umidi.c revision 1.61 1 /* $NetBSD: umidi.c,v 1.61 2012/03/11 01:06:07 mrg Exp $ */
2 /*
3 * Copyright (c) 2001, 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
8 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
9 * (mrg (at) eterna.com.au).
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.61 2012/03/11 01:06:07 mrg Exp $");
35
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/device.h>
42 #include <sys/ioctl.h>
43 #include <sys/conf.h>
44 #include <sys/file.h>
45 #include <sys/select.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/poll.h>
49 #include <sys/intr.h>
50
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54
55 #include <dev/usb/usbdevs.h>
56 #include <dev/usb/uaudioreg.h>
57 #include <dev/usb/umidireg.h>
58 #include <dev/usb/umidivar.h>
59 #include <dev/usb/umidi_quirks.h>
60
61 #include <dev/midi_if.h>
62
63 #ifdef UMIDI_DEBUG
64 #define DPRINTF(x) if (umididebug) printf x
65 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
66 #include <sys/time.h>
67 static struct timeval umidi_tv;
68 int umididebug = 0;
69 #else
70 #define DPRINTF(x)
71 #define DPRINTFN(n,x)
72 #endif
73
74 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
75 (sc->sc_out_num_endpoints + \
76 sc->sc_in_num_endpoints))
77
78
79 static int umidi_open(void *, int,
80 void (*)(void *, int), void (*)(void *), void *);
81 static void umidi_close(void *);
82 static int umidi_channelmsg(void *, int, int, u_char *, int);
83 static int umidi_commonmsg(void *, int, u_char *, int);
84 static int umidi_sysex(void *, u_char *, int);
85 static int umidi_rtmsg(void *, int);
86 static void umidi_getinfo(void *, struct midi_info *);
87 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
88
89 static usbd_status alloc_pipe(struct umidi_endpoint *);
90 static void free_pipe(struct umidi_endpoint *);
91
92 static usbd_status alloc_all_endpoints(struct umidi_softc *);
93 static void free_all_endpoints(struct umidi_softc *);
94
95 static usbd_status alloc_all_jacks(struct umidi_softc *);
96 static void free_all_jacks(struct umidi_softc *);
97 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
98 struct umidi_jack *,
99 struct umidi_jack *,
100 struct umidi_mididev *);
101 static void unbind_jacks_from_mididev(struct umidi_mididev *);
102 static void unbind_all_jacks(struct umidi_softc *);
103 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
104 static usbd_status open_out_jack(struct umidi_jack *, void *,
105 void (*)(void *));
106 static usbd_status open_in_jack(struct umidi_jack *, void *,
107 void (*)(void *, int));
108 static void close_out_jack(struct umidi_jack *);
109 static void close_in_jack(struct umidi_jack *);
110
111 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
112 static usbd_status detach_mididev(struct umidi_mididev *, int);
113 static void deactivate_mididev(struct umidi_mididev *);
114 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
115 static void free_all_mididevs(struct umidi_softc *);
116 static usbd_status attach_all_mididevs(struct umidi_softc *);
117 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
118 static void deactivate_all_mididevs(struct umidi_softc *);
119 static void describe_mididev(struct umidi_mididev *);
120
121 #ifdef UMIDI_DEBUG
122 static void dump_sc(struct umidi_softc *);
123 static void dump_ep(struct umidi_endpoint *);
124 static void dump_jack(struct umidi_jack *);
125 #endif
126
127 static usbd_status start_input_transfer(struct umidi_endpoint *);
128 static usbd_status start_output_transfer(struct umidi_endpoint *);
129 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
130 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
131 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
132 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
133 static void out_solicit_locked(void *); /* pre-locked version */
134
135
136 const struct midi_hw_if umidi_hw_if = {
137 .open = umidi_open,
138 .close = umidi_close,
139 .output = umidi_rtmsg,
140 .getinfo = umidi_getinfo,
141 .get_locks = umidi_get_locks,
142 };
143
144 struct midi_hw_if_ext umidi_hw_if_ext = {
145 .channel = umidi_channelmsg,
146 .common = umidi_commonmsg,
147 .sysex = umidi_sysex,
148 };
149
150 struct midi_hw_if_ext umidi_hw_if_mm = {
151 .channel = umidi_channelmsg,
152 .common = umidi_commonmsg,
153 .sysex = umidi_sysex,
154 .compress = 1,
155 };
156
157 int umidi_match(device_t, cfdata_t, void *);
158 void umidi_attach(device_t, device_t, void *);
159 void umidi_childdet(device_t, device_t);
160 int umidi_detach(device_t, int);
161 int umidi_activate(device_t, enum devact);
162 extern struct cfdriver umidi_cd;
163 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
164 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
165
166 int
167 umidi_match(device_t parent, cfdata_t match, void *aux)
168 {
169 struct usbif_attach_arg *uaa = aux;
170
171 DPRINTFN(1,("umidi_match\n"));
172
173 if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
174 return UMATCH_IFACECLASS_IFACESUBCLASS;
175
176 if (uaa->class == UICLASS_AUDIO &&
177 uaa->subclass == UISUBCLASS_MIDISTREAM)
178 return UMATCH_IFACECLASS_IFACESUBCLASS;
179
180 return UMATCH_NONE;
181 }
182
183 void
184 umidi_attach(device_t parent, device_t self, void *aux)
185 {
186 usbd_status err;
187 struct umidi_softc *sc = device_private(self);
188 struct usbif_attach_arg *uaa = aux;
189 char *devinfop;
190
191 DPRINTFN(1,("umidi_attach\n"));
192
193 sc->sc_dev = self;
194
195 aprint_naive("\n");
196 aprint_normal("\n");
197
198 devinfop = usbd_devinfo_alloc(uaa->device, 0);
199 aprint_normal_dev(self, "%s\n", devinfop);
200 usbd_devinfo_free(devinfop);
201
202 sc->sc_iface = uaa->iface;
203 sc->sc_udev = uaa->device;
204
205 sc->sc_quirk =
206 umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
207 aprint_normal_dev(self, "");
208 umidi_print_quirk(sc->sc_quirk);
209
210 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
211 cv_init(&sc->sc_cv, "umidopcl");
212
213 KERNEL_LOCK(1, curlwp);
214 err = alloc_all_endpoints(sc);
215 if (err != USBD_NORMAL_COMPLETION) {
216 aprint_error_dev(self,
217 "alloc_all_endpoints failed. (err=%d)\n", err);
218 goto error;
219 }
220 err = alloc_all_jacks(sc);
221 if (err != USBD_NORMAL_COMPLETION) {
222 free_all_endpoints(sc);
223 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
224 err);
225 goto error;
226 }
227 aprint_normal_dev(self, "out=%d, in=%d\n",
228 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
229
230 err = assign_all_jacks_automatically(sc);
231 if (err != USBD_NORMAL_COMPLETION) {
232 unbind_all_jacks(sc);
233 free_all_jacks(sc);
234 free_all_endpoints(sc);
235 aprint_error_dev(self,
