Home | History | Annotate | Line # | Download | only in usb
umidi.c revision 1.62
      1 /*	$NetBSD: umidi.c,v 1.62 2012/05/18 07:52:54 jdc Exp $	*/
      2 /*
      3  * Copyright (c) 2001, 2012 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
      8  * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
      9  * (mrg (at) eterna.com.au).
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.62 2012/05/18 07:52:54 jdc Exp $");
     35 
     36 #include <sys/types.h>
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/kernel.h>
     40 #include <sys/kmem.h>
     41 #include <sys/device.h>
     42 #include <sys/ioctl.h>
     43 #include <sys/conf.h>
     44 #include <sys/file.h>
     45 #include <sys/select.h>
     46 #include <sys/proc.h>
     47 #include <sys/vnode.h>
     48 #include <sys/poll.h>
     49 #include <sys/intr.h>
     50 
     51 #include <dev/usb/usb.h>
     52 #include <dev/usb/usbdi.h>
     53 #include <dev/usb/usbdi_util.h>
     54 
     55 #include <dev/auconv.h>
     56 #include <dev/usb/usbdevs.h>
     57 #include <dev/usb/uaudioreg.h>
     58 #include <dev/usb/umidireg.h>
     59 #include <dev/usb/umidivar.h>
     60 #include <dev/usb/umidi_quirks.h>
     61 
     62 #include <dev/midi_if.h>
     63 
     64 #ifdef UMIDI_DEBUG
     65 #define DPRINTF(x)	if (umididebug) printf x
     66 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
     67 #include <sys/time.h>
     68 static struct timeval umidi_tv;
     69 int	umididebug = 0;
     70 #else
     71 #define DPRINTF(x)
     72 #define DPRINTFN(n,x)
     73 #endif
     74 
     75 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
     76 				 (sc->sc_out_num_endpoints + \
     77 				  sc->sc_in_num_endpoints))
     78 
     79 
     80 static int umidi_open(void *, int,
     81 		      void (*)(void *, int), void (*)(void *), void *);
     82 static void umidi_close(void *);
     83 static int umidi_channelmsg(void *, int, int, u_char *, int);
     84 static int umidi_commonmsg(void *, int, u_char *, int);
     85 static int umidi_sysex(void *, u_char *, int);
     86 static int umidi_rtmsg(void *, int);
     87 static void umidi_getinfo(void *, struct midi_info *);
     88 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
     89 
     90 static usbd_status alloc_pipe(struct umidi_endpoint *);
     91 static void free_pipe(struct umidi_endpoint *);
     92 
     93 static usbd_status alloc_all_endpoints(struct umidi_softc *);
     94 static void free_all_endpoints(struct umidi_softc *);
     95 
     96 static usbd_status alloc_all_jacks(struct umidi_softc *);
     97 static void free_all_jacks(struct umidi_softc *);
     98 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
     99 					 struct umidi_jack *,
    100 					 struct umidi_jack *,
    101 					 struct umidi_mididev *);
    102 static void unbind_jacks_from_mididev(struct umidi_mididev *);
    103 static void unbind_all_jacks(struct umidi_softc *);
    104 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
    105 static usbd_status open_out_jack(struct umidi_jack *, void *,
    106 				 void (*)(void *));
    107 static usbd_status open_in_jack(struct umidi_jack *, void *,
    108 				void (*)(void *, int));
    109 static void close_out_jack(struct umidi_jack *);
    110 static void close_in_jack(struct umidi_jack *);
    111 
    112 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
    113 static usbd_status detach_mididev(struct umidi_mididev *, int);
    114 static void deactivate_mididev(struct umidi_mididev *);
    115 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
    116 static void free_all_mididevs(struct umidi_softc *);
    117 static usbd_status attach_all_mididevs(struct umidi_softc *);
    118 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
    119 static void deactivate_all_mididevs(struct umidi_softc *);
    120 static void describe_mididev(struct umidi_mididev *);
    121 
    122 #ifdef UMIDI_DEBUG
    123 static void dump_sc(struct umidi_softc *);
    124 static void dump_ep(struct umidi_endpoint *);
    125 static void dump_jack(struct umidi_jack *);
    126 #endif
    127 
    128 static usbd_status start_input_transfer(struct umidi_endpoint *);
    129 static usbd_status start_output_transfer(struct umidi_endpoint *);
    130 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
    131 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
    132 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
    133 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
    134 static void out_solicit_locked(void *); /* pre-locked version */
    135 
    136 
    137 const struct midi_hw_if umidi_hw_if = {
    138 	.open = umidi_open,
    139 	.close = umidi_close,
    140 	.output = umidi_rtmsg,
    141 	.getinfo = umidi_getinfo,
    142 	.get_locks = umidi_get_locks,
    143 };
    144 
    145 struct midi_hw_if_ext umidi_hw_if_ext = {
    146 	.channel = umidi_channelmsg,
    147 	.common  = umidi_commonmsg,
    148 	.sysex   = umidi_sysex,
    149 };
    150 
    151 struct midi_hw_if_ext umidi_hw_if_mm = {
    152 	.channel = umidi_channelmsg,
    153 	.common  = umidi_commonmsg,
    154 	.sysex   = umidi_sysex,
    155 	.compress = 1,
    156 };
    157 
    158 int umidi_match(device_t, cfdata_t, void *);
    159 void umidi_attach(device_t, device_t, void *);
    160 void umidi_childdet(device_t, device_t);
    161 int umidi_detach(device_t, int);
    162 int umidi_activate(device_t, enum devact);
    163 extern struct cfdriver umidi_cd;
    164 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
    165     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
    166 
    167 int
    168 umidi_match(device_t parent, cfdata_t match, void *aux)
    169 {
    170 	struct usbif_attach_arg *uaa = aux;
    171 
    172 	DPRINTFN(1,("umidi_match\n"));
    173 
    174 	if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
    175 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    176 
    177 	if (uaa->class == UICLASS_AUDIO &&
    178 	    uaa->subclass == UISUBCLASS_MIDISTREAM)
    179 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    180 
    181 	return UMATCH_NONE;
    182 }
    183 
    184 void
    185 umidi_attach(device_t parent, device_t self, void *aux)
    186 {
    187 	usbd_status     err;
    188 	struct umidi_softc *sc = device_private(self);
    189 	struct usbif_attach_arg *uaa = aux;
    190 	char *devinfop;
    191 
    192 	DPRINTFN(1,("umidi_attach\n"));
    193 
    194 	sc->sc_dev = self;
    195 
    196 	aprint_naive("\n");
    197 	aprint_normal("\n");
    198 
    199 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
    200 	aprint_normal_dev(self, "%s\n", devinfop);
    201 	usbd_devinfo_free(devinfop);
    202 
    203 	sc->sc_iface = uaa->iface;
    204 	sc->sc_udev = uaa->device;
    205 
    206 	sc->sc_quirk =
    207 	    umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
    208 	aprint_normal_dev(self, "");
    209 	umidi_print_quirk(sc->sc_quirk);
    210 
    211 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
    212 	cv_init(&sc->sc_cv, "umidopcl");
    213 
    214 	KERNEL_LOCK(1, curlwp);
    215 	err = alloc_all_endpoints(sc);
    216 	if (err != USBD_NORMAL_COMPLETION) {
    217 		aprint_error_dev(self,
    218 		    "alloc_all_endpoints failed. (err=%d)\n", err);
    219 		goto error;
    220 	}
    221 	err = alloc_all_jacks(sc);
    222 	if (err != USBD_NORMAL_COMPLETION) {
    223 		free_all_endpoints(sc);
    224 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
    225 		    err);
    226 		goto error;
    227 	}
    228 	aprint_normal_dev(self, "out=%d, in=%d\n",
    229 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
    230 
    231 	err = assign_all_jacks_automatically(sc);
    232 	if (err != USBD_NORMAL_COMPLETION) {
    233 		unbind_all_jacks(sc);
    234 		free_all_jacks(sc);
    235 		free_all_endpoints(sc);
