Home | History | Annotate | Line # | Download | only in usb
umidi.c revision 1.63.2.1
      1 /*	$NetBSD: umidi.c,v 1.63.2.1 2013/02/25 00:29:40 tls Exp $	*/
      2 /*
      3  * Copyright (c) 2001, 2012 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
      8  * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
      9  * (mrg (at) eterna.com.au).
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.63.2.1 2013/02/25 00:29:40 tls Exp $");
     35 
     36 #include <sys/types.h>
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/kernel.h>
     40 #include <sys/kmem.h>
     41 #include <sys/device.h>
     42 #include <sys/ioctl.h>
     43 #include <sys/conf.h>
     44 #include <sys/file.h>
     45 #include <sys/select.h>
     46 #include <sys/proc.h>
     47 #include <sys/vnode.h>
     48 #include <sys/poll.h>
     49 #include <sys/intr.h>
     50 
     51 #include <dev/usb/usb.h>
     52 #include <dev/usb/usbdi.h>
     53 #include <dev/usb/usbdi_util.h>
     54 
     55 #include <dev/auconv.h>
     56 #include <dev/usb/usbdevs.h>
     57 #include <dev/usb/uaudioreg.h>
     58 #include <dev/usb/umidireg.h>
     59 #include <dev/usb/umidivar.h>
     60 #include <dev/usb/umidi_quirks.h>
     61 
     62 #include <dev/midi_if.h>
     63 
     64 #ifdef UMIDI_DEBUG
     65 #define DPRINTF(x)	if (umididebug) printf x
     66 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
     67 #include <sys/time.h>
     68 static struct timeval umidi_tv;
     69 int	umididebug = 0;
     70 #else
     71 #define DPRINTF(x)
     72 #define DPRINTFN(n,x)
     73 #endif
     74 
     75 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
     76 				 (sc->sc_out_num_endpoints + \
     77 				  sc->sc_in_num_endpoints))
     78 
     79 
     80 static int umidi_open(void *, int,
     81 		      void (*)(void *, int), void (*)(void *), void *);
     82 static void umidi_close(void *);
     83 static int umidi_channelmsg(void *, int, int, u_char *, int);
     84 static int umidi_commonmsg(void *, int, u_char *, int);
     85 static int umidi_sysex(void *, u_char *, int);
     86 static int umidi_rtmsg(void *, int);
     87 static void umidi_getinfo(void *, struct midi_info *);
     88 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
     89 
     90 static usbd_status alloc_pipe(struct umidi_endpoint *);
     91 static void free_pipe(struct umidi_endpoint *);
     92 
     93 static usbd_status alloc_all_endpoints(struct umidi_softc *);
     94 static void free_all_endpoints(struct umidi_softc *);
     95 
     96 static usbd_status alloc_all_jacks(struct umidi_softc *);
     97 static void free_all_jacks(struct umidi_softc *);
     98 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
     99 					 struct umidi_jack *,
    100 					 struct umidi_jack *,
    101 					 struct umidi_mididev *);
    102 static void unbind_jacks_from_mididev(struct umidi_mididev *);
    103 static void unbind_all_jacks(struct umidi_softc *);
    104 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
    105 static usbd_status open_out_jack(struct umidi_jack *, void *,
    106 				 void (*)(void *));
    107 static usbd_status open_in_jack(struct umidi_jack *, void *,
    108 				void (*)(void *, int));
    109 static void close_out_jack(struct umidi_jack *);
    110 static void close_in_jack(struct umidi_jack *);
    111 
    112 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
    113 static usbd_status detach_mididev(struct umidi_mididev *, int);
    114 static void deactivate_mididev(struct umidi_mididev *);
    115 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
    116 static void free_all_mididevs(struct umidi_softc *);
    117 static usbd_status attach_all_mididevs(struct umidi_softc *);
    118 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
    119 static void deactivate_all_mididevs(struct umidi_softc *);
    120 static void describe_mididev(struct umidi_mididev *);
    121 
    122 #ifdef UMIDI_DEBUG
    123 static void dump_sc(struct umidi_softc *);
    124 static void dump_ep(struct umidi_endpoint *);
    125 static void dump_jack(struct umidi_jack *);
    126 #endif
    127 
    128 static usbd_status start_input_transfer(struct umidi_endpoint *);
    129 static usbd_status start_output_transfer(struct umidi_endpoint *);
    130 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
    131 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
    132 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
    133 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
    134 static void out_solicit_locked(void *); /* pre-locked version */
    135 
    136 
    137 const struct midi_hw_if umidi_hw_if = {
    138 	.open = umidi_open,
    139 	.close = umidi_close,
    140 	.output = umidi_rtmsg,
    141 	.getinfo = umidi_getinfo,
    142 	.get_locks = umidi_get_locks,
    143 };
    144 
    145 struct midi_hw_if_ext umidi_hw_if_ext = {
    146 	.channel = umidi_channelmsg,
    147 	.common  = umidi_commonmsg,
    148 	.sysex   = umidi_sysex,
    149 };
    150 
    151 struct midi_hw_if_ext umidi_hw_if_mm = {
    152 	.channel = umidi_channelmsg,
    153 	.common  = umidi_commonmsg,
    154 	.sysex   = umidi_sysex,
    155 	.compress = 1,
    156 };
    157 
    158 int umidi_match(device_t, cfdata_t, void *);
    159 void umidi_attach(device_t, device_t, void *);
    160 void umidi_childdet(device_t, device_t);
    161 int umidi_detach(device_t, int);
    162 int umidi_activate(device_t, enum devact);
    163 extern struct cfdriver umidi_cd;
    164 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
    165     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
    166 
    167 int
    168 umidi_match(device_t parent, cfdata_t match, void *aux)
    169 {
    170 	struct usbif_attach_arg *uaa = aux;
    171 
    172 	DPRINTFN(1,("umidi_match\n"));
    173 
    174 	if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
    175 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    176 
    177 	if (uaa->class == UICLASS_AUDIO &&
    178 	    uaa->subclass == UISUBCLASS_MIDISTREAM)
    179 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    180 
    181 	return UMATCH_NONE;
    182 }
    183 
    184 void
    185 umidi_attach(device_t parent, device_t self, void *aux)
    186 {
    187 	usbd_status     err;
    188 	struct umidi_softc *sc = device_private(self);
    189 	struct usbif_attach_arg *uaa = aux;
    190 	char *devinfop;
    191 
    192 	DPRINTFN(1,("umidi_attach\n"));
    193 
    194 	sc->sc_dev = self;
    195 
    196 	aprint_naive("\n");
    197 	aprint_normal("\n");
    198 
    199 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
    200 	aprint_normal_dev(self, "%s\n", devinfop);
    201 	usbd_devinfo_free(devinfop);
    202 
    203 	sc->sc_iface = uaa->iface;
    204 	sc->sc_udev = uaa->device;
    205 
    206 	sc->sc_quirk =
    207 	    umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
    208 	aprint_normal_dev(self, "");
    209 	umidi_print_quirk(sc->sc_quirk);
    210 
    211 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
    212 	cv_init(&sc->sc_cv, "umidopcl");
    213 
    214 	err = alloc_all_endpoints(sc);
    215 	if (err != USBD_NORMAL_COMPLETION) {
    216 		aprint_error_dev(self,
    217 		    "alloc_all_endpoints failed. (err=%d)\n", err);
    218 		goto error;
    219 	}
    220 	err = alloc_all_jacks(sc);
    221 	if (err != USBD_NORMAL_COMPLETION) {
    222 		free_all_endpoints(sc);
    223 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
    224 		    err);
    225 		goto error;
    226 	}
    227 	aprint_normal_dev(self, "out=%d, in=%d\n",
    228 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
    229 
    230 	err = assign_all_jacks_automatically(sc);
    231 	if (err != USBD_NORMAL_COMPLETION) {
