umidi.c revision 1.62 1 /* $NetBSD: umidi.c,v 1.62 2012/05/18 07:52:54 jdc Exp $ */
2 /*
3 * Copyright (c) 2001, 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
8 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
9 * (mrg (at) eterna.com.au).
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.62 2012/05/18 07:52:54 jdc Exp $");
35
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/device.h>
42 #include <sys/ioctl.h>
43 #include <sys/conf.h>
44 #include <sys/file.h>
45 #include <sys/select.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/poll.h>
49 #include <sys/intr.h>
50
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54
55 #include <dev/auconv.h>
56 #include <dev/usb/usbdevs.h>
57 #include <dev/usb/uaudioreg.h>
58 #include <dev/usb/umidireg.h>
59 #include <dev/usb/umidivar.h>
60 #include <dev/usb/umidi_quirks.h>
61
62 #include <dev/midi_if.h>
63
64 #ifdef UMIDI_DEBUG
65 #define DPRINTF(x) if (umididebug) printf x
66 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
67 #include <sys/time.h>
68 static struct timeval umidi_tv;
69 int umididebug = 0;
70 #else
71 #define DPRINTF(x)
72 #define DPRINTFN(n,x)
73 #endif
74
75 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
76 (sc->sc_out_num_endpoints + \
77 sc->sc_in_num_endpoints))
78
79
80 static int umidi_open(void *, int,
81 void (*)(void *, int), void (*)(void *), void *);
82 static void umidi_close(void *);
83 static int umidi_channelmsg(void *, int, int, u_char *, int);
84 static int umidi_commonmsg(void *, int, u_char *, int);
85 static int umidi_sysex(void *, u_char *, int);
86 static int umidi_rtmsg(void *, int);
87 static void umidi_getinfo(void *, struct midi_info *);
88 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
89
90 static usbd_status alloc_pipe(struct umidi_endpoint *);
91 static void free_pipe(struct umidi_endpoint *);
92
93 static usbd_status alloc_all_endpoints(struct umidi_softc *);
94 static void free_all_endpoints(struct umidi_softc *);
95
96 static usbd_status alloc_all_jacks(struct umidi_softc *);
97 static void free_all_jacks(struct umidi_softc *);
98 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
99 struct umidi_jack *,
100 struct umidi_jack *,
101 struct umidi_mididev *);
102 static void unbind_jacks_from_mididev(struct umidi_mididev *);
103 static void unbind_all_jacks(struct umidi_softc *);
104 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
105 static usbd_status open_out_jack(struct umidi_jack *, void *,
106 void (*)(void *));
107 static usbd_status open_in_jack(struct umidi_jack *, void *,
108 void (*)(void *, int));
109 static void close_out_jack(struct umidi_jack *);
110 static void close_in_jack(struct umidi_jack *);
111
112 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
113 static usbd_status detach_mididev(struct umidi_mididev *, int);
114 static void deactivate_mididev(struct umidi_mididev *);
115 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
116 static void free_all_mididevs(struct umidi_softc *);
117 static usbd_status attach_all_mididevs(struct umidi_softc *);
118 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
119 static void deactivate_all_mididevs(struct umidi_softc *);
120 static void describe_mididev(struct umidi_mididev *);
121
122 #ifdef UMIDI_DEBUG
123 static void dump_sc(struct umidi_softc *);
124 static void dump_ep(struct umidi_endpoint *);
125 static void dump_jack(struct umidi_jack *);
126 #endif
127
128 static usbd_status start_input_transfer(struct umidi_endpoint *);
129 static usbd_status start_output_transfer(struct umidi_endpoint *);
130 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
131 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
132 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
133 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
134 static void out_solicit_locked(void *); /* pre-locked version */
135
136
137 const struct midi_hw_if umidi_hw_if = {
138 .open = umidi_open,
139 .close = umidi_close,
140 .output = umidi_rtmsg,
141 .getinfo = umidi_getinfo,
142 .get_locks = umidi_get_locks,
143 };
144
145 struct midi_hw_if_ext umidi_hw_if_ext = {
146 .channel = umidi_channelmsg,
147 .common = umidi_commonmsg,
148 .sysex = umidi_sysex,
149 };
150
151 struct midi_hw_if_ext umidi_hw_if_mm = {
152 .channel = umidi_channelmsg,
153 .common = umidi_commonmsg,
154 .sysex = umidi_sysex,
155 .compress = 1,
156 };
157
158 int umidi_match(device_t, cfdata_t, void *);
159 void umidi_attach(device_t, device_t, void *);
160 void umidi_childdet(device_t, device_t);
161 int umidi_detach(device_t, int);
162 int umidi_activate(device_t, enum devact);
163 extern struct cfdriver umidi_cd;
164 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
165 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
166
167 int
168 umidi_match(device_t parent, cfdata_t match, void *aux)
169 {
170 struct usbif_attach_arg *uaa = aux;
171
172 DPRINTFN(1,("umidi_match\n"));
173
174 if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
175 return UMATCH_IFACECLASS_IFACESUBCLASS;
176
177 if (uaa->class == UICLASS_AUDIO &&
178 uaa->subclass == UISUBCLASS_MIDISTREAM)
179 return UMATCH_IFACECLASS_IFACESUBCLASS;
180
181 return UMATCH_NONE;
182 }
183
184 void
185 umidi_attach(device_t parent, device_t self, void *aux)
186 {
187 usbd_status err;
188 struct umidi_softc *sc = device_private(self);
189 struct usbif_attach_arg *uaa = aux;
190 char *devinfop;
191
192 DPRINTFN(1,("umidi_attach\n"));
193
194 sc->sc_dev = self;
195
196 aprint_naive("\n");
197 aprint_normal("\n");
198
199 devinfop = usbd_devinfo_alloc(uaa->device, 0);
200 aprint_normal_dev(self, "%s\n", devinfop);
201 usbd_devinfo_free(devinfop);
202
203 sc->sc_iface = uaa->iface;
204 sc->sc_udev = uaa->device;
205
206 sc->sc_quirk =
207 umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
208 aprint_normal_dev(self, "");
209 umidi_print_quirk(sc->sc_quirk);
210
211 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
212 cv_init(&sc->sc_cv, "umidopcl");
213
214 KERNEL_LOCK(1, curlwp);
215 err = alloc_all_endpoints(sc);
216 if (err != USBD_NORMAL_COMPLETION) {
217 aprint_error_dev(self,
218 "alloc_all_endpoints failed. (err=%d)\n", err);
219 goto error;
220 }
221 err = alloc_all_jacks(sc);
222 if (err != USBD_NORMAL_COMPLETION) {
223 free_all_endpoints(sc);
224 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
225 err);
226 goto error;
227 }
228 aprint_normal_dev(self, "out=%d, in=%d\n",
229 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
230
231 err = assign_all_jacks_automatically(sc);
232 if (err != USBD_NORMAL_COMPLETION) {
233 unbind_all_jacks(sc);
234 free_all_jacks(sc);
235 free_all_endpoints(sc);