    236 		aprint_error_dev(self,
    237 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
    238 		goto error;
    239 	}
    240 	err = attach_all_mididevs(sc);
    241 	if (err != USBD_NORMAL_COMPLETION) {
    242 		free_all_jacks(sc);
    243 		free_all_endpoints(sc);
    244 		aprint_error_dev(self,
    245 		    "attach_all_mididevs failed. (err=%d)\n", err);
    246 	}
    247 	KERNEL_UNLOCK_ONE(curlwp);
    248 
    249 #ifdef UMIDI_DEBUG
    250 	dump_sc(sc);
    251 #endif
    252 
    253 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
    254 			   sc->sc_udev, sc->sc_dev);
    255 
    256 	return;
    257 error:
    258 	aprint_error_dev(self, "disabled.\n");
    259 	sc->sc_dying = 1;
    260 	KERNEL_UNLOCK_ONE(curlwp);
    261 	return;
    262 }
    263 
    264 void
    265 umidi_childdet(device_t self, device_t child)
    266 {
    267 	int i;
    268 	struct umidi_softc *sc = device_private(self);
    269 
    270 	KASSERT(sc->sc_mididevs != NULL);
    271 
    272 	for (i = 0; i < sc->sc_num_mididevs; i++) {
    273 		if (sc->sc_mididevs[i].mdev == child)
    274 			break;
    275 	}
    276 	KASSERT(i < sc->sc_num_mididevs);
    277 	sc->sc_mididevs[i].mdev = NULL;
    278 }
    279 
    280 int
    281 umidi_activate(device_t self, enum devact act)
    282 {
    283 	struct umidi_softc *sc = device_private(self);
    284 
    285 	switch (act) {
    286 	case DVACT_DEACTIVATE:
    287 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
    288 		sc->sc_dying = 1;
    289 		deactivate_all_mididevs(sc);
    290 		return 0;
    291 	default:
    292 		DPRINTFN(1,("umidi_activate (%d)\n", act));
    293 		return EOPNOTSUPP;
    294 	}
    295 }
    296 
    297 int
    298 umidi_detach(device_t self, int flags)
    299 {
    300 	struct umidi_softc *sc = device_private(self);
    301 
    302 	DPRINTFN(1,("umidi_detach\n"));
    303 
    304 	sc->sc_dying = 1;
    305 	KERNEL_LOCK(1, curlwp);
    306 	detach_all_mididevs(sc, flags);
    307 	free_all_mididevs(sc);
    308 	free_all_jacks(sc);
    309 	free_all_endpoints(sc);
    310 
    311 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
    312 			   sc->sc_dev);
    313 	KERNEL_UNLOCK_ONE(curlwp);
    314 
    315 	mutex_destroy(&sc->sc_lock);
    316 	cv_destroy(&sc->sc_cv);
    317 
    318 	return 0;
    319 }
    320 
    321 
    322 /*
    323  * midi_if stuffs
    324  */
    325 int
    326 umidi_open(void *addr,
    327 	   int flags,
    328 	   void (*iintr)(void *, int),
    329 	   void (*ointr)(void *),
    330 	   void *arg)
    331 {
    332 	struct umidi_mididev *mididev = addr;
    333 	struct umidi_softc *sc = mididev->sc;
    334 	usbd_status err;
    335 
    336 	DPRINTF(("umidi_open: sc=%p\n", sc));
    337 
    338 	if (!sc)
    339 		return ENXIO;
    340 	if (mididev->opened)
    341 		return EBUSY;
    342 	if (sc->sc_dying)
    343 		return EIO;
    344 
    345 	mididev->opened = 1;
    346 	mididev->closing = 0;
    347 	mididev->flags = flags;
    348 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
    349 		err = open_out_jack(mididev->out_jack, arg, ointr);
    350 		if ( err != USBD_NORMAL_COMPLETION )
    351 			goto bad;
    352 	}
    353 	if ((mididev->flags & FREAD) && mididev->in_jack) {
    354 		err = open_in_jack(mididev->in_jack, arg, iintr);
    355 		if ( err != USBD_NORMAL_COMPLETION
    356 		&&   err != USBD_IN_PROGRESS )
    357 			goto bad;
    358 	}
    359 
    360 	return 0;
    361 bad:
    362 	mididev->opened = 0;
    363 	DPRINTF(("umidi_open: usbd_status %d\n", err));
    364 	return USBD_IN_USE == err ? EBUSY : EIO;
    365 }
    366 
    367 void
    368 umidi_close(void *addr)
    369 {
    370 	struct umidi_mididev *mididev = addr;
    371 
    372 	/* XXX SMP */
    373 	mididev->closing = 1;
    374 
    375 	KERNEL_LOCK(1, curlwp);
    376 	mutex_spin_exit(&mididev->sc->sc_lock);
    377 
    378 	if ((mididev->flags & FWRITE) && mididev->out_jack)
    379 		close_out_jack(mididev->out_jack);
    380 	if ((mididev->flags & FREAD) && mididev->in_jack)
    381 		close_in_jack(mididev->in_jack);
    382 
    383 	/* XXX SMP */
    384 	mutex_spin_enter(&mididev->sc->sc_lock);
    385 	KERNEL_UNLOCK_ONE(curlwp);
    386 
    387 	mididev->opened = 0;
    388 }
    389 
    390 int
    391 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
    392     int len)
    393 {
    394 	struct umidi_mididev *mididev = addr;
    395 
    396 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    397 		return EIO;
    398 
    399 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
    400 }
    401 
    402 int
    403 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
    404 {
    405 	struct umidi_mididev *mididev = addr;
    406 	int cin;
    407 
    408 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    409 		return EIO;
    410 
    411 	switch ( len ) {
    412 	case 1: cin = 5; break;
    413 	case 2: cin = 2; break;
    414 	case 3: cin = 3; break;
    415 	default: return EIO; /* or gcc warns of cin uninitialized */
    416 	}
    417 
    418 	return out_jack_output(mididev->out_jack, msg, len, cin);
    419 }
    420 
    421 int
    422 umidi_sysex(void *addr, u_char *msg, int len)
    423 {
    424 	struct umidi_mididev *mididev = addr;
    425 	int cin;
    426 
    427 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    428 		return EIO;
    429 
    430 	switch ( len ) {
    431 	case 1: cin = 5; break;
    432 	case 2: cin = 6; break;
    433 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
    434 	default: return EIO; /* or gcc warns of cin uninitialized */
    435 	}
    436 
    437 	return out_jack_output(mididev->out_jack, msg, len, cin);
    438 }
    439 
    440 int
    441 umidi_rtmsg(void *addr, int d)
    442 {
    443 	struct umidi_mididev *mididev = addr;
    444 	u_char msg = d;
    445 
    446 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    447 		return EIO;
    448 
    449 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
    450 }
    451 
    452 void
    453 umidi_getinfo(void *addr, struct midi_info *mi)
    454 {
    455 	struct umidi_mididev *mididev = addr;
    456 	struct umidi_softc *sc = mididev->sc;
    457 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
    458 
    459 	mi->name = mididev->label;
    460 	mi->props = MIDI_PROP_OUT_INTR;
    461 	if (mididev->in_jack)
    462 		mi->props |= MIDI_PROP_CAN_INPUT;
    463 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
    464 }
    465 
    466 static void
    467 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
    468 {
    469 	struct umidi_mididev *mididev = addr;
    470 	struct umidi_softc *sc = mididev->sc;
    471 
    472 	*intr = NULL;
    473 	*thread = &sc->sc_lock;
    474 }
    475 
    476 /*
    477  * each endpoint stuffs
    478  */
    479 
    480 /* alloc/free pipe */
    481 static usbd_status
    482 alloc_pipe(struct umidi_endpoint *ep)
    483 {
    484 	struct umidi_softc *sc = ep->sc;
    485 	usbd_status err;
    486 	usb_endpoint_descriptor_t *epd;
    487 
    488 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
    489 	/*
    490 	 * For output, an improvement would be to have a buffer bigger than
    491 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
    492 	 * allow out_solicit to fill the buffer to the full packet size in
    493 	 * all cases. But to use usbd_alloc_buffer to get a slightly larger
    494 	 * buffer would not be a good way to do that, because if the addition
    495 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
    496 	 * larger block may be wastefully allocated. Some flavor of double
    497 	 * buffering could serve the same purpose, but would increase the
    498 	 * code complexity, so for now I will live with the current slight
    499 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
    500 	 * packet slots.