236 "assign_all_jacks_automatically failed. (err=%d)\n", err);
237 goto error;
238 }
239 err = attach_all_mididevs(sc);
240 if (err != USBD_NORMAL_COMPLETION) {
241 free_all_jacks(sc);
242 free_all_endpoints(sc);
243 aprint_error_dev(self,
244 "attach_all_mididevs failed. (err=%d)\n", err);
245 }
246 KERNEL_UNLOCK_ONE(curlwp);
247
248 #ifdef UMIDI_DEBUG
249 dump_sc(sc);
250 #endif
251
252 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
253 sc->sc_udev, sc->sc_dev);
254
255 return;
256 error:
257 aprint_error_dev(self, "disabled.\n");
258 sc->sc_dying = 1;
259 KERNEL_UNLOCK_ONE(curlwp);
260 return;
261 }
262
263 void
264 umidi_childdet(device_t self, device_t child)
265 {
266 int i;
267 struct umidi_softc *sc = device_private(self);
268
269 KASSERT(sc->sc_mididevs != NULL);
270
271 for (i = 0; i < sc->sc_num_mididevs; i++) {
272 if (sc->sc_mididevs[i].mdev == child)
273 break;
274 }
275 KASSERT(i < sc->sc_num_mididevs);
276 sc->sc_mididevs[i].mdev = NULL;
277 }
278
279 int
280 umidi_activate(device_t self, enum devact act)
281 {
282 struct umidi_softc *sc = device_private(self);
283
284 switch (act) {
285 case DVACT_DEACTIVATE:
286 DPRINTFN(1,("umidi_activate (deactivate)\n"));
287 sc->sc_dying = 1;
288 deactivate_all_mididevs(sc);
289 return 0;
290 default:
291 DPRINTFN(1,("umidi_activate (%d)\n", act));
292 return EOPNOTSUPP;
293 }
294 }
295
296 int
297 umidi_detach(device_t self, int flags)
298 {
299 struct umidi_softc *sc = device_private(self);
300
301 DPRINTFN(1,("umidi_detach\n"));
302
303 sc->sc_dying = 1;
304 KERNEL_LOCK(1, curlwp);
305 detach_all_mididevs(sc, flags);
306 free_all_mididevs(sc);
307 free_all_jacks(sc);
308 free_all_endpoints(sc);
309
310 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
311 sc->sc_dev);
312 KERNEL_UNLOCK_ONE(curlwp);
313
314 mutex_destroy(&sc->sc_lock);
315 cv_destroy(&sc->sc_cv);
316
317 return 0;
318 }
319
320
321 /*
322 * midi_if stuffs
323 */
324 int
325 umidi_open(void *addr,
326 int flags,
327 void (*iintr)(void *, int),
328 void (*ointr)(void *),
329 void *arg)
330 {
331 struct umidi_mididev *mididev = addr;
332 struct umidi_softc *sc = mididev->sc;
333 usbd_status err;
334
335 DPRINTF(("umidi_open: sc=%p\n", sc));
336
337 if (!sc)
338 return ENXIO;
339 if (mididev->opened)
340 return EBUSY;
341 if (sc->sc_dying)
342 return EIO;
343
344 mididev->opened = 1;
345 mididev->closing = 0;
346 mididev->flags = flags;
347 if ((mididev->flags & FWRITE) && mididev->out_jack) {
348 err = open_out_jack(mididev->out_jack, arg, ointr);
349 if ( err != USBD_NORMAL_COMPLETION )
350 goto bad;
351 }
352 if ((mididev->flags & FREAD) && mididev->in_jack) {
353 err = open_in_jack(mididev->in_jack, arg, iintr);
354 if ( err != USBD_NORMAL_COMPLETION
355 && err != USBD_IN_PROGRESS )
356 goto bad;
357 }
358
359 return 0;
360 bad:
361 mididev->opened = 0;
362 DPRINTF(("umidi_open: usbd_status %d\n", err));
363 return USBD_IN_USE == err ? EBUSY : EIO;
364 }
365
366 void
367 umidi_close(void *addr)
368 {
369 struct umidi_mididev *mididev = addr;
370
371 /* XXX SMP */
372 mididev->closing = 1;
373
374 KERNEL_LOCK(1, curlwp);
375 mutex_spin_exit(&mididev->sc->sc_lock);
376
377 if ((mididev->flags & FWRITE) && mididev->out_jack)
378 close_out_jack(mididev->out_jack);
379 if ((mididev->flags & FREAD) && mididev->in_jack)
380 close_in_jack(mididev->in_jack);
381
382 /* XXX SMP */
383 mutex_spin_enter(&mididev->sc->sc_lock);
384 KERNEL_UNLOCK_ONE(curlwp);
385
386 mididev->opened = 0;
387 }
388
389 int
390 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
391 int len)
392 {
393 struct umidi_mididev *mididev = addr;
394
395 if (!mididev->out_jack || !mididev->opened || mididev->closing)
396 return EIO;
397
398 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
399 }
400
401 int
402 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
403 {
404 struct umidi_mididev *mididev = addr;
405 int cin;
406
407 if (!mididev->out_jack || !mididev->opened || mididev->closing)
408 return EIO;
409
410 switch ( len ) {
411 case 1: cin = 5; break;
412 case 2: cin = 2; break;
413 case 3: cin = 3; break;
414 default: return EIO; /* or gcc warns of cin uninitialized */
415 }
416
417 return out_jack_output(mididev->out_jack, msg, len, cin);
418 }
419
420 int
421 umidi_sysex(void *addr, u_char *msg, int len)
422 {
423 struct umidi_mididev *mididev = addr;
424 int cin;
425
426 if (!mididev->out_jack || !mididev->opened || mididev->closing)
427 return EIO;
428
429 switch ( len ) {
430 case 1: cin = 5; break;
431 case 2: cin = 6; break;
432 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
433 default: return EIO; /* or gcc warns of cin uninitialized */
434 }
435
436 return out_jack_output(mididev->out_jack, msg, len, cin);
437 }
438
439 int
440 umidi_rtmsg(void *addr, int d)
441 {
442 struct umidi_mididev *mididev = addr;
443 u_char msg = d;
444
445 if (!mididev->out_jack || !mididev->opened || mididev->closing)
446 return EIO;
447
448 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
449 }
450
451 void
452 umidi_getinfo(void *addr, struct midi_info *mi)
453 {
454 struct umidi_mididev *mididev = addr;
455 struct umidi_softc *sc = mididev->sc;
456 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
457
458 mi->name = mididev->label;
459 mi->props = MIDI_PROP_OUT_INTR;
460 if (mididev->in_jack)
461 mi->props |= MIDI_PROP_CAN_INPUT;
462 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
463 }
464
465 static void
466 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
467 {
468 struct umidi_mididev *mididev = addr;
469 struct umidi_softc *sc = mididev->sc;
470
471 *intr = NULL;
472 *thread = &sc->sc_lock;
473 }
474
475 /*
476 * each endpoint stuffs
477 */
478
479 /* alloc/free pipe */
480 static usbd_status
481 alloc_pipe(struct umidi_endpoint *ep)
482 {
483 struct umidi_softc *sc = ep->sc;
484 usbd_status err;
485 usb_endpoint_descriptor_t *epd;
486
487 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
488 /*
489 * For output, an improvement would be to have a buffer bigger than
490 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
491 * allow out_solicit to fill the buffer to the full packet size in
492 * all cases. But to use usbd_alloc_buffer to get a slightly larger
493 * buffer would not be a good way to do that, because if the addition
494 * would make the buffer exceed USB_MEM_SMALL then a substantially
495 * larger block may be wastefully allocated. Some flavor of double
496 * buffering could serve the same purpose, but would increase the
497 * code complexity, so for now I will live with the current slight
498 * penalty of reducing max transfer size by (num_open-num_scheduled)
499 * packet slots.
