Home | History | Annotate | Line # | Download | only in usb
umidi.c revision 1.61
      1 /*	$NetBSD: umidi.c,v 1.61 2012/03/11 01:06:07 mrg Exp $	*/
      2 /*
      3  * Copyright (c) 2001, 2012 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
      8  * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
      9  * (mrg (at) eterna.com.au).
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.61 2012/03/11 01:06:07 mrg Exp $");
     35 
     36 #include <sys/types.h>
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/kernel.h>
     40 #include <sys/kmem.h>
     41 #include <sys/device.h>
     42 #include <sys/ioctl.h>
     43 #include <sys/conf.h>
     44 #include <sys/file.h>
     45 #include <sys/select.h>
     46 #include <sys/proc.h>
     47 #include <sys/vnode.h>
     48 #include <sys/poll.h>
     49 #include <sys/intr.h>
     50 
     51 #include <dev/usb/usb.h>
     52 #include <dev/usb/usbdi.h>
     53 #include <dev/usb/usbdi_util.h>
     54 
     55 #include <dev/usb/usbdevs.h>
     56 #include <dev/usb/uaudioreg.h>
     57 #include <dev/usb/umidireg.h>
     58 #include <dev/usb/umidivar.h>
     59 #include <dev/usb/umidi_quirks.h>
     60 
     61 #include <dev/midi_if.h>
     62 
     63 #ifdef UMIDI_DEBUG
     64 #define DPRINTF(x)	if (umididebug) printf x
     65 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
     66 #include <sys/time.h>
     67 static struct timeval umidi_tv;
     68 int	umididebug = 0;
     69 #else
     70 #define DPRINTF(x)
     71 #define DPRINTFN(n,x)
     72 #endif
     73 
     74 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
     75 				 (sc->sc_out_num_endpoints + \
     76 				  sc->sc_in_num_endpoints))
     77 
     78 
     79 static int umidi_open(void *, int,
     80 		      void (*)(void *, int), void (*)(void *), void *);
     81 static void umidi_close(void *);
     82 static int umidi_channelmsg(void *, int, int, u_char *, int);
     83 static int umidi_commonmsg(void *, int, u_char *, int);
     84 static int umidi_sysex(void *, u_char *, int);
     85 static int umidi_rtmsg(void *, int);
     86 static void umidi_getinfo(void *, struct midi_info *);
     87 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
     88 
     89 static usbd_status alloc_pipe(struct umidi_endpoint *);
     90 static void free_pipe(struct umidi_endpoint *);
     91 
     92 static usbd_status alloc_all_endpoints(struct umidi_softc *);
     93 static void free_all_endpoints(struct umidi_softc *);
     94 
     95 static usbd_status alloc_all_jacks(struct umidi_softc *);
     96 static void free_all_jacks(struct umidi_softc *);
     97 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
     98 					 struct umidi_jack *,
     99 					 struct umidi_jack *,
    100 					 struct umidi_mididev *);
    101 static void unbind_jacks_from_mididev(struct umidi_mididev *);
    102 static void unbind_all_jacks(struct umidi_softc *);
    103 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
    104 static usbd_status open_out_jack(struct umidi_jack *, void *,
    105 				 void (*)(void *));
    106 static usbd_status open_in_jack(struct umidi_jack *, void *,
    107 				void (*)(void *, int));
    108 static void close_out_jack(struct umidi_jack *);
    109 static void close_in_jack(struct umidi_jack *);
    110 
    111 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
    112 static usbd_status detach_mididev(struct umidi_mididev *, int);
    113 static void deactivate_mididev(struct umidi_mididev *);
    114 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
    115 static void free_all_mididevs(struct umidi_softc *);
    116 static usbd_status attach_all_mididevs(struct umidi_softc *);
    117 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
    118 static void deactivate_all_mididevs(struct umidi_softc *);
    119 static void describe_mididev(struct umidi_mididev *);
    120 
    121 #ifdef UMIDI_DEBUG
    122 static void dump_sc(struct umidi_softc *);
    123 static void dump_ep(struct umidi_endpoint *);
    124 static void dump_jack(struct umidi_jack *);
    125 #endif
    126 
    127 static usbd_status start_input_transfer(struct umidi_endpoint *);
    128 static usbd_status start_output_transfer(struct umidi_endpoint *);
    129 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
    130 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
    131 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
    132 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
    133 static void out_solicit_locked(void *); /* pre-locked version */
    134 
    135 
    136 const struct midi_hw_if umidi_hw_if = {
    137 	.open = umidi_open,
    138 	.close = umidi_close,
    139 	.output = umidi_rtmsg,
    140 	.getinfo = umidi_getinfo,
    141 	.get_locks = umidi_get_locks,
    142 };
    143 
    144 struct midi_hw_if_ext umidi_hw_if_ext = {
    145 	.channel = umidi_channelmsg,
    146 	.common  = umidi_commonmsg,
    147 	.sysex   = umidi_sysex,
    148 };
    149 
    150 struct midi_hw_if_ext umidi_hw_if_mm = {
    151 	.channel = umidi_channelmsg,
    152 	.common  = umidi_commonmsg,
    153 	.sysex   = umidi_sysex,
    154 	.compress = 1,
    155 };
    156 
    157 int umidi_match(device_t, cfdata_t, void *);
    158 void umidi_attach(device_t, device_t, void *);
    159 void umidi_childdet(device_t, device_t);
    160 int umidi_detach(device_t, int);
    161 int umidi_activate(device_t, enum devact);
    162 extern struct cfdriver umidi_cd;
    163 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
    164     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
    165 
    166 int
    167 umidi_match(device_t parent, cfdata_t match, void *aux)
    168 {
    169 	struct usbif_attach_arg *uaa = aux;
    170 
    171 	DPRINTFN(1,("umidi_match\n"));
    172 
    173 	if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
    174 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    175 
    176 	if (uaa->class == UICLASS_AUDIO &&
    177 	    uaa->subclass == UISUBCLASS_MIDISTREAM)
    178 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    179 
    180 	return UMATCH_NONE;
    181 }
    182 
    183 void
    184 umidi_attach(device_t parent, device_t self, void *aux)
    185 {
    186 	usbd_status     err;
    187 	struct umidi_softc *sc = device_private(self);
    188 	struct usbif_attach_arg *uaa = aux;
    189 	char *devinfop;
    190 
    191 	DPRINTFN(1,("umidi_attach\n"));
    192 
    193 	sc->sc_dev = self;
    194 
    195 	aprint_naive("\n");
    196 	aprint_normal("\n");
    197 
    198 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
    199 	aprint_normal_dev(self, "%s\n", devinfop);
    200 	usbd_devinfo_free(devinfop);
    201 
    202 	sc->sc_iface = uaa->iface;
    203 	sc->sc_udev = uaa->device;
    204 
    205 	sc->sc_quirk =
    206 	    umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
    207 	aprint_normal_dev(self, "");
    208 	umidi_print_quirk(sc->sc_quirk);
    209 
    210 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
    211 	cv_init(&sc->sc_cv, "umidopcl");
    212 
    213 	KERNEL_LOCK(1, curlwp);
    214 	err = alloc_all_endpoints(sc);
    215 	if (err != USBD_NORMAL_COMPLETION) {
    216 		aprint_error_dev(self,
    217 		    "alloc_all_endpoints failed. (err=%d)\n", err);
    218 		goto error;
    219 	}
    220 	err = alloc_all_jacks(sc);
    221 	if (err != USBD_NORMAL_COMPLETION) {
    222 		free_all_endpoints(sc);
    223 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
    224 		    err);
    225 		goto error;
    226 	}
    227 	aprint_normal_dev(self, "out=%d, in=%d\n",
    228 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
    229 
    230 	err = assign_all_jacks_automatically(sc);
    231 	if (err != USBD_NORMAL_COMPLETION) {
    232 		unbind_all_jacks(sc);
    233 		free_all_jacks(sc);
    234 		free_all_endpoints(sc);