    501 	 */
    502 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
    503 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
    504 
    505 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
    506 	        device_xname(sc->sc_dev), ep, ep->buffer_size));
    507 	ep->num_scheduled = 0;
    508 	ep->this_schedule = 0;
    509 	ep->next_schedule = 0;
    510 	ep->soliciting = 0;
    511 	ep->armed = 0;
    512 	ep->xfer = usbd_alloc_xfer(sc->sc_udev);
    513 	if (ep->xfer == NULL) {
    514 	    err = USBD_NOMEM;
    515 	    goto quit;
    516 	}
    517 	ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
    518 	if (ep->buffer == NULL) {
    519 	    usbd_free_xfer(ep->xfer);
    520 	    err = USBD_NOMEM;
    521 	    goto quit;
    522 	}
    523 	ep->next_slot = ep->buffer;
    524 	err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
    525 	if (err)
    526 	    usbd_free_xfer(ep->xfer);
    527 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK, out_solicit, ep);
    528 quit:
    529 	return err;
    530 }
    531 
    532 static void
    533 free_pipe(struct umidi_endpoint *ep)
    534 {
    535 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
    536 	usbd_abort_pipe(ep->pipe);
    537 	usbd_close_pipe(ep->pipe);
    538 	usbd_free_xfer(ep->xfer);
    539 	softint_disestablish(ep->solicit_cookie);
    540 }
    541 
    542 
    543 /* alloc/free the array of endpoint structures */
    544 
    545 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
    546 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
    547 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
    548 
    549 static usbd_status
    550 alloc_all_endpoints(struct umidi_softc *sc)
    551 {
    552 	usbd_status err;
    553 	struct umidi_endpoint *ep;
    554 	int i;
    555 
    556 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
    557 		err = alloc_all_endpoints_fixed_ep(sc);
    558 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
    559 		err = alloc_all_endpoints_yamaha(sc);
    560 	} else {
    561 		err = alloc_all_endpoints_genuine(sc);
    562 	}
    563 	if (err != USBD_NORMAL_COMPLETION)
    564 		return err;
    565 
    566 	ep = sc->sc_endpoints;
    567 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
    568 		err = alloc_pipe(ep++);
    569 		if (err != USBD_NORMAL_COMPLETION) {
    570 			for (; ep != sc->sc_endpoints; ep--)
    571 				free_pipe(ep-1);
    572 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    573 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    574 			break;
    575 		}
    576 	}
    577 	return err;
    578 }
    579 
    580 static void
    581 free_all_endpoints(struct umidi_softc *sc)
    582 {
    583 	int i;
    584 
    585 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
    586 		free_pipe(&sc->sc_endpoints[i]);
    587 	if (sc->sc_endpoints != NULL)
    588 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    589 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    590 }
    591 
    592 static usbd_status
    593 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
    594 {
    595 	usbd_status err;
    596 	const struct umq_fixed_ep_desc *fp;
    597 	struct umidi_endpoint *ep;
    598 	usb_endpoint_descriptor_t *epd;
    599 	int i;
    600 
    601 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
    602 					    UMQ_TYPE_FIXED_EP);
    603 	sc->sc_out_num_jacks = 0;
    604 	sc->sc_in_num_jacks = 0;
    605 	sc->sc_out_num_endpoints = fp->num_out_ep;
    606 	sc->sc_in_num_endpoints = fp->num_in_ep;
    607 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    608 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    609 	if (!sc->sc_endpoints)
    610 		return USBD_NOMEM;
    611 
    612 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
    613 	sc->sc_in_ep =
    614 	    sc->sc_in_num_endpoints ?
    615 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
    616 
    617 	ep = &sc->sc_out_ep[0];
    618 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
    619 		epd = usbd_interface2endpoint_descriptor(
    620 			sc->sc_iface,
    621 			fp->out_ep[i].ep);
    622 		if (!epd) {
    623 			aprint_error_dev(sc->sc_dev,
    624 			    "cannot get endpoint descriptor(out:%d)\n",
    625 			     fp->out_ep[i].ep);
    626 			err = USBD_INVAL;
    627 			goto error;
    628 		}
    629 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
    630 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
    631 			aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
    632 			    fp->out_ep[i].ep);
    633 			err = USBD_INVAL;
    634 			goto error;
    635 		}
    636 		ep->sc = sc;
    637 		ep->addr = epd->bEndpointAddress;
    638 		ep->num_jacks = fp->out_ep[i].num_jacks;
    639 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
    640 		ep->num_open = 0;
    641 		ep++;
    642 	}
    643 	ep = &sc->sc_in_ep[0];
    644 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
    645 		epd = usbd_interface2endpoint_descriptor(
    646 			sc->sc_iface,
    647 			fp->in_ep[i].ep);
    648 		if (!epd) {
    649 			aprint_error_dev(sc->sc_dev,
    650 			    "cannot get endpoint descriptor(in:%d)\n",
    651 			     fp->in_ep[i].ep);
    652 			err = USBD_INVAL;
    653 			goto error;
    654 		}
    655 		/*
    656 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
    657 		 * endpoint.  The existing input logic in this driver seems
    658 		 * to work successfully if we just stop treating an interrupt
    659 		 * endpoint as illegal (or the in_progress status we get on
    660 		 * the initial transfer).  It does not seem necessary to
    661 		 * actually use the interrupt flavor of alloc_pipe or make
    662 		 * other serious rearrangements of logic.  I like that.