236 aprint_error_dev(self,
237 "assign_all_jacks_automatically failed. (err=%d)\n", err);
238 goto error;
239 }
240 err = attach_all_mididevs(sc);
241 if (err != USBD_NORMAL_COMPLETION) {
242 free_all_jacks(sc);
243 free_all_endpoints(sc);
244 aprint_error_dev(self,
245 "attach_all_mididevs failed. (err=%d)\n", err);
246 }
247 KERNEL_UNLOCK_ONE(curlwp);
248
249 #ifdef UMIDI_DEBUG
250 dump_sc(sc);
251 #endif
252
253 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
254 sc->sc_udev, sc->sc_dev);
255
256 return;
257 error:
258 aprint_error_dev(self, "disabled.\n");
259 sc->sc_dying = 1;
260 KERNEL_UNLOCK_ONE(curlwp);
261 return;
262 }
263
264 void
265 umidi_childdet(device_t self, device_t child)
266 {
267 int i;
268 struct umidi_softc *sc = device_private(self);
269
270 KASSERT(sc->sc_mididevs != NULL);
271
272 for (i = 0; i < sc->sc_num_mididevs; i++) {
273 if (sc->sc_mididevs[i].mdev == child)
274 break;
275 }
276 KASSERT(i < sc->sc_num_mididevs);
277 sc->sc_mididevs[i].mdev = NULL;
278 }
279
280 int
281 umidi_activate(device_t self, enum devact act)
282 {
283 struct umidi_softc *sc = device_private(self);
284
285 switch (act) {
286 case DVACT_DEACTIVATE:
287 DPRINTFN(1,("umidi_activate (deactivate)\n"));
288 sc->sc_dying = 1;
289 deactivate_all_mididevs(sc);
290 return 0;
291 default:
292 DPRINTFN(1,("umidi_activate (%d)\n", act));
293 return EOPNOTSUPP;
294 }
295 }
296
297 int
298 umidi_detach(device_t self, int flags)
299 {
300 struct umidi_softc *sc = device_private(self);
301
302 DPRINTFN(1,("umidi_detach\n"));
303
304 sc->sc_dying = 1;
305 KERNEL_LOCK(1, curlwp);
306 detach_all_mididevs(sc, flags);
307 free_all_mididevs(sc);
308 free_all_jacks(sc);
309 free_all_endpoints(sc);
310
311 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
312 sc->sc_dev);
313 KERNEL_UNLOCK_ONE(curlwp);
314
315 mutex_destroy(&sc->sc_lock);
316 cv_destroy(&sc->sc_cv);
317
318 return 0;
319 }
320
321
322 /*
323 * midi_if stuffs
324 */
325 int
326 umidi_open(void *addr,
327 int flags,
328 void (*iintr)(void *, int),
329 void (*ointr)(void *),
330 void *arg)
331 {
332 struct umidi_mididev *mididev = addr;
333 struct umidi_softc *sc = mididev->sc;
334 usbd_status err;
335
336 DPRINTF(("umidi_open: sc=%p\n", sc));
337
338 if (!sc)
339 return ENXIO;
340 if (mididev->opened)
341 return EBUSY;
342 if (sc->sc_dying)
343 return EIO;
344
345 mididev->opened = 1;
346 mididev->closing = 0;
347 mididev->flags = flags;
348 if ((mididev->flags & FWRITE) && mididev->out_jack) {
349 err = open_out_jack(mididev->out_jack, arg, ointr);
350 if ( err != USBD_NORMAL_COMPLETION )
351 goto bad;
352 }
353 if ((mididev->flags & FREAD) && mididev->in_jack) {
354 err = open_in_jack(mididev->in_jack, arg, iintr);
355 if ( err != USBD_NORMAL_COMPLETION
356 && err != USBD_IN_PROGRESS )
357 goto bad;
358 }
359
360 return 0;
361 bad:
362 mididev->opened = 0;
363 DPRINTF(("umidi_open: usbd_status %d\n", err));
364 return USBD_IN_USE == err ? EBUSY : EIO;
365 }
366
367 void
368 umidi_close(void *addr)
369 {
370 struct umidi_mididev *mididev = addr;
371
372 /* XXX SMP */
373 mididev->closing = 1;
374
375 KERNEL_LOCK(1, curlwp);
376 mutex_spin_exit(&mididev->sc->sc_lock);
377
378 if ((mididev->flags & FWRITE) && mididev->out_jack)
379 close_out_jack(mididev->out_jack);
380 if ((mididev->flags & FREAD) && mididev->in_jack)
381 close_in_jack(mididev->in_jack);
382
383 /* XXX SMP */
384 mutex_spin_enter(&mididev->sc->sc_lock);
385 KERNEL_UNLOCK_ONE(curlwp);
386
387 mididev->opened = 0;
388 }
389
390 int
391 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
392 int len)
393 {
394 struct umidi_mididev *mididev = addr;
395
396 if (!mididev->out_jack || !mididev->opened || mididev->closing)
397 return EIO;
398
399 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
400 }
401
402 int
403 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
404 {
405 struct umidi_mididev *mididev = addr;
406 int cin;
407
408 if (!mididev->out_jack || !mididev->opened || mididev->closing)
409 return EIO;
410
411 switch ( len ) {
412 case 1: cin = 5; break;
413 case 2: cin = 2; break;
414 case 3: cin = 3; break;
415 default: return EIO; /* or gcc warns of cin uninitialized */
416 }
417
418 return out_jack_output(mididev->out_jack, msg, len, cin);
419 }
420
421 int
422 umidi_sysex(void *addr, u_char *msg, int len)
423 {
424 struct umidi_mididev *mididev = addr;
425 int cin;
426
427 if (!mididev->out_jack || !mididev->opened || mididev->closing)
428 return EIO;
429
430 switch ( len ) {
431 case 1: cin = 5; break;
432 case 2: cin = 6; break;
433 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
434 default: return EIO; /* or gcc warns of cin uninitialized */
435 }
436
437 return out_jack_output(mididev->out_jack, msg, len, cin);
438 }
439
440 int
441 umidi_rtmsg(void *addr, int d)
442 {
443 struct umidi_mididev *mididev = addr;
444 u_char msg = d;
445
446 if (!mididev->out_jack || !mididev->opened || mididev->closing)
447 return EIO;
448
449 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
450 }
451
452 void
453 umidi_getinfo(void *addr, struct midi_info *mi)
454 {
455 struct umidi_mididev *mididev = addr;
456 struct umidi_softc *sc = mididev->sc;
457 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
458
459 mi->name = mididev->label;
460 mi->props = MIDI_PROP_OUT_INTR;
461 if (mididev->in_jack)
462 mi->props |= MIDI_PROP_CAN_INPUT;
463 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
464 }
465
466 static void
467 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
468 {
469 struct umidi_mididev *mididev = addr;
470 struct umidi_softc *sc = mididev->sc;
471
472 *intr = NULL;
473 *thread = &sc->sc_lock;
474 }
475
476 /*
477 * each endpoint stuffs
478 */
479
480 /* alloc/free pipe */
481 static usbd_status
482 alloc_pipe(struct umidi_endpoint *ep)
483 {
484 struct umidi_softc *sc = ep->sc;
485 usbd_status err;
486 usb_endpoint_descriptor_t *epd;
487
488 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
489 /*
490 * For output, an improvement would be to have a buffer bigger than
491 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
492 * allow out_solicit to fill the buffer to the full packet size in
493 * all cases. But to use usbd_alloc_buffer to get a slightly larger
494 * buffer would not be a good way to do that, because if the addition
495 * would make the buffer exceed USB_MEM_SMALL then a substantially
496 * larger block may be wastefully allocated. Some flavor of double
497 * buffering could serve the same purpose, but would increase the
498 * code complexity, so for now I will live with the current slight
499 * penalty of reducing max transfer size by (num_open-num_scheduled)
500 * packet slots.