    235 		aprint_error_dev(self,
    236 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
    237 		goto error;
    238 	}
    239 	err = attach_all_mididevs(sc);
    240 	if (err != USBD_NORMAL_COMPLETION) {
    241 		free_all_jacks(sc);
    242 		free_all_endpoints(sc);
    243 		aprint_error_dev(self,
    244 		    "attach_all_mididevs failed. (err=%d)\n", err);
    245 	}
    246 	KERNEL_UNLOCK_ONE(curlwp);
    247 
    248 #ifdef UMIDI_DEBUG
    249 	dump_sc(sc);
    250 #endif
    251 
    252 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
    253 			   sc->sc_udev, sc->sc_dev);
    254 
    255 	return;
    256 error:
    257 	aprint_error_dev(self, "disabled.\n");
    258 	sc->sc_dying = 1;
    259 	KERNEL_UNLOCK_ONE(curlwp);
    260 	return;
    261 }
    262 
    263 void
    264 umidi_childdet(device_t self, device_t child)
    265 {
    266 	int i;
    267 	struct umidi_softc *sc = device_private(self);
    268 
    269 	KASSERT(sc->sc_mididevs != NULL);
    270 
    271 	for (i = 0; i < sc->sc_num_mididevs; i++) {
    272 		if (sc->sc_mididevs[i].mdev == child)
    273 			break;
    274 	}
    275 	KASSERT(i < sc->sc_num_mididevs);
    276 	sc->sc_mididevs[i].mdev = NULL;
    277 }
    278 
    279 int
    280 umidi_activate(device_t self, enum devact act)
    281 {
    282 	struct umidi_softc *sc = device_private(self);
    283 
    284 	switch (act) {
    285 	case DVACT_DEACTIVATE:
    286 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
    287 		sc->sc_dying = 1;
    288 		deactivate_all_mididevs(sc);
    289 		return 0;
    290 	default:
    291 		DPRINTFN(1,("umidi_activate (%d)\n", act));
    292 		return EOPNOTSUPP;
    293 	}
    294 }
    295 
    296 int
    297 umidi_detach(device_t self, int flags)
    298 {
    299 	struct umidi_softc *sc = device_private(self);
    300 
    301 	DPRINTFN(1,("umidi_detach\n"));
    302 
    303 	sc->sc_dying = 1;
    304 	KERNEL_LOCK(1, curlwp);
    305 	detach_all_mididevs(sc, flags);
    306 	free_all_mididevs(sc);
    307 	free_all_jacks(sc);
    308 	free_all_endpoints(sc);
    309 
    310 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
    311 			   sc->sc_dev);
    312 	KERNEL_UNLOCK_ONE(curlwp);
    313 
    314 	mutex_destroy(&sc->sc_lock);
    315 	cv_destroy(&sc->sc_cv);
    316 
    317 	return 0;
    318 }
    319 
    320 
    321 /*
    322  * midi_if stuffs
    323  */
    324 int
    325 umidi_open(void *addr,
    326 	   int flags,
    327 	   void (*iintr)(void *, int),
    328 	   void (*ointr)(void *),
    329 	   void *arg)
    330 {
    331 	struct umidi_mididev *mididev = addr;
    332 	struct umidi_softc *sc = mididev->sc;
    333 	usbd_status err;
    334 
    335 	DPRINTF(("umidi_open: sc=%p\n", sc));
    336 
    337 	if (!sc)
    338 		return ENXIO;
    339 	if (mididev->opened)
    340 		return EBUSY;
    341 	if (sc->sc_dying)
    342 		return EIO;
    343 
    344 	mididev->opened = 1;
    345 	mididev->closing = 0;
    346 	mididev->flags = flags;
    347 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
    348 		err = open_out_jack(mididev->out_jack, arg, ointr);
    349 		if ( err != USBD_NORMAL_COMPLETION )
    350 			goto bad;
    351 	}
    352 	if ((mididev->flags & FREAD) && mididev->in_jack) {
    353 		err = open_in_jack(mididev->in_jack, arg, iintr);
    354 		if ( err != USBD_NORMAL_COMPLETION
    355 		&&   err != USBD_IN_PROGRESS )
    356 			goto bad;
    357 	}
    358 
    359 	return 0;
    360 bad:
    361 	mididev->opened = 0;
    362 	DPRINTF(("umidi_open: usbd_status %d\n", err));
    363 	return USBD_IN_USE == err ? EBUSY : EIO;
    364 }
    365 
    366 void
    367 umidi_close(void *addr)
    368 {
    369 	struct umidi_mididev *mididev = addr;
    370 
    371 	/* XXX SMP */
    372 	mididev->closing = 1;
    373 
    374 	KERNEL_LOCK(1, curlwp);
    375 	mutex_spin_exit(&mididev->sc->sc_lock);
    376 
    377 	if ((mididev->flags & FWRITE) && mididev->out_jack)
    378 		close_out_jack(mididev->out_jack);
    379 	if ((mididev->flags & FREAD) && mididev->in_jack)
    380 		close_in_jack(mididev->in_jack);
    381 
    382 	/* XXX SMP */
    383 	mutex_spin_enter(&mididev->sc->sc_lock);
    384 	KERNEL_UNLOCK_ONE(curlwp);
    385 
    386 	mididev->opened = 0;
    387 }
    388 
    389 int
    390 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
    391     int len)
    392 {
    393 	struct umidi_mididev *mididev = addr;
    394 
    395 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    396 		return EIO;
    397 
    398 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
    399 }
    400 
    401 int
    402 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
    403 {
    404 	struct umidi_mididev *mididev = addr;
    405 	int cin;
    406 
    407 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    408 		return EIO;
    409 
    410 	switch ( len ) {
    411 	case 1: cin = 5; break;
    412 	case 2: cin = 2; break;
    413 	case 3: cin = 3; break;
    414 	default: return EIO; /* or gcc warns of cin uninitialized */
    415 	}
    416 
    417 	return out_jack_output(mididev->out_jack, msg, len, cin);
    418 }
    419 
    420 int
    421 umidi_sysex(void *addr, u_char *msg, int len)
    422 {
    423 	struct umidi_mididev *mididev = addr;
    424 	int cin;
    425 
    426 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    427 		return EIO;
    428 
    429 	switch ( len ) {
    430 	case 1: cin = 5; break;
    431 	case 2: cin = 6; break;
    432 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
    433 	default: return EIO; /* or gcc warns of cin uninitialized */
    434 	}
    435 
    436 	return out_jack_output(mididev->out_jack, msg, len, cin);
    437 }
    438 
    439 int
    440 umidi_rtmsg(void *addr, int d)
    441 {
    442 	struct umidi_mididev *mididev = addr;
    443 	u_char msg = d;
    444 
    445 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    446 		return EIO;
    447 
    448 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
    449 }
    450 
    451 void
    452 umidi_getinfo(void *addr, struct midi_info *mi)
    453 {
    454 	struct umidi_mididev *mididev = addr;
    455 	struct umidi_softc *sc = mididev->sc;
    456 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
    457 
    458 	mi->name = mididev->label;
    459 	mi->props = MIDI_PROP_OUT_INTR;
    460 	if (mididev->in_jack)
    461 		mi->props |= MIDI_PROP_CAN_INPUT;
    462 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
    463 }
    464 
    465 static void
    466 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
    467 {
    468 	struct umidi_mididev *mididev = addr;
    469 	struct umidi_softc *sc = mididev->sc;
    470 
    471 	*intr = NULL;
    472 	*thread = &sc->sc_lock;
    473 }
    474 
    475 /*
    476  * each endpoint stuffs
    477  */
    478 
    479 /* alloc/free pipe */
    480 static usbd_status
    481 alloc_pipe(struct umidi_endpoint *ep)
    482 {
    483 	struct umidi_softc *sc = ep->sc;
    484 	usbd_status err;
    485 	usb_endpoint_descriptor_t *epd;
    486 
    487 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
    488 	/*
    489 	 * For output, an improvement would be to have a buffer bigger than
    490 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
    491 	 * allow out_solicit to fill the buffer to the full packet size in
    492 	 * all cases. But to use usbd_alloc_buffer to get a slightly larger
    493 	 * buffer would not be a good way to do that, because if the addition
    494 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
    495 	 * larger block may be wastefully allocated. Some flavor of double
    496 	 * buffering could serve the same purpose, but would increase the
    497 	 * code complexity, so for now I will live with the current slight
    498 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
    499 	 * packet slots.
