
733 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
734 if (sc->sc_out_num_jacks && out_addr) {
735 sc->sc_out_num_endpoints = 1;
736 } else {
737 sc->sc_out_num_endpoints = 0;
738 sc->sc_out_num_jacks = 0;
739 }
740 if (sc->sc_in_num_jacks && in_addr) {
741 sc->sc_in_num_endpoints = 1;
742 } else {
743 sc->sc_in_num_endpoints = 0;
744 sc->sc_in_num_jacks = 0;
745 }
746 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
747 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
748 if (!sc->sc_endpoints)
749 return USBD_NOMEM;
750 if (sc->sc_out_num_endpoints) {
751 sc->sc_out_ep = sc->sc_endpoints;
752 sc->sc_out_ep->sc = sc;
753 sc->sc_out_ep->addr = out_addr;
754 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
755 sc->sc_out_ep->num_open = 0;
756 } else
757 sc->sc_out_ep = NULL;
758
759 if (sc->sc_in_num_endpoints) {
760 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
761 sc->sc_in_ep->sc = sc;
762 sc->sc_in_ep->addr = in_addr;
763 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
764 sc->sc_in_ep->num_open = 0;
765 } else
766 sc->sc_in_ep = NULL;
767
768 return USBD_NORMAL_COMPLETION;
769 }
770
771 static usbd_status
772 alloc_all_endpoints_genuine(struct umidi_softc *sc)
773 {
774 usb_interface_descriptor_t *interface_desc;
775 usb_config_descriptor_t *config_desc;
776 usb_descriptor_t *desc;
777 int num_ep;
778 size_t remain, descsize;
779 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
780 int epaddr;
781
782 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
783 num_ep = interface_desc->bNumEndpoints;
784 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
785 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
786 if (!p)
787 return USBD_NOMEM;
788
789 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
790 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
791 epaddr = -1;
792
793 /* get the list of endpoints for midi stream */
794 config_desc = usbd_get_config_descriptor(sc->sc_udev);
795 desc = (usb_descriptor_t *) config_desc;
796 remain = (size_t)UGETW(config_desc->wTotalLength);
797 while (remain>=sizeof(usb_descriptor_t)) {
798 descsize = desc->bLength;
799 if (descsize>remain || descsize==0)
800 break;
801 if (desc->bDescriptorType==UDESC_ENDPOINT &&
802 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
803 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
804 epaddr = TO_EPD(desc)->bEndpointAddress;
805 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
806 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
807 epaddr!=-1) {
808 if (num_ep>0) {
809 num_ep--;
810 p->sc = sc;
811 p->addr = epaddr;
812 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
813 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
814 sc->sc_out_num_endpoints++;
815 sc->sc_out_num_jacks += p->num_jacks;
816 } else {
817 sc->sc_in_num_endpoints++;
818 sc->sc_in_num_jacks += p->num_jacks;
819 }
820 p++;
821 }
822 } else
823 epaddr = -1;
824 desc = NEXT_D(desc);
825 remain-=descsize;
826 }
827
828 /* sort endpoints */
829 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
830 p = sc->sc_endpoints;
831 endep = p + num_ep;
832 while (p<endep) {
833 lowest = p;
834 for (q=p+1; q<endep; q++) {
835 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
836 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
837 ((UE_GET_DIR(lowest->addr)==
838 UE_GET_DIR(q->addr)) &&
839 (UE_GET_ADDR(lowest->addr)>
840 UE_GET_ADDR(q->addr))))
841 lowest = q;
842 }
843 if (lowest != p) {
844 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
845 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
846 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
847 }
848 p->num_open = 0;
849 p++;
850 }
851
852 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
853 sc->sc_in_ep =
854 sc->sc_in_num_endpoints ?
