Home | History | Annotate | Line # | Download | only in usb
umidi.c revision 1.63.2.2
      1 /*	$NetBSD: umidi.c,v 1.63.2.2 2017/12/03 11:37:34 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
      9  * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
     10  * (mrg (at) eterna.com.au).
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.63.2.2 2017/12/03 11:37:34 jdolecek Exp $");
     36 
     37 #ifdef _KERNEL_OPT
     38 #include "opt_usb.h"
     39 #endif
     40 
     41 #include <sys/types.h>
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/kmem.h>
     46 #include <sys/device.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/conf.h>
     49 #include <sys/file.h>
     50 #include <sys/select.h>
     51 #include <sys/proc.h>
     52 #include <sys/vnode.h>
     53 #include <sys/poll.h>
     54 #include <sys/intr.h>
     55 
     56 #include <dev/usb/usb.h>
     57 #include <dev/usb/usbdi.h>
     58 #include <dev/usb/usbdi_util.h>
     59 
     60 #include <dev/auconv.h>
     61 #include <dev/usb/usbdevs.h>
     62 #include <dev/usb/umidi_quirks.h>
     63 #include <dev/midi_if.h>
     64 
     65 /* Jack Descriptor */
     66 #define UMIDI_MS_HEADER	0x01
     67 #define UMIDI_IN_JACK	0x02
     68 #define UMIDI_OUT_JACK	0x03
     69 
     70 /* Jack Type */
     71 #define UMIDI_EMBEDDED	0x01
     72 #define UMIDI_EXTERNAL	0x02
     73 
     74 /* generic, for iteration */
     75 typedef struct {
     76 	uByte		bLength;
     77 	uByte		bDescriptorType;
     78 	uByte		bDescriptorSubtype;
     79 } UPACKED umidi_cs_descriptor_t;
     80 
     81 typedef struct {
     82 	uByte		bLength;
     83 	uByte		bDescriptorType;
     84 	uByte		bDescriptorSubtype;
     85 	uWord		bcdMSC;
     86 	uWord		wTotalLength;
     87 } UPACKED umidi_cs_interface_descriptor_t;
     88 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
     89 
     90 typedef struct {
     91 	uByte		bLength;
     92 	uByte		bDescriptorType;
     93 	uByte		bDescriptorSubtype;
     94 	uByte		bNumEmbMIDIJack;
     95 } UPACKED umidi_cs_endpoint_descriptor_t;
     96 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
     97 
     98 typedef struct {
     99 	uByte		bLength;
    100 	uByte		bDescriptorType;
    101 	uByte		bDescriptorSubtype;
    102 	uByte		bJackType;
    103 	uByte		bJackID;
    104 } UPACKED umidi_jack_descriptor_t;
    105 #define	UMIDI_JACK_DESCRIPTOR_SIZE	5
    106 
    107 
    108 #define TO_D(p) ((usb_descriptor_t *)(p))
    109 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
    110 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
    111 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
    112 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
    113 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
    114 
    115 
    116 #define UMIDI_PACKET_SIZE 4
    117 
    118 /*
    119  * hierarchie
    120  *
    121  * <-- parent	       child -->
    122  *
    123  * umidi(sc) -> endpoint -> jack   <- (dynamically assignable) - mididev
    124  *	   ^	 |    ^	    |
    125  *	   +-----+    +-----+
    126  */
    127 
    128 /* midi device */
    129 struct umidi_mididev {
    130 	struct umidi_softc	*sc;
    131 	device_t		mdev;
    132 	/* */
    133 	struct umidi_jack	*in_jack;
    134 	struct umidi_jack	*out_jack;
    135 	char			*label;
    136 	size_t			label_len;
    137 	/* */
    138 	int			opened;
    139 	int			closing;
    140 	int			flags;
    141 };
    142 
    143 /* Jack Information */
    144 struct umidi_jack {
    145 	struct umidi_endpoint	*endpoint;
    146 	/* */
    147 	int			cable_number;
    148 	void			*arg;
    149 	int			bound;
    150 	int			opened;
    151 	unsigned char		*midiman_ppkt;
    152 	union {
    153 		struct {
    154 			void			(*intr)(void *);
    155 		} out;
    156 		struct {
    157 			void			(*intr)(void *, int);
    158 		} in;
    159 	} u;
    160 };
    161 
    162 #define UMIDI_MAX_EPJACKS	16
    163 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
    164 /* endpoint data */
    165 struct umidi_endpoint {
    166 	struct umidi_softc	*sc;
    167 	/* */
    168 	int			addr;
    169 	struct usbd_pipe	*pipe;
    170 	struct usbd_xfer	*xfer;
    171 	umidi_packet_bufp	buffer;
    172 	umidi_packet_bufp	next_slot;
    173 	uint32_t               buffer_size;
    174 	int			num_scheduled;
    175 	int			num_open;
    176 	int			num_jacks;
    177 	int			soliciting;
    178 	void			*solicit_cookie;
    179 	int			armed;
    180 	struct umidi_jack	*jacks[UMIDI_MAX_EPJACKS];
    181 	uint16_t		this_schedule; /* see UMIDI_MAX_EPJACKS */
    182 	uint16_t		next_schedule;
    183 };
    184 
    185 /* software context */
    186 struct umidi_softc {
    187 	device_t		sc_dev;
    188 	struct usbd_device	*sc_udev;
    189 	struct usbd_interface	*sc_iface;
    190 	const struct umidi_quirk	*sc_quirk;
    191 
    192 	int			sc_dying;
    193 
    194 	int			sc_out_num_jacks;
    195 	struct umidi_jack	*sc_out_jacks;
    196 	int			sc_in_num_jacks;
    197 	struct umidi_jack	*sc_in_jacks;
    198 	struct umidi_jack	*sc_jacks;
    199 
    200 	int			sc_num_mididevs;
    201 	struct umidi_mididev	*sc_mididevs;
    202 
    203 	int			sc_out_num_endpoints;
    204 	struct umidi_endpoint	*sc_out_ep;
    205 	int			sc_in_num_endpoints;
    206 	struct umidi_endpoint	*sc_in_ep;
    207 	struct umidi_endpoint	*sc_endpoints;
    208 	size_t			sc_endpoints_len;
    209 	int			cblnums_global;
    210 
    211 	kmutex_t		sc_lock;
    212 	kcondvar_t		sc_cv;
    213 	kcondvar_t		sc_detach_cv;
    214 
    215 	int			sc_refcnt;
    216 };
    217 
    218 #ifdef UMIDI_DEBUG
    219 #define DPRINTF(x)	if (umididebug) printf x
    220 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
    221 #include <sys/time.h>
    222 static struct timeval umidi_tv;
    223 int	umididebug = 0;
    224 #else
    225 #define DPRINTF(x)
    226 #define DPRINTFN(n,x)
    227 #endif
    228 
    229 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
    230 				 (sc->sc_out_num_endpoints + \
    231 				  sc->sc_in_num_endpoints))
    232 
    233 
    234 static int umidi_open(void *, int,
    235 		      void (*)(void *, int), void (*)(void *), void *);
    236 static void umidi_close(void *);
    237 static int umidi_channelmsg(void *, int, int, u_char *, int);
    238 static int umidi_commonmsg(void *, int, u_char *, int);
    239 static int umidi_sysex(void *, u_char *, int);
    240 static int umidi_rtmsg(void *, int);
    241 static void umidi_getinfo(void *, struct midi_info *);
    242 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
    243 
    244 static usbd_status alloc_pipe(struct umidi_endpoint *);
    245 static void free_pipe(struct umidi_endpoint *);
    246 
    247 static usbd_status alloc_all_endpoints(struct umidi_softc *);
    248 static void free_all_endpoints(struct umidi_softc *);
    249 
    250 static usbd_status alloc_all_jacks(struct umidi_softc *);
    251 static void free_all_jacks(struct umidi_softc *);
    252 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
    253 					 struct umidi_jack *,
    254 					 struct umidi_jack *,
    255 					 struct umidi_mididev *);
    256 static void unbind_jacks_from_mididev(struct umidi_mididev *);
    257 static void unbind_all_jacks(struct umidi_softc *);
    258 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
    259 static usbd_status open_out_jack(struct umidi_jack *, void *,
    260 				 void (*)(void *));
    261 static usbd_status open_in_jack(struct umidi_jack *, void *,
    262 				void (*)(void *, int));
    263 static void close_out_jack(struct umidi_jack *);
    264 static void close_in_jack(struct umidi_jack *);
    265 
    266 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
    267 static usbd_status detach_mididev(struct umidi_mididev *, int);
    268 static void deactivate_mididev(struct umidi_mididev *);
    269 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
    270 static void free_all_mididevs(struct umidi_softc *);
    271 static usbd_status attach_all_mididevs(struct umidi_softc *);
    272 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
    273 static void deactivate_all_mididevs(struct umidi_softc *);