    500 	 */
    501 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
    502 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
    503 
    504 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
    505 	        device_xname(sc->sc_dev), ep, ep->buffer_size));
    506 	ep->num_scheduled = 0;
    507 	ep->this_schedule = 0;
    508 	ep->next_schedule = 0;
    509 	ep->soliciting = 0;
    510 	ep->armed = 0;
    511 	ep->xfer = usbd_alloc_xfer(sc->sc_udev);
    512 	if (ep->xfer == NULL) {
    513 	    err = USBD_NOMEM;
    514 	    goto quit;
    515 	}
    516 	ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
    517 	if (ep->buffer == NULL) {
    518 	    usbd_free_xfer(ep->xfer);
    519 	    err = USBD_NOMEM;
    520 	    goto quit;
    521 	}
    522 	ep->next_slot = ep->buffer;
    523 	err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
    524 	if (err)
    525 	    usbd_free_xfer(ep->xfer);
    526 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK, out_solicit, ep);
    527 quit:
    528 	return err;
    529 }
    530 
    531 static void
    532 free_pipe(struct umidi_endpoint *ep)
    533 {
    534 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
    535 	usbd_abort_pipe(ep->pipe);
    536 	usbd_close_pipe(ep->pipe);
    537 	usbd_free_xfer(ep->xfer);
    538 	softint_disestablish(ep->solicit_cookie);
    539 }
    540 
    541 
    542 /* alloc/free the array of endpoint structures */
    543 
    544 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
    545 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
    546 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
    547 
    548 static usbd_status
    549 alloc_all_endpoints(struct umidi_softc *sc)
    550 {
    551 	usbd_status err;
    552 	struct umidi_endpoint *ep;
    553 	int i;
    554 
    555 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
    556 		err = alloc_all_endpoints_fixed_ep(sc);
    557 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
    558 		err = alloc_all_endpoints_yamaha(sc);
    559 	} else {
    560 		err = alloc_all_endpoints_genuine(sc);
    561 	}
    562 	if (err != USBD_NORMAL_COMPLETION)
    563 		return err;
    564 
    565 	ep = sc->sc_endpoints;
    566 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
    567 		err = alloc_pipe(ep++);
    568 		if (err != USBD_NORMAL_COMPLETION) {
    569 			for (; ep != sc->sc_endpoints; ep--)
    570 				free_pipe(ep-1);
    571 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    572 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    573 			break;
    574 		}
    575 	}
    576 	return err;
    577 }
    578 
    579 static void
    580 free_all_endpoints(struct umidi_softc *sc)
    581 {
    582 	int i;
    583 
    584 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
    585 		free_pipe(&sc->sc_endpoints[i]);
    586 	if (sc->sc_endpoints != NULL)
    587 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    588 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    589 }
    590 
    591 static usbd_status
    592 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
    593 {
    594 	usbd_status err;
    595 	const struct umq_fixed_ep_desc *fp;
    596 	struct umidi_endpoint *ep;
    597 	usb_endpoint_descriptor_t *epd;
    598 	int i;
    599 
    600 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
    601 					    UMQ_TYPE_FIXED_EP);
    602 	sc->sc_out_num_jacks = 0;
    603 	sc->sc_in_num_jacks = 0;
    604 	sc->sc_out_num_endpoints = fp->num_out_ep;
    605 	sc->sc_in_num_endpoints = fp->num_in_ep;
    606 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    607 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    608 	if (!sc->sc_endpoints)
    609 		return USBD_NOMEM;
    610 
    611 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
    612 	sc->sc_in_ep =
    613 	    sc->sc_in_num_endpoints ?
    614 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
    615 
    616 	ep = &sc->sc_out_ep[0];
    617 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
    618 		epd = usbd_interface2endpoint_descriptor(
    619 			sc->sc_iface,
    620 			fp->out_ep[i].ep);
    621 		if (!epd) {
    622 			aprint_error_dev(sc->sc_dev,
    623 			    "cannot get endpoint descriptor(out:%d)\n",
    624 			     fp->out_ep[i].ep);
    625 			err = USBD_INVAL;
    626 			goto error;
    627 		}
    628 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
    629 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
    630 			aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
    631 			    fp->out_ep[i].ep);
    632 			err = USBD_INVAL;
    633 			goto error;
    634 		}
    635 		ep->sc = sc;
    636 		ep->addr = epd->bEndpointAddress;
    637 		ep->num_jacks = fp->out_ep[i].num_jacks;
    638 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
    639 		ep->num_open = 0;
    640 		ep++;
    641 	}
    642 	ep = &sc->sc_in_ep[0];
    643 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
    644 		epd = usbd_interface2endpoint_descriptor(
    645 			sc->sc_iface,
    646 			fp->in_ep[i].ep);
    647 		if (!epd) {
    648 			aprint_error_dev(sc->sc_dev,
    649 			    "cannot get endpoint descriptor(in:%d)\n",
    650 			     fp->in_ep[i].ep);
    651 			err = USBD_INVAL;
    652 			goto error;
    653 		}
    654 		/*
    655 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
    656 		 * endpoint.  The existing input logic in this driver seems
    657 		 * to work successfully if we just stop treating an interrupt
    658 		 * endpoint as illegal (or the in_progress status we get on
    659 		 * the initial transfer).  It does not seem necessary to
    660 		 * actually use the interrupt flavor of alloc_pipe or make
    661 		 * other serious rearrangements of logic.  I like that.