855 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
856
857 return USBD_NORMAL_COMPLETION;
858 }
859
860
861 /*
862 * jack stuffs
863 */
864
865 static usbd_status
866 alloc_all_jacks(struct umidi_softc *sc)
867 {
868 int i, j;
869 struct umidi_endpoint *ep;
870 struct umidi_jack *jack;
871 const unsigned char *cn_spec;
872
873 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
874 sc->cblnums_global = 0;
875 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
876 sc->cblnums_global = 1;
877 else {
878 /*
879 * I don't think this default is correct, but it preserves
880 * the prior behavior of the code. That's why I defined two
881 * complementary quirks. Any device for which the default
882 * behavior is wrong can be made to work by giving it an
883 * explicit quirk, and if a pattern ever develops (as I suspect
884 * it will) that a lot of otherwise standard USB MIDI devices
885 * need the CN_SEQ_PER_EP "quirk," then this default can be
886 * changed to 0, and the only devices that will break are those
887 * listing neither quirk, and they'll easily be fixed by giving
888 * them the CN_SEQ_GLOBAL quirk.
889 */
890 sc->cblnums_global = 1;
891 }
892
893 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
894 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
895 UMQ_TYPE_CN_FIXED);
896 else
897 cn_spec = NULL;
898
899 /* allocate/initialize structures */
900 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
901 sc->sc_out_num_jacks), KM_SLEEP);
902 if (!sc->sc_jacks)
903 return USBD_NOMEM;
904 sc->sc_out_jacks =
905 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
906 sc->sc_in_jacks =
907 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
908
909 jack = &sc->sc_out_jacks[0];
910 for (i = 0; i < sc->sc_out_num_jacks; i++) {
911 jack->opened = 0;
912 jack->binded = 0;
913 jack->arg = NULL;
914 jack->u.out.intr = NULL;
915 jack->midiman_ppkt = NULL;
916 if (sc->cblnums_global)
917 jack->cable_number = i;
918 jack++;
919 }
920 jack = &sc->sc_in_jacks[0];
921 for (i = 0; i < sc->sc_in_num_jacks; i++) {
922 jack->opened = 0;
923 jack->binded = 0;
924 jack->arg = NULL;
925 jack->u.in.intr = NULL;
926 if (sc->cblnums_global)
927 jack->cable_number = i;
928 jack++;
929 }
930
931 /* assign each jacks to each endpoints */
932 jack = &sc->sc_out_jacks[0];
933 ep = &sc->sc_out_ep[0];
934 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
935 for (j = 0; j < ep->num_jacks; j++) {
936 jack->endpoint = ep;
937 if (cn_spec != NULL)
938 jack->cable_number = *cn_spec++;
939 else if (!sc->cblnums_global)
940 jack->cable_number = j;
941 ep->jacks[jack->cable_number] = jack;
942 jack++;
943 }
944 ep++;
945 }
946 jack = &sc->sc_in_jacks[0];
947 ep = &sc->sc_in_ep[0];
948 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
949 for (j = 0; j < ep->num_jacks; j++) {
950 jack->endpoint = ep;
951 if (cn_spec != NULL)
952 jack->cable_number = *cn_spec++;
953 else if (!sc->cblnums_global)
954 jack->cable_number = j;
955 ep->jacks[jack->cable_number] = jack;
956 jack++;
957 }
958 ep++;
959 }
960
961 return USBD_NORMAL_COMPLETION;
962 }
963
964 static void
965 free_all_jacks(struct umidi_softc *sc)
966 {
967 struct umidi_jack *jacks;
968
969 mutex_enter(&sc->sc_lock);
970 if (sc->sc_out_jacks)
971 jacks = sc->sc_out_jacks;
972 else
973 jacks = sc->sc_in_jacks;
974 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