    232 		unbind_all_jacks(sc);
    233 		free_all_jacks(sc);
    234 		free_all_endpoints(sc);
    235 		aprint_error_dev(self,
    236 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
    237 		goto error;
    238 	}
    239 	err = attach_all_mididevs(sc);
    240 	if (err != USBD_NORMAL_COMPLETION) {
    241 		free_all_jacks(sc);
    242 		free_all_endpoints(sc);
    243 		aprint_error_dev(self,
    244 		    "attach_all_mididevs failed. (err=%d)\n", err);
    245 	}
    246 
    247 #ifdef UMIDI_DEBUG
    248 	dump_sc(sc);
    249 #endif
    250 
    251 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
    252 			   sc->sc_udev, sc->sc_dev);
    253 
    254 	return;
    255 error:
    256 	aprint_error_dev(self, "disabled.\n");
    257 	sc->sc_dying = 1;
    258 	KERNEL_UNLOCK_ONE(curlwp);
    259 	return;
    260 }
    261 
    262 void
    263 umidi_childdet(device_t self, device_t child)
    264 {
    265 	int i;
    266 	struct umidi_softc *sc = device_private(self);
    267 
    268 	KASSERT(sc->sc_mididevs != NULL);
    269 
    270 	for (i = 0; i < sc->sc_num_mididevs; i++) {
    271 		if (sc->sc_mididevs[i].mdev == child)
    272 			break;
    273 	}
    274 	KASSERT(i < sc->sc_num_mididevs);
    275 	sc->sc_mididevs[i].mdev = NULL;
    276 }
    277 
    278 int
    279 umidi_activate(device_t self, enum devact act)
    280 {
    281 	struct umidi_softc *sc = device_private(self);
    282 
    283 	switch (act) {
    284 	case DVACT_DEACTIVATE:
    285 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
    286 		sc->sc_dying = 1;
    287 		deactivate_all_mididevs(sc);
    288 		return 0;
    289 	default:
    290 		DPRINTFN(1,("umidi_activate (%d)\n", act));
    291 		return EOPNOTSUPP;
    292 	}
    293 }
    294 
    295 int
    296 umidi_detach(device_t self, int flags)
    297 {
    298 	struct umidi_softc *sc = device_private(self);
    299 
    300 	DPRINTFN(1,("umidi_detach\n"));
    301 
    302 	sc->sc_dying = 1;
    303 	detach_all_mididevs(sc, flags);
    304 	free_all_mididevs(sc);
    305 	free_all_jacks(sc);
    306 	free_all_endpoints(sc);
    307 
    308 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
    309 			   sc->sc_dev);
    310 
    311 	mutex_destroy(&sc->sc_lock);
    312 	cv_destroy(&sc->sc_cv);
    313 
    314 	return 0;
    315 }
    316 
    317 
    318 /*
    319  * midi_if stuffs
    320  */
    321 int
    322 umidi_open(void *addr,
    323 	   int flags,
    324 	   void (*iintr)(void *, int),
    325 	   void (*ointr)(void *),
    326 	   void *arg)
    327 {
    328 	struct umidi_mididev *mididev = addr;
    329 	struct umidi_softc *sc = mididev->sc;
    330 	usbd_status err;
    331 
    332 	DPRINTF(("umidi_open: sc=%p\n", sc));
    333 
    334 	if (!sc)
    335 		return ENXIO;
    336 	if (mididev->opened)
    337 		return EBUSY;
    338 	if (sc->sc_dying)
    339 		return EIO;
    340 
    341 	mididev->opened = 1;
    342 	mididev->closing = 0;
    343 	mididev->flags = flags;
    344 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
    345 		err = open_out_jack(mididev->out_jack, arg, ointr);
    346 		if ( err != USBD_NORMAL_COMPLETION )
    347 			goto bad;
    348 	}
    349 	if ((mididev->flags & FREAD) && mididev->in_jack) {
    350 		err = open_in_jack(mididev->in_jack, arg, iintr);
    351 		if ( err != USBD_NORMAL_COMPLETION
    352 		&&   err != USBD_IN_PROGRESS )
    353 			goto bad;
    354 	}
    355 
    356 	return 0;
    357 bad:
    358 	mididev->opened = 0;
    359 	DPRINTF(("umidi_open: usbd_status %d\n", err));
    360 	return USBD_IN_USE == err ? EBUSY : EIO;
    361 }
    362 
    363 void
    364 umidi_close(void *addr)
    365 {
    366 	struct umidi_mididev *mididev = addr;
    367 
    368 	mididev->closing = 1;
    369 
    370 	mutex_spin_exit(&mididev->sc->sc_lock);
    371 
    372 	if ((mididev->flags & FWRITE) && mididev->out_jack)
    373 		close_out_jack(mididev->out_jack);
    374 	if ((mididev->flags & FREAD) && mididev->in_jack)
    375 		close_in_jack(mididev->in_jack);
    376 
    377 	mutex_spin_enter(&mididev->sc->sc_lock);
    378 
    379 	mididev->opened = 0;
    380 }
    381 
    382 int
    383 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
    384     int len)
    385 {
    386 	struct umidi_mididev *mididev = addr;
    387 
    388 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    389 		return EIO;
    390 
    391 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
    392 }
    393 
    394 int
    395 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
    396 {
    397 	struct umidi_mididev *mididev = addr;
    398 	int cin;
    399 
    400 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    401 		return EIO;
    402 
    403 	switch ( len ) {
    404 	case 1: cin = 5; break;
    405 	case 2: cin = 2; break;
    406 	case 3: cin = 3; break;
    407 	default: return EIO; /* or gcc warns of cin uninitialized */
    408 	}
    409 
    410 	return out_jack_output(mididev->out_jack, msg, len, cin);
    411 }
    412 
    413 int
    414 umidi_sysex(void *addr, u_char *msg, int len)
    415 {
    416 	struct umidi_mididev *mididev = addr;
    417 	int cin;
    418 
    419 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    420 		return EIO;
    421 
    422 	switch ( len ) {
    423 	case 1: cin = 5; break;
    424 	case 2: cin = 6; break;
    425 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
    426 	default: return EIO; /* or gcc warns of cin uninitialized */
    427 	}
    428 
    429 	return out_jack_output(mididev->out_jack, msg, len, cin);
    430 }
    431 
    432 int
    433 umidi_rtmsg(void *addr, int d)
    434 {
    435 	struct umidi_mididev *mididev = addr;
    436 	u_char msg = d;
    437 
    438 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    439 		return EIO;
    440 
    441 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
    442 }
    443 
    444 void
    445 umidi_getinfo(void *addr, struct midi_info *mi)
    446 {
    447 	struct umidi_mididev *mididev = addr;
    448 	struct umidi_softc *sc = mididev->sc;
    449 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
    450 
    451 	mi->name = mididev->label;
    452 	mi->props = MIDI_PROP_OUT_INTR;
    453 	if (mididev->in_jack)
    454 		mi->props |= MIDI_PROP_CAN_INPUT;
    455 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
    456 }
    457 
    458 static void
    459 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
    460 {
    461 	struct umidi_mididev *mididev = addr;
    462 	struct umidi_softc *sc = mididev->sc;
    463 
    464 	*intr = NULL;
    465 	*thread = &sc->sc_lock;
    466 }
    467 
    468 /*
    469  * each endpoint stuffs
    470  */
    471 
    472 /* alloc/free pipe */
    473 static usbd_status
    474 alloc_pipe(struct umidi_endpoint *ep)
    475 {
    476 	struct umidi_softc *sc = ep->sc;
    477 	usbd_status err;
    478 	usb_endpoint_descriptor_t *epd;
    479 
    480 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
    481 	/*
    482 	 * For output, an improvement would be to have a buffer bigger than
    483 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
    484 	 * allow out_solicit to fill the buffer to the full packet size in
    485 	 * all cases. But to use usbd_alloc_buffer to get a slightly larger
    486 	 * buffer would not be a good way to do that, because if the addition
    487 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
    488 	 * larger block may be wastefully allocated. Some flavor of double
    489 	 * buffering could serve the same purpose, but would increase the
    490 	 * code complexity, so for now I will live with the current slight
    491 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
    492 	 * packet slots.