501 */
502 ep->buffer_size = UGETW(epd->wMaxPacketSize);
503 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
504
505 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
506 device_xname(sc->sc_dev), ep, ep->buffer_size));
507 ep->num_scheduled = 0;
508 ep->this_schedule = 0;
509 ep->next_schedule = 0;
510 ep->soliciting = 0;
511 ep->armed = 0;
512 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
513 if (ep->xfer == NULL) {
514 err = USBD_NOMEM;
515 goto quit;
516 }
517 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
518 if (ep->buffer == NULL) {
519 usbd_free_xfer(ep->xfer);
520 err = USBD_NOMEM;
521 goto quit;
522 }
523 ep->next_slot = ep->buffer;
524 err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
525 if (err)
526 usbd_free_xfer(ep->xfer);
527 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK, out_solicit, ep);
528 quit:
529 return err;
530 }
531
532 static void
533 free_pipe(struct umidi_endpoint *ep)
534 {
535 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
536 usbd_abort_pipe(ep->pipe);
537 usbd_close_pipe(ep->pipe);
538 usbd_free_xfer(ep->xfer);
539 softint_disestablish(ep->solicit_cookie);
540 }
541
542
543 /* alloc/free the array of endpoint structures */
544
545 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
546 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
547 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
548
549 static usbd_status
550 alloc_all_endpoints(struct umidi_softc *sc)
551 {
552 usbd_status err;
553 struct umidi_endpoint *ep;
554 int i;
555
556 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
557 err = alloc_all_endpoints_fixed_ep(sc);
558 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
559 err = alloc_all_endpoints_yamaha(sc);
560 } else {
561 err = alloc_all_endpoints_genuine(sc);
562 }
563 if (err != USBD_NORMAL_COMPLETION)
564 return err;
565
566 ep = sc->sc_endpoints;
567 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
568 err = alloc_pipe(ep++);
569 if (err != USBD_NORMAL_COMPLETION) {
570 for (; ep != sc->sc_endpoints; ep--)
571 free_pipe(ep-1);
572 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
573 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
574 break;
575 }
576 }
577 return err;
578 }
579
580 static void
581 free_all_endpoints(struct umidi_softc *sc)
582 {
583 int i;
584
585 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
586 free_pipe(&sc->sc_endpoints[i]);
587 if (sc->sc_endpoints != NULL)
588 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
589 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
590 }
591
592 static usbd_status
593 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
594 {
595 usbd_status err;
596 const struct umq_fixed_ep_desc *fp;
597 struct umidi_endpoint *ep;
598 usb_endpoint_descriptor_t *epd;
599 int i;
600
601 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
602 UMQ_TYPE_FIXED_EP);
603 sc->sc_out_num_jacks = 0;
604 sc->sc_in_num_jacks = 0;
605 sc->sc_out_num_endpoints = fp->num_out_ep;
606 sc->sc_in_num_endpoints = fp->num_in_ep;
607 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
608 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
609 if (!sc->sc_endpoints)
610 return USBD_NOMEM;
611
612 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
613 sc->sc_in_ep =
614 sc->sc_in_num_endpoints ?
615 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
616
617 ep = &sc->sc_out_ep[0];
618 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
619 epd = usbd_interface2endpoint_descriptor(
620 sc->sc_iface,
621 fp->out_ep[i].ep);
622 if (!epd) {
623 aprint_error_dev(sc->sc_dev,
624 "cannot get endpoint descriptor(out:%d)\n",
625 fp->out_ep[i].ep);
626 err = USBD_INVAL;
627 goto error;
628 }
629 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
630 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
631 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
632 fp->out_ep[i].ep);
633 err = USBD_INVAL;
634 goto error;
635 }
636 ep->sc = sc;
637 ep->addr = epd->bEndpointAddress;
638 ep->num_jacks = fp->out_ep[i].num_jacks;
639 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
640 ep->num_open = 0;
641 ep++;
642 }
643 ep = &sc->sc_in_ep[0];
644 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
645 epd = usbd_interface2endpoint_descriptor(
646 sc->sc_iface,
647 fp->in_ep[i].ep);
648 if (!epd) {
649 aprint_error_dev(sc->sc_dev,
650 "cannot get endpoint descriptor(in:%d)\n",
651 fp->in_ep[i].ep);
652 err = USBD_INVAL;
653 goto error;
654 }
655 /*
656 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
657 * endpoint. The existing input logic in this driver seems
658 * to work successfully if we just stop treating an interrupt
659 * endpoint as illegal (or the in_progress status we get on
660 * the initial transfer). It does not seem necessary to
661 * actually use the interrupt flavor of alloc_pipe or make
662 * other serious rearrangements of logic. I like that.