    663 		 */
    664 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
    665 		case UE_BULK:
    666 		case UE_INTERRUPT:
    667 			if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
    668 				break;
    669 			/*FALLTHROUGH*/
    670 		default:
    671 			aprint_error_dev(sc->sc_dev,
    672 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
    673 			err = USBD_INVAL;
    674 			goto error;
    675 		}
    676 
    677 		ep->sc = sc;
    678 		ep->addr = epd->bEndpointAddress;
    679 		ep->num_jacks = fp->in_ep[i].num_jacks;
    680 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
    681 		ep->num_open = 0;
    682 		ep++;
    683 	}
    684 
    685 	return USBD_NORMAL_COMPLETION;
    686 error:
    687 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
    688 	sc->sc_endpoints = NULL;
    689 	return err;
    690 }
    691 
    692 static usbd_status
    693 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
    694 {
    695 	/* This driver currently supports max 1in/1out bulk endpoints */
    696 	usb_descriptor_t *desc;
    697 	umidi_cs_descriptor_t *udesc;
    698 	usb_endpoint_descriptor_t *epd;
    699 	int out_addr, in_addr, i;
    700 	int dir;
    701 	size_t remain, descsize;
    702 
    703 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    704 	out_addr = in_addr = 0;
    705 
    706 	/* detect endpoints */
    707 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
    708 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
    709 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    710 		KASSERT(epd != NULL);
    711 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
    712 			dir = UE_GET_DIR(epd->bEndpointAddress);
    713 			if (dir==UE_DIR_OUT && !out_addr)
    714 				out_addr = epd->bEndpointAddress;
    715 			else if (dir==UE_DIR_IN && !in_addr)
    716 				in_addr = epd->bEndpointAddress;
    717 		}
    718 	}
    719 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
    720 
    721 	/* count jacks */
    722 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
    723 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
    724 		return USBD_INVAL;
    725 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
    726 		(size_t)udesc->bLength;
    727 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    728 
    729 	while (remain >= sizeof(usb_descriptor_t)) {
    730 		descsize = udesc->bLength;
    731 		if (descsize>remain || descsize==0)
    732 			break;
    733 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
    734 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
    735 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
    736 				sc->sc_out_num_jacks++;
    737 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
    738 				sc->sc_in_num_jacks++;
    739 		}
    740 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    741 		remain -= descsize;
    742 	}
    743 
    744 	/* validate some parameters */
    745 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
    746 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
    747 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
    748 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
    749 	if (sc->sc_out_num_jacks && out_addr) {
    750 		sc->sc_out_num_endpoints = 1;
    751 	} else {
    752 		sc->sc_out_num_endpoints = 0;
    753 		sc->sc_out_num_jacks = 0;
    754 	}
    755 	if (sc->sc_in_num_jacks && in_addr) {
    756 		sc->sc_in_num_endpoints = 1;
    757 	} else {
    758 		sc->sc_in_num_endpoints = 0;
    759 		sc->sc_in_num_jacks = 0;
    760 	}
    761 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    762 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    763 	if (!sc->sc_endpoints)
    764 		return USBD_NOMEM;
    765 	if (sc->sc_out_num_endpoints) {
    766 		sc->sc_out_ep = sc->sc_endpoints;
    767 		sc->sc_out_ep->sc = sc;
    768 		sc->sc_out_ep->addr = out_addr;
    769 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
    770 		sc->sc_out_ep->num_open = 0;
    771 	} else
    772 		sc->sc_out_ep = NULL;
    773 
    774 	if (sc->sc_in_num_endpoints) {
    775 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
    776 		sc->sc_in_ep->sc = sc;
    777 		sc->sc_in_ep->addr = in_addr;
    778 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
    779 		sc->sc_in_ep->num_open = 0;
    780 	} else
    781 		sc->sc_in_ep = NULL;
    782 
    783 	return USBD_NORMAL_COMPLETION;
    784 }
    785 
    786 static usbd_status
    787 alloc_all_endpoints_genuine(struct umidi_softc *sc)
    788 {
    789 	usb_interface_descriptor_t *interface_desc;
    790 	usb_config_descriptor_t *config_desc;
    791 	usb_descriptor_t *desc;
    792 	int num_ep;
    793 	size_t remain, descsize;
    794 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
    795 	int epaddr;
    796 
    797 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
    798 	num_ep = interface_desc->bNumEndpoints;
    799 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
    800 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    801 	if (!p)
    802 		return USBD_NOMEM;
    803 
    804 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    805 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
    806 	epaddr = -1;
    807 
    808 	/* get the list of endpoints for midi stream */
    809 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
    810 	desc = (usb_descriptor_t *) config_desc;
    811 	remain = (size_t)UGETW(config_desc->wTotalLength);
    812 	while (remain>=sizeof(usb_descriptor_t)) {
    813 		descsize = desc->bLength;
    814 		if (descsize>remain || descsize==0)
    815 			break;
    816 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
    817 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
    818 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
    819 			epaddr = TO_EPD(desc)->bEndpointAddress;
    820 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
    821 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
    822 			   epaddr!=-1) {
    823 			if (num_ep>0) {
    824 				num_ep--;
    825 				p->sc = sc;
    826 				p->addr = epaddr;
    827 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
    828 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
    829 					sc->sc_out_num_endpoints++;
    830 					sc->sc_out_num_jacks += p->num_jacks;
    831 				} else {
    832 					sc->sc_in_num_endpoints++;
    833 					sc->sc_in_num_jacks += p->num_jacks;
    834 				}
    835 				p++;
    836 			}
    837 		} else
    838 			epaddr = -1;
    839 		desc = NEXT_D(desc);
    840 		remain-=descsize;
    841 	}
    842 
    843 	/* sort endpoints */
    844 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
    845 	p = sc->sc_endpoints;
    846 	endep = p + num_ep;
    847 	while (p<endep) {
    848 		lowest = p;
    849 		for (q=p+1; q<endep; q++) {
    850 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
    851 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
    852 			    ((UE_GET_DIR(lowest->addr)==
    853 			      UE_GET_DIR(q->addr)) &&
    854 			     (UE_GET_ADDR(lowest->addr)>
    855 			      UE_GET_ADDR(q->addr))))
    856 				lowest = q;
    857 		}
    858 		if (lowest != p) {
    859 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
    860 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
    861 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
    862 		}
    863 		p->num_open = 0;
    864 		p++;
    865 	}
    866 
    867 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
    868 	sc->sc_in_ep =
    869 	    sc->sc_in_num_endpoints ?
    870 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
    871 
    872 	return USBD_NORMAL_COMPLETION;
    873 }
    874 
    875 
    876 /*
    877  * jack stuffs
    878  */
    879 
    880 static usbd_status
    881 alloc_all_jacks(struct umidi_softc *sc)
    882 {
    883 	int i, j;
    884 	struct umidi_endpoint *ep;
    885 	struct umidi_jack *jack;
    886 	const unsigned char *cn_spec;
    887 
    888 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
    889 		sc->cblnums_global = 0;
    890 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
    891 		sc->cblnums_global = 1;
    892 	else {
    893 		/*
    894 		 * I don't think this default is correct, but it preserves
    895 		 * the prior behavior of the code. That's why I defined two
    896 		 * complementary quirks. Any device for which the default
    897 		 * behavior is wrong can be made to work by giving it an
    898 		 * explicit quirk, and if a pattern ever develops (as I suspect
    899 		 * it will) that a lot of otherwise standard USB MIDI devices
    900 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
    901 		 * changed to 0, and the only devices that will break are those
    902 		 * listing neither quirk, and they'll easily be fixed by giving
    903 		 * them the CN_SEQ_GLOBAL quirk.