    493 	 */
    494 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
    495 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
    496 
    497 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
    498 	        device_xname(sc->sc_dev), ep, ep->buffer_size));
    499 	ep->num_scheduled = 0;
    500 	ep->this_schedule = 0;
    501 	ep->next_schedule = 0;
    502 	ep->soliciting = 0;
    503 	ep->armed = 0;
    504 	ep->xfer = usbd_alloc_xfer(sc->sc_udev);
    505 	if (ep->xfer == NULL) {
    506 	    err = USBD_NOMEM;
    507 	    goto quit;
    508 	}
    509 	ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
    510 	if (ep->buffer == NULL) {
    511 	    usbd_free_xfer(ep->xfer);
    512 	    err = USBD_NOMEM;
    513 	    goto quit;
    514 	}
    515 	ep->next_slot = ep->buffer;
    516 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
    517 	if (err)
    518 	    usbd_free_xfer(ep->xfer);
    519 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, out_solicit, ep);
    520 quit:
    521 	return err;
    522 }
    523 
    524 static void
    525 free_pipe(struct umidi_endpoint *ep)
    526 {
    527 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
    528 	usbd_abort_pipe(ep->pipe);
    529 	usbd_close_pipe(ep->pipe);
    530 	usbd_free_xfer(ep->xfer);
    531 	softint_disestablish(ep->solicit_cookie);
    532 }
    533 
    534 
    535 /* alloc/free the array of endpoint structures */
    536 
    537 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
    538 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
    539 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
    540 
    541 static usbd_status
    542 alloc_all_endpoints(struct umidi_softc *sc)
    543 {
    544 	usbd_status err;
    545 	struct umidi_endpoint *ep;
    546 	int i;
    547 
    548 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
    549 		err = alloc_all_endpoints_fixed_ep(sc);
    550 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
    551 		err = alloc_all_endpoints_yamaha(sc);
    552 	} else {
    553 		err = alloc_all_endpoints_genuine(sc);
    554 	}
    555 	if (err != USBD_NORMAL_COMPLETION)
    556 		return err;
    557 
    558 	ep = sc->sc_endpoints;
    559 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
    560 		err = alloc_pipe(ep++);
    561 		if (err != USBD_NORMAL_COMPLETION) {
    562 			for (; ep != sc->sc_endpoints; ep--)
    563 				free_pipe(ep-1);
    564 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    565 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    566 			break;
    567 		}
    568 	}
    569 	return err;
    570 }
    571 
    572 static void
    573 free_all_endpoints(struct umidi_softc *sc)
    574 {
    575 	int i;
    576 
    577 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
    578 		free_pipe(&sc->sc_endpoints[i]);
    579 	if (sc->sc_endpoints != NULL)
    580 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    581 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    582 }
    583 
    584 static usbd_status
    585 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
    586 {
    587 	usbd_status err;
    588 	const struct umq_fixed_ep_desc *fp;
    589 	struct umidi_endpoint *ep;
    590 	usb_endpoint_descriptor_t *epd;
    591 	int i;
    592 
    593 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
    594 					    UMQ_TYPE_FIXED_EP);
    595 	sc->sc_out_num_jacks = 0;
    596 	sc->sc_in_num_jacks = 0;
    597 	sc->sc_out_num_endpoints = fp->num_out_ep;
    598 	sc->sc_in_num_endpoints = fp->num_in_ep;
    599 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    600 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    601 	if (!sc->sc_endpoints)
    602 		return USBD_NOMEM;
    603 
    604 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
    605 	sc->sc_in_ep =
    606 	    sc->sc_in_num_endpoints ?
    607 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
    608 
    609 	ep = &sc->sc_out_ep[0];
    610 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
    611 		epd = usbd_interface2endpoint_descriptor(
    612 			sc->sc_iface,
    613 			fp->out_ep[i].ep);
    614 		if (!epd) {
    615 			aprint_error_dev(sc->sc_dev,
    616 			    "cannot get endpoint descriptor(out:%d)\n",
    617 			     fp->out_ep[i].ep);
    618 			err = USBD_INVAL;
    619 			goto error;
    620 		}
    621 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
    622 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
    623 			aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
    624 			    fp->out_ep[i].ep);
    625 			err = USBD_INVAL;
    626 			goto error;
    627 		}
    628 		ep->sc = sc;
    629 		ep->addr = epd->bEndpointAddress;
    630 		ep->num_jacks = fp->out_ep[i].num_jacks;
    631 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
    632 		ep->num_open = 0;
    633 		ep++;
    634 	}
    635 	ep = &sc->sc_in_ep[0];
    636 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
    637 		epd = usbd_interface2endpoint_descriptor(
    638 			sc->sc_iface,
    639 			fp->in_ep[i].ep);
    640 		if (!epd) {
    641 			aprint_error_dev(sc->sc_dev,
    642 			    "cannot get endpoint descriptor(in:%d)\n",
    643 			     fp->in_ep[i].ep);
    644 			err = USBD_INVAL;
    645 			goto error;
    646 		}
    647 		/*
    648 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
    649 		 * endpoint.  The existing input logic in this driver seems
    650 		 * to work successfully if we just stop treating an interrupt
    651 		 * endpoint as illegal (or the in_progress status we get on
    652 		 * the initial transfer).  It does not seem necessary to
    653 		 * actually use the interrupt flavor of alloc_pipe or make
    654 		 * other serious rearrangements of logic.  I like that.