    274 static void describe_mididev(struct umidi_mididev *);
    275 
    276 #ifdef UMIDI_DEBUG
    277 static void dump_sc(struct umidi_softc *);
    278 static void dump_ep(struct umidi_endpoint *);
    279 static void dump_jack(struct umidi_jack *);
    280 #endif
    281 
    282 static usbd_status start_input_transfer(struct umidi_endpoint *);
    283 static usbd_status start_output_transfer(struct umidi_endpoint *);
    284 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
    285 static void in_intr(struct usbd_xfer *, void *, usbd_status);
    286 static void out_intr(struct usbd_xfer *, void *, usbd_status);
    287 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
    288 static void out_solicit_locked(void *); /* pre-locked version */
    289 
    290 
    291 const struct midi_hw_if umidi_hw_if = {
    292 	.open = umidi_open,
    293 	.close = umidi_close,
    294 	.output = umidi_rtmsg,
    295 	.getinfo = umidi_getinfo,
    296 	.get_locks = umidi_get_locks,
    297 };
    298 
    299 struct midi_hw_if_ext umidi_hw_if_ext = {
    300 	.channel = umidi_channelmsg,
    301 	.common  = umidi_commonmsg,
    302 	.sysex   = umidi_sysex,
    303 };
    304 
    305 struct midi_hw_if_ext umidi_hw_if_mm = {
    306 	.channel = umidi_channelmsg,
    307 	.common  = umidi_commonmsg,
    308 	.sysex   = umidi_sysex,
    309 	.compress = 1,
    310 };
    311 
    312 int umidi_match(device_t, cfdata_t, void *);
    313 void umidi_attach(device_t, device_t, void *);
    314 void umidi_childdet(device_t, device_t);
    315 int umidi_detach(device_t, int);
    316 int umidi_activate(device_t, enum devact);
    317 extern struct cfdriver umidi_cd;
    318 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
    319     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
    320 
    321 int
    322 umidi_match(device_t parent, cfdata_t match, void *aux)
    323 {
    324 	struct usbif_attach_arg *uiaa = aux;
    325 
    326 	DPRINTFN(1,("umidi_match\n"));
    327 
    328 	if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
    329 	    uiaa->uiaa_ifaceno))
    330 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    331 
    332 	if (uiaa->uiaa_class == UICLASS_AUDIO &&
    333 	    uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
    334 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    335 
    336 	return UMATCH_NONE;
    337 }
    338 
    339 void
    340 umidi_attach(device_t parent, device_t self, void *aux)
    341 {
    342 	usbd_status     err;
    343 	struct umidi_softc *sc = device_private(self);
    344 	struct usbif_attach_arg *uiaa = aux;
    345 	char *devinfop;
    346 
    347 	DPRINTFN(1,("umidi_attach\n"));
    348 
    349 	sc->sc_dev = self;
    350 
    351 	aprint_naive("\n");
    352 	aprint_normal("\n");
    353 
    354 	devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
    355 	aprint_normal_dev(self, "%s\n", devinfop);
    356 	usbd_devinfo_free(devinfop);
    357 
    358 	sc->sc_iface = uiaa->uiaa_iface;
    359 	sc->sc_udev = uiaa->uiaa_device;
    360 
    361 	sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
    362 	    uiaa->uiaa_product, uiaa->uiaa_ifaceno);
    363 
    364 	aprint_normal_dev(self, "");
    365 	umidi_print_quirk(sc->sc_quirk);
    366 
    367 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
    368 	cv_init(&sc->sc_cv, "umidopcl");
    369 	cv_init(&sc->sc_detach_cv, "umidetcv");
    370 	sc->sc_refcnt = 0;
    371 
    372 	err = alloc_all_endpoints(sc);
    373 	if (err != USBD_NORMAL_COMPLETION) {
    374 		aprint_error_dev(self,
    375 		    "alloc_all_endpoints failed. (err=%d)\n", err);
    376 		goto out;
    377 	}
    378 	err = alloc_all_jacks(sc);
    379 	if (err != USBD_NORMAL_COMPLETION) {
    380 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
    381 		    err);
    382 		goto out_free_endpoints;
    383 	}
    384 	aprint_normal_dev(self, "out=%d, in=%d\n",
    385 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
    386 
    387 	err = assign_all_jacks_automatically(sc);
    388 	if (err != USBD_NORMAL_COMPLETION) {
    389 		aprint_error_dev(self,
    390 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
    391 		goto out_free_jacks;
    392 	}
    393 	err = attach_all_mididevs(sc);
    394 	if (err != USBD_NORMAL_COMPLETION) {
    395 		aprint_error_dev(self,
    396 		    "attach_all_mididevs failed. (err=%d)\n", err);
    397 		goto out_free_jacks;
    398 	}
    399 
    400 #ifdef UMIDI_DEBUG
    401 	dump_sc(sc);
    402 #endif
    403 
    404 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    405 
    406 	return;
    407 
    408 out_free_jacks:
    409 	unbind_all_jacks(sc);
    410 	free_all_jacks(sc);
    411 
    412 out_free_endpoints:
    413 	free_all_endpoints(sc);
    414 
    415 out:
    416 	aprint_error_dev(self, "disabled.\n");
    417 	sc->sc_dying = 1;
    418 	KERNEL_UNLOCK_ONE(curlwp);
    419 	return;
    420 }
    421 
    422 void
    423 umidi_childdet(device_t self, device_t child)
    424 {
    425 	int i;
    426 	struct umidi_softc *sc = device_private(self);
    427 
    428 	KASSERT(sc->sc_mididevs != NULL);
    429 
    430 	for (i = 0; i < sc->sc_num_mididevs; i++) {
    431 		if (sc->sc_mididevs[i].mdev == child)
    432 			break;
    433 	}
    434 	KASSERT(i < sc->sc_num_mididevs);
    435 	sc->sc_mididevs[i].mdev = NULL;
    436 }
    437 
    438 int
    439 umidi_activate(device_t self, enum devact act)
    440 {
    441 	struct umidi_softc *sc = device_private(self);
    442 
    443 	switch (act) {
    444 	case DVACT_DEACTIVATE:
    445 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
    446 		sc->sc_dying = 1;
    447 		deactivate_all_mididevs(sc);
    448 		return 0;
    449 	default:
    450 		DPRINTFN(1,("umidi_activate (%d)\n", act));
    451 		return EOPNOTSUPP;
    452 	}
    453 }
    454 
    455 int
    456 umidi_detach(device_t self, int flags)
    457 {
    458 	struct umidi_softc *sc = device_private(self);
    459 
    460 	DPRINTFN(1,("umidi_detach\n"));
    461 
    462 	mutex_enter(&sc->sc_lock);
    463 	sc->sc_dying = 1;
    464 	if (--sc->sc_refcnt >= 0)
    465 		usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
    466 	mutex_exit(&sc->sc_lock);
    467 
    468 	detach_all_mididevs(sc, flags);
    469 	free_all_mididevs(sc);
    470 	free_all_jacks(sc);
    471 	free_all_endpoints(sc);
    472 
    473 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    474 
    475 	mutex_destroy(&sc->sc_lock);
    476 	cv_destroy(&sc->sc_detach_cv);
    477 	cv_destroy(&sc->sc_cv);
    478 
    479 	return 0;
    480 }
    481 
    482 
    483 /*
    484  * midi_if stuffs
    485  */
    486 int
    487 umidi_open(void *addr,
    488 	   int flags,
    489 	   void (*iintr)(void *, int),
    490 	   void (*ointr)(void *),
    491 	   void *arg)
    492 {
    493 	struct umidi_mididev *mididev = addr;
    494 	struct umidi_softc *sc = mididev->sc;
    495 	usbd_status err;
    496 
    497 	KASSERT(mutex_owned(&sc->sc_lock));
    498 	DPRINTF(("umidi_open: sc=%p\n", sc));
    499 
    500 	if (mididev->opened)
    501 		return EBUSY;
    502 	if (sc->sc_dying)
    503 		return EIO;
    504 
    505 	mididev->opened = 1;
    506 	mididev->flags = flags;
    507 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
    508 		err = open_out_jack(mididev->out_jack, arg, ointr);
    509 		if (err != USBD_NORMAL_COMPLETION)
    510 			goto bad;
    511 	}
    512 	if ((mididev->flags & FREAD) && mididev->in_jack) {
    513 		err = open_in_jack(mididev->in_jack, arg, iintr);
    514 		KASSERT(mididev->opened);
    515 		if (err != USBD_NORMAL_COMPLETION &&
    516 		    err != USBD_IN_PROGRESS) {
    517 			if (mididev->out_jack)
    518 				close_out_jack(mididev->out_jack);
    519 			goto bad;
    520 		}
    521 	}
    522 
    523 	return 0;
    524 bad:
    525 	mididev->opened = 0;
    526 	DPRINTF(("umidi_open: usbd_status %d\n", err));
    527 	KASSERT(mutex_owned(&sc->sc_lock));
    528 	return USBD_IN_USE == err ? EBUSY : EIO;
    529 }
    530 
    531 void
    532 umidi_close(void *addr)
    533 {
    534 	struct umidi_mididev *mididev = addr;
    535 	struct umidi_softc *sc = mididev->sc;
    536 