    662 		 */
    663 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
    664 		case UE_BULK:
    665 		case UE_INTERRUPT:
    666 			if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
    667 				break;
    668 			/*FALLTHROUGH*/
    669 		default:
    670 			aprint_error_dev(sc->sc_dev,
    671 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
    672 			err = USBD_INVAL;
    673 			goto error;
    674 		}
    675 
    676 		ep->sc = sc;
    677 		ep->addr = epd->bEndpointAddress;
    678 		ep->num_jacks = fp->in_ep[i].num_jacks;
    679 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
    680 		ep->num_open = 0;
    681 		ep++;
    682 	}
    683 
    684 	return USBD_NORMAL_COMPLETION;
    685 error:
    686 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
    687 	sc->sc_endpoints = NULL;
    688 	return err;
    689 }
    690 
    691 static usbd_status
    692 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
    693 {
    694 	/* This driver currently supports max 1in/1out bulk endpoints */
    695 	usb_descriptor_t *desc;
    696 	umidi_cs_descriptor_t *udesc;
    697 	usb_endpoint_descriptor_t *epd;
    698 	int out_addr, in_addr, i;
    699 	int dir;
    700 	size_t remain, descsize;
    701 
    702 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    703 	out_addr = in_addr = 0;
    704 
    705 	/* detect endpoints */
    706 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
    707 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
    708 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    709 		KASSERT(epd != NULL);
    710 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
    711 			dir = UE_GET_DIR(epd->bEndpointAddress);
    712 			if (dir==UE_DIR_OUT && !out_addr)
    713 				out_addr = epd->bEndpointAddress;
    714 			else if (dir==UE_DIR_IN && !in_addr)
    715 				in_addr = epd->bEndpointAddress;
    716 		}
    717 	}
    718 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
    719 
    720 	/* count jacks */
    721 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
    722 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
    723 		return USBD_INVAL;
    724 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
    725 		(size_t)udesc->bLength;
    726 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    727 
    728 	while (remain >= sizeof(usb_descriptor_t)) {
    729 		descsize = udesc->bLength;
    730 		if (descsize>remain || descsize==0)
    731 			break;
    732 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
    733 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
    734 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
    735 				sc->sc_out_num_jacks++;
    736 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
    737 				sc->sc_in_num_jacks++;
    738 		}
    739 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    740 		remain -= descsize;
    741 	}
    742 
    743 	/* validate some parameters */
    744 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
    745 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
    746 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
    747 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
    748 	if (sc->sc_out_num_jacks && out_addr) {
    749 		sc->sc_out_num_endpoints = 1;
    750 	} else {
    751 		sc->sc_out_num_endpoints = 0;
    752 		sc->sc_out_num_jacks = 0;
    753 	}
    754 	if (sc->sc_in_num_jacks && in_addr) {
    755 		sc->sc_in_num_endpoints = 1;
    756 	} else {
    757 		sc->sc_in_num_endpoints = 0;
    758 		sc->sc_in_num_jacks = 0;
    759 	}
    760 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    761 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    762 	if (!sc->sc_endpoints)
    763 		return USBD_NOMEM;
    764 	if (sc->sc_out_num_endpoints) {
    765 		sc->sc_out_ep = sc->sc_endpoints;
    766 		sc->sc_out_ep->sc = sc;
    767 		sc->sc_out_ep->addr = out_addr;
    768 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
    769 		sc->sc_out_ep->num_open = 0;
    770 	} else
    771 		sc->sc_out_ep = NULL;
    772 
    773 	if (sc->sc_in_num_endpoints) {
    774 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
    775 		sc->sc_in_ep->sc = sc;
    776 		sc->sc_in_ep->addr = in_addr;
    777 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
    778 		sc->sc_in_ep->num_open = 0;
    779 	} else
    780 		sc->sc_in_ep = NULL;
    781 
    782 	return USBD_NORMAL_COMPLETION;
    783 }
    784 
    785 static usbd_status
    786 alloc_all_endpoints_genuine(struct umidi_softc *sc)
    787 {
    788 	usb_interface_descriptor_t *interface_desc;
    789 	usb_config_descriptor_t *config_desc;
    790 	usb_descriptor_t *desc;
    791 	int num_ep;
    792 	size_t remain, descsize;
    793 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
    794 	int epaddr;
    795 
    796 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
    797 	num_ep = interface_desc->bNumEndpoints;
    798 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
    799 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    800 	if (!p)
    801 		return USBD_NOMEM;
    802 
    803 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    804 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
    805 	epaddr = -1;
    806 
    807 	/* get the list of endpoints for midi stream */
    808 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
    809 	desc = (usb_descriptor_t *) config_desc;
    810 	remain = (size_t)UGETW(config_desc->wTotalLength);
    811 	while (remain>=sizeof(usb_descriptor_t)) {
    812 		descsize = desc->bLength;
    813 		if (descsize>remain || descsize==0)
    814 			break;
    815 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
    816 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
    817 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
    818 			epaddr = TO_EPD(desc)->bEndpointAddress;
    819 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
    820 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
    821 			   epaddr!=-1) {
    822 			if (num_ep>0) {
    823 				num_ep--;
    824 				p->sc = sc;
    825 				p->addr = epaddr;
    826 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
    827 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
    828 					sc->sc_out_num_endpoints++;
    829 					sc->sc_out_num_jacks += p->num_jacks;
    830 				} else {
    831 					sc->sc_in_num_endpoints++;
    832 					sc->sc_in_num_jacks += p->num_jacks;
    833 				}
    834 				p++;
    835 			}
    836 		} else
    837 			epaddr = -1;
    838 		desc = NEXT_D(desc);
    839 		remain-=descsize;
    840 	}
    841 
    842 	/* sort endpoints */
    843 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
    844 	p = sc->sc_endpoints;
    845 	endep = p + num_ep;
    846 	while (p<endep) {
    847 		lowest = p;
    848 		for (q=p+1; q<endep; q++) {
    849 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
    850 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
    851 			    ((UE_GET_DIR(lowest->addr)==
    852 			      UE_GET_DIR(q->addr)) &&
    853 			     (UE_GET_ADDR(lowest->addr)>
    854 			      UE_GET_ADDR(q->addr))))
    855 				lowest = q;
    856 		}
    857 		if (lowest != p) {
    858 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
    859 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
    860 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
    861 		}
    862 		p->num_open = 0;
    863 		p++;
    864 	}
    865 
    866 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
    867 	sc->sc_in_ep =
    868 	    sc->sc_in_num_endpoints ?
    869 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
    870 
    871 	return USBD_NORMAL_COMPLETION;
    872 }
    873 
    874 
    875 /*
    876  * jack stuffs
    877  */
    878 
    879 static usbd_status
    880 alloc_all_jacks(struct umidi_softc *sc)
    881 {
    882 	int i, j;
    883 	struct umidi_endpoint *ep;
    884 	struct umidi_jack *jack;
    885 	const unsigned char *cn_spec;
    886 
    887 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
    888 		sc->cblnums_global = 0;
    889 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
    890 		sc->cblnums_global = 1;
    891 	else {
    892 		/*
    893 		 * I don't think this default is correct, but it preserves
    894 		 * the prior behavior of the code. That's why I defined two
    895 		 * complementary quirks. Any device for which the default
    896 		 * behavior is wrong can be made to work by giving it an
    897 		 * explicit quirk, and if a pattern ever develops (as I suspect
    898 		 * it will) that a lot of otherwise standard USB MIDI devices
    899 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
    900 		 * changed to 0, and the only devices that will break are those
    901 		 * listing neither quirk, and they'll easily be fixed by giving
    902 		 * them the CN_SEQ_GLOBAL quirk.