500 */
501 ep->buffer_size = UGETW(epd->wMaxPacketSize);
502 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
503
504 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
505 device_xname(sc->sc_dev), ep, ep->buffer_size));
506 ep->num_scheduled = 0;
507 ep->this_schedule = 0;
508 ep->next_schedule = 0;
509 ep->soliciting = 0;
510 ep->armed = 0;
511 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
512 if (ep->xfer == NULL) {
513 err = USBD_NOMEM;
514 goto quit;
515 }
516 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
517 if (ep->buffer == NULL) {
518 usbd_free_xfer(ep->xfer);
519 err = USBD_NOMEM;
520 goto quit;
521 }
522 ep->next_slot = ep->buffer;
523 err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
524 if (err)
525 usbd_free_xfer(ep->xfer);
526 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK, out_solicit, ep);
527 quit:
528 return err;
529 }
530
531 static void
532 free_pipe(struct umidi_endpoint *ep)
533 {
534 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
535 usbd_abort_pipe(ep->pipe);
536 usbd_close_pipe(ep->pipe);
537 usbd_free_xfer(ep->xfer);
538 softint_disestablish(ep->solicit_cookie);
539 }
540
541
542 /* alloc/free the array of endpoint structures */
543
544 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
545 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
546 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
547
548 static usbd_status
549 alloc_all_endpoints(struct umidi_softc *sc)
550 {
551 usbd_status err;
552 struct umidi_endpoint *ep;
553 int i;
554
555 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
556 err = alloc_all_endpoints_fixed_ep(sc);
557 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
558 err = alloc_all_endpoints_yamaha(sc);
559 } else {
560 err = alloc_all_endpoints_genuine(sc);
561 }
562 if (err != USBD_NORMAL_COMPLETION)
563 return err;
564
565 ep = sc->sc_endpoints;
566 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
567 err = alloc_pipe(ep++);
568 if (err != USBD_NORMAL_COMPLETION) {
569 for (; ep != sc->sc_endpoints; ep--)
570 free_pipe(ep-1);
571 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
572 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
573 break;
574 }
575 }
576 return err;
577 }
578
579 static void
580 free_all_endpoints(struct umidi_softc *sc)
581 {
582 int i;
583
584 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
585 free_pipe(&sc->sc_endpoints[i]);
586 if (sc->sc_endpoints != NULL)
587 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
588 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
589 }
590
591 static usbd_status
592 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
593 {
594 usbd_status err;
595 const struct umq_fixed_ep_desc *fp;
596 struct umidi_endpoint *ep;
597 usb_endpoint_descriptor_t *epd;
598 int i;
599
600 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
601 UMQ_TYPE_FIXED_EP);
602 sc->sc_out_num_jacks = 0;
603 sc->sc_in_num_jacks = 0;
604 sc->sc_out_num_endpoints = fp->num_out_ep;
605 sc->sc_in_num_endpoints = fp->num_in_ep;
606 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
607 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
608 if (!sc->sc_endpoints)
609 return USBD_NOMEM;
610
611 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
612 sc->sc_in_ep =
613 sc->sc_in_num_endpoints ?
614 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
615
616 ep = &sc->sc_out_ep[0];
617 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
618 epd = usbd_interface2endpoint_descriptor(
619 sc->sc_iface,
620 fp->out_ep[i].ep);
621 if (!epd) {
622 aprint_error_dev(sc->sc_dev,
623 "cannot get endpoint descriptor(out:%d)\n",
624 fp->out_ep[i].ep);
625 err = USBD_INVAL;
626 goto error;
627 }
628 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
629 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
630 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
631 fp->out_ep[i].ep);
632 err = USBD_INVAL;
633 goto error;
634 }
635 ep->sc = sc;
636 ep->addr = epd->bEndpointAddress;
637 ep->num_jacks = fp->out_ep[i].num_jacks;
638 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
639 ep->num_open = 0;
640 ep++;
641 }
642 ep = &sc->sc_in_ep[0];
643 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
644 epd = usbd_interface2endpoint_descriptor(
645 sc->sc_iface,
646 fp->in_ep[i].ep);
647 if (!epd) {
648 aprint_error_dev(sc->sc_dev,
649 "cannot get endpoint descriptor(in:%d)\n",
650 fp->in_ep[i].ep);
651 err = USBD_INVAL;
652 goto error;
653 }
654 /*
655 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
656 * endpoint. The existing input logic in this driver seems
657 * to work successfully if we just stop treating an interrupt
658 * endpoint as illegal (or the in_progress status we get on
659 * the initial transfer). It does not seem necessary to
660 * actually use the interrupt flavor of alloc_pipe or make
661 * other serious rearrangements of logic. I like that.