    537 	KASSERT(mutex_owned(&sc->sc_lock));
    538 
    539 	if (mididev->closing)
    540 		return;
    541 
    542 	mididev->closing = 1;
    543 
    544 	sc->sc_refcnt++;
    545 
    546 	if ((mididev->flags & FWRITE) && mididev->out_jack)
    547 		close_out_jack(mididev->out_jack);
    548 	if ((mididev->flags & FREAD) && mididev->in_jack)
    549 		close_in_jack(mididev->in_jack);
    550 
    551 	if (--sc->sc_refcnt < 0)
    552 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
    553 
    554 	mididev->opened = 0;
    555 	mididev->closing = 0;
    556 }
    557 
    558 int
    559 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
    560     int len)
    561 {
    562 	struct umidi_mididev *mididev = addr;
    563 
    564 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    565 
    566 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    567 		return EIO;
    568 
    569 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
    570 }
    571 
    572 int
    573 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
    574 {
    575 	struct umidi_mididev *mididev = addr;
    576 	int cin;
    577 
    578 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    579 
    580 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    581 		return EIO;
    582 
    583 	switch ( len ) {
    584 	case 1: cin = 5; break;
    585 	case 2: cin = 2; break;
    586 	case 3: cin = 3; break;
    587 	default: return EIO; /* or gcc warns of cin uninitialized */
    588 	}
    589 
    590 	return out_jack_output(mididev->out_jack, msg, len, cin);
    591 }
    592 
    593 int
    594 umidi_sysex(void *addr, u_char *msg, int len)
    595 {
    596 	struct umidi_mididev *mididev = addr;
    597 	int cin;
    598 
    599 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    600 
    601 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    602 		return EIO;
    603 
    604 	switch ( len ) {
    605 	case 1: cin = 5; break;
    606 	case 2: cin = 6; break;
    607 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
    608 	default: return EIO; /* or gcc warns of cin uninitialized */
    609 	}
    610 
    611 	return out_jack_output(mididev->out_jack, msg, len, cin);
    612 }
    613 
    614 int
    615 umidi_rtmsg(void *addr, int d)
    616 {
    617 	struct umidi_mididev *mididev = addr;
    618 	u_char msg = d;
    619 
    620 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    621 
    622 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    623 		return EIO;
    624 
    625 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
    626 }
    627 
    628 void
    629 umidi_getinfo(void *addr, struct midi_info *mi)
    630 {
    631 	struct umidi_mididev *mididev = addr;
    632 	struct umidi_softc *sc = mididev->sc;
    633 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
    634 
    635 	KASSERT(mutex_owned(&sc->sc_lock));
    636 
    637 	mi->name = mididev->label;
    638 	mi->props = MIDI_PROP_OUT_INTR;
    639 	if (mididev->in_jack)
    640 		mi->props |= MIDI_PROP_CAN_INPUT;
    641 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
    642 }
    643 
    644 static void
    645 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
    646 {
    647 	struct umidi_mididev *mididev = addr;
    648 	struct umidi_softc *sc = mididev->sc;
    649 
    650 	*intr = NULL;
    651 	*thread = &sc->sc_lock;
    652 }
    653 
    654 /*
    655  * each endpoint stuffs
    656  */
    657 
    658 /* alloc/free pipe */
    659 static usbd_status
    660 alloc_pipe(struct umidi_endpoint *ep)
    661 {
    662 	struct umidi_softc *sc = ep->sc;
    663 	usbd_status err;
    664 	usb_endpoint_descriptor_t *epd;
    665 
    666 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
    667 	/*
    668 	 * For output, an improvement would be to have a buffer bigger than
    669 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
    670 	 * allow out_solicit to fill the buffer to the full packet size in
    671 	 * all cases. But to use usbd_create_xfer to get a slightly larger
    672 	 * buffer would not be a good way to do that, because if the addition
    673 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
    674 	 * larger block may be wastefully allocated. Some flavor of double
    675 	 * buffering could serve the same purpose, but would increase the
    676 	 * code complexity, so for now I will live with the current slight
    677 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
    678 	 * packet slots.
    679 	 */
    680 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
    681 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
    682 
    683 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
    684 		device_xname(sc->sc_dev), ep, ep->buffer_size));
    685 	ep->num_scheduled = 0;
    686 	ep->this_schedule = 0;
    687 	ep->next_schedule = 0;
    688 	ep->soliciting = 0;
    689 	ep->armed = 0;
    690 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
    691 	if (err)
    692 		goto quit;
    693 	int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
    694 	    USBD_SHORT_XFER_OK, 0, &ep->xfer);
    695 	if (error) {
    696 		usbd_close_pipe(ep->pipe);
    697 		return USBD_NOMEM;
    698 	}
    699 	ep->buffer = usbd_get_buffer(ep->xfer);
    700 	ep->next_slot = ep->buffer;
    701 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    702 	    out_solicit, ep);
    703 quit:
    704 	return err;
    705 }
    706 
    707 static void
    708 free_pipe(struct umidi_endpoint *ep)
    709 {
    710 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
    711 	usbd_abort_pipe(ep->pipe);
    712 	usbd_destroy_xfer(ep->xfer);
    713 	usbd_close_pipe(ep->pipe);
    714 	softint_disestablish(ep->solicit_cookie);
    715 }
    716 
    717 
    718 /* alloc/free the array of endpoint structures */
    719 
    720 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
    721 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
    722 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
    723 
    724 static usbd_status
    725 alloc_all_endpoints(struct umidi_softc *sc)
    726 {
    727 	usbd_status err;
    728 	struct umidi_endpoint *ep;
    729 	int i;
    730 
    731 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
    732 		err = alloc_all_endpoints_fixed_ep(sc);
    733 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
    734 		err = alloc_all_endpoints_yamaha(sc);
    735 	} else {
    736 		err = alloc_all_endpoints_genuine(sc);
    737 	}
    738 	if (err != USBD_NORMAL_COMPLETION)
    739 		return err;
    740 
    741 	ep = sc->sc_endpoints;
    742 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
    743 		err = alloc_pipe(ep++);
    744 		if (err != USBD_NORMAL_COMPLETION) {
    745 			for (; ep != sc->sc_endpoints; ep--)
    746 				free_pipe(ep-1);
    747 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    748 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    749 			break;
    750 		}
    751 	}
    752 	return err;
    753 }
    754 
    755 static void
    756 free_all_endpoints(struct umidi_softc *sc)
    757 {
    758 	int i;
    759 
    760 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
    761 		free_pipe(&sc->sc_endpoints[i]);
    762 	if (sc->sc_endpoints != NULL)
    763 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    764 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    765 }
    766 
    767 static usbd_status
    768 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
    769 {
    770 	usbd_status err;
    771 	const struct umq_fixed_ep_desc *fp;
    772 	struct umidi_endpoint *ep;
    773 	usb_endpoint_descriptor_t *epd;
    774 	int i;
    775 
    776 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
    777 					    UMQ_TYPE_FIXED_EP);
    778 	sc->sc_out_num_jacks = 0;
    779 	sc->sc_in_num_jacks = 0;
    780 	sc->sc_out_num_endpoints = fp->num_out_ep;
    781 	sc->sc_in_num_endpoints = fp->num_in_ep;
    782 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    783 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    784 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
    785 	sc->sc_in_ep =
    786 	    sc->sc_in_num_endpoints ?