    903 		 */
    904 		sc->cblnums_global = 1;
    905 	}
    906 
    907 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
    908 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
    909 					    		 UMQ_TYPE_CN_FIXED);
    910 	else
    911 		cn_spec = NULL;
    912 
    913 	/* allocate/initialize structures */
    914 	sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
    915 						      sc->sc_out_num_jacks), KM_SLEEP);
    916 	if (!sc->sc_jacks)
    917 		return USBD_NOMEM;
    918 	sc->sc_out_jacks =
    919 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
    920 	sc->sc_in_jacks =
    921 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
    922 
    923 	jack = &sc->sc_out_jacks[0];
    924 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
    925 		jack->opened = 0;
    926 		jack->binded = 0;
    927 		jack->arg = NULL;
    928 		jack->u.out.intr = NULL;
    929 		jack->midiman_ppkt = NULL;
    930 		if (sc->cblnums_global)
    931 			jack->cable_number = i;
    932 		jack++;
    933 	}
    934 	jack = &sc->sc_in_jacks[0];
    935 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
    936 		jack->opened = 0;
    937 		jack->binded = 0;
    938 		jack->arg = NULL;
    939 		jack->u.in.intr = NULL;
    940 		if (sc->cblnums_global)
    941 			jack->cable_number = i;
    942 		jack++;
    943 	}
    944 
    945 	/* assign each jacks to each endpoints */
    946 	jack = &sc->sc_out_jacks[0];
    947 	ep = &sc->sc_out_ep[0];
    948 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
    949 		for (j = 0; j < ep->num_jacks; j++) {
    950 			jack->endpoint = ep;
    951 			if (cn_spec != NULL)
    952 				jack->cable_number = *cn_spec++;
    953 			else if (!sc->cblnums_global)
    954 				jack->cable_number = j;
    955 			ep->jacks[jack->cable_number] = jack;
    956 			jack++;
    957 		}
    958 		ep++;
    959 	}
    960 	jack = &sc->sc_in_jacks[0];
    961 	ep = &sc->sc_in_ep[0];
    962 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
    963 		for (j = 0; j < ep->num_jacks; j++) {
    964 			jack->endpoint = ep;
    965 			if (cn_spec != NULL)
    966 				jack->cable_number = *cn_spec++;
    967 			else if (!sc->cblnums_global)
    968 				jack->cable_number = j;
    969 			ep->jacks[jack->cable_number] = jack;
    970 			jack++;
    971 		}
    972 		ep++;
    973 	}
    974 
    975 	return USBD_NORMAL_COMPLETION;
    976 }
    977 
    978 static void
    979 free_all_jacks(struct umidi_softc *sc)
    980 {
    981 	struct umidi_jack *jacks;
    982 	size_t len;
    983 
    984 	mutex_enter(&sc->sc_lock);
    985 	jacks = sc->sc_jacks;
    986 	len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
    987 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
    988 	mutex_exit(&sc->sc_lock);
    989 
    990 	if (jacks)
    991 		kmem_free(jacks, len);
    992 }
    993 
    994 static usbd_status
    995 bind_jacks_to_mididev(struct umidi_softc *sc,
    996 		      struct umidi_jack *out_jack,
    997 		      struct umidi_jack *in_jack,
    998 		      struct umidi_mididev *mididev)
    999 {
   1000 	if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
   1001 		return USBD_IN_USE;
   1002 	if (mididev->out_jack || mididev->in_jack)
   1003 		return USBD_IN_USE;
   1004 
   1005 	if (out_jack)
   1006 		out_jack->binded = 1;
   1007 	if (in_jack)
   1008 		in_jack->binded = 1;
   1009 	mididev->in_jack = in_jack;
   1010 	mididev->out_jack = out_jack;
   1011 
   1012 	return USBD_NORMAL_COMPLETION;
   1013 }
   1014 
   1015 static void
   1016 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
   1017 {
   1018 
   1019 	if ((mididev->flags & FWRITE) && mididev->out_jack)
   1020 		close_out_jack(mididev->out_jack);
   1021 	if ((mididev->flags & FREAD) && mididev->in_jack)
   1022 		close_in_jack(mididev->in_jack);
   1023 
   1024 	if (mididev->out_jack)
   1025 		mididev->out_jack->binded = 0;
   1026 	if (mididev->in_jack)
   1027 		mididev->in_jack->binded = 0;
   1028 	mididev->out_jack = mididev->in_jack = NULL;
   1029 }
   1030 
   1031 static void
   1032 unbind_all_jacks(struct umidi_softc *sc)
   1033 {
   1034 	int i;
   1035 
   1036 	if (sc->sc_mididevs)
   1037 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1038 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
   1039 }
   1040 
   1041 static usbd_status
   1042 assign_all_jacks_automatically(struct umidi_softc *sc)
   1043 {
   1044 	usbd_status err;
   1045 	int i;
   1046 	struct umidi_jack *out, *in;
   1047 	const signed char *asg_spec;
   1048 
   1049 	err =
   1050 	    alloc_all_mididevs(sc,
   1051 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
   1052 	if (err!=USBD_NORMAL_COMPLETION)
   1053 		return err;
   1054 
   1055 	if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
   1056 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
   1057 					    		  UMQ_TYPE_MD_FIXED);
   1058 	else
   1059 		asg_spec = NULL;
   1060 
   1061 	for (i = 0; i < sc->sc_num_mididevs; i++) {
   1062 		if (asg_spec != NULL) {
   1063 			if (*asg_spec == -1)
   1064 				out = NULL;
   1065 			else
   1066 				out = &sc->sc_out_jacks[*asg_spec];
   1067 			++ asg_spec;
   1068 			if (*asg_spec == -1)
   1069 				in = NULL;
   1070 			else
   1071 				in = &sc->sc_in_jacks[*asg_spec];
   1072 			++ asg_spec;
   1073 		} else {
   1074 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
   1075 			                               : NULL;
   1076 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
   1077 						     : NULL;
   1078 		}
   1079 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
   1080 		if (err!=USBD_NORMAL_COMPLETION) {
   1081 			free_all_mididevs(sc);
   1082 			return err;
   1083 		}
   1084 	}
   1085 
   1086 	return USBD_NORMAL_COMPLETION;
   1087 }
   1088 
   1089 static usbd_status
   1090 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
   1091 {
   1092 	struct umidi_endpoint *ep = jack->endpoint;
   1093 	struct umidi_softc *sc = ep->sc;
   1094 	umidi_packet_bufp end;
   1095 	int err;
   1096 
   1097 	KASSERT(mutex_owned(&sc->sc_lock));
   1098 
   1099 	if (jack->opened)
   1100 		return USBD_IN_USE;
   1101 
   1102 	jack->arg = arg;
   1103 	jack->u.out.intr = intr;
   1104 	jack->midiman_ppkt = NULL;
   1105 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
   1106 	jack->opened = 1;
   1107 	ep->num_open++;
   1108 	/*
   1109 	 * out_solicit maintains an invariant that there will always be
   1110 	 * (num_open - num_scheduled) slots free in the buffer. as we have
   1111 	 * just incremented num_open, the buffer may be too full to satisfy
   1112 	 * the invariant until a transfer completes, for which we must wait.
   1113 	 */
   1114 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
   1115 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1116 		     mstohz(10));
   1117 		if (err) {
   1118 			ep->num_open--;
   1119 			jack->opened = 0;
   1120 			return USBD_IOERROR;
   1121 		}
   1122 	}
   1123 
   1124 	return USBD_NORMAL_COMPLETION;
   1125 }
   1126 
   1127 static usbd_status
   1128 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
   1129 {
   1130 	usbd_status err = USBD_NORMAL_COMPLETION;
   1131 	struct umidi_endpoint *ep = jack->endpoint;
   1132 
   1133 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1134 
   1135 	if (jack->opened)
   1136 		return USBD_IN_USE;
   1137 
   1138 	jack->arg = arg;
   1139 	jack->u.in.intr = intr;
   1140 	jack->opened = 1;
   1141 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
   1142 		KERNEL_LOCK(1, curlwp);
   1143 		err = start_input_transfer(ep);
   1144 		KERNEL_UNLOCK_ONE(curlwp);
   1145 		if (err != USBD_NORMAL_COMPLETION &&
   1146 		    err != USBD_IN_PROGRESS) {
   1147 			ep->num_open--;
   1148 		}
   1149 	}
   1150 
   1151 	return err;
   1152 }
   1153 
   1154 static void
   1155 close_out_jack(struct umidi_jack *jack)
   1156 {
   1157 	struct umidi_endpoint *ep;
   1158 	struct umidi_softc *sc;
   1159 	u_int16_t mask;
   1160 	int err;
   1161 
   1162 	if (jack->opened) {
   1163 		ep = jack->endpoint;
   1164 		sc = ep->sc;
   1165 		mutex_spin_enter(&sc->sc_lock);
   1166 		mask = 1 << (jack->cable_number);
   1167 		while (mask & (ep->this_schedule | ep->next_schedule)) {
   1168 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1169 			     mstohz(10));
   1170 			if (err)
   1171 				break;
   1172 		}
   1173 		/*
   1174 		 * We can re-enter this function from both close() and
   1175 		 * detach().  Make sure only one of them does this part.