662 */
663 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
664 case UE_BULK:
665 case UE_INTERRUPT:
666 if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
667 break;
668 /*FALLTHROUGH*/
669 default:
670 aprint_error_dev(sc->sc_dev,
671 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
672 err = USBD_INVAL;
673 goto error;
674 }
675
676 ep->sc = sc;
677 ep->addr = epd->bEndpointAddress;
678 ep->num_jacks = fp->in_ep[i].num_jacks;
679 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
680 ep->num_open = 0;
681 ep++;
682 }
683
684 return USBD_NORMAL_COMPLETION;
685 error:
686 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
687 sc->sc_endpoints = NULL;
688 return err;
689 }
690
691 static usbd_status
692 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
693 {
694 /* This driver currently supports max 1in/1out bulk endpoints */
695 usb_descriptor_t *desc;
696 umidi_cs_descriptor_t *udesc;
697 usb_endpoint_descriptor_t *epd;
698 int out_addr, in_addr, i;
699 int dir;
700 size_t remain, descsize;
701
702 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
703 out_addr = in_addr = 0;
704
705 /* detect endpoints */
706 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
707 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
708 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
709 KASSERT(epd != NULL);
710 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
711 dir = UE_GET_DIR(epd->bEndpointAddress);
712 if (dir==UE_DIR_OUT && !out_addr)
713 out_addr = epd->bEndpointAddress;
714 else if (dir==UE_DIR_IN && !in_addr)
715 in_addr = epd->bEndpointAddress;
716 }
717 }
718 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
719
720 /* count jacks */
721 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
722 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
723 return USBD_INVAL;
724 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
725 (size_t)udesc->bLength;
726 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
727
728 while (remain >= sizeof(usb_descriptor_t)) {
729 descsize = udesc->bLength;
730 if (descsize>remain || descsize==0)
731 break;
732 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
733 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
734 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
735 sc->sc_out_num_jacks++;
736 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
737 sc->sc_in_num_jacks++;
738 }
739 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
740 remain -= descsize;
741 }
742
743 /* validate some parameters */
744 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
745 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
746 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
747 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
748 if (sc->sc_out_num_jacks && out_addr) {
749 sc->sc_out_num_endpoints = 1;
750 } else {
751 sc->sc_out_num_endpoints = 0;
752 sc->sc_out_num_jacks = 0;
753 }
754 if (sc->sc_in_num_jacks && in_addr) {
755 sc->sc_in_num_endpoints = 1;
756 } else {
757 sc->sc_in_num_endpoints = 0;
758 sc->sc_in_num_jacks = 0;
759 }
760 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
761 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
762 if (!sc->sc_endpoints)
763 return USBD_NOMEM;
764 if (sc->sc_out_num_endpoints) {
765 sc->sc_out_ep = sc->sc_endpoints;
766 sc->sc_out_ep->sc = sc;
767 sc->sc_out_ep->addr = out_addr;
768 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
769 sc->sc_out_ep->num_open = 0;
770 } else
771 sc->sc_out_ep = NULL;
772
773 if (sc->sc_in_num_endpoints) {
774 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
775 sc->sc_in_ep->sc = sc;
776 sc->sc_in_ep->addr = in_addr;
777 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
778 sc->sc_in_ep->num_open = 0;
779 } else
780 sc->sc_in_ep = NULL;
781
782 return USBD_NORMAL_COMPLETION;
783 }
784
785 static usbd_status
786 alloc_all_endpoints_genuine(struct umidi_softc *sc)
787 {
788 usb_interface_descriptor_t *interface_desc;
789 usb_config_descriptor_t *config_desc;
790 usb_descriptor_t *desc;
791 int num_ep;
792 size_t remain, descsize;
793 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
794 int epaddr;
795
796 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
797 num_ep = interface_desc->bNumEndpoints;
798 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
799 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
800 if (!p)
801 return USBD_NOMEM;
802
803 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
804 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
805 epaddr = -1;
806
807 /* get the list of endpoints for midi stream */
808 config_desc = usbd_get_config_descriptor(sc->sc_udev);
809 desc = (usb_descriptor_t *) config_desc;
810 remain = (size_t)UGETW(config_desc->wTotalLength);
811 while (remain>=sizeof(usb_descriptor_t)) {
812 descsize = desc->bLength;
813 if (descsize>remain || descsize==0)
814 break;
815 if (desc->bDescriptorType==UDESC_ENDPOINT &&
816 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
817 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
818 epaddr = TO_EPD(desc)->bEndpointAddress;
819 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
820 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
821 epaddr!=-1) {
822 if (num_ep>0) {
823 num_ep--;
824 p->sc = sc;
825 p->addr = epaddr;
826 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
827 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
828 sc->sc_out_num_endpoints++;
829 sc->sc_out_num_jacks += p->num_jacks;
830 } else {
831 sc->sc_in_num_endpoints++;
832 sc->sc_in_num_jacks += p->num_jacks;
833 }
834 p++;
835 }
836 } else
837 epaddr = -1;
838 desc = NEXT_D(desc);
839 remain-=descsize;
840 }
841
842 /* sort endpoints */
843 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
844 p = sc->sc_endpoints;
845 endep = p + num_ep;
846 while (p<endep) {
847 lowest = p;
848 for (q=p+1; q<endep; q++) {
849 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
850 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
851 ((UE_GET_DIR(lowest->addr)==
852 UE_GET_DIR(q->addr)) &&
853 (UE_GET_ADDR(lowest->addr)>
854 UE_GET_ADDR(q->addr))))
855 lowest = q;
856 }
857 if (lowest != p) {
858 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
859 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
860 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
861 }
862 p->num_open = 0;
863 p++;
864 }
865
866 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
867 sc->sc_in_ep =
868 sc->sc_in_num_endpoints ?
869 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
870
871 return USBD_NORMAL_COMPLETION;
872 }
873
874
875 /*
876 * jack stuffs
877 */
878
879 static usbd_status
880 alloc_all_jacks(struct umidi_softc *sc)
881 {
882 int i, j;
883 struct umidi_endpoint *ep;
884 struct umidi_jack *jack;
885 const unsigned char *cn_spec;
886
887 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
888 sc->cblnums_global = 0;
889 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
890 sc->cblnums_global = 1;
891 else {
892 /*
893 * I don't think this default is correct, but it preserves
894 * the prior behavior of the code. That's why I defined two
895 * complementary quirks. Any device for which the default
896 * behavior is wrong can be made to work by giving it an
897 * explicit quirk, and if a pattern ever develops (as I suspect
898 * it will) that a lot of otherwise standard USB MIDI devices
899 * need the CN_SEQ_PER_EP "quirk," then this default can be
900 * changed to 0, and the only devices that will break are those
901 * listing neither quirk, and they'll easily be fixed by giving
902 * them the CN_SEQ_GLOBAL quirk.