    787 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
    788 
    789 	ep = &sc->sc_out_ep[0];
    790 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
    791 		epd = usbd_interface2endpoint_descriptor(
    792 			sc->sc_iface,
    793 			fp->out_ep[i].ep);
    794 		if (!epd) {
    795 			aprint_error_dev(sc->sc_dev,
    796 			    "cannot get endpoint descriptor(out:%d)\n",
    797 			     fp->out_ep[i].ep);
    798 			err = USBD_INVAL;
    799 			goto error;
    800 		}
    801 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
    802 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
    803 			aprint_error_dev(sc->sc_dev,
    804 			    "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
    805 			err = USBD_INVAL;
    806 			goto error;
    807 		}
    808 		ep->sc = sc;
    809 		ep->addr = epd->bEndpointAddress;
    810 		ep->num_jacks = fp->out_ep[i].num_jacks;
    811 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
    812 		ep->num_open = 0;
    813 		ep++;
    814 	}
    815 	ep = &sc->sc_in_ep[0];
    816 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
    817 		epd = usbd_interface2endpoint_descriptor(
    818 			sc->sc_iface,
    819 			fp->in_ep[i].ep);
    820 		if (!epd) {
    821 			aprint_error_dev(sc->sc_dev,
    822 			    "cannot get endpoint descriptor(in:%d)\n",
    823 			     fp->in_ep[i].ep);
    824 			err = USBD_INVAL;
    825 			goto error;
    826 		}
    827 		/*
    828 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
    829 		 * endpoint.  The existing input logic in this driver seems
    830 		 * to work successfully if we just stop treating an interrupt
    831 		 * endpoint as illegal (or the in_progress status we get on
    832 		 * the initial transfer).  It does not seem necessary to
    833 		 * actually use the interrupt flavor of alloc_pipe or make
    834 		 * other serious rearrangements of logic.  I like that.
    835 		 */
    836 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
    837 		case UE_BULK:
    838 		case UE_INTERRUPT:
    839 			if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
    840 				break;
    841 			/*FALLTHROUGH*/
    842 		default:
    843 			aprint_error_dev(sc->sc_dev,
    844 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
    845 			err = USBD_INVAL;
    846 			goto error;
    847 		}
    848 
    849 		ep->sc = sc;
    850 		ep->addr = epd->bEndpointAddress;
    851 		ep->num_jacks = fp->in_ep[i].num_jacks;
    852 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
    853 		ep->num_open = 0;
    854 		ep++;
    855 	}
    856 
    857 	return USBD_NORMAL_COMPLETION;
    858 error:
    859 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
    860 	sc->sc_endpoints = NULL;
    861 	return err;
    862 }
    863 
    864 static usbd_status
    865 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
    866 {
    867 	/* This driver currently supports max 1in/1out bulk endpoints */
    868 	usb_descriptor_t *desc;
    869 	umidi_cs_descriptor_t *udesc;
    870 	usb_endpoint_descriptor_t *epd;
    871 	int out_addr, in_addr, i;
    872 	int dir;
    873 	size_t remain, descsize;
    874 
    875 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    876 	out_addr = in_addr = 0;
    877 
    878 	/* detect endpoints */
    879 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
    880 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
    881 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    882 		KASSERT(epd != NULL);
    883 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
    884 			dir = UE_GET_DIR(epd->bEndpointAddress);
    885 			if (dir==UE_DIR_OUT && !out_addr)
    886 				out_addr = epd->bEndpointAddress;
    887 			else if (dir==UE_DIR_IN && !in_addr)
    888 				in_addr = epd->bEndpointAddress;
    889 		}
    890 	}
    891 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
    892 
    893 	/* count jacks */
    894 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
    895 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
    896 		return USBD_INVAL;
    897 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
    898 		(size_t)udesc->bLength;
    899 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    900 
    901 	while (remain >= sizeof(usb_descriptor_t)) {
    902 		descsize = udesc->bLength;
    903 		if (descsize>remain || descsize==0)
    904 			break;
    905 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
    906 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
    907 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
    908 				sc->sc_out_num_jacks++;
    909 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
    910 				sc->sc_in_num_jacks++;
    911 		}
    912 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    913 		remain -= descsize;
    914 	}
    915 
    916 	/* validate some parameters */
    917 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
    918 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
    919 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
    920 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
    921 	if (sc->sc_out_num_jacks && out_addr) {
    922 		sc->sc_out_num_endpoints = 1;
    923 	} else {
    924 		sc->sc_out_num_endpoints = 0;
    925 		sc->sc_out_num_jacks = 0;
    926 	}
    927 	if (sc->sc_in_num_jacks && in_addr) {
    928 		sc->sc_in_num_endpoints = 1;
    929 	} else {
    930 		sc->sc_in_num_endpoints = 0;
    931 		sc->sc_in_num_jacks = 0;
    932 	}
    933 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    934 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    935 	if (sc->sc_out_num_endpoints) {
    936 		sc->sc_out_ep = sc->sc_endpoints;
    937 		sc->sc_out_ep->sc = sc;
    938 		sc->sc_out_ep->addr = out_addr;
    939 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
    940 		sc->sc_out_ep->num_open = 0;
    941 	} else
    942 		sc->sc_out_ep = NULL;
    943 
    944 	if (sc->sc_in_num_endpoints) {
    945 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
    946 		sc->sc_in_ep->sc = sc;
    947 		sc->sc_in_ep->addr = in_addr;
    948 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
    949 		sc->sc_in_ep->num_open = 0;
    950 	} else
    951 		sc->sc_in_ep = NULL;
    952 
    953 	return USBD_NORMAL_COMPLETION;
    954 }
    955 
    956 static usbd_status
    957 alloc_all_endpoints_genuine(struct umidi_softc *sc)
    958 {
    959 	usb_interface_descriptor_t *interface_desc;
    960 	usb_config_descriptor_t *config_desc;
    961 	usb_descriptor_t *desc;
    962 	int num_ep;
    963 	size_t remain, descsize;
    964 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
    965 	int epaddr;
    966 
    967 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
    968 	num_ep = interface_desc->bNumEndpoints;
    969 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
    970 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    971 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    972 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
    973 	epaddr = -1;
    974 
    975 	/* get the list of endpoints for midi stream */
    976 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
    977 	desc = (usb_descriptor_t *) config_desc;
    978 	remain = (size_t)UGETW(config_desc->wTotalLength);
    979 	while (remain>=sizeof(usb_descriptor_t)) {
    980 		descsize = desc->bLength;
    981 		if (descsize>remain || descsize==0)
    982 			break;
    983 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
    984 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
    985 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
    986 			epaddr = TO_EPD(desc)->bEndpointAddress;
    987 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
    988 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
    989 			   epaddr!=-1) {
    990 			if (num_ep>0) {
    991 				num_ep--;
    992 				p->sc = sc;
    993 				p->addr = epaddr;
    994 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
    995 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
    996 					sc->sc_out_num_endpoints++;
    997 					sc->sc_out_num_jacks += p->num_jacks;
    998 				} else {
    999 					sc->sc_in_num_endpoints++;
   1000 					sc->sc_in_num_jacks += p->num_jacks;
   1001 				}
   1002 				p++;
   1003 			}
   1004 		} else
   1005 			epaddr = -1;
   1006 		desc = NEXT_D(desc);
   1007 		remain-=descsize;
   1008 	}
   1009 
   1010 	/* sort endpoints */
   1011 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
   1012 	p = sc->sc_endpoints;
   1013 	endep = p + num_ep;
   1014 	while (p<endep) {
   1015 		lowest = p;
   1016 		for (q=p+1; q<endep; q++) {
   1017 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
   1018 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
   1019 			    ((UE_GET_DIR(lowest->addr)==
   1020 			      UE_GET_DIR(q->addr)) &&
   1021 			     (UE_GET_ADDR(lowest->addr)>
   1022 			      UE_GET_ADDR(q->addr))))
   1023 				lowest = q;
   1024 		}
   1025 		if (lowest != p) {
   1026 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
   1027 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
   1028 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
   1029 		}
   1030 		p->num_open = 0;
   1031 		p++;
   1032 	}
   1033 
   1034 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
   1035 	sc->sc_in_ep =
   1036 	    sc->sc_in_num_endpoints ?