    904 		 */
    905 		sc->cblnums_global = 1;
    906 	}
    907 
    908 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
    909 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
    910 					    		 UMQ_TYPE_CN_FIXED);
    911 	else
    912 		cn_spec = NULL;
    913 
    914 	/* allocate/initialize structures */
    915 	sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
    916 						      sc->sc_out_num_jacks), KM_SLEEP);
    917 	if (!sc->sc_jacks)
    918 		return USBD_NOMEM;
    919 	sc->sc_out_jacks =
    920 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
    921 	sc->sc_in_jacks =
    922 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
    923 
    924 	jack = &sc->sc_out_jacks[0];
    925 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
    926 		jack->opened = 0;
    927 		jack->binded = 0;
    928 		jack->arg = NULL;
    929 		jack->u.out.intr = NULL;
    930 		jack->midiman_ppkt = NULL;
    931 		if (sc->cblnums_global)
    932 			jack->cable_number = i;
    933 		jack++;
    934 	}
    935 	jack = &sc->sc_in_jacks[0];
    936 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
    937 		jack->opened = 0;
    938 		jack->binded = 0;
    939 		jack->arg = NULL;
    940 		jack->u.in.intr = NULL;
    941 		if (sc->cblnums_global)
    942 			jack->cable_number = i;
    943 		jack++;
    944 	}
    945 
    946 	/* assign each jacks to each endpoints */
    947 	jack = &sc->sc_out_jacks[0];
    948 	ep = &sc->sc_out_ep[0];
    949 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
    950 		for (j = 0; j < ep->num_jacks; j++) {
    951 			jack->endpoint = ep;
    952 			if (cn_spec != NULL)
    953 				jack->cable_number = *cn_spec++;
    954 			else if (!sc->cblnums_global)
    955 				jack->cable_number = j;
    956 			ep->jacks[jack->cable_number] = jack;
    957 			jack++;
    958 		}
    959 		ep++;
    960 	}
    961 	jack = &sc->sc_in_jacks[0];
    962 	ep = &sc->sc_in_ep[0];
    963 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
    964 		for (j = 0; j < ep->num_jacks; j++) {
    965 			jack->endpoint = ep;
    966 			if (cn_spec != NULL)
    967 				jack->cable_number = *cn_spec++;
    968 			else if (!sc->cblnums_global)
    969 				jack->cable_number = j;
    970 			ep->jacks[jack->cable_number] = jack;
    971 			jack++;
    972 		}
    973 		ep++;
    974 	}
    975 
    976 	return USBD_NORMAL_COMPLETION;
    977 }
    978 
    979 static void
    980 free_all_jacks(struct umidi_softc *sc)
    981 {
    982 	struct umidi_jack *jacks;
    983 	size_t len;
    984 
    985 	mutex_enter(&sc->sc_lock);
    986 	jacks = sc->sc_jacks;
    987 	len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
    988 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
    989 	mutex_exit(&sc->sc_lock);
    990 
    991 	if (jacks)
    992 		kmem_free(jacks, len);
    993 }
    994 
    995 static usbd_status
    996 bind_jacks_to_mididev(struct umidi_softc *sc,
    997 		      struct umidi_jack *out_jack,
    998 		      struct umidi_jack *in_jack,
    999 		      struct umidi_mididev *mididev)
   1000 {
   1001 	if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
   1002 		return USBD_IN_USE;
   1003 	if (mididev->out_jack || mididev->in_jack)
   1004 		return USBD_IN_USE;
   1005 
   1006 	if (out_jack)
   1007 		out_jack->binded = 1;
   1008 	if (in_jack)
   1009 		in_jack->binded = 1;
   1010 	mididev->in_jack = in_jack;
   1011 	mididev->out_jack = out_jack;
   1012 
   1013 	return USBD_NORMAL_COMPLETION;
   1014 }
   1015 
   1016 static void
   1017 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
   1018 {
   1019 
   1020 	if ((mididev->flags & FWRITE) && mididev->out_jack)
   1021 		close_out_jack(mididev->out_jack);
   1022 	if ((mididev->flags & FREAD) && mididev->in_jack)
   1023 		close_in_jack(mididev->in_jack);
   1024 
   1025 	if (mididev->out_jack)
   1026 		mididev->out_jack->binded = 0;
   1027 	if (mididev->in_jack)
   1028 		mididev->in_jack->binded = 0;
   1029 	mididev->out_jack = mididev->in_jack = NULL;
   1030 }
   1031 
   1032 static void
   1033 unbind_all_jacks(struct umidi_softc *sc)
   1034 {
   1035 	int i;
   1036 
   1037 	if (sc->sc_mididevs)
   1038 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1039 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
   1040 }
   1041 
   1042 static usbd_status
   1043 assign_all_jacks_automatically(struct umidi_softc *sc)
   1044 {
   1045 	usbd_status err;
   1046 	int i;
   1047 	struct umidi_jack *out, *in;
   1048 	const signed char *asg_spec;
   1049 
   1050 	err =
   1051 	    alloc_all_mididevs(sc,
   1052 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
   1053 	if (err!=USBD_NORMAL_COMPLETION)
   1054 		return err;
   1055 
   1056 	if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
   1057 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
   1058 					    		  UMQ_TYPE_MD_FIXED);
   1059 	else
   1060 		asg_spec = NULL;
   1061 
   1062 	for (i = 0; i < sc->sc_num_mididevs; i++) {
   1063 		if (asg_spec != NULL) {
   1064 			if (*asg_spec == -1)
   1065 				out = NULL;
   1066 			else
   1067 				out = &sc->sc_out_jacks[*asg_spec];
   1068 			++ asg_spec;
   1069 			if (*asg_spec == -1)
   1070 				in = NULL;
   1071 			else
   1072 				in = &sc->sc_in_jacks[*asg_spec];
   1073 			++ asg_spec;
   1074 		} else {
   1075 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
   1076 			                               : NULL;
   1077 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
   1078 						     : NULL;
   1079 		}
   1080 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
   1081 		if (err!=USBD_NORMAL_COMPLETION) {
   1082 			free_all_mididevs(sc);
   1083 			return err;
   1084 		}
   1085 	}
   1086 
   1087 	return USBD_NORMAL_COMPLETION;
   1088 }
   1089 
   1090 static usbd_status
   1091 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
   1092 {
   1093 	struct umidi_endpoint *ep = jack->endpoint;
   1094 	struct umidi_softc *sc = ep->sc;
   1095 	umidi_packet_bufp end;
   1096 	int err;
   1097 
   1098 	KASSERT(mutex_owned(&sc->sc_lock));
   1099 
   1100 	if (jack->opened)
   1101 		return USBD_IN_USE;
   1102 
   1103 	jack->arg = arg;
   1104 	jack->u.out.intr = intr;
   1105 	jack->midiman_ppkt = NULL;
   1106 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
   1107 	jack->opened = 1;
   1108 	ep->num_open++;
   1109 	/*
   1110 	 * out_solicit maintains an invariant that there will always be
   1111 	 * (num_open - num_scheduled) slots free in the buffer. as we have
   1112 	 * just incremented num_open, the buffer may be too full to satisfy
   1113 	 * the invariant until a transfer completes, for which we must wait.
   1114 	 */
   1115 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
   1116 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1117 		     mstohz(10));
   1118 		if (err) {
   1119 			ep->num_open--;
   1120 			jack->opened = 0;
   1121 			return USBD_IOERROR;
   1122 		}
   1123 	}
   1124 
   1125 	return USBD_NORMAL_COMPLETION;
   1126 }
   1127 
   1128 static usbd_status
   1129 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
   1130 {
   1131 	usbd_status err = USBD_NORMAL_COMPLETION;
   1132 	struct umidi_endpoint *ep = jack->endpoint;
   1133 
   1134 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1135 
   1136 	if (jack->opened)
   1137 		return USBD_IN_USE;
   1138 
   1139 	jack->arg = arg;
   1140 	jack->u.in.intr = intr;
   1141 	jack->opened = 1;
   1142 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
   1143 		KERNEL_LOCK(1, curlwp);
   1144 		err = start_input_transfer(ep);
   1145 		KERNEL_UNLOCK_ONE(curlwp);
   1146 		if (err != USBD_NORMAL_COMPLETION &&
   1147 		    err != USBD_IN_PROGRESS) {
   1148 			ep->num_open--;
   1149 		}
   1150 	}
   1151 
   1152 	return err;
   1153 }
   1154 
   1155 static void
   1156 close_out_jack(struct umidi_jack *jack)
   1157 {
   1158 	struct umidi_endpoint *ep;
   1159 	struct umidi_softc *sc;
   1160 	u_int16_t mask;
   1161 	int err;
   1162 
   1163 	if (jack->opened) {
   1164 		ep = jack->endpoint;
   1165 		sc = ep->sc;
   1166 		mutex_spin_enter(&sc->sc_lock);
   1167 		mask = 1 << (jack->cable_number);
   1168 		while (mask & (ep->this_schedule | ep->next_schedule)) {
   1169 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1170 			     mstohz(10));
   1171 			if (err)
   1172 				break;
   1173 		}
   1174 		/*
   1175 		 * We can re-enter this function from both close() and
   1176 		 * detach().  Make sure only one of them does this part.