663 */
664 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
665 case UE_BULK:
666 case UE_INTERRUPT:
667 if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
668 break;
669 /*FALLTHROUGH*/
670 default:
671 aprint_error_dev(sc->sc_dev,
672 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
673 err = USBD_INVAL;
674 goto error;
675 }
676
677 ep->sc = sc;
678 ep->addr = epd->bEndpointAddress;
679 ep->num_jacks = fp->in_ep[i].num_jacks;
680 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
681 ep->num_open = 0;
682 ep++;
683 }
684
685 return USBD_NORMAL_COMPLETION;
686 error:
687 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
688 sc->sc_endpoints = NULL;
689 return err;
690 }
691
692 static usbd_status
693 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
694 {
695 /* This driver currently supports max 1in/1out bulk endpoints */
696 usb_descriptor_t *desc;
697 umidi_cs_descriptor_t *udesc;
698 usb_endpoint_descriptor_t *epd;
699 int out_addr, in_addr, i;
700 int dir;
701 size_t remain, descsize;
702
703 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
704 out_addr = in_addr = 0;
705
706 /* detect endpoints */
707 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
708 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
709 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
710 KASSERT(epd != NULL);
711 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
712 dir = UE_GET_DIR(epd->bEndpointAddress);
713 if (dir==UE_DIR_OUT && !out_addr)
714 out_addr = epd->bEndpointAddress;
715 else if (dir==UE_DIR_IN && !in_addr)
716 in_addr = epd->bEndpointAddress;
717 }
718 }
719 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
720
721 /* count jacks */
722 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
723 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
724 return USBD_INVAL;
725 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
726 (size_t)udesc->bLength;
727 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
728
729 while (remain >= sizeof(usb_descriptor_t)) {
730 descsize = udesc->bLength;
731 if (descsize>remain || descsize==0)
732 break;
733 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
734 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
735 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
736 sc->sc_out_num_jacks++;
737 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
738 sc->sc_in_num_jacks++;
739 }
740 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
741 remain -= descsize;
742 }
743
744 /* validate some parameters */
745 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
746 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
747 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
748 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
749 if (sc->sc_out_num_jacks && out_addr) {
750 sc->sc_out_num_endpoints = 1;
751 } else {
752 sc->sc_out_num_endpoints = 0;
753 sc->sc_out_num_jacks = 0;
754 }
755 if (sc->sc_in_num_jacks && in_addr) {
756 sc->sc_in_num_endpoints = 1;
757 } else {
758 sc->sc_in_num_endpoints = 0;
759 sc->sc_in_num_jacks = 0;
760 }
761 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
762 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
763 if (!sc->sc_endpoints)
764 return USBD_NOMEM;
765 if (sc->sc_out_num_endpoints) {
766 sc->sc_out_ep = sc->sc_endpoints;
767 sc->sc_out_ep->sc = sc;
768 sc->sc_out_ep->addr = out_addr;
769 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
770 sc->sc_out_ep->num_open = 0;
771 } else
772 sc->sc_out_ep = NULL;
773
774 if (sc->sc_in_num_endpoints) {
775 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
776 sc->sc_in_ep->sc = sc;
777 sc->sc_in_ep->addr = in_addr;
778 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
779 sc->sc_in_ep->num_open = 0;
780 } else
781 sc->sc_in_ep = NULL;
782
783 return USBD_NORMAL_COMPLETION;
784 }
785
786 static usbd_status
787 alloc_all_endpoints_genuine(struct umidi_softc *sc)
788 {
789 usb_interface_descriptor_t *interface_desc;
790 usb_config_descriptor_t *config_desc;
791 usb_descriptor_t *desc;
792 int num_ep;
793 size_t remain, descsize;
794 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
795 int epaddr;
796
797 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
798 num_ep = interface_desc->bNumEndpoints;
799 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
800 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
801 if (!p)
802 return USBD_NOMEM;
803
804 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
805 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
806 epaddr = -1;
807
808 /* get the list of endpoints for midi stream */
809 config_desc = usbd_get_config_descriptor(sc->sc_udev);
810 desc = (usb_descriptor_t *) config_desc;
811 remain = (size_t)UGETW(config_desc->wTotalLength);
812 while (remain>=sizeof(usb_descriptor_t)) {
813 descsize = desc->bLength;
814 if (descsize>remain || descsize==0)
815 break;
816 if (desc->bDescriptorType==UDESC_ENDPOINT &&
817 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
818 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
819 epaddr = TO_EPD(desc)->bEndpointAddress;
820 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
821 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
822 epaddr!=-1) {
823 if (num_ep>0) {
824 num_ep--;
825 p->sc = sc;
826 p->addr = epaddr;
827 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
828 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
829 sc->sc_out_num_endpoints++;
830 sc->sc_out_num_jacks += p->num_jacks;
831 } else {
832 sc->sc_in_num_endpoints++;
833 sc->sc_in_num_jacks += p->num_jacks;
834 }
835 p++;
836 }
837 } else
838 epaddr = -1;
839 desc = NEXT_D(desc);
840 remain-=descsize;
841 }
842
843 /* sort endpoints */
844 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
845 p = sc->sc_endpoints;
846 endep = p + num_ep;
847 while (p<endep) {
848 lowest = p;
849 for (q=p+1; q<endep; q++) {
850 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
851 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
852 ((UE_GET_DIR(lowest->addr)==
853 UE_GET_DIR(q->addr)) &&
854 (UE_GET_ADDR(lowest->addr)>
855 UE_GET_ADDR(q->addr))))
856 lowest = q;
857 }
858 if (lowest != p) {
859 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
860 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
861 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
862 }
863 p->num_open = 0;
864 p++;
865 }
866
867 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
868 sc->sc_in_ep =
869 sc->sc_in_num_endpoints ?
870 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
871
872 return USBD_NORMAL_COMPLETION;
873 }
874
875
876 /*
877 * jack stuffs
878 */
879
880 static usbd_status
881 alloc_all_jacks(struct umidi_softc *sc)
882 {
883 int i, j;
884 struct umidi_endpoint *ep;
885 struct umidi_jack *jack;
886 const unsigned char *cn_spec;
887
888 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
889 sc->cblnums_global = 0;
890 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
891 sc->cblnums_global = 1;
892 else {
893 /*
894 * I don't think this default is correct, but it preserves
895 * the prior behavior of the code. That's why I defined two
896 * complementary quirks. Any device for which the default
897 * behavior is wrong can be made to work by giving it an
898 * explicit quirk, and if a pattern ever develops (as I suspect
899 * it will) that a lot of otherwise standard USB MIDI devices
900 * need the CN_SEQ_PER_EP "quirk," then this default can be
901 * changed to 0, and the only devices that will break are those
902 * listing neither quirk, and they'll easily be fixed by giving
903 * them the CN_SEQ_GLOBAL quirk.