   1037 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
   1038 
   1039 	return USBD_NORMAL_COMPLETION;
   1040 }
   1041 
   1042 
   1043 /*
   1044  * jack stuffs
   1045  */
   1046 
   1047 static usbd_status
   1048 alloc_all_jacks(struct umidi_softc *sc)
   1049 {
   1050 	int i, j;
   1051 	struct umidi_endpoint *ep;
   1052 	struct umidi_jack *jack;
   1053 	const unsigned char *cn_spec;
   1054 
   1055 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
   1056 		sc->cblnums_global = 0;
   1057 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
   1058 		sc->cblnums_global = 1;
   1059 	else {
   1060 		/*
   1061 		 * I don't think this default is correct, but it preserves
   1062 		 * the prior behavior of the code. That's why I defined two
   1063 		 * complementary quirks. Any device for which the default
   1064 		 * behavior is wrong can be made to work by giving it an
   1065 		 * explicit quirk, and if a pattern ever develops (as I suspect
   1066 		 * it will) that a lot of otherwise standard USB MIDI devices
   1067 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
   1068 		 * changed to 0, and the only devices that will break are those
   1069 		 * listing neither quirk, and they'll easily be fixed by giving
   1070 		 * them the CN_SEQ_GLOBAL quirk.
   1071 		 */
   1072 		sc->cblnums_global = 1;
   1073 	}
   1074 
   1075 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
   1076 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
   1077 					    		 UMQ_TYPE_CN_FIXED);
   1078 	else
   1079 		cn_spec = NULL;
   1080 
   1081 	/* allocate/initialize structures */
   1082 	sc->sc_jacks =
   1083 	    kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
   1084 		    + sc->sc_out_num_jacks), KM_SLEEP);
   1085 	if (!sc->sc_jacks)
   1086 		return USBD_NOMEM;
   1087 	sc->sc_out_jacks =
   1088 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
   1089 	sc->sc_in_jacks =
   1090 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
   1091 
   1092 	jack = &sc->sc_out_jacks[0];
   1093 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
   1094 		jack->opened = 0;
   1095 		jack->bound = 0;
   1096 		jack->arg = NULL;
   1097 		jack->u.out.intr = NULL;
   1098 		jack->midiman_ppkt = NULL;
   1099 		if (sc->cblnums_global)
   1100 			jack->cable_number = i;
   1101 		jack++;
   1102 	}
   1103 	jack = &sc->sc_in_jacks[0];
   1104 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
   1105 		jack->opened = 0;
   1106 		jack->bound = 0;
   1107 		jack->arg = NULL;
   1108 		jack->u.in.intr = NULL;
   1109 		if (sc->cblnums_global)
   1110 			jack->cable_number = i;
   1111 		jack++;
   1112 	}
   1113 
   1114 	/* assign each jacks to each endpoints */
   1115 	jack = &sc->sc_out_jacks[0];
   1116 	ep = &sc->sc_out_ep[0];
   1117 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
   1118 		for (j = 0; j < ep->num_jacks; j++) {
   1119 			jack->endpoint = ep;
   1120 			if (cn_spec != NULL)
   1121 				jack->cable_number = *cn_spec++;
   1122 			else if (!sc->cblnums_global)
   1123 				jack->cable_number = j;
   1124 			ep->jacks[jack->cable_number] = jack;
   1125 			jack++;
   1126 		}
   1127 		ep++;
   1128 	}
   1129 	jack = &sc->sc_in_jacks[0];
   1130 	ep = &sc->sc_in_ep[0];
   1131 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
   1132 		for (j = 0; j < ep->num_jacks; j++) {
   1133 			jack->endpoint = ep;
   1134 			if (cn_spec != NULL)
   1135 				jack->cable_number = *cn_spec++;
   1136 			else if (!sc->cblnums_global)
   1137 				jack->cable_number = j;
   1138 			ep->jacks[jack->cable_number] = jack;
   1139 			jack++;
   1140 		}
   1141 		ep++;
   1142 	}
   1143 
   1144 	return USBD_NORMAL_COMPLETION;
   1145 }
   1146 
   1147 static void
   1148 free_all_jacks(struct umidi_softc *sc)
   1149 {
   1150 	struct umidi_jack *jacks;
   1151 	size_t len;
   1152 
   1153 	mutex_enter(&sc->sc_lock);
   1154 	jacks = sc->sc_jacks;
   1155 	len = sizeof(*sc->sc_out_jacks)
   1156 	    * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
   1157 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
   1158 	mutex_exit(&sc->sc_lock);
   1159 
   1160 	if (jacks)
   1161 		kmem_free(jacks, len);
   1162 }
   1163 
   1164 static usbd_status
   1165 bind_jacks_to_mididev(struct umidi_softc *sc,
   1166 		      struct umidi_jack *out_jack,
   1167 		      struct umidi_jack *in_jack,
   1168 		      struct umidi_mididev *mididev)
   1169 {
   1170 	if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
   1171 		return USBD_IN_USE;
   1172 	if (mididev->out_jack || mididev->in_jack)
   1173 		return USBD_IN_USE;
   1174 
   1175 	if (out_jack)
   1176 		out_jack->bound = 1;
   1177 	if (in_jack)
   1178 		in_jack->bound = 1;
   1179 	mididev->in_jack = in_jack;
   1180 	mididev->out_jack = out_jack;
   1181 
   1182 	mididev->closing = 0;
   1183 
   1184 	return USBD_NORMAL_COMPLETION;
   1185 }
   1186 
   1187 static void
   1188 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
   1189 {
   1190 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
   1191 
   1192 	mididev->closing = 1;
   1193 
   1194 	if ((mididev->flags & FWRITE) && mididev->out_jack)
   1195 		close_out_jack(mididev->out_jack);
   1196 	if ((mididev->flags & FREAD) && mididev->in_jack)
   1197 		close_in_jack(mididev->in_jack);
   1198 
   1199 	if (mididev->out_jack) {
   1200 		mididev->out_jack->bound = 0;
   1201 		mididev->out_jack = NULL;
   1202 	}
   1203 	if (mididev->in_jack) {
   1204 		mididev->in_jack->bound = 0;
   1205 		mididev->in_jack = NULL;
   1206 	}
   1207 }
   1208 
   1209 static void
   1210 unbind_all_jacks(struct umidi_softc *sc)
   1211 {
   1212 	int i;
   1213 
   1214 	mutex_enter(&sc->sc_lock);
   1215 	if (sc->sc_mididevs)
   1216 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1217 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
   1218 	mutex_exit(&sc->sc_lock);
   1219 }
   1220 
   1221 static usbd_status
   1222 assign_all_jacks_automatically(struct umidi_softc *sc)
   1223 {
   1224 	usbd_status err;
   1225 	int i;
   1226 	struct umidi_jack *out, *in;
   1227 	const signed char *asg_spec;
   1228 
   1229 	err =
   1230 	    alloc_all_mididevs(sc,
   1231 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
   1232 	if (err!=USBD_NORMAL_COMPLETION)
   1233 		return err;
   1234 
   1235 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
   1236 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
   1237 					    		  UMQ_TYPE_MD_FIXED);
   1238 	else
   1239 		asg_spec = NULL;
   1240 
   1241 	for (i = 0; i < sc->sc_num_mididevs; i++) {
   1242 		if (asg_spec != NULL) {
   1243 			if (*asg_spec == -1)
   1244 				out = NULL;
   1245 			else
   1246 				out = &sc->sc_out_jacks[*asg_spec];
   1247 			++ asg_spec;
   1248 			if (*asg_spec == -1)
   1249 				in = NULL;
   1250 			else
   1251 				in = &sc->sc_in_jacks[*asg_spec];
   1252 			++ asg_spec;
   1253 		} else {
   1254 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
   1255 						       : NULL;
   1256 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
   1257 						     : NULL;
   1258 		}
   1259 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
   1260 		if (err != USBD_NORMAL_COMPLETION) {
   1261 			free_all_mididevs(sc);
   1262 			return err;
   1263 		}
   1264 	}
   1265 
   1266 	return USBD_NORMAL_COMPLETION;
   1267 }
   1268 
   1269 static usbd_status
   1270 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
   1271 {
   1272 	struct umidi_endpoint *ep = jack->endpoint;
   1273 	struct umidi_softc *sc = ep->sc;
   1274 	umidi_packet_bufp end;
   1275 	int err;
   1276 
   1277 	KASSERT(mutex_owned(&sc->sc_lock));
   1278 
   1279 	if (jack->opened)
   1280 		return USBD_IN_USE;
   1281 
   1282 	jack->arg = arg;
   1283 	jack->u.out.intr = intr;
   1284 	jack->midiman_ppkt = NULL;
   1285 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
   1286 	jack->opened = 1;
   1287 	ep->num_open++;
   1288 	/*
   1289 	 * out_solicit maintains an invariant that there will always be
   1290 	 * (num_open - num_scheduled) slots free in the buffer. as we have
   1291 	 * just incremented num_open, the buffer may be too full to satisfy
   1292 	 * the invariant until a transfer completes, for which we must wait.