    655 		 */
    656 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
    657 		case UE_BULK:
    658 		case UE_INTERRUPT:
    659 			if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
    660 				break;
    661 			/*FALLTHROUGH*/
    662 		default:
    663 			aprint_error_dev(sc->sc_dev,
    664 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
    665 			err = USBD_INVAL;
    666 			goto error;
    667 		}
    668 
    669 		ep->sc = sc;
    670 		ep->addr = epd->bEndpointAddress;
    671 		ep->num_jacks = fp->in_ep[i].num_jacks;
    672 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
    673 		ep->num_open = 0;
    674 		ep++;
    675 	}
    676 
    677 	return USBD_NORMAL_COMPLETION;
    678 error:
    679 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
    680 	sc->sc_endpoints = NULL;
    681 	return err;
    682 }
    683 
    684 static usbd_status
    685 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
    686 {
    687 	/* This driver currently supports max 1in/1out bulk endpoints */
    688 	usb_descriptor_t *desc;
    689 	umidi_cs_descriptor_t *udesc;
    690 	usb_endpoint_descriptor_t *epd;
    691 	int out_addr, in_addr, i;
    692 	int dir;
    693 	size_t remain, descsize;
    694 
    695 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    696 	out_addr = in_addr = 0;
    697 
    698 	/* detect endpoints */
    699 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
    700 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
    701 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    702 		KASSERT(epd != NULL);
    703 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
    704 			dir = UE_GET_DIR(epd->bEndpointAddress);
    705 			if (dir==UE_DIR_OUT && !out_addr)
    706 				out_addr = epd->bEndpointAddress;
    707 			else if (dir==UE_DIR_IN && !in_addr)
    708 				in_addr = epd->bEndpointAddress;
    709 		}
    710 	}
    711 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
    712 
    713 	/* count jacks */
    714 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
    715 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
    716 		return USBD_INVAL;
    717 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
    718 		(size_t)udesc->bLength;
    719 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    720 
    721 	while (remain >= sizeof(usb_descriptor_t)) {
    722 		descsize = udesc->bLength;
    723 		if (descsize>remain || descsize==0)
    724 			break;
    725 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
    726 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
    727 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
    728 				sc->sc_out_num_jacks++;
    729 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
    730 				sc->sc_in_num_jacks++;
    731 		}
    732 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    733 		remain -= descsize;
    734 	}
    735 
    736 	/* validate some parameters */
    737 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
    738 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
    739 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
    740 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
    741 	if (sc->sc_out_num_jacks && out_addr) {
    742 		sc->sc_out_num_endpoints = 1;
    743 	} else {
    744 		sc->sc_out_num_endpoints = 0;
    745 		sc->sc_out_num_jacks = 0;
    746 	}
    747 	if (sc->sc_in_num_jacks && in_addr) {
    748 		sc->sc_in_num_endpoints = 1;
    749 	} else {
    750 		sc->sc_in_num_endpoints = 0;
    751 		sc->sc_in_num_jacks = 0;
    752 	}
    753 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    754 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    755 	if (!sc->sc_endpoints)
    756 		return USBD_NOMEM;
    757 	if (sc->sc_out_num_endpoints) {
    758 		sc->sc_out_ep = sc->sc_endpoints;
    759 		sc->sc_out_ep->sc = sc;
    760 		sc->sc_out_ep->addr = out_addr;
    761 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
    762 		sc->sc_out_ep->num_open = 0;
    763 	} else
    764 		sc->sc_out_ep = NULL;
    765 
    766 	if (sc->sc_in_num_endpoints) {
    767 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
    768 		sc->sc_in_ep->sc = sc;
    769 		sc->sc_in_ep->addr = in_addr;
    770 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
    771 		sc->sc_in_ep->num_open = 0;
    772 	} else
    773 		sc->sc_in_ep = NULL;
    774 
    775 	return USBD_NORMAL_COMPLETION;
    776 }
    777 
    778 static usbd_status
    779 alloc_all_endpoints_genuine(struct umidi_softc *sc)
    780 {
    781 	usb_interface_descriptor_t *interface_desc;
    782 	usb_config_descriptor_t *config_desc;
    783 	usb_descriptor_t *desc;
    784 	int num_ep;
    785 	size_t remain, descsize;
    786 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
    787 	int epaddr;
    788 
    789 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
    790 	num_ep = interface_desc->bNumEndpoints;
    791 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
    792 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    793 	if (!p)
    794 		return USBD_NOMEM;
    795 
    796 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    797 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
    798 	epaddr = -1;
    799 
    800 	/* get the list of endpoints for midi stream */
    801 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
    802 	desc = (usb_descriptor_t *) config_desc;
    803 	remain = (size_t)UGETW(config_desc->wTotalLength);
    804 	while (remain>=sizeof(usb_descriptor_t)) {
    805 		descsize = desc->bLength;
    806 		if (descsize>remain || descsize==0)
    807 			break;
    808 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
    809 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
    810 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
    811 			epaddr = TO_EPD(desc)->bEndpointAddress;
    812 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
    813 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
    814 			   epaddr!=-1) {
    815 			if (num_ep>0) {
    816 				num_ep--;
    817 				p->sc = sc;
    818 				p->addr = epaddr;
    819 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
    820 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
    821 					sc->sc_out_num_endpoints++;
    822 					sc->sc_out_num_jacks += p->num_jacks;
    823 				} else {
    824 					sc->sc_in_num_endpoints++;
    825 					sc->sc_in_num_jacks += p->num_jacks;
    826 				}
    827 				p++;
    828 			}
    829 		} else
    830 			epaddr = -1;
    831 		desc = NEXT_D(desc);
    832 		remain-=descsize;
    833 	}
    834 
    835 	/* sort endpoints */
    836 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
    837 	p = sc->sc_endpoints;
    838 	endep = p + num_ep;
    839 	while (p<endep) {
    840 		lowest = p;
    841 		for (q=p+1; q<endep; q++) {
    842 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
    843 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
    844 			    ((UE_GET_DIR(lowest->addr)==
    845 			      UE_GET_DIR(q->addr)) &&
    846 			     (UE_GET_ADDR(lowest->addr)>
    847 			      UE_GET_ADDR(q->addr))))
    848 				lowest = q;
    849 		}
    850 		if (lowest != p) {
    851 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
    852 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
    853 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
    854 		}
    855 		p->num_open = 0;
    856 		p++;
    857 	}
    858 
    859 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
    860 	sc->sc_in_ep =
    861 	    sc->sc_in_num_endpoints ?
    862 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
    863 
    864 	return USBD_NORMAL_COMPLETION;
    865 }
    866 
    867 
    868 /*
    869  * jack stuffs
    870  */
    871 
    872 static usbd_status
    873 alloc_all_jacks(struct umidi_softc *sc)
    874 {
    875 	int i, j;
    876 	struct umidi_endpoint *ep;
    877 	struct umidi_jack *jack;
    878 	const unsigned char *cn_spec;
    879 
    880 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
    881 		sc->cblnums_global = 0;
    882 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
    883 		sc->cblnums_global = 1;
    884 	else {
    885 		/*
    886 		 * I don't think this default is correct, but it preserves
    887 		 * the prior behavior of the code. That's why I defined two
    888 		 * complementary quirks. Any device for which the default
    889 		 * behavior is wrong can be made to work by giving it an
    890 		 * explicit quirk, and if a pattern ever develops (as I suspect
    891 		 * it will) that a lot of otherwise standard USB MIDI devices
    892 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
    893 		 * changed to 0, and the only devices that will break are those
    894 		 * listing neither quirk, and they'll easily be fixed by giving
    895 		 * them the CN_SEQ_GLOBAL quirk.