975 mutex_exit(&sc->sc_lock);
976
977 if (jacks)
978 kmem_free(jacks, sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks));
979 }
980
981 static usbd_status
982 bind_jacks_to_mididev(struct umidi_softc *sc,
983 struct umidi_jack *out_jack,
984 struct umidi_jack *in_jack,
985 struct umidi_mididev *mididev)
986 {
987 if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
988 return USBD_IN_USE;
989 if (mididev->out_jack || mididev->in_jack)
990 return USBD_IN_USE;
991
992 if (out_jack)
993 out_jack->binded = 1;
994 if (in_jack)
995 in_jack->binded = 1;
996 mididev->in_jack = in_jack;
997 mididev->out_jack = out_jack;
998
999 return USBD_NORMAL_COMPLETION;
1000 }
1001
1002 static void
1003 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1004 {
1005 if ((mididev->flags & FWRITE) && mididev->out_jack)
1006 close_out_jack(mididev->out_jack);
1007 if ((mididev->flags & FREAD) && mididev->in_jack)
1008 close_in_jack(mididev->in_jack);
1009
1010 if (mididev->out_jack)
1011 mididev->out_jack->binded = 0;
1012 if (mididev->in_jack)
1013 mididev->in_jack->binded = 0;
1014 mididev->out_jack = mididev->in_jack = NULL;
1015 }
1016
1017 static void
1018 unbind_all_jacks(struct umidi_softc *sc)
1019 {
1020 int i;
1021
1022 if (sc->sc_mididevs)
1023 for (i = 0; i < sc->sc_num_mididevs; i++)
1024 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1025 }
1026
1027 static usbd_status
1028 assign_all_jacks_automatically(struct umidi_softc *sc)
1029 {
1030 usbd_status err;
1031 int i;
1032 struct umidi_jack *out, *in;
1033 const signed char *asg_spec;
1034
1035 err =
1036 alloc_all_mididevs(sc,
1037 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1038 if (err!=USBD_NORMAL_COMPLETION)
1039 return err;
1040
1041 if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1042 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1043 UMQ_TYPE_MD_FIXED);
1044 else
1045 asg_spec = NULL;
1046
1047 for (i = 0; i < sc->sc_num_mididevs; i++) {
1048 if (asg_spec != NULL) {
1049 if (*asg_spec == -1)
1050 out = NULL;
1051 else
1052 out = &sc->sc_out_jacks[*asg_spec];
1053 ++ asg_spec;
1054 if (*asg_spec == -1)
1055 in = NULL;
1056 else
1057 in = &sc->sc_in_jacks[*asg_spec];
1058 ++ asg_spec;
1059 } else {
1060 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1061 : NULL;
1062 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1063 : NULL;
1064 }
1065 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1066 if (err!=USBD_NORMAL_COMPLETION) {
1067 free_all_mididevs(sc);
1068 return err;
1069 }
1070 }
1071
1072 return USBD_NORMAL_COMPLETION;
1073 }
1074
1075 static usbd_status
1076 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1077 {
1078 struct umidi_endpoint *ep = jack->endpoint;
1079 struct umidi_softc *sc = ep->sc;
1080 umidi_packet_bufp end;
1081 int err;
1082
1083 KASSERT(mutex_owned(&sc->sc_lock));
1084
1085 if (jack->opened)
1086 return USBD_IN_USE;
1087
1088 jack->arg = arg;
1089 jack->u.out.intr = intr;
1090 jack->midiman_ppkt = NULL;
1091 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1092 jack->opened = 1;
1093 ep->num_open++;
1094 /*
1095 * out_solicit maintains an invariant that there will always be
1096 * (num_open - num_scheduled) slots free in the buffer. as we have
1097 * just incremented num_open, the buffer may be too full to satisfy
1098 * the invariant until a transfer completes, for which we must wait.