   1293 	 */
   1294 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
   1295 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1296 		     mstohz(10));
   1297 		if (err) {
   1298 			ep->num_open--;
   1299 			jack->opened = 0;
   1300 			return USBD_IOERROR;
   1301 		}
   1302 	}
   1303 
   1304 	return USBD_NORMAL_COMPLETION;
   1305 }
   1306 
   1307 static usbd_status
   1308 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
   1309 {
   1310 	usbd_status err = USBD_NORMAL_COMPLETION;
   1311 	struct umidi_endpoint *ep = jack->endpoint;
   1312 
   1313 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1314 
   1315 	if (jack->opened)
   1316 		return USBD_IN_USE;
   1317 
   1318 	jack->arg = arg;
   1319 	jack->u.in.intr = intr;
   1320 	jack->opened = 1;
   1321 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
   1322 		/*
   1323 		 * Can't hold the interrupt lock while calling into USB,
   1324 		 * but we can safely drop it here.
   1325 		 */
   1326 		mutex_exit(&ep->sc->sc_lock);
   1327 		err = start_input_transfer(ep);
   1328 		if (err != USBD_NORMAL_COMPLETION &&
   1329 		    err != USBD_IN_PROGRESS) {
   1330 			ep->num_open--;
   1331 		}
   1332 		mutex_enter(&ep->sc->sc_lock);
   1333 	}
   1334 
   1335 	return err;
   1336 }
   1337 
   1338 static void
   1339 close_out_jack(struct umidi_jack *jack)
   1340 {
   1341 	struct umidi_endpoint *ep;
   1342 	struct umidi_softc *sc;
   1343 	uint16_t mask;
   1344 	int err;
   1345 
   1346 	if (jack->opened) {
   1347 		ep = jack->endpoint;
   1348 		sc = ep->sc;
   1349 
   1350 		KASSERT(mutex_owned(&sc->sc_lock));
   1351 		mask = 1 << (jack->cable_number);
   1352 		while (mask & (ep->this_schedule | ep->next_schedule)) {
   1353 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1354 			     mstohz(10));
   1355 			if (err)
   1356 				break;
   1357 		}
   1358 		/*
   1359 		 * We can re-enter this function from both close() and
   1360 		 * detach().  Make sure only one of them does this part.
   1361 		 */
   1362 		if (jack->opened) {
   1363 			jack->opened = 0;
   1364 			jack->endpoint->num_open--;
   1365 			ep->this_schedule &= ~mask;
   1366 			ep->next_schedule &= ~mask;
   1367 		}
   1368 	}
   1369 }
   1370 
   1371 static void
   1372 close_in_jack(struct umidi_jack *jack)
   1373 {
   1374 	if (jack->opened) {
   1375 		struct umidi_softc *sc = jack->endpoint->sc;
   1376 
   1377 		KASSERT(mutex_owned(&sc->sc_lock));
   1378 
   1379 		jack->opened = 0;
   1380 		if (--jack->endpoint->num_open == 0) {
   1381 			/*
   1382 			 * We have to drop the (interrupt) lock so that
   1383 			 * the USB thread lock can be safely taken by
   1384 			 * the abort operation.  This is safe as this
   1385 			 * either closing or dying will be set proerly.
   1386 			 */
   1387 			mutex_exit(&sc->sc_lock);
   1388 			usbd_abort_pipe(jack->endpoint->pipe);
   1389 			mutex_enter(&sc->sc_lock);
   1390 		}
   1391 	}
   1392 }
   1393 
   1394 static usbd_status
   1395 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
   1396 {
   1397 	if (mididev->sc)
   1398 		return USBD_IN_USE;
   1399 
   1400 	mididev->sc = sc;
   1401 
   1402 	describe_mididev(mididev);
   1403 
   1404 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
   1405 
   1406 	return USBD_NORMAL_COMPLETION;
   1407 }
   1408 
   1409 static usbd_status
   1410 detach_mididev(struct umidi_mididev *mididev, int flags)
   1411 {
   1412 	struct umidi_softc *sc = mididev->sc;
   1413 
   1414 	if (!sc)
   1415 		return USBD_NO_ADDR;
   1416 
   1417 	mutex_enter(&sc->sc_lock);
   1418 	if (mididev->opened) {
   1419 		umidi_close(mididev);
   1420 	}
   1421 	unbind_jacks_from_mididev(mididev);
   1422 	mutex_exit(&sc->sc_lock);
   1423 
   1424 	if (mididev->mdev != NULL)
   1425 		config_detach(mididev->mdev, flags);
   1426 
   1427 	if (NULL != mididev->label) {
   1428 		kmem_free(mididev->label, mididev->label_len);
   1429 		mididev->label = NULL;
   1430 	}
   1431 
   1432 	mididev->sc = NULL;
   1433 
   1434 	return USBD_NORMAL_COMPLETION;
   1435 }
   1436 
   1437 static void
   1438 deactivate_mididev(struct umidi_mididev *mididev)
   1439 {
   1440 	if (mididev->out_jack)
   1441 		mididev->out_jack->bound = 0;
   1442 	if (mididev->in_jack)
   1443 		mididev->in_jack->bound = 0;
   1444 }
   1445 
   1446 static usbd_status
   1447 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
   1448 {
   1449 	sc->sc_num_mididevs = nmidi;
   1450 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
   1451 	return USBD_NORMAL_COMPLETION;
   1452 }
   1453 
   1454 static void
   1455 free_all_mididevs(struct umidi_softc *sc)
   1456 {
   1457 	struct umidi_mididev *mididevs;
   1458 	size_t len;
   1459 
   1460 	mutex_enter(&sc->sc_lock);
   1461 	mididevs = sc->sc_mididevs;
   1462 	if (mididevs)
   1463 		  len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
   1464 	sc->sc_mididevs = NULL;
   1465 	sc->sc_num_mididevs = 0;
   1466 	mutex_exit(&sc->sc_lock);
   1467 
   1468 	if (mididevs)
   1469 		kmem_free(mididevs, len);
   1470 }
   1471 
   1472 static usbd_status
   1473 attach_all_mididevs(struct umidi_softc *sc)
   1474 {
   1475 	usbd_status err;
   1476 	int i;
   1477 
   1478 	if (sc->sc_mididevs)
   1479 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1480 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
   1481 			if (err != USBD_NORMAL_COMPLETION)
   1482 				return err;
   1483 		}
   1484 
   1485 	return USBD_NORMAL_COMPLETION;
   1486 }
   1487 
   1488 static usbd_status
   1489 detach_all_mididevs(struct umidi_softc *sc, int flags)
   1490 {
   1491 	usbd_status err;
   1492 	int i;
   1493 
   1494 	if (sc->sc_mididevs)
   1495 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1496 			err = detach_mididev(&sc->sc_mididevs[i], flags);
   1497 			if (err != USBD_NORMAL_COMPLETION)
   1498 				return err;
   1499 		}
   1500 
   1501 	return USBD_NORMAL_COMPLETION;
   1502 }
   1503 
   1504 static void
   1505 deactivate_all_mididevs(struct umidi_softc *sc)
   1506 {
   1507 	int i;
   1508 
   1509 	if (sc->sc_mididevs) {
   1510 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1511 			deactivate_mididev(&sc->sc_mididevs[i]);
   1512 	}
   1513 }
   1514 
   1515 /*
   1516  * TODO: the 0-based cable numbers will often not match the labeling of the
   1517  * equipment. Ideally:
   1518  *  For class-compliant devices: get the iJack string from the jack descriptor.
   1519  *  Otherwise:
   1520  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
   1521  *    number for display)
   1522  *  - support an array quirk explictly giving a char * for each jack.
   1523  * For now, you get 0-based cable numbers. If there are multiple endpoints and
   1524  * the CNs are not globally unique, each is shown with its associated endpoint
   1525  * address in hex also. That should not be necessary when using iJack values
   1526  * or a quirk array.