904 */
905 sc->cblnums_global = 1;
906 }
907
908 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
909 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
910 UMQ_TYPE_CN_FIXED);
911 else
912 cn_spec = NULL;
913
914 /* allocate/initialize structures */
915 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
916 sc->sc_out_num_jacks), KM_SLEEP);
917 if (!sc->sc_jacks)
918 return USBD_NOMEM;
919 sc->sc_out_jacks =
920 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
921 sc->sc_in_jacks =
922 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
923
924 jack = &sc->sc_out_jacks[0];
925 for (i = 0; i < sc->sc_out_num_jacks; i++) {
926 jack->opened = 0;
927 jack->binded = 0;
928 jack->arg = NULL;
929 jack->u.out.intr = NULL;
930 jack->midiman_ppkt = NULL;
931 if (sc->cblnums_global)
932 jack->cable_number = i;
933 jack++;
934 }
935 jack = &sc->sc_in_jacks[0];
936 for (i = 0; i < sc->sc_in_num_jacks; i++) {
937 jack->opened = 0;
938 jack->binded = 0;
939 jack->arg = NULL;
940 jack->u.in.intr = NULL;
941 if (sc->cblnums_global)
942 jack->cable_number = i;
943 jack++;
944 }
945
946 /* assign each jacks to each endpoints */
947 jack = &sc->sc_out_jacks[0];
948 ep = &sc->sc_out_ep[0];
949 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
950 for (j = 0; j < ep->num_jacks; j++) {
951 jack->endpoint = ep;
952 if (cn_spec != NULL)
953 jack->cable_number = *cn_spec++;
954 else if (!sc->cblnums_global)
955 jack->cable_number = j;
956 ep->jacks[jack->cable_number] = jack;
957 jack++;
958 }
959 ep++;
960 }
961 jack = &sc->sc_in_jacks[0];
962 ep = &sc->sc_in_ep[0];
963 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
964 for (j = 0; j < ep->num_jacks; j++) {
965 jack->endpoint = ep;
966 if (cn_spec != NULL)
967 jack->cable_number = *cn_spec++;
968 else if (!sc->cblnums_global)
969 jack->cable_number = j;
970 ep->jacks[jack->cable_number] = jack;
971 jack++;
972 }
973 ep++;
974 }
975
976 return USBD_NORMAL_COMPLETION;
977 }
978
979 static void
980 free_all_jacks(struct umidi_softc *sc)
981 {
982 struct umidi_jack *jacks;
983 size_t len;
984
985 mutex_enter(&sc->sc_lock);
986 jacks = sc->sc_jacks;
987 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
988 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
989 mutex_exit(&sc->sc_lock);
990
991 if (jacks)
992 kmem_free(jacks, len);
993 }
994
995 static usbd_status
996 bind_jacks_to_mididev(struct umidi_softc *sc,
997 struct umidi_jack *out_jack,
998 struct umidi_jack *in_jack,
999 struct umidi_mididev *mididev)
1000 {
1001 if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
1002 return USBD_IN_USE;
1003 if (mididev->out_jack || mididev->in_jack)
1004 return USBD_IN_USE;
1005
1006 if (out_jack)
1007 out_jack->binded = 1;
1008 if (in_jack)
1009 in_jack->binded = 1;
1010 mididev->in_jack = in_jack;
1011 mididev->out_jack = out_jack;
1012
1013 return USBD_NORMAL_COMPLETION;
1014 }
1015
1016 static void
1017 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1018 {
1019
1020 if ((mididev->flags & FWRITE) && mididev->out_jack)
1021 close_out_jack(mididev->out_jack);
1022 if ((mididev->flags & FREAD) && mididev->in_jack)
1023 close_in_jack(mididev->in_jack);
1024
1025 if (mididev->out_jack)
1026 mididev->out_jack->binded = 0;
1027 if (mididev->in_jack)
1028 mididev->in_jack->binded = 0;
1029 mididev->out_jack = mididev->in_jack = NULL;
1030 }
1031
1032 static void
1033 unbind_all_jacks(struct umidi_softc *sc)
1034 {
1035 int i;
1036
1037 if (sc->sc_mididevs)
1038 for (i = 0; i < sc->sc_num_mididevs; i++)
1039 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1040 }
1041
1042 static usbd_status
1043 assign_all_jacks_automatically(struct umidi_softc *sc)
1044 {
1045 usbd_status err;
1046 int i;
1047 struct umidi_jack *out, *in;
1048 const signed char *asg_spec;
1049
1050 err =
1051 alloc_all_mididevs(sc,
1052 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1053 if (err!=USBD_NORMAL_COMPLETION)
1054 return err;
1055
1056 if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1057 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1058 UMQ_TYPE_MD_FIXED);
1059 else
1060 asg_spec = NULL;
1061
1062 for (i = 0; i < sc->sc_num_mididevs; i++) {
1063 if (asg_spec != NULL) {
1064 if (*asg_spec == -1)
1065 out = NULL;
1066 else
1067 out = &sc->sc_out_jacks[*asg_spec];
1068 ++ asg_spec;
1069 if (*asg_spec == -1)
1070 in = NULL;
1071 else
1072 in = &sc->sc_in_jacks[*asg_spec];
1073 ++ asg_spec;
1074 } else {
1075 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1076 : NULL;
1077 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1078 : NULL;
1079 }
1080 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1081 if (err!=USBD_NORMAL_COMPLETION) {
1082 free_all_mididevs(sc);
1083 return err;
1084 }
1085 }
1086
1087 return USBD_NORMAL_COMPLETION;
1088 }
1089
1090 static usbd_status
1091 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1092 {
1093 struct umidi_endpoint *ep = jack->endpoint;
1094 struct umidi_softc *sc = ep->sc;
1095 umidi_packet_bufp end;
1096 int err;
1097
1098 KASSERT(mutex_owned(&sc->sc_lock));
1099
1100 if (jack->opened)
1101 return USBD_IN_USE;
1102
1103 jack->arg = arg;
1104 jack->u.out.intr = intr;
1105 jack->midiman_ppkt = NULL;
1106 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1107 jack->opened = 1;
1108 ep->num_open++;
1109 /*
1110 * out_solicit maintains an invariant that there will always be
1111 * (num_open - num_scheduled) slots free in the buffer. as we have
1112 * just incremented num_open, the buffer may be too full to satisfy
1113 * the invariant until a transfer completes, for which we must wait.
1114 */
1115 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1116 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1117 mstohz(10));
1118 if (err) {
1119 ep->num_open--;
1120 jack->opened = 0;
1121 return USBD_IOERROR;
1122 }
1123 }
1124
1125 return USBD_NORMAL_COMPLETION;
1126 }
1127
1128 static usbd_status
1129 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1130 {
1131 usbd_status err = USBD_NORMAL_COMPLETION;
1132 struct umidi_endpoint *ep = jack->endpoint;
1133
1134 KASSERT(mutex_owned(&ep->sc->sc_lock));
1135
1136 if (jack->opened)
1137 return USBD_IN_USE;
1138
1139 jack->arg = arg;
1140 jack->u.in.intr = intr;
1141 jack->opened = 1;
1142 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1143 KERNEL_LOCK(1, curlwp);
1144 err = start_input_transfer(ep);
1145 KERNEL_UNLOCK_ONE(curlwp);
1146 if (err != USBD_NORMAL_COMPLETION &&
1147 err != USBD_IN_PROGRESS) {
1148 ep->num_open--;
1149 }
1150 }
1151
1152 return err;
1153 }
1154
1155 static void
1156 close_out_jack(struct umidi_jack *jack)
1157 {
1158 struct umidi_endpoint *ep;
1159 struct umidi_softc *sc;
1160 u_int16_t mask;
1161 int err;
1162
1163 if (jack->opened) {
1164 ep = jack->endpoint;
1165 sc = ep->sc;
1166 mutex_spin_enter(&sc->sc_lock);
1167 mask = 1 << (jack->cable_number);
1168 while (mask & (ep->this_schedule | ep->next_schedule)) {
1169 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1170 mstohz(10));
1171 if (err)
1172 break;
1173 }
1174 /*
1175 * We can re-enter this function from both close() and
1176 * detach(). Make sure only one of them does this part.