   1176 		 */
   1177 		if (jack->opened) {
   1178 			jack->opened = 0;
   1179 			jack->endpoint->num_open--;
   1180 			ep->this_schedule &= ~mask;
   1181 			ep->next_schedule &= ~mask;
   1182 		}
   1183 		mutex_spin_exit(&sc->sc_lock);
   1184 	}
   1185 }
   1186 
   1187 static void
   1188 close_in_jack(struct umidi_jack *jack)
   1189 {
   1190 	if (jack->opened) {
   1191 		jack->opened = 0;
   1192 		if (--jack->endpoint->num_open == 0) {
   1193 			usbd_abort_pipe(jack->endpoint->pipe);
   1194 		}
   1195 	}
   1196 }
   1197 
   1198 static usbd_status
   1199 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
   1200 {
   1201 	if (mididev->sc)
   1202 		return USBD_IN_USE;
   1203 
   1204 	mididev->sc = sc;
   1205 
   1206 	describe_mididev(mididev);
   1207 
   1208 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
   1209 
   1210 	return USBD_NORMAL_COMPLETION;
   1211 }
   1212 
   1213 static usbd_status
   1214 detach_mididev(struct umidi_mididev *mididev, int flags)
   1215 {
   1216 	if (!mididev->sc)
   1217 		return USBD_NO_ADDR;
   1218 
   1219 	if (mididev->opened) {
   1220 		umidi_close(mididev);
   1221 	}
   1222 	unbind_jacks_from_mididev(mididev);
   1223 
   1224 	if (mididev->mdev != NULL)
   1225 		config_detach(mididev->mdev, flags);
   1226 
   1227 	if (NULL != mididev->label) {
   1228 		kmem_free(mididev->label, mididev->label_len);
   1229 		mididev->label = NULL;
   1230 	}
   1231 
   1232 	mididev->sc = NULL;
   1233 
   1234 	return USBD_NORMAL_COMPLETION;
   1235 }
   1236 
   1237 static void
   1238 deactivate_mididev(struct umidi_mididev *mididev)
   1239 {
   1240 	if (mididev->out_jack)
   1241 		mididev->out_jack->binded = 0;
   1242 	if (mididev->in_jack)
   1243 		mididev->in_jack->binded = 0;
   1244 }
   1245 
   1246 static usbd_status
   1247 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
   1248 {
   1249 	sc->sc_num_mididevs = nmidi;
   1250 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
   1251 	if (!sc->sc_mididevs)
   1252 		return USBD_NOMEM;
   1253 
   1254 	return USBD_NORMAL_COMPLETION;
   1255 }
   1256 
   1257 static void
   1258 free_all_mididevs(struct umidi_softc *sc)
   1259 {
   1260 	if (sc->sc_mididevs)
   1261 		kmem_free(sc->sc_mididevs,
   1262 			  sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
   1263 	sc->sc_num_mididevs = 0;
   1264 }
   1265 
   1266 static usbd_status
   1267 attach_all_mididevs(struct umidi_softc *sc)
   1268 {
   1269 	usbd_status err;
   1270 	int i;
   1271 
   1272 	if (sc->sc_mididevs)
   1273 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1274 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
   1275 			if (err != USBD_NORMAL_COMPLETION)
   1276 				return err;
   1277 		}
   1278 
   1279 	return USBD_NORMAL_COMPLETION;
   1280 }
   1281 
   1282 static usbd_status
   1283 detach_all_mididevs(struct umidi_softc *sc, int flags)
   1284 {
   1285 	usbd_status err;
   1286 	int i;
   1287 
   1288 	if (sc->sc_mididevs)
   1289 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1290 			err = detach_mididev(&sc->sc_mididevs[i], flags);
   1291 			if (err != USBD_NORMAL_COMPLETION)
   1292 				return err;
   1293 		}
   1294 
   1295 	return USBD_NORMAL_COMPLETION;
   1296 }
   1297 
   1298 static void
   1299 deactivate_all_mididevs(struct umidi_softc *sc)
   1300 {
   1301 	int i;
   1302 
   1303 	if (sc->sc_mididevs) {
   1304 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1305 			deactivate_mididev(&sc->sc_mididevs[i]);
   1306 	}
   1307 }
   1308 
   1309 /*
   1310  * TODO: the 0-based cable numbers will often not match the labeling of the
   1311  * equipment. Ideally:
   1312  *  For class-compliant devices: get the iJack string from the jack descriptor.
   1313  *  Otherwise:
   1314  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
   1315  *    number for display)
   1316  *  - support an array quirk explictly giving a char * for each jack.
   1317  * For now, you get 0-based cable numbers. If there are multiple endpoints and
   1318  * the CNs are not globally unique, each is shown with its associated endpoint
   1319  * address in hex also. That should not be necessary when using iJack values
   1320  * or a quirk array.