   1177 		 */
   1178 		if (jack->opened) {
   1179 			jack->opened = 0;
   1180 			jack->endpoint->num_open--;
   1181 			ep->this_schedule &= ~mask;
   1182 			ep->next_schedule &= ~mask;
   1183 		}
   1184 		mutex_spin_exit(&sc->sc_lock);
   1185 	}
   1186 }
   1187 
   1188 static void
   1189 close_in_jack(struct umidi_jack *jack)
   1190 {
   1191 	if (jack->opened) {
   1192 		jack->opened = 0;
   1193 		if (--jack->endpoint->num_open == 0) {
   1194 			usbd_abort_pipe(jack->endpoint->pipe);
   1195 		}
   1196 	}
   1197 }
   1198 
   1199 static usbd_status
   1200 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
   1201 {
   1202 	if (mididev->sc)
   1203 		return USBD_IN_USE;
   1204 
   1205 	mididev->sc = sc;
   1206 
   1207 	describe_mididev(mididev);
   1208 
   1209 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
   1210 
   1211 	return USBD_NORMAL_COMPLETION;
   1212 }
   1213 
   1214 static usbd_status
   1215 detach_mididev(struct umidi_mididev *mididev, int flags)
   1216 {
   1217 	if (!mididev->sc)
   1218 		return USBD_NO_ADDR;
   1219 
   1220 	if (mididev->opened) {
   1221 		umidi_close(mididev);
   1222 	}
   1223 	unbind_jacks_from_mididev(mididev);
   1224 
   1225 	if (mididev->mdev != NULL)
   1226 		config_detach(mididev->mdev, flags);
   1227 
   1228 	if (NULL != mididev->label) {
   1229 		kmem_free(mididev->label, mididev->label_len);
   1230 		mididev->label = NULL;
   1231 	}
   1232 
   1233 	mididev->sc = NULL;
   1234 
   1235 	return USBD_NORMAL_COMPLETION;
   1236 }
   1237 
   1238 static void
   1239 deactivate_mididev(struct umidi_mididev *mididev)
   1240 {
   1241 	if (mididev->out_jack)
   1242 		mididev->out_jack->binded = 0;
   1243 	if (mididev->in_jack)
   1244 		mididev->in_jack->binded = 0;
   1245 }
   1246 
   1247 static usbd_status
   1248 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
   1249 {
   1250 	sc->sc_num_mididevs = nmidi;
   1251 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
   1252 	if (!sc->sc_mididevs)
   1253 		return USBD_NOMEM;
   1254 
   1255 	return USBD_NORMAL_COMPLETION;
   1256 }
   1257 
   1258 static void
   1259 free_all_mididevs(struct umidi_softc *sc)
   1260 {
   1261 	if (sc->sc_mididevs)
   1262 		kmem_free(sc->sc_mididevs,
   1263 			  sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
   1264 	sc->sc_num_mididevs = 0;
   1265 }
   1266 
   1267 static usbd_status
   1268 attach_all_mididevs(struct umidi_softc *sc)
   1269 {
   1270 	usbd_status err;
   1271 	int i;
   1272 
   1273 	if (sc->sc_mididevs)
   1274 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1275 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
   1276 			if (err != USBD_NORMAL_COMPLETION)
   1277 				return err;
   1278 		}
   1279 
   1280 	return USBD_NORMAL_COMPLETION;
   1281 }
   1282 
   1283 static usbd_status
   1284 detach_all_mididevs(struct umidi_softc *sc, int flags)
   1285 {
   1286 	usbd_status err;
   1287 	int i;
   1288 
   1289 	if (sc->sc_mididevs)
   1290 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1291 			err = detach_mididev(&sc->sc_mididevs[i], flags);
   1292 			if (err != USBD_NORMAL_COMPLETION)
   1293 				return err;
   1294 		}
   1295 
   1296 	return USBD_NORMAL_COMPLETION;
   1297 }
   1298 
   1299 static void
   1300 deactivate_all_mididevs(struct umidi_softc *sc)
   1301 {
   1302 	int i;
   1303 
   1304 	if (sc->sc_mididevs) {
   1305 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1306 			deactivate_mididev(&sc->sc_mididevs[i]);
   1307 	}
   1308 }
   1309 
   1310 /*
   1311  * TODO: the 0-based cable numbers will often not match the labeling of the
   1312  * equipment. Ideally:
   1313  *  For class-compliant devices: get the iJack string from the jack descriptor.
   1314  *  Otherwise:
   1315  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
   1316  *    number for display)
   1317  *  - support an array quirk explictly giving a char * for each jack.
   1318  * For now, you get 0-based cable numbers. If there are multiple endpoints and
   1319  * the CNs are not globally unique, each is shown with its associated endpoint
   1320  * address in hex also. That should not be necessary when using iJack values
   1321  * or a quirk array.