   1527  */
   1528 void
   1529 describe_mididev(struct umidi_mididev *md)
   1530 {
   1531 	char in_label[16];
   1532 	char out_label[16];
   1533 	const char *unit_label;
   1534 	char *final_label;
   1535 	struct umidi_softc *sc;
   1536 	int show_ep_in;
   1537 	int show_ep_out;
   1538 	size_t len;
   1539 
   1540 	sc = md->sc;
   1541 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
   1542 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
   1543 
   1544 	if (NULL == md->in_jack)
   1545 		in_label[0] = '\0';
   1546 	else if (show_ep_in)
   1547 		snprintf(in_label, sizeof(in_label), "<%d(%x) ",
   1548 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
   1549 	else
   1550 		snprintf(in_label, sizeof(in_label), "<%d ",
   1551 		    md->in_jack->cable_number);
   1552 
   1553 	if (NULL == md->out_jack)
   1554 		out_label[0] = '\0';
   1555 	else if (show_ep_out)
   1556 		snprintf(out_label, sizeof(out_label), ">%d(%x) ",
   1557 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
   1558 	else
   1559 		snprintf(out_label, sizeof(out_label), ">%d ",
   1560 		    md->out_jack->cable_number);
   1561 
   1562 	unit_label = device_xname(sc->sc_dev);
   1563 
   1564 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
   1565 
   1566 	final_label = kmem_alloc(len, KM_SLEEP);
   1567 
   1568 	snprintf(final_label, len, "%s%son %s",
   1569 	    in_label, out_label, unit_label);
   1570 
   1571 	md->label = final_label;
   1572 	md->label_len = len;
   1573 }
   1574 
   1575 #ifdef UMIDI_DEBUG
   1576 static void
   1577 dump_sc(struct umidi_softc *sc)
   1578 {
   1579 	int i;
   1580 
   1581 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
   1582 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
   1583 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
   1584 		dump_ep(&sc->sc_out_ep[i]);
   1585 	}
   1586 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
   1587 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
   1588 		dump_ep(&sc->sc_in_ep[i]);
   1589 	}
   1590 }
   1591 
   1592 static void
   1593 dump_ep(struct umidi_endpoint *ep)
   1594 {
   1595 	int i;
   1596 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
   1597 		if (NULL==ep->jacks[i])
   1598 			continue;
   1599 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
   1600 		dump_jack(ep->jacks[i]);
   1601 	}
   1602 }
   1603 static void
   1604 dump_jack(struct umidi_jack *jack)
   1605 {
   1606 	DPRINTFN(10, ("\t\t\tep=%p\n",
   1607 		      jack->endpoint));
   1608 }
   1609 
   1610 #endif /* UMIDI_DEBUG */
   1611 
   1612 
   1613 
   1614 /*
   1615  * MUX MIDI PACKET
   1616  */
   1617 
   1618 static const int packet_length[16] = {
   1619 	/*0*/	-1,
   1620 	/*1*/	-1,
   1621 	/*2*/	2,
   1622 	/*3*/	3,
   1623 	/*4*/	3,
   1624 	/*5*/	1,
   1625 	/*6*/	2,
   1626 	/*7*/	3,
   1627 	/*8*/	3,
   1628 	/*9*/	3,
   1629 	/*A*/	3,
   1630 	/*B*/	3,
   1631 	/*C*/	2,
   1632 	/*D*/	2,
   1633 	/*E*/	3,
   1634 	/*F*/	1,
   1635 };
   1636 
   1637 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
   1638 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
   1639 #define MIX_CN_CIN(cn, cin) \
   1640 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
   1641 			  ((unsigned char)(cin)&0x0F)))
   1642 
   1643 static usbd_status
   1644 start_input_transfer(struct umidi_endpoint *ep)
   1645 {
   1646 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
   1647 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
   1648 	return usbd_transfer(ep->xfer);
   1649 }
   1650 
   1651 static usbd_status
   1652 start_output_transfer(struct umidi_endpoint *ep)
   1653 {
   1654 	usbd_status rv;
   1655 	uint32_t length;
   1656 	int i;
   1657 
   1658 	length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
   1659 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
   1660 	    ep->buffer, ep->next_slot, length));
   1661 
   1662 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
   1663 	    USBD_NO_TIMEOUT, out_intr);
   1664 	rv = usbd_transfer(ep->xfer);
   1665 
   1666 	/*
   1667 	 * Once the transfer is scheduled, no more adding to partial
   1668 	 * packets within it.
   1669 	 */
   1670 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1671 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
   1672 			if (NULL != ep->jacks[i])
   1673 				ep->jacks[i]->midiman_ppkt = NULL;
   1674 	}
   1675 
   1676 	return rv;
   1677 }
   1678 
   1679 #ifdef UMIDI_DEBUG
   1680 #define DPR_PACKET(dir, sc, p)						\
   1681 if ((unsigned char)(p)[1]!=0xFE)				\
   1682 	DPRINTFN(500,							\
   1683 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
   1684 		  device_xname(sc->sc_dev),				\
   1685 		  (unsigned char)(p)[0],			\
   1686 		  (unsigned char)(p)[1],			\
   1687 		  (unsigned char)(p)[2],			\
   1688 		  (unsigned char)(p)[3]));
   1689 #else
   1690 #define DPR_PACKET(dir, sc, p)
   1691 #endif
   1692 
   1693 /*
   1694  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
   1695  * with the cable number and length in the last byte instead of the first,
   1696  * but there the resemblance ends. Where a USB MIDI packet is a semantic
   1697  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
   1698  * with a cable nybble and a length nybble (which, unlike the CIN of a
   1699  * real USB MIDI packet, has no semantics at all besides the length).
   1700  * A packet received from a Midiman may contain part of a MIDI message,
   1701  * more than one MIDI message, or parts of more than one MIDI message. A
   1702  * three-byte MIDI message may arrive in three packets of data length 1, and
   1703  * running status may be used. Happily, the midi(4) driver above us will put
   1704  * it all back together, so the only cost is in USB bandwidth. The device
   1705  * has an easier time with what it receives from us: we'll pack messages in
   1706  * and across packets, but filling the packets whenever possible and,
   1707  * as midi(4) hands us a complete message at a time, we'll never send one
   1708  * in a dribble of short packets.
   1709  */
   1710 
   1711 static int
   1712 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
   1713 {
   1714 	struct umidi_endpoint *ep = out_jack->endpoint;
   1715 	struct umidi_softc *sc = ep->sc;
   1716 	unsigned char *packet;
   1717 	int plen;
   1718 	int poff;
   1719 
   1720 	KASSERT(mutex_owned(&sc->sc_lock));
   1721 
   1722 	if (sc->sc_dying)
   1723 		return EIO;
   1724 
   1725 	if (!out_jack->opened)
   1726 		return ENODEV; /* XXX as it was, is this the right errno? */
   1727 
   1728 	sc->sc_refcnt++;
   1729 
   1730 #ifdef UMIDI_DEBUG
   1731 	if (umididebug >= 100)
   1732 		microtime(&umidi_tv);
   1733 #endif
   1734 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
   1735 	    "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
   1736 	    (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
   1737 
   1738 	packet = *ep->next_slot++;
   1739 	KASSERT(ep->buffer_size >=
   1740 	    (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
   1741 	memset(packet, 0, UMIDI_PACKET_SIZE);
   1742 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1743 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
   1744 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
   1745 			plen = 3 - poff;
   1746 			if (plen > len)
   1747 				plen = len;
   1748 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
   1749 			src += plen;
   1750 			len -= plen;
   1751 			plen += poff;
   1752 			out_jack->midiman_ppkt[3] =
   1753 			    MIX_CN_CIN(out_jack->cable_number, plen);
   1754 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
   1755 			if (3 == plen)
   1756 				out_jack->midiman_ppkt = NULL; /* no more */
   1757 		}
   1758 		if (0 == len)
   1759 			ep->next_slot--; /* won't be needed, nevermind */
   1760 		else {
   1761 			memcpy(packet, src, len);
   1762 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
   1763 			DPR_PACKET(out, sc, packet);
   1764 			if (len < 3)
   1765 				out_jack->midiman_ppkt = packet;
   1766 		}
   1767 	} else { /* the nice simple USB class-compliant case */
   1768 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
   1769 		memcpy(packet+1, src, len);
   1770 		DPR_PACKET(out, sc, packet);
   1771 	}
   1772 	ep->next_schedule |= 1<<(out_jack->cable_number);
   1773 	++ ep->num_scheduled;
   1774 	if (!ep->armed && !ep->soliciting) {
   1775 		/*
   1776 		 * It would be bad to call out_solicit directly here (the
   1777 		 * caller need not be reentrant) but a soft interrupt allows
   1778 		 * solicit to run immediately the caller exits its critical
   1779 		 * section, and if the caller has more to write we can get it
   1780 		 * before starting the USB transfer, and send a longer one.