    896 		 */
    897 		sc->cblnums_global = 1;
    898 	}
    899 
    900 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
    901 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
    902 					    		 UMQ_TYPE_CN_FIXED);
    903 	else
    904 		cn_spec = NULL;
    905 
    906 	/* allocate/initialize structures */
    907 	sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
    908 						      sc->sc_out_num_jacks), KM_SLEEP);
    909 	if (!sc->sc_jacks)
    910 		return USBD_NOMEM;
    911 	sc->sc_out_jacks =
    912 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
    913 	sc->sc_in_jacks =
    914 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
    915 
    916 	jack = &sc->sc_out_jacks[0];
    917 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
    918 		jack->opened = 0;
    919 		jack->binded = 0;
    920 		jack->arg = NULL;
    921 		jack->u.out.intr = NULL;
    922 		jack->midiman_ppkt = NULL;
    923 		if (sc->cblnums_global)
    924 			jack->cable_number = i;
    925 		jack++;
    926 	}
    927 	jack = &sc->sc_in_jacks[0];
    928 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
    929 		jack->opened = 0;
    930 		jack->binded = 0;
    931 		jack->arg = NULL;
    932 		jack->u.in.intr = NULL;
    933 		if (sc->cblnums_global)
    934 			jack->cable_number = i;
    935 		jack++;
    936 	}
    937 
    938 	/* assign each jacks to each endpoints */
    939 	jack = &sc->sc_out_jacks[0];
    940 	ep = &sc->sc_out_ep[0];
    941 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
    942 		for (j = 0; j < ep->num_jacks; j++) {
    943 			jack->endpoint = ep;
    944 			if (cn_spec != NULL)
    945 				jack->cable_number = *cn_spec++;
    946 			else if (!sc->cblnums_global)
    947 				jack->cable_number = j;
    948 			ep->jacks[jack->cable_number] = jack;
    949 			jack++;
    950 		}
    951 		ep++;
    952 	}
    953 	jack = &sc->sc_in_jacks[0];
    954 	ep = &sc->sc_in_ep[0];
    955 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
    956 		for (j = 0; j < ep->num_jacks; j++) {
    957 			jack->endpoint = ep;
    958 			if (cn_spec != NULL)
    959 				jack->cable_number = *cn_spec++;
    960 			else if (!sc->cblnums_global)
    961 				jack->cable_number = j;
    962 			ep->jacks[jack->cable_number] = jack;
    963 			jack++;
    964 		}
    965 		ep++;
    966 	}
    967 
    968 	return USBD_NORMAL_COMPLETION;
    969 }
    970 
    971 static void
    972 free_all_jacks(struct umidi_softc *sc)
    973 {
    974 	struct umidi_jack *jacks;
    975 	size_t len;
    976 
    977 	mutex_enter(&sc->sc_lock);
    978 	jacks = sc->sc_jacks;
    979 	len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
    980 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
    981 	mutex_exit(&sc->sc_lock);
    982 
    983 	if (jacks)
    984 		kmem_free(jacks, len);
    985 }
    986 
    987 static usbd_status
    988 bind_jacks_to_mididev(struct umidi_softc *sc,
    989 		      struct umidi_jack *out_jack,
    990 		      struct umidi_jack *in_jack,
    991 		      struct umidi_mididev *mididev)
    992 {
    993 	if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
    994 		return USBD_IN_USE;
    995 	if (mididev->out_jack || mididev->in_jack)
    996 		return USBD_IN_USE;
    997 
    998 	if (out_jack)
    999 		out_jack->binded = 1;
   1000 	if (in_jack)
   1001 		in_jack->binded = 1;
   1002 	mididev->in_jack = in_jack;
   1003 	mididev->out_jack = out_jack;
   1004 
   1005 	return USBD_NORMAL_COMPLETION;
   1006 }
   1007 
   1008 static void
   1009 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
   1010 {
   1011 
   1012 	if ((mididev->flags & FWRITE) && mididev->out_jack)
   1013 		close_out_jack(mididev->out_jack);
   1014 	if ((mididev->flags & FREAD) && mididev->in_jack)
   1015 		close_in_jack(mididev->in_jack);
   1016 
   1017 	if (mididev->out_jack)
   1018 		mididev->out_jack->binded = 0;
   1019 	if (mididev->in_jack)
   1020 		mididev->in_jack->binded = 0;
   1021 	mididev->out_jack = mididev->in_jack = NULL;
   1022 }
   1023 
   1024 static void
   1025 unbind_all_jacks(struct umidi_softc *sc)
   1026 {
   1027 	int i;
   1028 
   1029 	if (sc->sc_mididevs)
   1030 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1031 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
   1032 }
   1033 
   1034 static usbd_status
   1035 assign_all_jacks_automatically(struct umidi_softc *sc)
   1036 {
   1037 	usbd_status err;
   1038 	int i;
   1039 	struct umidi_jack *out, *in;
   1040 	const signed char *asg_spec;
   1041 
   1042 	err =
   1043 	    alloc_all_mididevs(sc,
   1044 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
   1045 	if (err!=USBD_NORMAL_COMPLETION)
   1046 		return err;
   1047 
   1048 	if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
   1049 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
   1050 					    		  UMQ_TYPE_MD_FIXED);
   1051 	else
   1052 		asg_spec = NULL;
   1053 
   1054 	for (i = 0; i < sc->sc_num_mididevs; i++) {
   1055 		if (asg_spec != NULL) {
   1056 			if (*asg_spec == -1)
   1057 				out = NULL;
   1058 			else
   1059 				out = &sc->sc_out_jacks[*asg_spec];
   1060 			++ asg_spec;
   1061 			if (*asg_spec == -1)
   1062 				in = NULL;
   1063 			else
   1064 				in = &sc->sc_in_jacks[*asg_spec];
   1065 			++ asg_spec;
   1066 		} else {
   1067 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
   1068 			                               : NULL;
   1069 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
   1070 						     : NULL;
   1071 		}
   1072 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
   1073 		if (err!=USBD_NORMAL_COMPLETION) {
   1074 			free_all_mididevs(sc);
   1075 			return err;
   1076 		}
   1077 	}
   1078 
   1079 	return USBD_NORMAL_COMPLETION;
   1080 }
   1081 
   1082 static usbd_status
   1083 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
   1084 {
   1085 	struct umidi_endpoint *ep = jack->endpoint;
   1086 	struct umidi_softc *sc = ep->sc;
   1087 	umidi_packet_bufp end;
   1088 	int err;
   1089 
   1090 	KASSERT(mutex_owned(&sc->sc_lock));
   1091 
   1092 	if (jack->opened)
   1093 		return USBD_IN_USE;
   1094 
   1095 	jack->arg = arg;
   1096 	jack->u.out.intr = intr;
   1097 	jack->midiman_ppkt = NULL;
   1098 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
   1099 	jack->opened = 1;
   1100 	ep->num_open++;
   1101 	/*
   1102 	 * out_solicit maintains an invariant that there will always be
   1103 	 * (num_open - num_scheduled) slots free in the buffer. as we have
   1104 	 * just incremented num_open, the buffer may be too full to satisfy
   1105 	 * the invariant until a transfer completes, for which we must wait.
   1106 	 */
   1107 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
   1108 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1109 		     mstohz(10));
   1110 		if (err) {
   1111 			ep->num_open--;
   1112 			jack->opened = 0;
   1113 			return USBD_IOERROR;
   1114 		}
   1115 	}
   1116 
   1117 	return USBD_NORMAL_COMPLETION;
   1118 }
   1119 
   1120 static usbd_status
   1121 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
   1122 {
   1123 	usbd_status err = USBD_NORMAL_COMPLETION;
   1124 	struct umidi_endpoint *ep = jack->endpoint;
   1125 
   1126 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1127 
   1128 	if (jack->opened)
   1129 		return USBD_IN_USE;
   1130 
   1131 	jack->arg = arg;
   1132 	jack->u.in.intr = intr;
   1133 	jack->opened = 1;
   1134 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
   1135 		err = start_input_transfer(ep);
   1136 		if (err != USBD_NORMAL_COMPLETION &&
   1137 		    err != USBD_IN_PROGRESS) {
   1138 			ep->num_open--;
   1139 		}
   1140 	}
   1141 
   1142 	return err;
   1143 }
   1144 
   1145 static void
   1146 close_out_jack(struct umidi_jack *jack)
   1147 {
   1148 	struct umidi_endpoint *ep;
   1149 	struct umidi_softc *sc;
   1150 	u_int16_t mask;
   1151 	int err;
   1152 
   1153 	if (jack->opened) {
   1154 		ep = jack->endpoint;
   1155 		sc = ep->sc;
   1156 		mutex_spin_enter(&sc->sc_lock);
   1157 		mask = 1 << (jack->cable_number);
   1158 		while (mask & (ep->this_schedule | ep->next_schedule)) {
   1159 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1160 			     mstohz(10));
   1161 			if (err)
   1162 				break;
   1163 		}
   1164 		/*
   1165 		 * We can re-enter this function from both close() and
   1166 		 * detach().  Make sure only one of them does this part.