   1322  */
   1323 void
   1324 describe_mididev(struct umidi_mididev *md)
   1325 {
   1326 	char in_label[16];
   1327 	char out_label[16];
   1328 	const char *unit_label;
   1329 	char *final_label;
   1330 	struct umidi_softc *sc;
   1331 	int show_ep_in;
   1332 	int show_ep_out;
   1333 	size_t len;
   1334 
   1335 	sc = md->sc;
   1336 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
   1337 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
   1338 
   1339 	if ( NULL == md->in_jack )
   1340 		in_label[0] = '\0';
   1341 	else if ( show_ep_in )
   1342 		snprintf(in_label, sizeof in_label, "<%d(%x) ",
   1343 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
   1344 	else
   1345 		snprintf(in_label, sizeof in_label, "<%d ",
   1346 		    md->in_jack->cable_number);
   1347 
   1348 	if ( NULL == md->out_jack )
   1349 		out_label[0] = '\0';
   1350 	else if ( show_ep_out )
   1351 		snprintf(out_label, sizeof out_label, ">%d(%x) ",
   1352 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
   1353 	else
   1354 		snprintf(out_label, sizeof out_label, ">%d ",
   1355 		    md->out_jack->cable_number);
   1356 
   1357 	unit_label = device_xname(sc->sc_dev);
   1358 
   1359 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
   1360 
   1361 	final_label = kmem_alloc(len, KM_SLEEP);
   1362 
   1363 	snprintf(final_label, len, "%s%son %s",
   1364 	    in_label, out_label, unit_label);
   1365 
   1366 	md->label = final_label;
   1367 	md->label_len = len;
   1368 }
   1369 
   1370 #ifdef UMIDI_DEBUG
   1371 static void
   1372 dump_sc(struct umidi_softc *sc)
   1373 {
   1374 	int i;
   1375 
   1376 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
   1377 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
   1378 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
   1379 		dump_ep(&sc->sc_out_ep[i]);
   1380 	}
   1381 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
   1382 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
   1383 		dump_ep(&sc->sc_in_ep[i]);
   1384 	}
   1385 }
   1386 
   1387 static void
   1388 dump_ep(struct umidi_endpoint *ep)
   1389 {
   1390 	int i;
   1391 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
   1392 		if (NULL==ep->jacks[i])
   1393 			continue;
   1394 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
   1395 		dump_jack(ep->jacks[i]);
   1396 	}
   1397 }
   1398 static void
   1399 dump_jack(struct umidi_jack *jack)
   1400 {
   1401 	DPRINTFN(10, ("\t\t\tep=%p\n",
   1402 		      jack->endpoint));
   1403 }
   1404 
   1405 #endif /* UMIDI_DEBUG */
   1406 
   1407 
   1408 
   1409 /*
   1410  * MUX MIDI PACKET
   1411  */
   1412 
   1413 static const int packet_length[16] = {
   1414 	/*0*/	-1,
   1415 	/*1*/	-1,
   1416 	/*2*/	2,
   1417 	/*3*/	3,
   1418 	/*4*/	3,
   1419 	/*5*/	1,
   1420 	/*6*/	2,
   1421 	/*7*/	3,
   1422 	/*8*/	3,
   1423 	/*9*/	3,
   1424 	/*A*/	3,
   1425 	/*B*/	3,
   1426 	/*C*/	2,
   1427 	/*D*/	2,
   1428 	/*E*/	3,
   1429 	/*F*/	1,
   1430 };
   1431 
   1432 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
   1433 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
   1434 #define MIX_CN_CIN(cn, cin) \
   1435 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
   1436 			  ((unsigned char)(cin)&0x0F)))
   1437 
   1438 static usbd_status
   1439 start_input_transfer(struct umidi_endpoint *ep)
   1440 {
   1441 	usbd_setup_xfer(ep->xfer, ep->pipe,
   1442 			(usbd_private_handle)ep,
   1443 			ep->buffer, ep->buffer_size,
   1444 			USBD_SHORT_XFER_OK | USBD_NO_COPY,
   1445                         USBD_NO_TIMEOUT, in_intr);
   1446 	return usbd_transfer(ep->xfer);
   1447 }
   1448 
   1449 static usbd_status
   1450 start_output_transfer(struct umidi_endpoint *ep)
   1451 {
   1452 	usbd_status rv;
   1453 	u_int32_t length;
   1454 	int i;
   1455 
   1456 	length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
   1457 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
   1458 	    ep->buffer, ep->next_slot, length));
   1459 	KERNEL_LOCK(1, curlwp);
   1460 	usbd_setup_xfer(ep->xfer, ep->pipe,
   1461 			(usbd_private_handle)ep,
   1462 			ep->buffer, length,
   1463 			USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
   1464 	rv = usbd_transfer(ep->xfer);
   1465 	KERNEL_UNLOCK_ONE(curlwp);
   1466 
   1467 	/*
   1468 	 * Once the transfer is scheduled, no more adding to partial
   1469 	 * packets within it.
   1470 	 */
   1471 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1472 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
   1473 			if (NULL != ep->jacks[i])
   1474 				ep->jacks[i]->midiman_ppkt = NULL;
   1475 	}
   1476 
   1477 	return rv;
   1478 }
   1479 
   1480 #ifdef UMIDI_DEBUG
   1481 #define DPR_PACKET(dir, sc, p)						\
   1482 if ((unsigned char)(p)[1]!=0xFE)				\
   1483 	DPRINTFN(500,							\
   1484 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
   1485 		  device_xname(sc->sc_dev),				\
   1486 		  (unsigned char)(p)[0],			\
   1487 		  (unsigned char)(p)[1],			\
   1488 		  (unsigned char)(p)[2],			\
   1489 		  (unsigned char)(p)[3]));
   1490 #else
   1491 #define DPR_PACKET(dir, sc, p)
   1492 #endif
   1493 
   1494 /*
   1495  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
   1496  * with the cable number and length in the last byte instead of the first,
   1497  * but there the resemblance ends. Where a USB MIDI packet is a semantic
   1498  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
   1499  * with a cable nybble and a length nybble (which, unlike the CIN of a
   1500  * real USB MIDI packet, has no semantics at all besides the length).
   1501  * A packet received from a Midiman may contain part of a MIDI message,
   1502  * more than one MIDI message, or parts of more than one MIDI message. A
   1503  * three-byte MIDI message may arrive in three packets of data length 1, and
   1504  * running status may be used. Happily, the midi(4) driver above us will put
   1505  * it all back together, so the only cost is in USB bandwidth. The device
   1506  * has an easier time with what it receives from us: we'll pack messages in
   1507  * and across packets, but filling the packets whenever possible and,
   1508  * as midi(4) hands us a complete message at a time, we'll never send one
   1509  * in a dribble of short packets.
   1510  */
   1511 
   1512 static int
   1513 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
   1514 {
   1515 	struct umidi_endpoint *ep = out_jack->endpoint;
   1516 	struct umidi_softc *sc = ep->sc;
   1517 	unsigned char *packet;
   1518 	int plen;
   1519 	int poff;
   1520 
   1521 	if (sc->sc_dying)
   1522 		return EIO;
   1523 
   1524 	if (!out_jack->opened)
   1525 		return ENODEV; /* XXX as it was, is this the right errno? */
   1526 
   1527 #ifdef UMIDI_DEBUG
   1528 	if ( umididebug >= 100 )
   1529 		microtime(&umidi_tv);
   1530 #endif
   1531 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
   1532 	    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
   1533 	    ep, out_jack->cable_number, len, cin));
   1534 
   1535 	packet = *ep->next_slot++;
   1536 	KASSERT(ep->buffer_size >=
   1537 	    (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
   1538 	memset(packet, 0, UMIDI_PACKET_SIZE);
   1539 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1540 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
   1541 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
   1542 			plen = 3 - poff;
   1543 			if (plen > len)
   1544 				plen = len;
   1545 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
   1546 			src += plen;
   1547 			len -= plen;
   1548 			plen += poff;
   1549 			out_jack->midiman_ppkt[3] =
   1550 			    MIX_CN_CIN(out_jack->cable_number, plen);
   1551 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
   1552 			if (3 == plen)
   1553 				out_jack->midiman_ppkt = NULL; /* no more */
   1554 		}
   1555 		if (0 == len)
   1556 			ep->next_slot--; /* won't be needed, nevermind */
   1557 		else {
   1558 			memcpy(packet, src, len);
   1559 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
   1560 			DPR_PACKET(out, sc, packet);
   1561 			if (len < 3)
   1562 				out_jack->midiman_ppkt = packet;
   1563 		}
   1564 	} else { /* the nice simple USB class-compliant case */
   1565 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
   1566 		memcpy(packet+1, src, len);
   1567 		DPR_PACKET(out, sc, packet);
   1568 	}
   1569 	ep->next_schedule |= 1<<(out_jack->cable_number);
   1570 	++ ep->num_scheduled;
   1571 	if ( !ep->armed  &&  !ep->soliciting ) {
   1572 		/*
   1573 		 * It would be bad to call out_solicit directly here (the
   1574 		 * caller need not be reentrant) but a soft interrupt allows
   1575 		 * solicit to run immediately the caller exits its critical
   1576 		 * section, and if the caller has more to write we can get it
   1577 		 * before starting the USB transfer, and send a longer one.