   1781 		 */
   1782 		ep->soliciting = 1;
   1783 		kpreempt_disable();
   1784 		softint_schedule(ep->solicit_cookie);
   1785 		kpreempt_enable();
   1786 	}
   1787 
   1788 	if (--sc->sc_refcnt < 0)
   1789 		usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
   1790 
   1791 	return 0;
   1792 }
   1793 
   1794 static void
   1795 in_intr(struct usbd_xfer *xfer, void *priv,
   1796     usbd_status status)
   1797 {
   1798 	int cn, len, i;
   1799 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1800 	struct umidi_softc *sc = ep->sc;
   1801 	struct umidi_jack *jack;
   1802 	unsigned char *packet;
   1803 	umidi_packet_bufp slot;
   1804 	umidi_packet_bufp end;
   1805 	unsigned char *data;
   1806 	uint32_t count;
   1807 
   1808 	if (ep->sc->sc_dying || !ep->num_open)
   1809 		return;
   1810 
   1811 	mutex_enter(&sc->sc_lock);
   1812 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1813 	if (0 == count % UMIDI_PACKET_SIZE) {
   1814 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
   1815 			     device_xname(ep->sc->sc_dev), ep, count));
   1816 	} else {
   1817 		DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
   1818 			device_xname(ep->sc->sc_dev), ep, count));
   1819 	}
   1820 
   1821 	slot = ep->buffer;
   1822 	end = slot + count / sizeof(*slot);
   1823 
   1824 	for (packet = *slot; slot < end; packet = *++slot) {
   1825 
   1826 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1827 			cn = (0xf0&(packet[3]))>>4;
   1828 			len = 0x0f&(packet[3]);
   1829 			data = packet;
   1830 		} else {
   1831 			cn = GET_CN(packet[0]);
   1832 			len = packet_length[GET_CIN(packet[0])];
   1833 			data = packet + 1;
   1834 		}
   1835 		/* 0 <= cn <= 15 by inspection of above code */
   1836 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
   1837 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
   1838 				 "%02X %02X %02X (try CN_SEQ quirk?)\n",
   1839 				 device_xname(ep->sc->sc_dev), ep, cn, len,
   1840 				 (unsigned)data[0],
   1841 				 (unsigned)data[1],
   1842 				 (unsigned)data[2]));
   1843 			mutex_exit(&sc->sc_lock);
   1844 			return;
   1845 		}
   1846 
   1847 		if (!jack->bound || !jack->opened)
   1848 			continue;
   1849 
   1850 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
   1851 			     "%02X %02X %02X\n",
   1852 			     device_xname(ep->sc->sc_dev), ep, cn, len,
   1853 			     (unsigned)data[0],
   1854 			     (unsigned)data[1],
   1855 			     (unsigned)data[2]));
   1856 
   1857 		if (jack->u.in.intr) {
   1858 			for (i = 0; i < len; i++) {
   1859 				(*jack->u.in.intr)(jack->arg, data[i]);
   1860 			}
   1861 		}
   1862 
   1863 	}
   1864 
   1865 	(void)start_input_transfer(ep);
   1866 	mutex_exit(&sc->sc_lock);
   1867 }
   1868 
   1869 static void
   1870 out_intr(struct usbd_xfer *xfer, void *priv,
   1871     usbd_status status)
   1872 {
   1873 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1874 	struct umidi_softc *sc = ep->sc;
   1875 	uint32_t count;
   1876 
   1877 	if (sc->sc_dying)
   1878 		return;
   1879 
   1880 	mutex_enter(&sc->sc_lock);
   1881 #ifdef UMIDI_DEBUG
   1882 	if (umididebug >= 200)
   1883 		microtime(&umidi_tv);
   1884 #endif
   1885 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1886 	if (0 == count % UMIDI_PACKET_SIZE) {
   1887 		DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
   1888 		    "length %u\n", device_xname(ep->sc->sc_dev),
   1889 		    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
   1890 		    count));
   1891 	} else {
   1892 		DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
   1893 			device_xname(ep->sc->sc_dev), ep, count));
   1894 	}
   1895 	count /= UMIDI_PACKET_SIZE;
   1896 
   1897 	/*
   1898 	 * If while the transfer was pending we buffered any new messages,
   1899 	 * move them to the start of the buffer.
   1900 	 */
   1901 	ep->next_slot -= count;
   1902 	if (ep->buffer < ep->next_slot) {
   1903 		memcpy(ep->buffer, ep->buffer + count,
   1904 		       (char *)ep->next_slot - (char *)ep->buffer);
   1905 	}
   1906 	cv_broadcast(&sc->sc_cv);
   1907 	/*
   1908 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
   1909 	 * Running at IPL_USB so the following should happen to be safe.
   1910 	 */
   1911 	ep->armed = 0;
   1912 	if (!ep->soliciting) {
   1913 		ep->soliciting = 1;
   1914 		out_solicit_locked(ep);
   1915 	}
   1916 	mutex_exit(&sc->sc_lock);
   1917 }
   1918 
   1919 /*
   1920  * A jack on which we have received a packet must be called back on its
   1921  * out.intr handler before it will send us another; it is considered
   1922  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
   1923  * we need no extra buffer space for it.
   1924  *
   1925  * In contrast, a jack that is open but not scheduled may supply us a packet
   1926  * at any time, driven by the top half, and we must be able to accept it, no
   1927  * excuses. So we must ensure that at any point in time there are at least
   1928  * (num_open - num_scheduled) slots free.
   1929  *
   1930  * As long as there are more slots free than that minimum, we can loop calling
   1931  * scheduled jacks back on their "interrupt" handlers, soliciting more
   1932  * packets, starting the USB transfer only when the buffer space is down to
   1933  * the minimum or no jack has any more to send.
   1934  */
   1935 
   1936 static void
   1937 out_solicit_locked(void *arg)
   1938 {
   1939 	struct umidi_endpoint *ep = arg;
   1940 	umidi_packet_bufp end;
   1941 	uint16_t which;
   1942 	struct umidi_jack *jack;
   1943 
   1944 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1945 
   1946 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
   1947 
   1948 	for ( ;; ) {
   1949 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
   1950 			break; /* at IPL_USB */
   1951 		if (ep->this_schedule == 0) {
   1952 			if (ep->next_schedule == 0)
   1953 				break; /* at IPL_USB */
   1954 			ep->this_schedule = ep->next_schedule;
   1955 			ep->next_schedule = 0;
   1956 		}
   1957 		/*
   1958 		 * At least one jack is scheduled. Find and mask off the least
   1959 		 * set bit in this_schedule and decrement num_scheduled.
   1960 		 * Convert mask to bit index to find the corresponding jack,
   1961 		 * and call its intr handler. If it has a message, it will call
   1962 		 * back one of the output methods, which will set its bit in
   1963 		 * next_schedule (not copied into this_schedule until the
   1964 		 * latter is empty). In this way we round-robin the jacks that
   1965 		 * have messages to send, until the buffer is as full as we
   1966 		 * dare, and then start a transfer.
   1967 		 */
   1968 		which = ep->this_schedule;
   1969 		which &= (~which)+1; /* now mask of least set bit */
   1970 		ep->this_schedule &= ~which;
   1971 		--ep->num_scheduled;
   1972 
   1973 		--which; /* now 1s below mask - count 1s to get index */
   1974 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
   1975 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
   1976 		which = (((which >> 4) + which) & 0x0f0f);
   1977 		which +=  (which >> 8);
   1978 		which &= 0x1f; /* the bit index a/k/a jack number */
   1979 
   1980 		jack = ep->jacks[which];
   1981 		if (jack->u.out.intr)
   1982 			(*jack->u.out.intr)(jack->arg);
   1983 	}
   1984 	/* intr lock held at loop exit */
   1985 	if (!ep->armed && ep->next_slot > ep->buffer) {
   1986 		/*
   1987 		 * Can't hold the interrupt lock while calling into USB,
   1988 		 * but we can safely drop it here.
   1989 		 */
   1990 		mutex_exit(&ep->sc->sc_lock);
   1991 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
   1992 		mutex_enter(&ep->sc->sc_lock);
   1993 	}
   1994 	ep->soliciting = 0;
   1995 }
   1996 
   1997 /* Entry point for the softintr.  */
   1998 static void
   1999 out_solicit(void *arg)
   2000 {
   2001 	struct umidi_endpoint *ep = arg;
   2002 	struct umidi_softc *sc = ep->sc;
   2003 
   2004 	mutex_enter(&sc->sc_lock);
   2005 	out_solicit_locked(arg);
   2006 	mutex_exit(&sc->sc_lock);
   2007 }
   2008