   1321  */
   1322 void
   1323 describe_mididev(struct umidi_mididev *md)
   1324 {
   1325 	char in_label[16];
   1326 	char out_label[16];
   1327 	const char *unit_label;
   1328 	char *final_label;
   1329 	struct umidi_softc *sc;
   1330 	int show_ep_in;
   1331 	int show_ep_out;
   1332 	size_t len;
   1333 
   1334 	sc = md->sc;
   1335 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
   1336 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
   1337 
   1338 	if ( NULL == md->in_jack )
   1339 		in_label[0] = '\0';
   1340 	else if ( show_ep_in )
   1341 		snprintf(in_label, sizeof in_label, "<%d(%x) ",
   1342 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
   1343 	else
   1344 		snprintf(in_label, sizeof in_label, "<%d ",
   1345 		    md->in_jack->cable_number);
   1346 
   1347 	if ( NULL == md->out_jack )
   1348 		out_label[0] = '\0';
   1349 	else if ( show_ep_out )
   1350 		snprintf(out_label, sizeof out_label, ">%d(%x) ",
   1351 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
   1352 	else
   1353 		snprintf(out_label, sizeof out_label, ">%d ",
   1354 		    md->out_jack->cable_number);
   1355 
   1356 	unit_label = device_xname(sc->sc_dev);
   1357 
   1358 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
   1359 
   1360 	final_label = kmem_alloc(len, KM_SLEEP);
   1361 
   1362 	snprintf(final_label, len, "%s%son %s",
   1363 	    in_label, out_label, unit_label);
   1364 
   1365 	md->label = final_label;
   1366 	md->label_len = len;
   1367 }
   1368 
   1369 #ifdef UMIDI_DEBUG
   1370 static void
   1371 dump_sc(struct umidi_softc *sc)
   1372 {
   1373 	int i;
   1374 
   1375 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
   1376 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
   1377 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
   1378 		dump_ep(&sc->sc_out_ep[i]);
   1379 	}
   1380 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
   1381 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
   1382 		dump_ep(&sc->sc_in_ep[i]);
   1383 	}
   1384 }
   1385 
   1386 static void
   1387 dump_ep(struct umidi_endpoint *ep)
   1388 {
   1389 	int i;
   1390 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
   1391 		if (NULL==ep->jacks[i])
   1392 			continue;
   1393 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
   1394 		dump_jack(ep->jacks[i]);
   1395 	}
   1396 }
   1397 static void
   1398 dump_jack(struct umidi_jack *jack)
   1399 {
   1400 	DPRINTFN(10, ("\t\t\tep=%p\n",
   1401 		      jack->endpoint));
   1402 }
   1403 
   1404 #endif /* UMIDI_DEBUG */
   1405 
   1406 
   1407 
   1408 /*
   1409  * MUX MIDI PACKET
   1410  */
   1411 
   1412 static const int packet_length[16] = {
   1413 	/*0*/	-1,
   1414 	/*1*/	-1,
   1415 	/*2*/	2,
   1416 	/*3*/	3,
   1417 	/*4*/	3,
   1418 	/*5*/	1,
   1419 	/*6*/	2,
   1420 	/*7*/	3,
   1421 	/*8*/	3,
   1422 	/*9*/	3,
   1423 	/*A*/	3,
   1424 	/*B*/	3,
   1425 	/*C*/	2,
   1426 	/*D*/	2,
   1427 	/*E*/	3,
   1428 	/*F*/	1,
   1429 };
   1430 
   1431 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
   1432 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
   1433 #define MIX_CN_CIN(cn, cin) \
   1434 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
   1435 			  ((unsigned char)(cin)&0x0F)))
   1436 
   1437 static usbd_status
   1438 start_input_transfer(struct umidi_endpoint *ep)
   1439 {
   1440 	usbd_setup_xfer(ep->xfer, ep->pipe,
   1441 			(usbd_private_handle)ep,
   1442 			ep->buffer, ep->buffer_size,
   1443 			USBD_SHORT_XFER_OK | USBD_NO_COPY,
   1444                         USBD_NO_TIMEOUT, in_intr);
   1445 	return usbd_transfer(ep->xfer);
   1446 }
   1447 
   1448 static usbd_status
   1449 start_output_transfer(struct umidi_endpoint *ep)
   1450 {
   1451 	usbd_status rv;
   1452 	u_int32_t length;
   1453 	int i;
   1454 
   1455 	length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
   1456 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
   1457 	    ep->buffer, ep->next_slot, length));
   1458 	KERNEL_LOCK(1, curlwp);
   1459 	usbd_setup_xfer(ep->xfer, ep->pipe,
   1460 			(usbd_private_handle)ep,
   1461 			ep->buffer, length,
   1462 			USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
   1463 	rv = usbd_transfer(ep->xfer);
   1464 	KERNEL_UNLOCK_ONE(curlwp);
   1465 
   1466 	/*
   1467 	 * Once the transfer is scheduled, no more adding to partial
   1468 	 * packets within it.
   1469 	 */
   1470 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1471 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
   1472 			if (NULL != ep->jacks[i])
   1473 				ep->jacks[i]->midiman_ppkt = NULL;
   1474 	}
   1475 
   1476 	return rv;
   1477 }
   1478 
   1479 #ifdef UMIDI_DEBUG
   1480 #define DPR_PACKET(dir, sc, p)						\
   1481 if ((unsigned char)(p)[1]!=0xFE)				\
   1482 	DPRINTFN(500,							\
   1483 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
   1484 		  device_xname(sc->sc_dev),				\
   1485 		  (unsigned char)(p)[0],			\
   1486 		  (unsigned char)(p)[1],			\
   1487 		  (unsigned char)(p)[2],			\
   1488 		  (unsigned char)(p)[3]));
   1489 #else
   1490 #define DPR_PACKET(dir, sc, p)
   1491 #endif
   1492 
   1493 /*
   1494  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
   1495  * with the cable number and length in the last byte instead of the first,
   1496  * but there the resemblance ends. Where a USB MIDI packet is a semantic
   1497  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
   1498  * with a cable nybble and a length nybble (which, unlike the CIN of a
   1499  * real USB MIDI packet, has no semantics at all besides the length).
   1500  * A packet received from a Midiman may contain part of a MIDI message,
   1501  * more than one MIDI message, or parts of more than one MIDI message. A
   1502  * three-byte MIDI message may arrive in three packets of data length 1, and
   1503  * running status may be used. Happily, the midi(4) driver above us will put
   1504  * it all back together, so the only cost is in USB bandwidth. The device
   1505  * has an easier time with what it receives from us: we'll pack messages in
   1506  * and across packets, but filling the packets whenever possible and,
   1507  * as midi(4) hands us a complete message at a time, we'll never send one
   1508  * in a dribble of short packets.
   1509  */
   1510 
   1511 static int
   1512 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
   1513 {
   1514 	struct umidi_endpoint *ep = out_jack->endpoint;
   1515 	struct umidi_softc *sc = ep->sc;
   1516 	unsigned char *packet;
   1517 	int plen;
   1518 	int poff;
   1519 
   1520 	if (sc->sc_dying)
   1521 		return EIO;
   1522 
   1523 	if (!out_jack->opened)
   1524 		return ENODEV; /* XXX as it was, is this the right errno? */
   1525 
   1526 #ifdef UMIDI_DEBUG
   1527 	if ( umididebug >= 100 )
   1528 		microtime(&umidi_tv);
   1529 #endif
   1530 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
   1531 	    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
   1532 	    ep, out_jack->cable_number, len, cin));
   1533 
   1534 	packet = *ep->next_slot++;
   1535 	KASSERT(ep->buffer_size >=
   1536 	    (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
   1537 	memset(packet, 0, UMIDI_PACKET_SIZE);
   1538 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1539 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
   1540 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
   1541 			plen = 3 - poff;
   1542 			if (plen > len)
   1543 				plen = len;
   1544 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
   1545 			src += plen;
   1546 			len -= plen;
   1547 			plen += poff;
   1548 			out_jack->midiman_ppkt[3] =
   1549 			    MIX_CN_CIN(out_jack->cable_number, plen);
   1550 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
   1551 			if (3 == plen)
   1552 				out_jack->midiman_ppkt = NULL; /* no more */
   1553 		}
   1554 		if (0 == len)
   1555 			ep->next_slot--; /* won't be needed, nevermind */
   1556 		else {
   1557 			memcpy(packet, src, len);
   1558 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
   1559 			DPR_PACKET(out, sc, packet);
   1560 			if (len < 3)
   1561 				out_jack->midiman_ppkt = packet;
   1562 		}
   1563 	} else { /* the nice simple USB class-compliant case */
   1564 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
   1565 		memcpy(packet+1, src, len);
   1566 		DPR_PACKET(out, sc, packet);
   1567 	}
   1568 	ep->next_schedule |= 1<<(out_jack->cable_number);
   1569 	++ ep->num_scheduled;
   1570 	if ( !ep->armed  &&  !ep->soliciting ) {
   1571 		/*
   1572 		 * It would be bad to call out_solicit directly here (the
   1573 		 * caller need not be reentrant) but a soft interrupt allows
   1574 		 * solicit to run immediately the caller exits its critical
   1575 		 * section, and if the caller has more to write we can get it
   1576 		 * before starting the USB transfer, and send a longer one.