1177 */
1178 if (jack->opened) {
1179 jack->opened = 0;
1180 jack->endpoint->num_open--;
1181 ep->this_schedule &= ~mask;
1182 ep->next_schedule &= ~mask;
1183 }
1184 mutex_spin_exit(&sc->sc_lock);
1185 }
1186 }
1187
1188 static void
1189 close_in_jack(struct umidi_jack *jack)
1190 {
1191 if (jack->opened) {
1192 jack->opened = 0;
1193 if (--jack->endpoint->num_open == 0) {
1194 usbd_abort_pipe(jack->endpoint->pipe);
1195 }
1196 }
1197 }
1198
1199 static usbd_status
1200 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1201 {
1202 if (mididev->sc)
1203 return USBD_IN_USE;
1204
1205 mididev->sc = sc;
1206
1207 describe_mididev(mididev);
1208
1209 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1210
1211 return USBD_NORMAL_COMPLETION;
1212 }
1213
1214 static usbd_status
1215 detach_mididev(struct umidi_mididev *mididev, int flags)
1216 {
1217 if (!mididev->sc)
1218 return USBD_NO_ADDR;
1219
1220 if (mididev->opened) {
1221 umidi_close(mididev);
1222 }
1223 unbind_jacks_from_mididev(mididev);
1224
1225 if (mididev->mdev != NULL)
1226 config_detach(mididev->mdev, flags);
1227
1228 if (NULL != mididev->label) {
1229 kmem_free(mididev->label, mididev->label_len);
1230 mididev->label = NULL;
1231 }
1232
1233 mididev->sc = NULL;
1234
1235 return USBD_NORMAL_COMPLETION;
1236 }
1237
1238 static void
1239 deactivate_mididev(struct umidi_mididev *mididev)
1240 {
1241 if (mididev->out_jack)
1242 mididev->out_jack->binded = 0;
1243 if (mididev->in_jack)
1244 mididev->in_jack->binded = 0;
1245 }
1246
1247 static usbd_status
1248 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1249 {
1250 sc->sc_num_mididevs = nmidi;
1251 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1252 if (!sc->sc_mididevs)
1253 return USBD_NOMEM;
1254
1255 return USBD_NORMAL_COMPLETION;
1256 }
1257
1258 static void
1259 free_all_mididevs(struct umidi_softc *sc)
1260 {
1261 if (sc->sc_mididevs)
1262 kmem_free(sc->sc_mididevs,
1263 sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
1264 sc->sc_num_mididevs = 0;
1265 }
1266
1267 static usbd_status
1268 attach_all_mididevs(struct umidi_softc *sc)
1269 {
1270 usbd_status err;
1271 int i;
1272
1273 if (sc->sc_mididevs)
1274 for (i = 0; i < sc->sc_num_mididevs; i++) {
1275 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1276 if (err != USBD_NORMAL_COMPLETION)
1277 return err;
1278 }
1279
1280 return USBD_NORMAL_COMPLETION;
1281 }
1282
1283 static usbd_status
1284 detach_all_mididevs(struct umidi_softc *sc, int flags)
1285 {
1286 usbd_status err;
1287 int i;
1288
1289 if (sc->sc_mididevs)
1290 for (i = 0; i < sc->sc_num_mididevs; i++) {
1291 err = detach_mididev(&sc->sc_mididevs[i], flags);
1292 if (err != USBD_NORMAL_COMPLETION)
1293 return err;
1294 }
1295
1296 return USBD_NORMAL_COMPLETION;
1297 }
1298
1299 static void
1300 deactivate_all_mididevs(struct umidi_softc *sc)
1301 {
1302 int i;
1303
1304 if (sc->sc_mididevs) {
1305 for (i = 0; i < sc->sc_num_mididevs; i++)
1306 deactivate_mididev(&sc->sc_mididevs[i]);
1307 }
1308 }
1309
1310 /*
1311 * TODO: the 0-based cable numbers will often not match the labeling of the
1312 * equipment. Ideally:
1313 * For class-compliant devices: get the iJack string from the jack descriptor.
1314 * Otherwise:
1315 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1316 * number for display)
1317 * - support an array quirk explictly giving a char * for each jack.
1318 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1319 * the CNs are not globally unique, each is shown with its associated endpoint
1320 * address in hex also. That should not be necessary when using iJack values
1321 * or a quirk array.