1099 */
1100 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1101 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1102 mstohz(10));
1103 if (err) {
1104 ep->num_open--;
1105 jack->opened = 0;
1106 return USBD_IOERROR;
1107 }
1108 }
1109
1110 return USBD_NORMAL_COMPLETION;
1111 }
1112
1113 static usbd_status
1114 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1115 {
1116 usbd_status err = USBD_NORMAL_COMPLETION;
1117 struct umidi_endpoint *ep = jack->endpoint;
1118
1119 KASSERT(mutex_owned(&ep->sc->sc_lock));
1120
1121 if (jack->opened)
1122 return USBD_IN_USE;
1123
1124 jack->arg = arg;
1125 jack->u.in.intr = intr;
1126 jack->opened = 1;
1127 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1128 err = start_input_transfer(ep);
1129 if (err != USBD_NORMAL_COMPLETION &&
1130 err != USBD_IN_PROGRESS) {
1131 ep->num_open--;
1132 }
1133 }
1134
1135 return err;
1136 }
1137
1138 static void
1139 close_out_jack(struct umidi_jack *jack)
1140 {
1141 struct umidi_endpoint *ep;
1142 struct umidi_softc *sc;
1143 u_int16_t mask;
1144 int err;
1145
1146
1147 if (jack->opened) {
1148 ep = jack->endpoint;
1149 sc = ep->sc;
1150 KASSERT(mutex_owned(&sc->sc_lock));
1151 mask = 1 << (jack->cable_number);
1152 while (mask & (ep->this_schedule | ep->next_schedule)) {
1153 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1154 mstohz(10));
1155 if (err)
1156 break;
1157 }
1158 jack->opened = 0;
1159 jack->endpoint->num_open--;
1160 ep->this_schedule &= ~mask;
1161 ep->next_schedule &= ~mask;
1162 }
1163 }
1164
1165 static void
1166 close_in_jack(struct umidi_jack *jack)
1167 {
1168 if (jack->opened) {
1169 jack->opened = 0;
1170 if (--jack->endpoint->num_open == 0) {
1171 usbd_abort_pipe(jack->endpoint->pipe);
1172 }
1173 }
1174 }
1175
1176 static usbd_status
1177 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1178 {
1179 if (mididev->sc)
1180 return USBD_IN_USE;
1181
1182 mididev->sc = sc;
1183
1184 describe_mididev(mididev);
1185
1186 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1187
1188 return USBD_NORMAL_COMPLETION;
1189 }
1190
1191 static usbd_status
1192 detach_mididev(struct umidi_mididev *mididev, int flags)
1193 {
1194 if (!mididev->sc)
1195 return USBD_NO_ADDR;
1196
1197 if (mididev->opened) {
1198 umidi_close(mididev);
1199 }
1200 unbind_jacks_from_mididev(mididev);
1201
1202 if (mididev->mdev != NULL)
1203 config_detach(mididev->mdev, flags);
1204
1205 if (NULL != mididev->label) {
1206 kmem_free(mididev->label, mididev->label_len);
1207 mididev->label = NULL;
1208 }
1209
1210 mididev->sc = NULL;
1211
1212 return USBD_NORMAL_COMPLETION;
1213 }
1214
1215 static void
1216 deactivate_mididev(struct umidi_mididev *mididev)
1217 {
1218 if (mididev->out_jack)
1219 mididev->out_jack->binded = 0;
1220 if (mididev->in_jack)
1221 mididev->in_jack->binded = 0;
1222 }
1223
1224 static usbd_status
1225 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1226 {
1227 sc->sc_num_mididevs = nmidi;
1228 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1229 if (!sc->sc_mididevs)
1230 return USBD_NOMEM;
1231
1232 return USBD_NORMAL_COMPLETION;
1233 }
1234
1235 static void
1236 free_all_mididevs(struct umidi_softc *sc)
1237 {
1238 if (sc->sc_mididevs)
1239 kmem_free(sc->sc_mididevs,
1240 sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
1241 sc->sc_num_mididevs = 0;
1242 }
1243
1244 static usbd_status
1245 attach_all_mididevs(struct umidi_softc *sc)
1246 {
1247 usbd_status err;
1248 int i;
1249
1250 if (sc->sc_mididevs)
1251 for (i = 0; i < sc->sc_num_mididevs; i++) {
1252 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1253 if (err != USBD_NORMAL_COMPLETION)
1254 return err;
1255 }
1256
1257 return USBD_NORMAL_COMPLETION;
1258 }
1259
1260 static usbd_status
1261 detach_all_mididevs(struct umidi_softc *sc, int flags)
1262 {
1263 usbd_status err;
1264 int i;
1265
1266 if (sc->sc_mididevs)
1267 for (i = 0; i < sc->sc_num_mididevs; i++) {
1268 err = detach_mididev(&sc->sc_mididevs[i], flags);
1269 if (err != USBD_NORMAL_COMPLETION)
1270 return err;
1271 }
1272
1273 return USBD_NORMAL_COMPLETION;
1274 }
1275
1276 static void
1277 deactivate_all_mididevs(struct umidi_softc *sc)
1278 {
1279 int i;
1280
1281 if (sc->sc_mididevs) {
1282 for (i = 0; i < sc->sc_num_mididevs; i++)
1283 deactivate_mididev(&sc->sc_mididevs[i]);
1284 }
1285 }
1286
1287 /*
1288 * TODO: the 0-based cable numbers will often not match the labeling of the
1289 * equipment. Ideally:
1290 * For class-compliant devices: get the iJack string from the jack descriptor.
