umidi.c revision 1.65.12.1 1 /* $NetBSD: umidi.c,v 1.65.12.1 2015/01/11 14:13:25 martin Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.65.12.1 2015/01/11 14:13:25 martin Exp $");
36
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/device.h>
43 #include <sys/ioctl.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/select.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/poll.h>
50 #include <sys/intr.h>
51
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55
56 #include <dev/auconv.h>
57 #include <dev/usb/usbdevs.h>
58 #include <dev/usb/umidi_quirks.h>
59 #include <dev/midi_if.h>
60
61 /* Jack Descriptor */
62 #define UMIDI_MS_HEADER 0x01
63 #define UMIDI_IN_JACK 0x02
64 #define UMIDI_OUT_JACK 0x03
65
66 /* Jack Type */
67 #define UMIDI_EMBEDDED 0x01
68 #define UMIDI_EXTERNAL 0x02
69
70 /* generic, for iteration */
71 typedef struct {
72 uByte bLength;
73 uByte bDescriptorType;
74 uByte bDescriptorSubtype;
75 } UPACKED umidi_cs_descriptor_t;
76
77 typedef struct {
78 uByte bLength;
79 uByte bDescriptorType;
80 uByte bDescriptorSubtype;
81 uWord bcdMSC;
82 uWord wTotalLength;
83 } UPACKED umidi_cs_interface_descriptor_t;
84 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
85
86 typedef struct {
87 uByte bLength;
88 uByte bDescriptorType;
89 uByte bDescriptorSubtype;
90 uByte bNumEmbMIDIJack;
91 } UPACKED umidi_cs_endpoint_descriptor_t;
92 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
93
94 typedef struct {
95 uByte bLength;
96 uByte bDescriptorType;
97 uByte bDescriptorSubtype;
98 uByte bJackType;
99 uByte bJackID;
100 } UPACKED umidi_jack_descriptor_t;
101 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
102
103
104 #define TO_D(p) ((usb_descriptor_t *)(p))
105 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
106 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
107 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
108 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
109 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
110
111
112 #define UMIDI_PACKET_SIZE 4
113
114 /*
115 * hierarchie
116 *
117 * <-- parent child -->
118 *
119 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
120 * ^ | ^ |
121 * +-----+ +-----+
122 */
123
124 /* midi device */
125 struct umidi_mididev {
126 struct umidi_softc *sc;
127 device_t mdev;
128 /* */
129 struct umidi_jack *in_jack;
130 struct umidi_jack *out_jack;
131 char *label;
132 size_t label_len;
133 /* */
134 int opened;
135 int closing;
136 int flags;
137 };
138
139 /* Jack Information */
140 struct umidi_jack {
141 struct umidi_endpoint *endpoint;
142 /* */
143 int cable_number;
144 void *arg;
145 int bound;
146 int opened;
147 unsigned char *midiman_ppkt;
148 union {
149 struct {
150 void (*intr)(void *);
151 } out;
152 struct {
153 void (*intr)(void *, int);
154 } in;
155 } u;
156 };
157
158 #define UMIDI_MAX_EPJACKS 16
159 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
160 /* endpoint data */
161 struct umidi_endpoint {
162 struct umidi_softc *sc;
163 /* */
164 int addr;
165 usbd_pipe_handle pipe;
166 usbd_xfer_handle xfer;
167 umidi_packet_bufp buffer;
168 umidi_packet_bufp next_slot;
169 u_int32_t buffer_size;
170 int num_scheduled;
171 int num_open;
172 int num_jacks;
173 int soliciting;
174 void *solicit_cookie;
175 int armed;
176 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
177 u_int16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
178 u_int16_t next_schedule;
179 };
180
181 /* software context */
182 struct umidi_softc {
183 device_t sc_dev;
184 usbd_device_handle sc_udev;
185 usbd_interface_handle sc_iface;
186 const struct umidi_quirk *sc_quirk;
187
188 int sc_dying;
189
190 int sc_out_num_jacks;
191 struct umidi_jack *sc_out_jacks;
192 int sc_in_num_jacks;
193 struct umidi_jack *sc_in_jacks;
194 struct umidi_jack *sc_jacks;
195
196 int sc_num_mididevs;
197 struct umidi_mididev *sc_mididevs;
198
199 int sc_out_num_endpoints;
200 struct umidi_endpoint *sc_out_ep;
201 int sc_in_num_endpoints;
202 struct umidi_endpoint *sc_in_ep;
203 struct umidi_endpoint *sc_endpoints;
204 size_t sc_endpoints_len;
205 int cblnums_global;
206
207 kmutex_t sc_lock;
208 kcondvar_t sc_cv;
209 kcondvar_t sc_detach_cv;
210
211 int sc_refcnt;
212 };
213
214 #ifdef UMIDI_DEBUG
215 #define DPRINTF(x) if (umididebug) printf x
216 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