903 */
904 sc->cblnums_global = 1;
905 }
906
907 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
908 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
909 UMQ_TYPE_CN_FIXED);
910 else
911 cn_spec = NULL;
912
913 /* allocate/initialize structures */
914 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
915 sc->sc_out_num_jacks), KM_SLEEP);
916 if (!sc->sc_jacks)
917 return USBD_NOMEM;
918 sc->sc_out_jacks =
919 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
920 sc->sc_in_jacks =
921 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
922
923 jack = &sc->sc_out_jacks[0];
924 for (i = 0; i < sc->sc_out_num_jacks; i++) {
925 jack->opened = 0;
926 jack->binded = 0;
927 jack->arg = NULL;
928 jack->u.out.intr = NULL;
929 jack->midiman_ppkt = NULL;
930 if (sc->cblnums_global)
931 jack->cable_number = i;
932 jack++;
933 }
934 jack = &sc->sc_in_jacks[0];
935 for (i = 0; i < sc->sc_in_num_jacks; i++) {
936 jack->opened = 0;
937 jack->binded = 0;
938 jack->arg = NULL;
939 jack->u.in.intr = NULL;
940 if (sc->cblnums_global)
941 jack->cable_number = i;
942 jack++;
943 }
944
945 /* assign each jacks to each endpoints */
946 jack = &sc->sc_out_jacks[0];
947 ep = &sc->sc_out_ep[0];
948 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
949 for (j = 0; j < ep->num_jacks; j++) {
950 jack->endpoint = ep;
951 if (cn_spec != NULL)
952 jack->cable_number = *cn_spec++;
953 else if (!sc->cblnums_global)
954 jack->cable_number = j;
955 ep->jacks[jack->cable_number] = jack;
956 jack++;
957 }
958 ep++;
959 }
960 jack = &sc->sc_in_jacks[0];
961 ep = &sc->sc_in_ep[0];
962 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
963 for (j = 0; j < ep->num_jacks; j++) {
964 jack->endpoint = ep;
965 if (cn_spec != NULL)
966 jack->cable_number = *cn_spec++;
967 else if (!sc->cblnums_global)
968 jack->cable_number = j;
969 ep->jacks[jack->cable_number] = jack;
970 jack++;
971 }
972 ep++;
973 }
974
975 return USBD_NORMAL_COMPLETION;
976 }
977
978 static void
979 free_all_jacks(struct umidi_softc *sc)
980 {
981 struct umidi_jack *jacks;
982 size_t len;
983
984 mutex_enter(&sc->sc_lock);
985 jacks = sc->sc_jacks;
986 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
987 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
988 mutex_exit(&sc->sc_lock);
989
990 if (jacks)
991 kmem_free(jacks, len);
992 }
993
994 static usbd_status
995 bind_jacks_to_mididev(struct umidi_softc *sc,
996 struct umidi_jack *out_jack,
997 struct umidi_jack *in_jack,
998 struct umidi_mididev *mididev)
999 {
1000 if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
1001 return USBD_IN_USE;
1002 if (mididev->out_jack || mididev->in_jack)
1003 return USBD_IN_USE;
1004
1005 if (out_jack)
1006 out_jack->binded = 1;
1007 if (in_jack)
1008 in_jack->binded = 1;
1009 mididev->in_jack = in_jack;
1010 mididev->out_jack = out_jack;
1011
1012 return USBD_NORMAL_COMPLETION;
1013 }
1014
1015 static void
1016 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1017 {
1018
1019 if ((mididev->flags & FWRITE) && mididev->out_jack)
1020 close_out_jack(mididev->out_jack);
1021 if ((mididev->flags & FREAD) && mididev->in_jack)
1022 close_in_jack(mididev->in_jack);
1023
1024 if (mididev->out_jack)
1025 mididev->out_jack->binded = 0;
1026 if (mididev->in_jack)
1027 mididev->in_jack->binded = 0;
1028 mididev->out_jack = mididev->in_jack = NULL;
1029 }
1030
1031 static void
1032 unbind_all_jacks(struct umidi_softc *sc)
1033 {
1034 int i;
1035
1036 if (sc->sc_mididevs)
1037 for (i = 0; i < sc->sc_num_mididevs; i++)
1038 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1039 }
1040
1041 static usbd_status
1042 assign_all_jacks_automatically(struct umidi_softc *sc)
1043 {
1044 usbd_status err;
1045 int i;
1046 struct umidi_jack *out, *in;
1047 const signed char *asg_spec;
1048
1049 err =
1050 alloc_all_mididevs(sc,
1051 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1052 if (err!=USBD_NORMAL_COMPLETION)
1053 return err;
1054
1055 if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1056 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1057 UMQ_TYPE_MD_FIXED);
1058 else
1059 asg_spec = NULL;
1060
1061 for (i = 0; i < sc->sc_num_mididevs; i++) {
1062 if (asg_spec != NULL) {
1063 if (*asg_spec == -1)
1064 out = NULL;
1065 else
1066 out = &sc->sc_out_jacks[*asg_spec];
1067 ++ asg_spec;
1068 if (*asg_spec == -1)
1069 in = NULL;
1070 else
1071 in = &sc->sc_in_jacks[*asg_spec];
1072 ++ asg_spec;
1073 } else {
1074 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1075 : NULL;
1076 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1077 : NULL;
1078 }
1079 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1080 if (err!=USBD_NORMAL_COMPLETION) {
1081 free_all_mididevs(sc);
1082 return err;
1083 }
1084 }
1085
1086 return USBD_NORMAL_COMPLETION;
1087 }
1088
1089 static usbd_status
1090 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1091 {
1092 struct umidi_endpoint *ep = jack->endpoint;
1093 struct umidi_softc *sc = ep->sc;
1094 umidi_packet_bufp end;
1095 int err;
1096
1097 KASSERT(mutex_owned(&sc->sc_lock));
1098
1099 if (jack->opened)
1100 return USBD_IN_USE;
1101
1102 jack->arg = arg;
1103 jack->u.out.intr = intr;
1104 jack->midiman_ppkt = NULL;
1105 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1106 jack->opened = 1;
1107 ep->num_open++;
1108 /*
1109 * out_solicit maintains an invariant that there will always be
1110 * (num_open - num_scheduled) slots free in the buffer. as we have
1111 * just incremented num_open, the buffer may be too full to satisfy
1112 * the invariant until a transfer completes, for which we must wait.
1113 */
1114 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1115 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1116 mstohz(10));
1117 if (err) {
1118 ep->num_open--;
1119 jack->opened = 0;
1120 return USBD_IOERROR;
1121 }
1122 }
1123
1124 return USBD_NORMAL_COMPLETION;
1125 }
1126
1127 static usbd_status
1128 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1129 {
1130 usbd_status err = USBD_NORMAL_COMPLETION;
1131 struct umidi_endpoint *ep = jack->endpoint;
1132
1133 KASSERT(mutex_owned(&ep->sc->sc_lock));
1134
1135 if (jack->opened)
1136 return USBD_IN_USE;
1137
1138 jack->arg = arg;
1139 jack->u.in.intr = intr;
1140 jack->opened = 1;
1141 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1142 KERNEL_LOCK(1, curlwp);
1143 err = start_input_transfer(ep);
1144 KERNEL_UNLOCK_ONE(curlwp);
1145 if (err != USBD_NORMAL_COMPLETION &&
1146 err != USBD_IN_PROGRESS) {
1147 ep->num_open--;
1148 }
1149 }
1150
1151 return err;
1152 }
1153
1154 static void
1155 close_out_jack(struct umidi_jack *jack)
1156 {
1157 struct umidi_endpoint *ep;
1158 struct umidi_softc *sc;
1159 u_int16_t mask;
1160 int err;
1161
1162 if (jack->opened) {
1163 ep = jack->endpoint;
1164 sc = ep->sc;
1165 mutex_spin_enter(&sc->sc_lock);
1166 mask = 1 << (jack->cable_number);
1167 while (mask & (ep->this_schedule | ep->next_schedule)) {
1168 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1169 mstohz(10));
1170 if (err)
1171 break;
1172 }
1173 /*
1174 * We can re-enter this function from both close() and
1175 * detach(). Make sure only one of them does this part.