1291 * Otherwise:
1292 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1293 * number for display)
1294 * - support an array quirk explictly giving a char * for each jack.
1295 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1296 * the CNs are not globally unique, each is shown with its associated endpoint
1297 * address in hex also. That should not be necessary when using iJack values
1298 * or a quirk array.
1299 */
1300 void
1301 describe_mididev(struct umidi_mididev *md)
1302 {
1303 char in_label[16];
1304 char out_label[16];
1305 const char *unit_label;
1306 char *final_label;
1307 struct umidi_softc *sc;
1308 int show_ep_in;
1309 int show_ep_out;
1310 size_t len;
1311
1312 sc = md->sc;
1313 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1314 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1315
1316 if ( NULL == md->in_jack )
1317 in_label[0] = '\0';
1318 else if ( show_ep_in )
1319 snprintf(in_label, sizeof in_label, "<%d(%x) ",
1320 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1321 else
1322 snprintf(in_label, sizeof in_label, "<%d ",
1323 md->in_jack->cable_number);
1324
1325 if ( NULL == md->out_jack )
1326 out_label[0] = '\0';
1327 else if ( show_ep_out )
1328 snprintf(out_label, sizeof out_label, ">%d(%x) ",
1329 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1330 else
1331 snprintf(out_label, sizeof out_label, ">%d ",
1332 md->out_jack->cable_number);
1333
1334 unit_label = device_xname(sc->sc_dev);
1335
1336 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1337
1338 final_label = kmem_alloc(len, KM_SLEEP);
1339
1340 snprintf(final_label, len, "%s%son %s",
1341 in_label, out_label, unit_label);
1342
1343 md->label = final_label;
1344 md->label_len = len;
1345 }
1346
1347 #ifdef UMIDI_DEBUG
1348 static void
1349 dump_sc(struct umidi_softc *sc)
1350 {
1351 int i;
1352
1353 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1354 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1355 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1356 dump_ep(&sc->sc_out_ep[i]);
1357 }
1358 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1359 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1360 dump_ep(&sc->sc_in_ep[i]);
1361 }
1362 }
1363
1364 static void
1365 dump_ep(struct umidi_endpoint *ep)
1366 {
1367 int i;
1368 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1369 if (NULL==ep->jacks[i])
1370 continue;
1371 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1372 dump_jack(ep->jacks[i]);
1373 }
1374 }
1375 static void
1376 dump_jack(struct umidi_jack *jack)
1377 {
1378 DPRINTFN(10, ("\t\t\tep=%p\n",
1379 jack->endpoint));
1380 }
1381
1382 #endif /* UMIDI_DEBUG */
1383
1384
1385
1386 /*
1387 * MUX MIDI PACKET
1388 */
1389
1390 static const int packet_length[16] = {
1391 /*0*/ -1,
1392 /*1*/ -1,
1393 /*2*/ 2,
1394 /*3*/ 3,
1395 /*4*/ 3,
1396 /*5*/ 1,
1397 /*6*/ 2,
1398 /*7*/ 3,
1399 /*8*/ 3,
1400 /*9*/ 3,
1401 /*A*/ 3,
1402 /*B*/ 3,
1403 /*C*/ 2,
1404 /*D*/ 2,
1405 /*E*/ 3,
1406 /*F*/ 1,
1407 };
1408
1409 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1410 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1411 #define MIX_CN_CIN(cn, cin) \
1412 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1413 ((unsigned char)(cin)&0x0F)))
1414
1415 static usbd_status
1416 start_input_transfer(struct umidi_endpoint *ep)
1417 {
1418 usbd_setup_xfer(ep->xfer, ep->pipe,
1419 (usbd_private_handle)ep,
1420 ep->buffer, ep->buffer_size,
1421 USBD_SHORT_XFER_OK | USBD_NO_COPY,
1422 USBD_NO_TIMEOUT, in_intr);
1423 return usbd_transfer(ep->xfer);
1424 }
1425
1426 static usbd_status
1427 start_output_transfer(struct umidi_endpoint *ep)
1428 {
1429 usbd_status rv;
1430 u_int32_t length;
1431 int i;
1432
1433 length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1434 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1435 ep->buffer, ep->next_slot, length));
1436 KERNEL_LOCK(1, curlwp);
1437 usbd_setup_xfer(ep->xfer, ep->pipe,
1438 (usbd_private_handle)ep,
1439 ep->buffer, length,
1440 USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1441 rv = usbd_transfer(ep->xfer);
1442 KERNEL_UNLOCK_ONE(curlwp);