   1167 		 */
   1168 		if (jack->opened) {
   1169 			jack->opened = 0;
   1170 			jack->endpoint->num_open--;
   1171 			ep->this_schedule &= ~mask;
   1172 			ep->next_schedule &= ~mask;
   1173 		}
   1174 		mutex_spin_exit(&sc->sc_lock);
   1175 	}
   1176 }
   1177 
   1178 static void
   1179 close_in_jack(struct umidi_jack *jack)
   1180 {
   1181 	if (jack->opened) {
   1182 		jack->opened = 0;
   1183 		if (--jack->endpoint->num_open == 0) {
   1184 			usbd_abort_pipe(jack->endpoint->pipe);
   1185 		}
   1186 	}
   1187 }
   1188 
   1189 static usbd_status
   1190 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
   1191 {
   1192 	if (mididev->sc)
   1193 		return USBD_IN_USE;
   1194 
   1195 	mididev->sc = sc;
   1196 
   1197 	describe_mididev(mididev);
   1198 
   1199 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
   1200 
   1201 	return USBD_NORMAL_COMPLETION;
   1202 }
   1203 
   1204 static usbd_status
   1205 detach_mididev(struct umidi_mididev *mididev, int flags)
   1206 {
   1207 	if (!mididev->sc)
   1208 		return USBD_NO_ADDR;
   1209 
   1210 	if (mididev->opened) {
   1211 		umidi_close(mididev);
   1212 	}
   1213 	unbind_jacks_from_mididev(mididev);
   1214 
   1215 	if (mididev->mdev != NULL)
   1216 		config_detach(mididev->mdev, flags);
   1217 
   1218 	if (NULL != mididev->label) {
   1219 		kmem_free(mididev->label, mididev->label_len);
   1220 		mididev->label = NULL;
   1221 	}
   1222 
   1223 	mididev->sc = NULL;
   1224 
   1225 	return USBD_NORMAL_COMPLETION;
   1226 }
   1227 
   1228 static void
   1229 deactivate_mididev(struct umidi_mididev *mididev)
   1230 {
   1231 	if (mididev->out_jack)
   1232 		mididev->out_jack->binded = 0;
   1233 	if (mididev->in_jack)
   1234 		mididev->in_jack->binded = 0;
   1235 }
   1236 
   1237 static usbd_status
   1238 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
   1239 {
   1240 	sc->sc_num_mididevs = nmidi;
   1241 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
   1242 	if (!sc->sc_mididevs)
   1243 		return USBD_NOMEM;
   1244 
   1245 	return USBD_NORMAL_COMPLETION;
   1246 }
   1247 
   1248 static void
   1249 free_all_mididevs(struct umidi_softc *sc)
   1250 {
   1251 	if (sc->sc_mididevs)
   1252 		kmem_free(sc->sc_mididevs,
   1253 			  sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
   1254 	sc->sc_num_mididevs = 0;
   1255 }
   1256 
   1257 static usbd_status
   1258 attach_all_mididevs(struct umidi_softc *sc)
   1259 {
   1260 	usbd_status err;
   1261 	int i;
   1262 
   1263 	if (sc->sc_mididevs)
   1264 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1265 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
   1266 			if (err != USBD_NORMAL_COMPLETION)
   1267 				return err;
   1268 		}
   1269 
   1270 	return USBD_NORMAL_COMPLETION;
   1271 }
   1272 
   1273 static usbd_status
   1274 detach_all_mididevs(struct umidi_softc *sc, int flags)
   1275 {
   1276 	usbd_status err;
   1277 	int i;
   1278 
   1279 	if (sc->sc_mididevs)
   1280 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1281 			err = detach_mididev(&sc->sc_mididevs[i], flags);
   1282 			if (err != USBD_NORMAL_COMPLETION)
   1283 				return err;
   1284 		}
   1285 
   1286 	return USBD_NORMAL_COMPLETION;
   1287 }
   1288 
   1289 static void
   1290 deactivate_all_mididevs(struct umidi_softc *sc)
   1291 {
   1292 	int i;
   1293 
   1294 	if (sc->sc_mididevs) {
   1295 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1296 			deactivate_mididev(&sc->sc_mididevs[i]);
   1297 	}
   1298 }
   1299 
   1300 /*
   1301  * TODO: the 0-based cable numbers will often not match the labeling of the
   1302  * equipment. Ideally:
   1303  *  For class-compliant devices: get the iJack string from the jack descriptor.
   1304  *  Otherwise:
   1305  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
   1306  *    number for display)
   1307  *  - support an array quirk explictly giving a char * for each jack.
   1308  * For now, you get 0-based cable numbers. If there are multiple endpoints and
   1309  * the CNs are not globally unique, each is shown with its associated endpoint
   1310  * address in hex also. That should not be necessary when using iJack values
   1311  * or a quirk array.