   1578 		 */
   1579 		ep->soliciting = 1;
   1580 		softint_schedule(ep->solicit_cookie);
   1581 	}
   1582 
   1583 	return 0;
   1584 }
   1585 
   1586 static void
   1587 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
   1588     usbd_status status)
   1589 {
   1590 	int cn, len, i;
   1591 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1592 	struct umidi_softc *sc = ep->sc;
   1593 	struct umidi_jack *jack;
   1594 	unsigned char *packet;
   1595 	umidi_packet_bufp slot;
   1596 	umidi_packet_bufp end;
   1597 	unsigned char *data;
   1598 	u_int32_t count;
   1599 
   1600 	if (ep->sc->sc_dying || !ep->num_open)
   1601 		return;
   1602 
   1603 	mutex_enter(&sc->sc_lock);
   1604 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1605         if (0 == count % UMIDI_PACKET_SIZE) {
   1606 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
   1607 			     device_xname(ep->sc->sc_dev), ep, count));
   1608         } else {
   1609                 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
   1610                         device_xname(ep->sc->sc_dev), ep, count));
   1611         }
   1612 
   1613 	slot = ep->buffer;
   1614 	end = slot + count / sizeof *slot;
   1615 
   1616 	for (packet = *slot; slot < end; packet = *++slot) {
   1617 
   1618 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1619 			cn = (0xf0&(packet[3]))>>4;
   1620 			len = 0x0f&(packet[3]);
   1621 			data = packet;
   1622 		} else {
   1623 			cn = GET_CN(packet[0]);
   1624 			len = packet_length[GET_CIN(packet[0])];
   1625 			data = packet + 1;
   1626 		}
   1627 		/* 0 <= cn <= 15 by inspection of above code */
   1628 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
   1629 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
   1630 			         "%02X %02X %02X (try CN_SEQ quirk?)\n",
   1631 				 device_xname(ep->sc->sc_dev), ep, cn, len,
   1632 				 (unsigned)data[0],
   1633 				 (unsigned)data[1],
   1634 				 (unsigned)data[2]));
   1635 			mutex_exit(&sc->sc_lock);
   1636 			return;
   1637 		}
   1638 
   1639 		if (!jack->binded || !jack->opened)
   1640 			continue;
   1641 
   1642 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
   1643 		             "%02X %02X %02X\n",
   1644 			     device_xname(ep->sc->sc_dev), ep, cn, len,
   1645 			     (unsigned)data[0],
   1646 			     (unsigned)data[1],
   1647 			     (unsigned)data[2]));
   1648 
   1649 		if (jack->u.in.intr) {
   1650 			for (i = 0; i < len; i++) {
   1651 				(*jack->u.in.intr)(jack->arg, data[i]);
   1652 			}
   1653 		}
   1654 
   1655 	}
   1656 
   1657 	(void)start_input_transfer(ep);
   1658 	mutex_exit(&sc->sc_lock);
   1659 }
   1660 
   1661 static void
   1662 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
   1663     usbd_status status)
   1664 {
   1665 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1666 	struct umidi_softc *sc = ep->sc;
   1667 	u_int32_t count;
   1668 
   1669 	if (sc->sc_dying)
   1670 		return;
   1671 
   1672 	mutex_enter(&sc->sc_lock);
   1673 #ifdef UMIDI_DEBUG
   1674 	if ( umididebug >= 200 )
   1675 		microtime(&umidi_tv);
   1676 #endif
   1677 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1678         if ( 0 == count % UMIDI_PACKET_SIZE ) {
   1679 		DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
   1680 			     device_xname(ep->sc->sc_dev),
   1681 			     umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
   1682         } else {
   1683                 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
   1684                         device_xname(ep->sc->sc_dev), ep, count));
   1685         }
   1686 	count /= UMIDI_PACKET_SIZE;
   1687 
   1688 	/*
   1689 	 * If while the transfer was pending we buffered any new messages,
   1690 	 * move them to the start of the buffer.
   1691 	 */
   1692 	ep->next_slot -= count;
   1693 	if (ep->buffer < ep->next_slot) {
   1694 		memcpy(ep->buffer, ep->buffer + count,
   1695 		       (char *)ep->next_slot - (char *)ep->buffer);
   1696 	}
   1697 	cv_broadcast(&sc->sc_cv);
   1698 	/*
   1699 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
   1700 	 * Running at IPL_USB so the following should happen to be safe.
   1701 	 */
   1702 	ep->armed = 0;
   1703 	if (!ep->soliciting) {
   1704 		ep->soliciting = 1;
   1705 		out_solicit_locked(ep);
   1706 	}
   1707 	mutex_exit(&sc->sc_lock);
   1708 }
   1709 
   1710 /*
   1711  * A jack on which we have received a packet must be called back on its
   1712  * out.intr handler before it will send us another; it is considered
   1713  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
   1714  * we need no extra buffer space for it.
   1715  *
   1716  * In contrast, a jack that is open but not scheduled may supply us a packet
   1717  * at any time, driven by the top half, and we must be able to accept it, no
   1718  * excuses. So we must ensure that at any point in time there are at least
   1719  * (num_open - num_scheduled) slots free.
   1720  *
   1721  * As long as there are more slots free than that minimum, we can loop calling
   1722  * scheduled jacks back on their "interrupt" handlers, soliciting more
   1723  * packets, starting the USB transfer only when the buffer space is down to
   1724  * the minimum or no jack has any more to send.
   1725  */
   1726 
   1727 static void
   1728 out_solicit_locked(void *arg)
   1729 {
   1730 	struct umidi_endpoint *ep = arg;
   1731 	umidi_packet_bufp end;
   1732 	u_int16_t which;
   1733 	struct umidi_jack *jack;
   1734 
   1735 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1736 
   1737 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
   1738 
   1739 	for ( ;; ) {
   1740 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
   1741 			break; /* at IPL_USB */
   1742 		if (ep->this_schedule == 0) {
   1743 			if (ep->next_schedule == 0)
   1744 				break; /* at IPL_USB */
   1745 			ep->this_schedule = ep->next_schedule;
   1746 			ep->next_schedule = 0;
   1747 		}
   1748 		/*
   1749 		 * At least one jack is scheduled. Find and mask off the least
   1750 		 * set bit in this_schedule and decrement num_scheduled.
   1751 		 * Convert mask to bit index to find the corresponding jack,
   1752 		 * and call its intr handler. If it has a message, it will call
   1753 		 * back one of the output methods, which will set its bit in
   1754 		 * next_schedule (not copied into this_schedule until the
   1755 		 * latter is empty). In this way we round-robin the jacks that
   1756 		 * have messages to send, until the buffer is as full as we
   1757 		 * dare, and then start a transfer.
   1758 		 */
   1759 		which = ep->this_schedule;
   1760 		which &= (~which)+1; /* now mask of least set bit */
   1761 		ep->this_schedule &= ~which;
   1762 		--ep->num_scheduled;
   1763 
   1764 		--which; /* now 1s below mask - count 1s to get index */
   1765 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
   1766 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
   1767 		which = (((which >> 4) + which) & 0x0f0f);
   1768 		which +=  (which >> 8);
   1769 		which &= 0x1f; /* the bit index a/k/a jack number */
   1770 
   1771 		jack = ep->jacks[which];
   1772 		if (jack->u.out.intr)
   1773 			(*jack->u.out.intr)(jack->arg);
   1774 	}
   1775 	/* intr lock held at loop exit */
   1776 	if (!ep->armed && ep->next_slot > ep->buffer)
   1777 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
   1778 	ep->soliciting = 0;
   1779 }
   1780 
   1781 /* Entry point for the softintr.  */
   1782 static void
   1783 out_solicit(void *arg)
   1784 {
   1785 	struct umidi_endpoint *ep = arg;
   1786 	struct umidi_softc *sc = ep->sc;
   1787 
   1788 	mutex_enter(&sc->sc_lock);
   1789 	out_solicit_locked(arg);
   1790 	mutex_exit(&sc->sc_lock);
   1791 }
   1792