1443
1444 /*
1445 * Once the transfer is scheduled, no more adding to partial
1446 * packets within it.
1447 */
1448 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1449 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1450 if (NULL != ep->jacks[i])
1451 ep->jacks[i]->midiman_ppkt = NULL;
1452 }
1453
1454 return rv;
1455 }
1456
1457 #ifdef UMIDI_DEBUG
1458 #define DPR_PACKET(dir, sc, p) \
1459 if ((unsigned char)(p)[1]!=0xFE) \
1460 DPRINTFN(500, \
1461 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1462 device_xname(sc->sc_dev), \
1463 (unsigned char)(p)[0], \
1464 (unsigned char)(p)[1], \
1465 (unsigned char)(p)[2], \
1466 (unsigned char)(p)[3]));
1467 #else
1468 #define DPR_PACKET(dir, sc, p)
1469 #endif
1470
1471 /*
1472 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1473 * with the cable number and length in the last byte instead of the first,
1474 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1475 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1476 * with a cable nybble and a length nybble (which, unlike the CIN of a
1477 * real USB MIDI packet, has no semantics at all besides the length).
1478 * A packet received from a Midiman may contain part of a MIDI message,
1479 * more than one MIDI message, or parts of more than one MIDI message. A
1480 * three-byte MIDI message may arrive in three packets of data length 1, and
1481 * running status may be used. Happily, the midi(4) driver above us will put
1482 * it all back together, so the only cost is in USB bandwidth. The device
1483 * has an easier time with what it receives from us: we'll pack messages in
1484 * and across packets, but filling the packets whenever possible and,
1485 * as midi(4) hands us a complete message at a time, we'll never send one
1486 * in a dribble of short packets.
1487 */
1488
1489 static int
1490 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1491 {
1492 struct umidi_endpoint *ep = out_jack->endpoint;
1493 struct umidi_softc *sc = ep->sc;
1494 unsigned char *packet;
1495 int plen;
1496 int poff;
1497
1498 if (sc->sc_dying)
1499 return EIO;
1500
1501 if (!out_jack->opened)
1502 return ENODEV; /* XXX as it was, is this the right errno? */
1503
1504 #ifdef UMIDI_DEBUG
1505 if ( umididebug >= 100 )
1506 microtime(&umidi_tv);
1507 #endif
1508 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1509 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1510 ep, out_jack->cable_number, len, cin));
1511
1512 packet = *ep->next_slot++;
1513 KASSERT(ep->buffer_size >=
1514 (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1515 memset(packet, 0, UMIDI_PACKET_SIZE);
1516 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1517 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1518 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1519 plen = 3 - poff;
1520 if (plen > len)
1521 plen = len;
1522 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1523 src += plen;
1524 len -= plen;
1525 plen += poff;
1526 out_jack->midiman_ppkt[3] =
1527 MIX_CN_CIN(out_jack->cable_number, plen);
1528 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1529 if (3 == plen)
1530 out_jack->midiman_ppkt = NULL; /* no more */
1531 }
1532 if (0 == len)
1533 ep->next_slot--; /* won't be needed, nevermind */
1534 else {
1535 memcpy(packet, src, len);
1536 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1537 DPR_PACKET(out, sc, packet);
1538 if (len < 3)
1539 out_jack->midiman_ppkt = packet;
1540 }
1541 } else { /* the nice simple USB class-compliant case */
1542 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1543 memcpy(packet+1, src, len);
1544 DPR_PACKET(out, sc, packet);
1545 }
1546 ep->next_schedule |= 1<<(out_jack->cable_number);
1547 ++ ep->num_scheduled;
1548 if ( !ep->armed && !ep->soliciting ) {
1549 /*
1550 * It would be bad to call out_solicit directly here (the
1551 * caller need not be reentrant) but a soft interrupt allows
1552 * solicit to run immediately the caller exits its critical
1553 * section, and if the caller has more to write we can get it
1554 * before starting the USB transfer, and send a longer one.