   1577 		 */
   1578 		ep->soliciting = 1;
   1579 		softint_schedule(ep->solicit_cookie);
   1580 	}
   1581 
   1582 	return 0;
   1583 }
   1584 
   1585 static void
   1586 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
   1587     usbd_status status)
   1588 {
   1589 	int cn, len, i;
   1590 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1591 	struct umidi_softc *sc = ep->sc;
   1592 	struct umidi_jack *jack;
   1593 	unsigned char *packet;
   1594 	umidi_packet_bufp slot;
   1595 	umidi_packet_bufp end;
   1596 	unsigned char *data;
   1597 	u_int32_t count;
   1598 
   1599 	if (ep->sc->sc_dying || !ep->num_open)
   1600 		return;
   1601 
   1602 	mutex_enter(&sc->sc_lock);
   1603 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1604         if (0 == count % UMIDI_PACKET_SIZE) {
   1605 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
   1606 			     device_xname(ep->sc->sc_dev), ep, count));
   1607         } else {
   1608                 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
   1609                         device_xname(ep->sc->sc_dev), ep, count));
   1610         }
   1611 
   1612 	slot = ep->buffer;
   1613 	end = slot + count / sizeof *slot;
   1614 
   1615 	for (packet = *slot; slot < end; packet = *++slot) {
   1616 
   1617 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1618 			cn = (0xf0&(packet[3]))>>4;
   1619 			len = 0x0f&(packet[3]);
   1620 			data = packet;
   1621 		} else {
   1622 			cn = GET_CN(packet[0]);
   1623 			len = packet_length[GET_CIN(packet[0])];
   1624 			data = packet + 1;
   1625 		}
   1626 		/* 0 <= cn <= 15 by inspection of above code */
   1627 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
   1628 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
   1629 			         "%02X %02X %02X (try CN_SEQ quirk?)\n",
   1630 				 device_xname(ep->sc->sc_dev), ep, cn, len,
   1631 				 (unsigned)data[0],
   1632 				 (unsigned)data[1],
   1633 				 (unsigned)data[2]));
   1634 			mutex_exit(&sc->sc_lock);
   1635 			return;
   1636 		}
   1637 
   1638 		if (!jack->binded || !jack->opened)
   1639 			continue;
   1640 
   1641 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
   1642 		             "%02X %02X %02X\n",
   1643 			     device_xname(ep->sc->sc_dev), ep, cn, len,
   1644 			     (unsigned)data[0],
   1645 			     (unsigned)data[1],
   1646 			     (unsigned)data[2]));
   1647 
   1648 		if (jack->u.in.intr) {
   1649 			for (i = 0; i < len; i++) {
   1650 				(*jack->u.in.intr)(jack->arg, data[i]);
   1651 			}
   1652 		}
   1653 
   1654 	}
   1655 
   1656 	(void)start_input_transfer(ep);
   1657 	mutex_exit(&sc->sc_lock);
   1658 }
   1659 
   1660 static void
   1661 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
   1662     usbd_status status)
   1663 {
   1664 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1665 	struct umidi_softc *sc = ep->sc;
   1666 	u_int32_t count;
   1667 
   1668 	if (sc->sc_dying)
   1669 		return;
   1670 
   1671 	mutex_enter(&sc->sc_lock);
   1672 #ifdef UMIDI_DEBUG
   1673 	if ( umididebug >= 200 )
   1674 		microtime(&umidi_tv);
   1675 #endif
   1676 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1677         if ( 0 == count % UMIDI_PACKET_SIZE ) {
   1678 		DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
   1679 			     device_xname(ep->sc->sc_dev),
   1680 			     umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
   1681         } else {
   1682                 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
   1683                         device_xname(ep->sc->sc_dev), ep, count));
   1684         }
   1685 	count /= UMIDI_PACKET_SIZE;
   1686 
   1687 	/*
   1688 	 * If while the transfer was pending we buffered any new messages,
   1689 	 * move them to the start of the buffer.
   1690 	 */
   1691 	ep->next_slot -= count;
   1692 	if (ep->buffer < ep->next_slot) {
   1693 		memcpy(ep->buffer, ep->buffer + count,
   1694 		       (char *)ep->next_slot - (char *)ep->buffer);
   1695 	}
   1696 	cv_broadcast(&sc->sc_cv);
   1697 	/*
   1698 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
   1699 	 * Running at IPL_USB so the following should happen to be safe.
   1700 	 */
   1701 	ep->armed = 0;
   1702 	if (!ep->soliciting) {
   1703 		ep->soliciting = 1;
   1704 		out_solicit_locked(ep);
   1705 	}
   1706 	mutex_exit(&sc->sc_lock);
   1707 }
   1708 
   1709 /*
   1710  * A jack on which we have received a packet must be called back on its
   1711  * out.intr handler before it will send us another; it is considered
   1712  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
   1713  * we need no extra buffer space for it.
   1714  *
   1715  * In contrast, a jack that is open but not scheduled may supply us a packet
   1716  * at any time, driven by the top half, and we must be able to accept it, no
   1717  * excuses. So we must ensure that at any point in time there are at least
   1718  * (num_open - num_scheduled) slots free.
   1719  *
   1720  * As long as there are more slots free than that minimum, we can loop calling
   1721  * scheduled jacks back on their "interrupt" handlers, soliciting more
   1722  * packets, starting the USB transfer only when the buffer space is down to
   1723  * the minimum or no jack has any more to send.
   1724  */
   1725 
   1726 static void
   1727 out_solicit_locked(void *arg)
   1728 {
   1729 	struct umidi_endpoint *ep = arg;
   1730 	umidi_packet_bufp end;
   1731 	u_int16_t which;
   1732 	struct umidi_jack *jack;
   1733 
   1734 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1735 
   1736 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
   1737 
   1738 	for ( ;; ) {
   1739 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
   1740 			break; /* at IPL_USB */
   1741 		if (ep->this_schedule == 0) {
   1742 			if (ep->next_schedule == 0)
   1743 				break; /* at IPL_USB */
   1744 			ep->this_schedule = ep->next_schedule;
   1745 			ep->next_schedule = 0;
   1746 		}
   1747 		/*
   1748 		 * At least one jack is scheduled. Find and mask off the least
   1749 		 * set bit in this_schedule and decrement num_scheduled.
   1750 		 * Convert mask to bit index to find the corresponding jack,
   1751 		 * and call its intr handler. If it has a message, it will call
   1752 		 * back one of the output methods, which will set its bit in
   1753 		 * next_schedule (not copied into this_schedule until the
   1754 		 * latter is empty). In this way we round-robin the jacks that
   1755 		 * have messages to send, until the buffer is as full as we
   1756 		 * dare, and then start a transfer.
   1757 		 */
   1758 		which = ep->this_schedule;
   1759 		which &= (~which)+1; /* now mask of least set bit */
   1760 		ep->this_schedule &= ~which;
   1761 		--ep->num_scheduled;
   1762 
   1763 		--which; /* now 1s below mask - count 1s to get index */
   1764 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
   1765 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
   1766 		which = (((which >> 4) + which) & 0x0f0f);
   1767 		which +=  (which >> 8);
   1768 		which &= 0x1f; /* the bit index a/k/a jack number */
   1769 
   1770 		jack = ep->jacks[which];
   1771 		if (jack->u.out.intr)
   1772 			(*jack->u.out.intr)(jack->arg);
   1773 	}
   1774 	/* intr lock held at loop exit */
   1775 	if (!ep->armed && ep->next_slot > ep->buffer)
   1776 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
   1777 	ep->soliciting = 0;
   1778 }
   1779 
   1780 /* Entry point for the softintr.  */
   1781 static void
   1782 out_solicit(void *arg)
   1783 {
   1784 	struct umidi_endpoint *ep = arg;
   1785 	struct umidi_softc *sc = ep->sc;
   1786 
   1787 	mutex_enter(&sc->sc_lock);
   1788 	out_solicit_locked(arg);
   1789 	mutex_exit(&sc->sc_lock);
   1790 }
   1791