   1312  */
   1313 void
   1314 describe_mididev(struct umidi_mididev *md)
   1315 {
   1316 	char in_label[16];
   1317 	char out_label[16];
   1318 	const char *unit_label;
   1319 	char *final_label;
   1320 	struct umidi_softc *sc;
   1321 	int show_ep_in;
   1322 	int show_ep_out;
   1323 	size_t len;
   1324 
   1325 	sc = md->sc;
   1326 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
   1327 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
   1328 
   1329 	if ( NULL == md->in_jack )
   1330 		in_label[0] = '\0';
   1331 	else if ( show_ep_in )
   1332 		snprintf(in_label, sizeof in_label, "<%d(%x) ",
   1333 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
   1334 	else
   1335 		snprintf(in_label, sizeof in_label, "<%d ",
   1336 		    md->in_jack->cable_number);
   1337 
   1338 	if ( NULL == md->out_jack )
   1339 		out_label[0] = '\0';
   1340 	else if ( show_ep_out )
   1341 		snprintf(out_label, sizeof out_label, ">%d(%x) ",
   1342 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
   1343 	else
   1344 		snprintf(out_label, sizeof out_label, ">%d ",
   1345 		    md->out_jack->cable_number);
   1346 
   1347 	unit_label = device_xname(sc->sc_dev);
   1348 
   1349 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
   1350 
   1351 	final_label = kmem_alloc(len, KM_SLEEP);
   1352 
   1353 	snprintf(final_label, len, "%s%son %s",
   1354 	    in_label, out_label, unit_label);
   1355 
   1356 	md->label = final_label;
   1357 	md->label_len = len;
   1358 }
   1359 
   1360 #ifdef UMIDI_DEBUG
   1361 static void
   1362 dump_sc(struct umidi_softc *sc)
   1363 {
   1364 	int i;
   1365 
   1366 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
   1367 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
   1368 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
   1369 		dump_ep(&sc->sc_out_ep[i]);
   1370 	}
   1371 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
   1372 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
   1373 		dump_ep(&sc->sc_in_ep[i]);
   1374 	}
   1375 }
   1376 
   1377 static void
   1378 dump_ep(struct umidi_endpoint *ep)
   1379 {
   1380 	int i;
   1381 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
   1382 		if (NULL==ep->jacks[i])
   1383 			continue;
   1384 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
   1385 		dump_jack(ep->jacks[i]);
   1386 	}
   1387 }
   1388 static void
   1389 dump_jack(struct umidi_jack *jack)
   1390 {
   1391 	DPRINTFN(10, ("\t\t\tep=%p\n",
   1392 		      jack->endpoint));
   1393 }
   1394 
   1395 #endif /* UMIDI_DEBUG */
   1396 
   1397 
   1398 
   1399 /*
   1400  * MUX MIDI PACKET
   1401  */
   1402 
   1403 static const int packet_length[16] = {
   1404 	/*0*/	-1,
   1405 	/*1*/	-1,
   1406 	/*2*/	2,
   1407 	/*3*/	3,
   1408 	/*4*/	3,
   1409 	/*5*/	1,
   1410 	/*6*/	2,
   1411 	/*7*/	3,
   1412 	/*8*/	3,
   1413 	/*9*/	3,
   1414 	/*A*/	3,
   1415 	/*B*/	3,
   1416 	/*C*/	2,
   1417 	/*D*/	2,
   1418 	/*E*/	3,
   1419 	/*F*/	1,
   1420 };
   1421 
   1422 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
   1423 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
   1424 #define MIX_CN_CIN(cn, cin) \
   1425 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
   1426 			  ((unsigned char)(cin)&0x0F)))
   1427 
   1428 static usbd_status
   1429 start_input_transfer(struct umidi_endpoint *ep)
   1430 {
   1431 	usbd_setup_xfer(ep->xfer, ep->pipe,
   1432 			(usbd_private_handle)ep,
   1433 			ep->buffer, ep->buffer_size,
   1434 			USBD_SHORT_XFER_OK | USBD_NO_COPY,
   1435                         USBD_NO_TIMEOUT, in_intr);
   1436 	return usbd_transfer(ep->xfer);
   1437 }
   1438 
   1439 static usbd_status
   1440 start_output_transfer(struct umidi_endpoint *ep)
   1441 {
   1442 	usbd_status rv;
   1443 	u_int32_t length;
   1444 	int i;
   1445 
   1446 	length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
   1447 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
   1448 	    ep->buffer, ep->next_slot, length));
   1449 	usbd_setup_xfer(ep->xfer, ep->pipe,
   1450 			(usbd_private_handle)ep,
   1451 			ep->buffer, length,
   1452 			USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
   1453 	rv = usbd_transfer(ep->xfer);
   1454 
   1455 	/*
   1456 	 * Once the transfer is scheduled, no more adding to partial
   1457 	 * packets within it.
   1458 	 */
   1459 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1460 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
   1461 			if (NULL != ep->jacks[i])
   1462 				ep->jacks[i]->midiman_ppkt = NULL;
   1463 	}
   1464 
   1465 	return rv;
   1466 }
   1467 
   1468 #ifdef UMIDI_DEBUG
   1469 #define DPR_PACKET(dir, sc, p)						\
   1470 if ((unsigned char)(p)[1]!=0xFE)				\
   1471 	DPRINTFN(500,							\
   1472 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
   1473 		  device_xname(sc->sc_dev),				\
   1474 		  (unsigned char)(p)[0],			\
   1475 		  (unsigned char)(p)[1],			\
   1476 		  (unsigned char)(p)[2],			\
   1477 		  (unsigned char)(p)[3]));
   1478 #else
   1479 #define DPR_PACKET(dir, sc, p)
   1480 #endif
   1481 
   1482 /*
   1483  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
   1484  * with the cable number and length in the last byte instead of the first,
   1485  * but there the resemblance ends. Where a USB MIDI packet is a semantic
   1486  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
   1487  * with a cable nybble and a length nybble (which, unlike the CIN of a
   1488  * real USB MIDI packet, has no semantics at all besides the length).
   1489  * A packet received from a Midiman may contain part of a MIDI message,
   1490  * more than one MIDI message, or parts of more than one MIDI message. A
   1491  * three-byte MIDI message may arrive in three packets of data length 1, and
   1492  * running status may be used. Happily, the midi(4) driver above us will put
   1493  * it all back together, so the only cost is in USB bandwidth. The device
   1494  * has an easier time with what it receives from us: we'll pack messages in
   1495  * and across packets, but filling the packets whenever possible and,
   1496  * as midi(4) hands us a complete message at a time, we'll never send one
   1497  * in a dribble of short packets.
   1498  */
   1499 
   1500 static int
   1501 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
   1502 {
   1503 	struct umidi_endpoint *ep = out_jack->endpoint;
   1504 	struct umidi_softc *sc = ep->sc;
   1505 	unsigned char *packet;
   1506 	int plen;
   1507 	int poff;
   1508 
   1509 	if (sc->sc_dying)
   1510 		return EIO;
   1511 
   1512 	if (!out_jack->opened)
   1513 		return ENODEV; /* XXX as it was, is this the right errno? */
   1514 
   1515 #ifdef UMIDI_DEBUG
   1516 	if ( umididebug >= 100 )
   1517 		microtime(&umidi_tv);
   1518 #endif
   1519 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
   1520 	    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
   1521 	    ep, out_jack->cable_number, len, cin));
   1522 
   1523 	packet = *ep->next_slot++;
   1524 	KASSERT(ep->buffer_size >=
   1525 	    (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
   1526 	memset(packet, 0, UMIDI_PACKET_SIZE);
   1527 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1528 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
   1529 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
   1530 			plen = 3 - poff;
   1531 			if (plen > len)
   1532 				plen = len;
   1533 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
   1534 			src += plen;
   1535 			len -= plen;
   1536 			plen += poff;
   1537 			out_jack->midiman_ppkt[3] =
   1538 			    MIX_CN_CIN(out_jack->cable_number, plen);
   1539 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
   1540 			if (3 == plen)
   1541 				out_jack->midiman_ppkt = NULL; /* no more */
   1542 		}
   1543 		if (0 == len)
   1544 			ep->next_slot--; /* won't be needed, nevermind */
   1545 		else {
   1546 			memcpy(packet, src, len);
   1547 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
   1548 			DPR_PACKET(out, sc, packet);
   1549 			if (len < 3)
   1550 				out_jack->midiman_ppkt = packet;
   1551 		}
   1552 	} else { /* the nice simple USB class-compliant case */
   1553 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
   1554 		memcpy(packet+1, src, len);
   1555 		DPR_PACKET(out, sc, packet);
   1556 	}
   1557 	ep->next_schedule |= 1<<(out_jack->cable_number);
   1558 	++ ep->num_scheduled;
   1559 	if ( !ep->armed  &&  !ep->soliciting ) {
   1560 		/*
   1561 		 * It would be bad to call out_solicit directly here (the
   1562 		 * caller need not be reentrant) but a soft interrupt allows
   1563 		 * solicit to run immediately the caller exits its critical
   1564 		 * section, and if the caller has more to write we can get it
   1565 		 * before starting the USB transfer, and send a longer one.