1555 */
1556 ep->soliciting = 1;
1557 softint_schedule(ep->solicit_cookie);
1558 }
1559
1560 return 0;
1561 }
1562
1563 static void
1564 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1565 usbd_status status)
1566 {
1567 int cn, len, i;
1568 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1569 struct umidi_softc *sc = ep->sc;
1570 struct umidi_jack *jack;
1571 unsigned char *packet;
1572 umidi_packet_bufp slot;
1573 umidi_packet_bufp end;
1574 unsigned char *data;
1575 u_int32_t count;
1576
1577 if (ep->sc->sc_dying || !ep->num_open)
1578 return;
1579
1580 mutex_enter(&sc->sc_lock);
1581 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1582 if (0 == count % UMIDI_PACKET_SIZE) {
1583 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1584 device_xname(ep->sc->sc_dev), ep, count));
1585 } else {
1586 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1587 device_xname(ep->sc->sc_dev), ep, count));
1588 }
1589
1590 slot = ep->buffer;
1591 end = slot + count / sizeof *slot;
1592
1593 for (packet = *slot; slot < end; packet = *++slot) {
1594
1595 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1596 cn = (0xf0&(packet[3]))>>4;
1597 len = 0x0f&(packet[3]);
1598 data = packet;
1599 } else {
1600 cn = GET_CN(packet[0]);
1601 len = packet_length[GET_CIN(packet[0])];
1602 data = packet + 1;
1603 }
1604 /* 0 <= cn <= 15 by inspection of above code */
1605 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1606 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1607 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1608 device_xname(ep->sc->sc_dev), ep, cn, len,
1609 (unsigned)data[0],
1610 (unsigned)data[1],
1611 (unsigned)data[2]));
1612 mutex_exit(&sc->sc_lock);
1613 return;
1614 }
1615
1616 if (!jack->binded || !jack->opened)
1617 continue;
1618
1619 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1620 "%02X %02X %02X\n",
1621 device_xname(ep->sc->sc_dev), ep, cn, len,
1622 (unsigned)data[0],
1623 (unsigned)data[1],
1624 (unsigned)data[2]));
1625
1626 if (jack->u.in.intr) {
1627 for (i = 0; i < len; i++) {
1628 (*jack->u.in.intr)(jack->arg, data[i]);
1629 }
1630 }
1631
1632 }
1633
1634 (void)start_input_transfer(ep);
1635 mutex_exit(&sc->sc_lock);
1636 }
1637
1638 static void
1639 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1640 usbd_status status)
1641 {
1642 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1643 struct umidi_softc *sc = ep->sc;
1644 u_int32_t count;
1645
1646 if (sc->sc_dying)
1647 return;
1648
1649 mutex_enter(&sc->sc_lock);
1650 #ifdef UMIDI_DEBUG
1651 if ( umididebug >= 200 )
1652 microtime(&umidi_tv);
1653 #endif
1654 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1655 if ( 0 == count % UMIDI_PACKET_SIZE ) {
1656 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1657 device_xname(ep->sc->sc_dev),
1658 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1659 } else {
1660 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1661 device_xname(ep->sc->sc_dev), ep, count));
1662 }
1663 count /= UMIDI_PACKET_SIZE;
1664
1665 /*
1666 * If while the transfer was pending we buffered any new messages,
1667 * move them to the start of the buffer.