1322 */
1323 void
1324 describe_mididev(struct umidi_mididev *md)
1325 {
1326 char in_label[16];
1327 char out_label[16];
1328 const char *unit_label;
1329 char *final_label;
1330 struct umidi_softc *sc;
1331 int show_ep_in;
1332 int show_ep_out;
1333 size_t len;
1334
1335 sc = md->sc;
1336 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1337 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1338
1339 if ( NULL == md->in_jack )
1340 in_label[0] = '\0';
1341 else if ( show_ep_in )
1342 snprintf(in_label, sizeof in_label, "<%d(%x) ",
1343 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1344 else
1345 snprintf(in_label, sizeof in_label, "<%d ",
1346 md->in_jack->cable_number);
1347
1348 if ( NULL == md->out_jack )
1349 out_label[0] = '\0';
1350 else if ( show_ep_out )
1351 snprintf(out_label, sizeof out_label, ">%d(%x) ",
1352 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1353 else
1354 snprintf(out_label, sizeof out_label, ">%d ",
1355 md->out_jack->cable_number);
1356
1357 unit_label = device_xname(sc->sc_dev);
1358
1359 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1360
1361 final_label = kmem_alloc(len, KM_SLEEP);
1362
1363 snprintf(final_label, len, "%s%son %s",
1364 in_label, out_label, unit_label);
1365
1366 md->label = final_label;
1367 md->label_len = len;
1368 }
1369
1370 #ifdef UMIDI_DEBUG
1371 static void
1372 dump_sc(struct umidi_softc *sc)
1373 {
1374 int i;
1375
1376 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1377 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1378 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1379 dump_ep(&sc->sc_out_ep[i]);
1380 }
1381 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1382 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1383 dump_ep(&sc->sc_in_ep[i]);
1384 }
1385 }
1386
1387 static void
1388 dump_ep(struct umidi_endpoint *ep)
1389 {
1390 int i;
1391 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1392 if (NULL==ep->jacks[i])
1393 continue;
1394 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1395 dump_jack(ep->jacks[i]);
1396 }
1397 }
1398 static void
1399 dump_jack(struct umidi_jack *jack)
1400 {
1401 DPRINTFN(10, ("\t\t\tep=%p\n",
1402 jack->endpoint));
1403 }
1404
1405 #endif /* UMIDI_DEBUG */
1406
1407
1408
1409 /*
1410 * MUX MIDI PACKET
1411 */
1412
1413 static const int packet_length[16] = {
1414 /*0*/ -1,
1415 /*1*/ -1,
1416 /*2*/ 2,
1417 /*3*/ 3,
1418 /*4*/ 3,
1419 /*5*/ 1,
1420 /*6*/ 2,
1421 /*7*/ 3,
1422 /*8*/ 3,
1423 /*9*/ 3,
1424 /*A*/ 3,
1425 /*B*/ 3,
1426 /*C*/ 2,
1427 /*D*/ 2,
1428 /*E*/ 3,
1429 /*F*/ 1,
1430 };
1431
1432 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1433 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1434 #define MIX_CN_CIN(cn, cin) \
1435 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1436 ((unsigned char)(cin)&0x0F)))
1437
1438 static usbd_status
1439 start_input_transfer(struct umidi_endpoint *ep)
1440 {
1441 usbd_setup_xfer(ep->xfer, ep->pipe,
1442 (usbd_private_handle)ep,
1443 ep->buffer, ep->buffer_size,
1444 USBD_SHORT_XFER_OK | USBD_NO_COPY,
1445 USBD_NO_TIMEOUT, in_intr);
1446 return usbd_transfer(ep->xfer);
1447 }
1448
1449 static usbd_status
1450 start_output_transfer(struct umidi_endpoint *ep)
1451 {
1452 usbd_status rv;
1453 u_int32_t length;
1454 int i;
1455
1456 length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1457 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1458 ep->buffer, ep->next_slot, length));
1459 KERNEL_LOCK(1, curlwp);
1460 usbd_setup_xfer(ep->xfer, ep->pipe,
1461 (usbd_private_handle)ep,
1462 ep->buffer, length,
1463 USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1464 rv = usbd_transfer(ep->xfer);
1465 KERNEL_UNLOCK_ONE(curlwp);
1466
1467 /*
1468 * Once the transfer is scheduled, no more adding to partial
1469 * packets within it.
1470 */
1471 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1472 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1473 if (NULL != ep->jacks[i])
1474 ep->jacks[i]->midiman_ppkt = NULL;
1475 }
1476
1477 return rv;
1478 }
1479
1480 #ifdef UMIDI_DEBUG
1481 #define DPR_PACKET(dir, sc, p) \
1482 if ((unsigned char)(p)[1]!=0xFE) \
1483 DPRINTFN(500, \
1484 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1485 device_xname(sc->sc_dev), \
1486 (unsigned char)(p)[0], \
1487 (unsigned char)(p)[1], \
1488 (unsigned char)(p)[2], \
1489 (unsigned char)(p)[3]));
1490 #else
1491 #define DPR_PACKET(dir, sc, p)
1492 #endif
1493
1494 /*
1495 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1496 * with the cable number and length in the last byte instead of the first,
1497 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1498 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1499 * with a cable nybble and a length nybble (which, unlike the CIN of a
1500 * real USB MIDI packet, has no semantics at all besides the length).
1501 * A packet received from a Midiman may contain part of a MIDI message,
1502 * more than one MIDI message, or parts of more than one MIDI message. A
1503 * three-byte MIDI message may arrive in three packets of data length 1, and
1504 * running status may be used. Happily, the midi(4) driver above us will put
1505 * it all back together, so the only cost is in USB bandwidth. The device
1506 * has an easier time with what it receives from us: we'll pack messages in
1507 * and across packets, but filling the packets whenever possible and,
1508 * as midi(4) hands us a complete message at a time, we'll never send one
1509 * in a dribble of short packets.
1510 */
1511
1512 static int
1513 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1514 {
1515 struct umidi_endpoint *ep = out_jack->endpoint;
1516 struct umidi_softc *sc = ep->sc;
1517 unsigned char *packet;
1518 int plen;
1519 int poff;
1520
1521 if (sc->sc_dying)
1522 return EIO;
1523
1524 if (!out_jack->opened)
1525 return ENODEV; /* XXX as it was, is this the right errno? */
1526
1527 #ifdef UMIDI_DEBUG
1528 if ( umididebug >= 100 )
1529 microtime(&umidi_tv);
1530 #endif
1531 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1532 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1533 ep, out_jack->cable_number, len, cin));
1534
1535 packet = *ep->next_slot++;
1536 KASSERT(ep->buffer_size >=
1537 (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1538 memset(packet, 0, UMIDI_PACKET_SIZE);
1539 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1540 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1541 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1542 plen = 3 - poff;
1543 if (plen > len)
1544 plen = len;
1545 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1546 src += plen;
1547 len -= plen;
1548 plen += poff;
1549 out_jack->midiman_ppkt[3] =
1550 MIX_CN_CIN(out_jack->cable_number, plen);
1551 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1552 if (3 == plen)
1553 out_jack->midiman_ppkt = NULL; /* no more */
1554 }
1555 if (0 == len)
1556 ep->next_slot--; /* won't be needed, nevermind */
1557 else {
1558 memcpy(packet, src, len);
1559 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1560 DPR_PACKET(out, sc, packet);
1561 if (len < 3)
1562 out_jack->midiman_ppkt = packet;
1563 }
1564 } else { /* the nice simple USB class-compliant case */
1565 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1566 memcpy(packet+1, src, len);
1567 DPR_PACKET(out, sc, packet);
1568 }
1569 ep->next_schedule |= 1<<(out_jack->cable_number);
1570 ++ ep->num_scheduled;
1571 if ( !ep->armed && !ep->soliciting ) {
1572 /*
1573 * It would be bad to call out_solicit directly here (the
1574 * caller need not be reentrant) but a soft interrupt allows
1575 * solicit to run immediately the caller exits its critical
1576 * section, and if the caller has more to write we can get it
1577 * before starting the USB transfer, and send a longer one.