   1566 		 */
   1567 		ep->soliciting = 1;
   1568 		softint_schedule(ep->solicit_cookie);
   1569 	}
   1570 
   1571 	return 0;
   1572 }
   1573 
   1574 static void
   1575 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
   1576     usbd_status status)
   1577 {
   1578 	int cn, len, i;
   1579 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1580 	struct umidi_softc *sc = ep->sc;
   1581 	struct umidi_jack *jack;
   1582 	unsigned char *packet;
   1583 	umidi_packet_bufp slot;
   1584 	umidi_packet_bufp end;
   1585 	unsigned char *data;
   1586 	u_int32_t count;
   1587 
   1588 	if (ep->sc->sc_dying || !ep->num_open)
   1589 		return;
   1590 
   1591 	mutex_enter(&sc->sc_lock);
   1592 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1593         if (0 == count % UMIDI_PACKET_SIZE) {
   1594 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
   1595 			     device_xname(ep->sc->sc_dev), ep, count));
   1596         } else {
   1597                 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
   1598                         device_xname(ep->sc->sc_dev), ep, count));
   1599         }
   1600 
   1601 	slot = ep->buffer;
   1602 	end = slot + count / sizeof *slot;
   1603 
   1604 	for (packet = *slot; slot < end; packet = *++slot) {
   1605 
   1606 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1607 			cn = (0xf0&(packet[3]))>>4;
   1608 			len = 0x0f&(packet[3]);
   1609 			data = packet;
   1610 		} else {
   1611 			cn = GET_CN(packet[0]);
   1612 			len = packet_length[GET_CIN(packet[0])];
   1613 			data = packet + 1;
   1614 		}
   1615 		/* 0 <= cn <= 15 by inspection of above code */
   1616 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
   1617 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
   1618 			         "%02X %02X %02X (try CN_SEQ quirk?)\n",
   1619 				 device_xname(ep->sc->sc_dev), ep, cn, len,
   1620 				 (unsigned)data[0],
   1621 				 (unsigned)data[1],
   1622 				 (unsigned)data[2]));
   1623 			mutex_exit(&sc->sc_lock);
   1624 			return;
   1625 		}
   1626 
   1627 		if (!jack->binded || !jack->opened)
   1628 			continue;
   1629 
   1630 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
   1631 		             "%02X %02X %02X\n",
   1632 			     device_xname(ep->sc->sc_dev), ep, cn, len,
   1633 			     (unsigned)data[0],
   1634 			     (unsigned)data[1],
   1635 			     (unsigned)data[2]));
   1636 
   1637 		if (jack->u.in.intr) {
   1638 			for (i = 0; i < len; i++) {
   1639 				(*jack->u.in.intr)(jack->arg, data[i]);
   1640 			}
   1641 		}
   1642 
   1643 	}
   1644 
   1645 	(void)start_input_transfer(ep);
   1646 	mutex_exit(&sc->sc_lock);
   1647 }
   1648 
   1649 static void
   1650 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
   1651     usbd_status status)
   1652 {
   1653 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1654 	struct umidi_softc *sc = ep->sc;
   1655 	u_int32_t count;
   1656 
   1657 	if (sc->sc_dying)
   1658 		return;
   1659 
   1660 	mutex_enter(&sc->sc_lock);
   1661 #ifdef UMIDI_DEBUG
   1662 	if ( umididebug >= 200 )
   1663 		microtime(&umidi_tv);
   1664 #endif
   1665 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1666         if ( 0 == count % UMIDI_PACKET_SIZE ) {
   1667 		DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
   1668 			     device_xname(ep->sc->sc_dev),
   1669 			     umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
   1670         } else {
   1671                 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
   1672                         device_xname(ep->sc->sc_dev), ep, count));
   1673         }
   1674 	count /= UMIDI_PACKET_SIZE;
   1675 
   1676 	/*
   1677 	 * If while the transfer was pending we buffered any new messages,
   1678 	 * move them to the start of the buffer.
   1679 	 */
   1680 	ep->next_slot -= count;
   1681 	if (ep->buffer < ep->next_slot) {
   1682 		memcpy(ep->buffer, ep->buffer + count,
   1683 		       (char *)ep->next_slot - (char *)ep->buffer);
   1684 	}
   1685 	cv_broadcast(&sc->sc_cv);
   1686 	/*
   1687 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
   1688 	 * Running at IPL_USB so the following should happen to be safe.
   1689 	 */
   1690 	ep->armed = 0;
   1691 	if (!ep->soliciting) {
   1692 		ep->soliciting = 1;
   1693 		out_solicit_locked(ep);
   1694 	}
   1695 	mutex_exit(&sc->sc_lock);
   1696 }
   1697 
   1698 /*
   1699  * A jack on which we have received a packet must be called back on its
   1700  * out.intr handler before it will send us another; it is considered
   1701  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
   1702  * we need no extra buffer space for it.
   1703  *
   1704  * In contrast, a jack that is open but not scheduled may supply us a packet
   1705  * at any time, driven by the top half, and we must be able to accept it, no
   1706  * excuses. So we must ensure that at any point in time there are at least
   1707  * (num_open - num_scheduled) slots free.
   1708  *
   1709  * As long as there are more slots free than that minimum, we can loop calling
   1710  * scheduled jacks back on their "interrupt" handlers, soliciting more
   1711  * packets, starting the USB transfer only when the buffer space is down to
   1712  * the minimum or no jack has any more to send.
   1713  */
   1714 
   1715 static void
   1716 out_solicit_locked(void *arg)
   1717 {
   1718 	struct umidi_endpoint *ep = arg;
   1719 	umidi_packet_bufp end;
   1720 	u_int16_t which;
   1721 	struct umidi_jack *jack;
   1722 
   1723 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1724 
   1725 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
   1726 
   1727 	for ( ;; ) {
   1728 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
   1729 			break; /* at IPL_USB */
   1730 		if (ep->this_schedule == 0) {
   1731 			if (ep->next_schedule == 0)
   1732 				break; /* at IPL_USB */
   1733 			ep->this_schedule = ep->next_schedule;
   1734 			ep->next_schedule = 0;
   1735 		}
   1736 		/*
   1737 		 * At least one jack is scheduled. Find and mask off the least
   1738 		 * set bit in this_schedule and decrement num_scheduled.
   1739 		 * Convert mask to bit index to find the corresponding jack,
   1740 		 * and call its intr handler. If it has a message, it will call
   1741 		 * back one of the output methods, which will set its bit in
   1742 		 * next_schedule (not copied into this_schedule until the
   1743 		 * latter is empty). In this way we round-robin the jacks that
   1744 		 * have messages to send, until the buffer is as full as we
   1745 		 * dare, and then start a transfer.
   1746 		 */
   1747 		which = ep->this_schedule;
   1748 		which &= (~which)+1; /* now mask of least set bit */
   1749 		ep->this_schedule &= ~which;
   1750 		--ep->num_scheduled;
   1751 
   1752 		--which; /* now 1s below mask - count 1s to get index */
   1753 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
   1754 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
   1755 		which = (((which >> 4) + which) & 0x0f0f);
   1756 		which +=  (which >> 8);
   1757 		which &= 0x1f; /* the bit index a/k/a jack number */
   1758 
   1759 		jack = ep->jacks[which];
   1760 		if (jack->u.out.intr)
   1761 			(*jack->u.out.intr)(jack->arg);
   1762 	}
   1763 	/* intr lock held at loop exit */
   1764 	if (!ep->armed && ep->next_slot > ep->buffer)
   1765 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
   1766 	ep->soliciting = 0;
   1767 }
   1768 
   1769 /* Entry point for the softintr.  */
   1770 static void
   1771 out_solicit(void *arg)
   1772 {
   1773 	struct umidi_endpoint *ep = arg;
   1774 	struct umidi_softc *sc = ep->sc;
   1775 
   1776 	mutex_enter(&sc->sc_lock);
   1777 	out_solicit_locked(arg);
   1778 	mutex_exit(&sc->sc_lock);
   1779 }
   1780