1176 */
1177 if (jack->opened) {
1178 jack->opened = 0;
1179 jack->endpoint->num_open--;
1180 ep->this_schedule &= ~mask;
1181 ep->next_schedule &= ~mask;
1182 }
1183 mutex_spin_exit(&sc->sc_lock);
1184 }
1185 }
1186
1187 static void
1188 close_in_jack(struct umidi_jack *jack)
1189 {
1190 if (jack->opened) {
1191 jack->opened = 0;
1192 if (--jack->endpoint->num_open == 0) {
1193 usbd_abort_pipe(jack->endpoint->pipe);
1194 }
1195 }
1196 }
1197
1198 static usbd_status
1199 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1200 {
1201 if (mididev->sc)
1202 return USBD_IN_USE;
1203
1204 mididev->sc = sc;
1205
1206 describe_mididev(mididev);
1207
1208 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1209
1210 return USBD_NORMAL_COMPLETION;
1211 }
1212
1213 static usbd_status
1214 detach_mididev(struct umidi_mididev *mididev, int flags)
1215 {
1216 if (!mididev->sc)
1217 return USBD_NO_ADDR;
1218
1219 if (mididev->opened) {
1220 umidi_close(mididev);
1221 }
1222 unbind_jacks_from_mididev(mididev);
1223
1224 if (mididev->mdev != NULL)
1225 config_detach(mididev->mdev, flags);
1226
1227 if (NULL != mididev->label) {
1228 kmem_free(mididev->label, mididev->label_len);
1229 mididev->label = NULL;
1230 }
1231
1232 mididev->sc = NULL;
1233
1234 return USBD_NORMAL_COMPLETION;
1235 }
1236
1237 static void
1238 deactivate_mididev(struct umidi_mididev *mididev)
1239 {
1240 if (mididev->out_jack)
1241 mididev->out_jack->binded = 0;
1242 if (mididev->in_jack)
1243 mididev->in_jack->binded = 0;
1244 }
1245
1246 static usbd_status
1247 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1248 {
1249 sc->sc_num_mididevs = nmidi;
1250 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1251 if (!sc->sc_mididevs)
1252 return USBD_NOMEM;
1253
1254 return USBD_NORMAL_COMPLETION;
1255 }
1256
1257 static void
1258 free_all_mididevs(struct umidi_softc *sc)
1259 {
1260 if (sc->sc_mididevs)
1261 kmem_free(sc->sc_mididevs,
1262 sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
1263 sc->sc_num_mididevs = 0;
1264 }
1265
1266 static usbd_status
1267 attach_all_mididevs(struct umidi_softc *sc)
1268 {
1269 usbd_status err;
1270 int i;
1271
1272 if (sc->sc_mididevs)
1273 for (i = 0; i < sc->sc_num_mididevs; i++) {
1274 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1275 if (err != USBD_NORMAL_COMPLETION)
1276 return err;
1277 }
1278
1279 return USBD_NORMAL_COMPLETION;
1280 }
1281
1282 static usbd_status
1283 detach_all_mididevs(struct umidi_softc *sc, int flags)
1284 {
1285 usbd_status err;
1286 int i;
1287
1288 if (sc->sc_mididevs)
1289 for (i = 0; i < sc->sc_num_mididevs; i++) {
1290 err = detach_mididev(&sc->sc_mididevs[i], flags);
1291 if (err != USBD_NORMAL_COMPLETION)
1292 return err;
1293 }
1294
1295 return USBD_NORMAL_COMPLETION;
1296 }
1297
1298 static void
1299 deactivate_all_mididevs(struct umidi_softc *sc)
1300 {
1301 int i;
1302
1303 if (sc->sc_mididevs) {
1304 for (i = 0; i < sc->sc_num_mididevs; i++)
1305 deactivate_mididev(&sc->sc_mididevs[i]);
1306 }
1307 }
1308
1309 /*
1310 * TODO: the 0-based cable numbers will often not match the labeling of the
1311 * equipment. Ideally:
1312 * For class-compliant devices: get the iJack string from the jack descriptor.
1313 * Otherwise:
1314 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1315 * number for display)
1316 * - support an array quirk explictly giving a char * for each jack.
1317 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1318 * the CNs are not globally unique, each is shown with its associated endpoint
1319 * address in hex also. That should not be necessary when using iJack values
1320 * or a quirk array.