1578 */
1579 ep->soliciting = 1;
1580 softint_schedule(ep->solicit_cookie);
1581 }
1582
1583 return 0;
1584 }
1585
1586 static void
1587 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1588 usbd_status status)
1589 {
1590 int cn, len, i;
1591 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1592 struct umidi_softc *sc = ep->sc;
1593 struct umidi_jack *jack;
1594 unsigned char *packet;
1595 umidi_packet_bufp slot;
1596 umidi_packet_bufp end;
1597 unsigned char *data;
1598 u_int32_t count;
1599
1600 if (ep->sc->sc_dying || !ep->num_open)
1601 return;
1602
1603 mutex_enter(&sc->sc_lock);
1604 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1605 if (0 == count % UMIDI_PACKET_SIZE) {
1606 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1607 device_xname(ep->sc->sc_dev), ep, count));
1608 } else {
1609 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1610 device_xname(ep->sc->sc_dev), ep, count));
1611 }
1612
1613 slot = ep->buffer;
1614 end = slot + count / sizeof *slot;
1615
1616 for (packet = *slot; slot < end; packet = *++slot) {
1617
1618 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1619 cn = (0xf0&(packet[3]))>>4;
1620 len = 0x0f&(packet[3]);
1621 data = packet;
1622 } else {
1623 cn = GET_CN(packet[0]);
1624 len = packet_length[GET_CIN(packet[0])];
1625 data = packet + 1;
1626 }
1627 /* 0 <= cn <= 15 by inspection of above code */
1628 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1629 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1630 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1631 device_xname(ep->sc->sc_dev), ep, cn, len,
1632 (unsigned)data[0],
1633 (unsigned)data[1],
1634 (unsigned)data[2]));
1635 mutex_exit(&sc->sc_lock);
1636 return;
1637 }
1638
1639 if (!jack->binded || !jack->opened)
1640 continue;
1641
1642 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1643 "%02X %02X %02X\n",
1644 device_xname(ep->sc->sc_dev), ep, cn, len,
1645 (unsigned)data[0],
1646 (unsigned)data[1],
1647 (unsigned)data[2]));
1648
1649 if (jack->u.in.intr) {
1650 for (i = 0; i < len; i++) {
1651 (*jack->u.in.intr)(jack->arg, data[i]);
1652 }
1653 }
1654
1655 }
1656
1657 (void)start_input_transfer(ep);
1658 mutex_exit(&sc->sc_lock);
1659 }
1660
1661 static void
1662 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1663 usbd_status status)
1664 {
1665 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1666 struct umidi_softc *sc = ep->sc;
1667 u_int32_t count;
1668
1669 if (sc->sc_dying)
1670 return;
1671
1672 mutex_enter(&sc->sc_lock);
1673 #ifdef UMIDI_DEBUG
1674 if ( umididebug >= 200 )
1675 microtime(&umidi_tv);
1676 #endif
1677 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1678 if ( 0 == count % UMIDI_PACKET_SIZE ) {
1679 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1680 device_xname(ep->sc->sc_dev),
1681 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1682 } else {
1683 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1684 device_xname(ep->sc->sc_dev), ep, count));
1685 }
1686 count /= UMIDI_PACKET_SIZE;
1687
1688 /*
1689 * If while the transfer was pending we buffered any new messages,
1690 * move them to the start of the buffer.
1691 */
1692 ep->next_slot -= count;
1693 if (ep->buffer < ep->next_slot) {
1694 memcpy(ep->buffer, ep->buffer + count,
1695 (char *)ep->next_slot - (char *)ep->buffer);
1696 }
1697 cv_broadcast(&sc->sc_cv);
1698 /*
1699 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1700 * Running at IPL_USB so the following should happen to be safe.
1701 */
1702 ep->armed = 0;
1703 if (!ep->soliciting) {
1704 ep->soliciting = 1;
1705 out_solicit_locked(ep);
1706 }
1707 mutex_exit(&sc->sc_lock);
1708 }
1709
1710 /*
1711 * A jack on which we have received a packet must be called back on its
1712 * out.intr handler before it will send us another; it is considered
1713 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1714 * we need no extra buffer space for it.
1715 *
1716 * In contrast, a jack that is open but not scheduled may supply us a packet
1717 * at any time, driven by the top half, and we must be able to accept it, no
1718 * excuses. So we must ensure that at any point in time there are at least
1719 * (num_open - num_scheduled) slots free.
1720 *
1721 * As long as there are more slots free than that minimum, we can loop calling
1722 * scheduled jacks back on their "interrupt" handlers, soliciting more
1723 * packets, starting the USB transfer only when the buffer space is down to
1724 * the minimum or no jack has any more to send.
1725 */
1726
1727 static void
1728 out_solicit_locked(void *arg)
1729 {
1730 struct umidi_endpoint *ep = arg;
1731 umidi_packet_bufp end;
1732 u_int16_t which;
1733 struct umidi_jack *jack;
1734
1735 KASSERT(mutex_owned(&ep->sc->sc_lock));
1736
1737 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1738
1739 for ( ;; ) {
1740 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1741 break; /* at IPL_USB */
1742 if (ep->this_schedule == 0) {
1743 if (ep->next_schedule == 0)
1744 break; /* at IPL_USB */
1745 ep->this_schedule = ep->next_schedule;
1746 ep->next_schedule = 0;
1747 }
1748 /*
1749 * At least one jack is scheduled. Find and mask off the least
1750 * set bit in this_schedule and decrement num_scheduled.
1751 * Convert mask to bit index to find the corresponding jack,
1752 * and call its intr handler. If it has a message, it will call
1753 * back one of the output methods, which will set its bit in
1754 * next_schedule (not copied into this_schedule until the
1755 * latter is empty). In this way we round-robin the jacks that
1756 * have messages to send, until the buffer is as full as we
1757 * dare, and then start a transfer.
1758 */
1759 which = ep->this_schedule;
1760 which &= (~which)+1; /* now mask of least set bit */
1761 ep->this_schedule &= ~which;
1762 --ep->num_scheduled;
1763
1764 --which; /* now 1s below mask - count 1s to get index */
1765 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1766 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1767 which = (((which >> 4) + which) & 0x0f0f);
1768 which += (which >> 8);
1769 which &= 0x1f; /* the bit index a/k/a jack number */
1770
1771 jack = ep->jacks[which];
1772 if (jack->u.out.intr)
1773 (*jack->u.out.intr)(jack->arg);
1774 }
1775 /* intr lock held at loop exit */
1776 if (!ep->armed && ep->next_slot > ep->buffer)
1777 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1778 ep->soliciting = 0;
1779 }
1780
1781 /* Entry point for the softintr. */
1782 static void
1783 out_solicit(void *arg)
1784 {
1785 struct umidi_endpoint *ep = arg;
1786 struct umidi_softc *sc = ep->sc;
1787
1788 mutex_enter(&sc->sc_lock);
1789 out_solicit_locked(arg);
1790 mutex_exit(&sc->sc_lock);
1791 }
1792