1668 */
1669 ep->next_slot -= count;
1670 if (ep->buffer < ep->next_slot) {
1671 memcpy(ep->buffer, ep->buffer + count,
1672 (char *)ep->next_slot - (char *)ep->buffer);
1673 }
1674 cv_broadcast(&sc->sc_cv);
1675 /*
1676 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1677 * Running at IPL_USB so the following should happen to be safe.
1678 */
1679 ep->armed = 0;
1680 if (!ep->soliciting) {
1681 ep->soliciting = 1;
1682 out_solicit_locked(ep);
1683 }
1684 mutex_exit(&sc->sc_lock);
1685 }
1686
1687 /*
1688 * A jack on which we have received a packet must be called back on its
1689 * out.intr handler before it will send us another; it is considered
1690 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1691 * we need no extra buffer space for it.
1692 *
1693 * In contrast, a jack that is open but not scheduled may supply us a packet
1694 * at any time, driven by the top half, and we must be able to accept it, no
1695 * excuses. So we must ensure that at any point in time there are at least
1696 * (num_open - num_scheduled) slots free.
1697 *
1698 * As long as there are more slots free than that minimum, we can loop calling
1699 * scheduled jacks back on their "interrupt" handlers, soliciting more
1700 * packets, starting the USB transfer only when the buffer space is down to
1701 * the minimum or no jack has any more to send.
1702 */
1703
1704 static void
1705 out_solicit_locked(void *arg)
1706 {
1707 struct umidi_endpoint *ep = arg;
1708 umidi_packet_bufp end;
1709 u_int16_t which;
1710 struct umidi_jack *jack;
1711
1712 KASSERT(mutex_owned(&ep->sc->sc_lock));
1713
1714 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1715
1716 for ( ;; ) {
1717 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1718 break; /* at IPL_USB */
1719 if (ep->this_schedule == 0) {
1720 if (ep->next_schedule == 0)
1721 break; /* at IPL_USB */
1722 ep->this_schedule = ep->next_schedule;
1723 ep->next_schedule = 0;
1724 }
1725 /*
1726 * At least one jack is scheduled. Find and mask off the least
1727 * set bit in this_schedule and decrement num_scheduled.
1728 * Convert mask to bit index to find the corresponding jack,
1729 * and call its intr handler. If it has a message, it will call
1730 * back one of the output methods, which will set its bit in
1731 * next_schedule (not copied into this_schedule until the
1732 * latter is empty). In this way we round-robin the jacks that
1733 * have messages to send, until the buffer is as full as we
1734 * dare, and then start a transfer.
1735 */
1736 which = ep->this_schedule;
1737 which &= (~which)+1; /* now mask of least set bit */
1738 ep->this_schedule &= ~which;
1739 --ep->num_scheduled;
1740
1741 --which; /* now 1s below mask - count 1s to get index */
1742 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1743 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1744 which = (((which >> 4) + which) & 0x0f0f);
1745 which += (which >> 8);
1746 which &= 0x1f; /* the bit index a/k/a jack number */
1747
1748 jack = ep->jacks[which];
1749 if (jack->u.out.intr)
1750 (*jack->u.out.intr)(jack->arg);
1751 }
1752 /* intr lock held at loop exit */
1753 if (!ep->armed && ep->next_slot > ep->buffer)
1754 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1755 ep->soliciting = 0;
1756 }
1757
1758 /* Entry point for the softintr. */
1759 static void
1760 out_solicit(void *arg)
1761 {
1762 struct umidi_endpoint *ep = arg;
1763 struct umidi_softc *sc = ep->sc;
1764
1765 mutex_enter(&sc->sc_lock);
1766 out_solicit_locked(arg);
1767 mutex_exit(&sc->sc_lock);
1768 }
1769