1321 */
1322 void
1323 describe_mididev(struct umidi_mididev *md)
1324 {
1325 char in_label[16];
1326 char out_label[16];
1327 const char *unit_label;
1328 char *final_label;
1329 struct umidi_softc *sc;
1330 int show_ep_in;
1331 int show_ep_out;
1332 size_t len;
1333
1334 sc = md->sc;
1335 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1336 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1337
1338 if ( NULL == md->in_jack )
1339 in_label[0] = '\0';
1340 else if ( show_ep_in )
1341 snprintf(in_label, sizeof in_label, "<%d(%x) ",
1342 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1343 else
1344 snprintf(in_label, sizeof in_label, "<%d ",
1345 md->in_jack->cable_number);
1346
1347 if ( NULL == md->out_jack )
1348 out_label[0] = '\0';
1349 else if ( show_ep_out )
1350 snprintf(out_label, sizeof out_label, ">%d(%x) ",
1351 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1352 else
1353 snprintf(out_label, sizeof out_label, ">%d ",
1354 md->out_jack->cable_number);
1355
1356 unit_label = device_xname(sc->sc_dev);
1357
1358 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1359
1360 final_label = kmem_alloc(len, KM_SLEEP);
1361
1362 snprintf(final_label, len, "%s%son %s",
1363 in_label, out_label, unit_label);
1364
1365 md->label = final_label;
1366 md->label_len = len;
1367 }
1368
1369 #ifdef UMIDI_DEBUG
1370 static void
1371 dump_sc(struct umidi_softc *sc)
1372 {
1373 int i;
1374
1375 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1376 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1377 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1378 dump_ep(&sc->sc_out_ep[i]);
1379 }
1380 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1381 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1382 dump_ep(&sc->sc_in_ep[i]);
1383 }
1384 }
1385
1386 static void
1387 dump_ep(struct umidi_endpoint *ep)
1388 {
1389 int i;
1390 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1391 if (NULL==ep->jacks[i])
1392 continue;
1393 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1394 dump_jack(ep->jacks[i]);
1395 }
1396 }
1397 static void
1398 dump_jack(struct umidi_jack *jack)
1399 {
1400 DPRINTFN(10, ("\t\t\tep=%p\n",
1401 jack->endpoint));
1402 }
1403
1404 #endif /* UMIDI_DEBUG */
1405
1406
1407
1408 /*
1409 * MUX MIDI PACKET
1410 */
1411
1412 static const int packet_length[16] = {
1413 /*0*/ -1,
1414 /*1*/ -1,
1415 /*2*/ 2,
1416 /*3*/ 3,
1417 /*4*/ 3,
1418 /*5*/ 1,
1419 /*6*/ 2,
1420 /*7*/ 3,
1421 /*8*/ 3,
1422 /*9*/ 3,
1423 /*A*/ 3,
1424 /*B*/ 3,
1425 /*C*/ 2,
1426 /*D*/ 2,
1427 /*E*/ 3,
1428 /*F*/ 1,
1429 };
1430
1431 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1432 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1433 #define MIX_CN_CIN(cn, cin) \
1434 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1435 ((unsigned char)(cin)&0x0F)))
1436
1437 static usbd_status
1438 start_input_transfer(struct umidi_endpoint *ep)
1439 {
1440 usbd_setup_xfer(ep->xfer, ep->pipe,
1441 (usbd_private_handle)ep,
1442 ep->buffer, ep->buffer_size,
1443 USBD_SHORT_XFER_OK | USBD_NO_COPY,
1444 USBD_NO_TIMEOUT, in_intr);
1445 return usbd_transfer(ep->xfer);
1446 }
1447
1448 static usbd_status
1449 start_output_transfer(struct umidi_endpoint *ep)
1450 {
1451 usbd_status rv;
1452 u_int32_t length;
1453 int i;
1454
1455 length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1456 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1457 ep->buffer, ep->next_slot, length));
1458 KERNEL_LOCK(1, curlwp);
1459 usbd_setup_xfer(ep->xfer, ep->pipe,
1460 (usbd_private_handle)ep,
1461 ep->buffer, length,
1462 USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1463 rv = usbd_transfer(ep->xfer);
1464 KERNEL_UNLOCK_ONE(curlwp);
1465
1466 /*
1467 * Once the transfer is scheduled, no more adding to partial
1468 * packets within it.
1469 */
1470 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1471 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1472 if (NULL != ep->jacks[i])
1473 ep->jacks[i]->midiman_ppkt = NULL;
1474 }
1475
1476 return rv;
1477 }
1478
1479 #ifdef UMIDI_DEBUG
1480 #define DPR_PACKET(dir, sc, p) \
1481 if ((unsigned char)(p)[1]!=0xFE) \
1482 DPRINTFN(500, \
1483 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1484 device_xname(sc->sc_dev), \
1485 (unsigned char)(p)[0], \
1486 (unsigned char)(p)[1], \
1487 (unsigned char)(p)[2], \
1488 (unsigned char)(p)[3]));
1489 #else
1490 #define DPR_PACKET(dir, sc, p)
1491 #endif
1492
1493 /*
1494 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1495 * with the cable number and length in the last byte instead of the first,
1496 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1497 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1498 * with a cable nybble and a length nybble (which, unlike the CIN of a
1499 * real USB MIDI packet, has no semantics at all besides the length).
1500 * A packet received from a Midiman may contain part of a MIDI message,
1501 * more than one MIDI message, or parts of more than one MIDI message. A
1502 * three-byte MIDI message may arrive in three packets of data length 1, and
1503 * running status may be used. Happily, the midi(4) driver above us will put
1504 * it all back together, so the only cost is in USB bandwidth. The device
1505 * has an easier time with what it receives from us: we'll pack messages in
1506 * and across packets, but filling the packets whenever possible and,
1507 * as midi(4) hands us a complete message at a time, we'll never send one
1508 * in a dribble of short packets.
1509 */
1510
1511 static int
1512 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1513 {
1514 struct umidi_endpoint *ep = out_jack->endpoint;
1515 struct umidi_softc *sc = ep->sc;
1516 unsigned char *packet;
1517 int plen;
1518 int poff;
1519
1520 if (sc->sc_dying)
1521 return EIO;
1522
1523 if (!out_jack->opened)
1524 return ENODEV; /* XXX as it was, is this the right errno? */
1525
1526 #ifdef UMIDI_DEBUG
1527 if ( umididebug >= 100 )
1528 microtime(&umidi_tv);
1529 #endif
1530 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1531 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1532 ep, out_jack->cable_number, len, cin));
1533
1534 packet = *ep->next_slot++;
1535 KASSERT(ep->buffer_size >=
1536 (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1537 memset(packet, 0, UMIDI_PACKET_SIZE);
1538 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1539 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1540 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1541 plen = 3 - poff;
1542 if (plen > len)
1543 plen = len;
1544 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1545 src += plen;
1546 len -= plen;
1547 plen += poff;
1548 out_jack->midiman_ppkt[3] =
1549 MIX_CN_CIN(out_jack->cable_number, plen);
1550 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1551 if (3 == plen)
1552 out_jack->midiman_ppkt = NULL; /* no more */
1553 }
1554 if (0 == len)
1555 ep->next_slot--; /* won't be needed, nevermind */
1556 else {
1557 memcpy(packet, src, len);
1558 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1559 DPR_PACKET(out, sc, packet);
1560 if (len < 3)
1561 out_jack->midiman_ppkt = packet;
1562 }
1563 } else { /* the nice simple USB class-compliant case */
1564 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1565 memcpy(packet+1, src, len);
1566 DPR_PACKET(out, sc, packet);
1567 }
1568 ep->next_schedule |= 1<<(out_jack->cable_number);
1569 ++ ep->num_scheduled;
1570 if ( !ep->armed && !ep->soliciting ) {
1571 /*
1572 * It would be bad to call out_solicit directly here (the
1573 * caller need not be reentrant) but a soft interrupt allows
1574 * solicit to run immediately the caller exits its critical
1575 * section, and if the caller has more to write we can get it
1576 * before starting the USB transfer, and send a longer one.
1577 */
1578 ep->soliciting = 1;
1579 softint_schedule(ep->solicit_cookie);
1580 }
1581
1582 return 0;
1583 }
1584
1585 static void
1586 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1587 usbd_status status)
1588 {
1589 int cn, len, i;
1590 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1591 struct umidi_softc *sc = ep->sc;
1592 struct umidi_jack *jack;
1593 unsigned char *packet;
1594 umidi_packet_bufp slot;
1595 umidi_packet_bufp end;
1596 unsigned char *data;
1597 u_int32_t count;
1598
1599 if (ep->sc->sc_dying || !ep->num_open)
1600 return;
1601
1602 mutex_enter(&sc->sc_lock);
1603 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1604 if (0 == count % UMIDI_PACKET_SIZE) {
1605 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1606 device_xname(ep->sc->sc_dev), ep, count));
1607 } else {
1608 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1609 device_xname(ep->sc->sc_dev), ep, count));
1610 }
1611
1612 slot = ep->buffer;
1613 end = slot + count / sizeof *slot;
1614
1615 for (packet = *slot; slot < end; packet = *++slot) {
1616
1617 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1618 cn = (0xf0&(packet[3]))>>4;
1619 len = 0x0f&(packet[3]);
1620 data = packet;
1621 } else {
1622 cn = GET_CN(packet[0]);
1623 len = packet_length[GET_CIN(packet[0])];
1624 data = packet + 1;
1625 }
1626 /* 0 <= cn <= 15 by inspection of above code */
1627 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1628 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1629 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1630 device_xname(ep->sc->sc_dev), ep, cn, len,
1631 (unsigned)data[0],
1632 (unsigned)data[1],
1633 (unsigned)data[2]));
1634 mutex_exit(&sc->sc_lock);
1635 return;
1636 }
1637
1638 if (!jack->binded || !jack->opened)
1639 continue;
1640
1641 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1642 "%02X %02X %02X\n",
1643 device_xname(ep->sc->sc_dev), ep, cn, len,
1644 (unsigned)data[0],
1645 (unsigned)data[1],
1646 (unsigned)data[2]));
1647
1648 if (jack->u.in.intr) {
1649 for (i = 0; i < len; i++) {
1650 (*jack->u.in.intr)(jack->arg, data[i]);
1651 }
1652 }
1653
1654 }
1655
1656 (void)start_input_transfer(ep);
1657 mutex_exit(&sc->sc_lock);
1658 }
1659
1660 static void
1661 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1662 usbd_status status)
1663 {
1664 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1665 struct umidi_softc *sc = ep->sc;
1666 u_int32_t count;
1667
1668 if (sc->sc_dying)
1669 return;
1670
1671 mutex_enter(&sc->sc_lock);
1672 #ifdef UMIDI_DEBUG
1673 if ( umididebug >= 200 )
1674 microtime(&umidi_tv);
1675 #endif
1676 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1677 if ( 0 == count % UMIDI_PACKET_SIZE ) {
1678 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1679 device_xname(ep->sc->sc_dev),
1680 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1681 } else {
1682 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1683 device_xname(ep->sc->sc_dev), ep, count));
1684 }
1685 count /= UMIDI_PACKET_SIZE;
1686
1687 /*
1688 * If while the transfer was pending we buffered any new messages,
1689 * move them to the start of the buffer.
1690 */
1691 ep->next_slot -= count;
1692 if (ep->buffer < ep->next_slot) {
1693 memcpy(ep->buffer, ep->buffer + count,
1694 (char *)ep->next_slot - (char *)ep->buffer);
1695 }
1696 cv_broadcast(&sc->sc_cv);
1697 /*
1698 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1699 * Running at IPL_USB so the following should happen to be safe.
1700 */
1701 ep->armed = 0;
1702 if (!ep->soliciting) {
1703 ep->soliciting = 1;
1704 out_solicit_locked(ep);
1705 }
1706 mutex_exit(&sc->sc_lock);
1707 }
1708
1709 /*
1710 * A jack on which we have received a packet must be called back on its
1711 * out.intr handler before it will send us another; it is considered
1712 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1713 * we need no extra buffer space for it.
1714 *
1715 * In contrast, a jack that is open but not scheduled may supply us a packet
1716 * at any time, driven by the top half, and we must be able to accept it, no
1717 * excuses. So we must ensure that at any point in time there are at least
1718 * (num_open - num_scheduled) slots free.
1719 *
1720 * As long as there are more slots free than that minimum, we can loop calling
1721 * scheduled jacks back on their "interrupt" handlers, soliciting more
1722 * packets, starting the USB transfer only when the buffer space is down to
1723 * the minimum or no jack has any more to send.
1724 */
1725
1726 static void
1727 out_solicit_locked(void *arg)
1728 {
1729 struct umidi_endpoint *ep = arg;
1730 umidi_packet_bufp end;
1731 u_int16_t which;
1732 struct umidi_jack *jack;
1733
1734 KASSERT(mutex_owned(&ep->sc->sc_lock));
1735
1736 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1737
1738 for ( ;; ) {
1739 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1740 break; /* at IPL_USB */
1741 if (ep->this_schedule == 0) {
1742 if (ep->next_schedule == 0)
1743 break; /* at IPL_USB */
1744 ep->this_schedule = ep->next_schedule;
1745 ep->next_schedule = 0;
1746 }
1747 /*
1748 * At least one jack is scheduled. Find and mask off the least
1749 * set bit in this_schedule and decrement num_scheduled.
1750 * Convert mask to bit index to find the corresponding jack,
1751 * and call its intr handler. If it has a message, it will call
1752 * back one of the output methods, which will set its bit in
1753 * next_schedule (not copied into this_schedule until the
1754 * latter is empty). In this way we round-robin the jacks that
1755 * have messages to send, until the buffer is as full as we
1756 * dare, and then start a transfer.
1757 */
1758 which = ep->this_schedule;
1759 which &= (~which)+1; /* now mask of least set bit */
1760 ep->this_schedule &= ~which;
1761 --ep->num_scheduled;
1762
1763 --which; /* now 1s below mask - count 1s to get index */
1764 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1765 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1766 which = (((which >> 4) + which) & 0x0f0f);
1767 which += (which >> 8);
1768 which &= 0x1f; /* the bit index a/k/a jack number */
1769
1770 jack = ep->jacks[which];
1771 if (jack->u.out.intr)
1772 (*jack->u.out.intr)(jack->arg);
1773 }
1774 /* intr lock held at loop exit */
1775 if (!ep->armed && ep->next_slot > ep->buffer)
1776 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1777 ep->soliciting = 0;
1778 }
1779
1780 /* Entry point for the softintr. */
1781 static void
1782 out_solicit(void *arg)
1783 {
1784 struct umidi_endpoint *ep = arg;
1785 struct umidi_softc *sc = ep->sc;
1786
1787 mutex_enter(&sc->sc_lock);
1788 out_solicit_locked(arg);
1789 mutex_exit(&sc->sc_lock);
1790 }
1791