217 #include <sys/time.h>
218 static struct timeval umidi_tv;
219 int umididebug = 0;
220 #else
221 #define DPRINTF(x)
222 #define DPRINTFN(n,x)
223 #endif
224
225 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
226 (sc->sc_out_num_endpoints + \
227 sc->sc_in_num_endpoints))
228
229
230 static int umidi_open(void *, int,
231 void (*)(void *, int), void (*)(void *), void *);
232 static void umidi_close(void *);
233 static int umidi_channelmsg(void *, int, int, u_char *, int);
234 static int umidi_commonmsg(void *, int, u_char *, int);
235 static int umidi_sysex(void *, u_char *, int);
236 static int umidi_rtmsg(void *, int);
237 static void umidi_getinfo(void *, struct midi_info *);
238 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
239
240 static usbd_status alloc_pipe(struct umidi_endpoint *);
241 static void free_pipe(struct umidi_endpoint *);
242
243 static usbd_status alloc_all_endpoints(struct umidi_softc *);
244 static void free_all_endpoints(struct umidi_softc *);
245
246 static usbd_status alloc_all_jacks(struct umidi_softc *);
247 static void free_all_jacks(struct umidi_softc *);
248 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
249 struct umidi_jack *,
250 struct umidi_jack *,
251 struct umidi_mididev *);
252 static void unbind_jacks_from_mididev(struct umidi_mididev *);
253 static void unbind_all_jacks(struct umidi_softc *);
254 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
255 static usbd_status open_out_jack(struct umidi_jack *, void *,
256 void (*)(void *));
257 static usbd_status open_in_jack(struct umidi_jack *, void *,
258 void (*)(void *, int));
259 static void close_out_jack(struct umidi_jack *);
260 static void close_in_jack(struct umidi_jack *);
261
262 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
263 static usbd_status detach_mididev(struct umidi_mididev *, int);
264 static void deactivate_mididev(struct umidi_mididev *);
265 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
266 static void free_all_mididevs(struct umidi_softc *);
267 static usbd_status attach_all_mididevs(struct umidi_softc *);
268 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
269 static void deactivate_all_mididevs(struct umidi_softc *);
270 static void describe_mididev(struct umidi_mididev *);
271
272 #ifdef UMIDI_DEBUG
273 static void dump_sc(struct umidi_softc *);
274 static void dump_ep(struct umidi_endpoint *);
275 static void dump_jack(struct umidi_jack *);
276 #endif
277
278 static usbd_status start_input_transfer(struct umidi_endpoint *);
279 static usbd_status start_output_transfer(struct umidi_endpoint *);
280 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
281 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
282 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
283 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
284 static void out_solicit_locked(void *); /* pre-locked version */
285
286
287 const struct midi_hw_if umidi_hw_if = {
288 .open = umidi_open,
289 .close = umidi_close,
290 .output = umidi_rtmsg,
291 .getinfo = umidi_getinfo,
292 .get_locks = umidi_get_locks,
293 };
294
295 struct midi_hw_if_ext umidi_hw_if_ext = {
296 .channel = umidi_channelmsg,
297 .common = umidi_commonmsg,
298 .sysex = umidi_sysex,
299 };
300
301 struct midi_hw_if_ext umidi_hw_if_mm = {
302 .channel = umidi_channelmsg,
303 .common = umidi_commonmsg,
304 .sysex = umidi_sysex,
305 .compress = 1,
306 };
307
308 int umidi_match(device_t, cfdata_t, void *);
309 void umidi_attach(device_t, device_t, void *);
310 void umidi_childdet(device_t, device_t);
311 int umidi_detach(device_t, int);
312 int umidi_activate(device_t, enum devact);
313 extern struct cfdriver umidi_cd;
314 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
315 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
316
317 int
318 umidi_match(device_t parent, cfdata_t match, void *aux)
319 {
320 struct usbif_attach_arg *uaa = aux;
321
322 DPRINTFN(1,("umidi_match\n"));
323
324 if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
325 return UMATCH_IFACECLASS_IFACESUBCLASS;
326
327 if (uaa->class == UICLASS_AUDIO &&
328 uaa->subclass == UISUBCLASS_MIDISTREAM)
329 return UMATCH_IFACECLASS_IFACESUBCLASS;
330
331 return UMATCH_NONE;
332 }
333
334 void
335 umidi_attach(device_t parent, device_t self, void *aux)
336 {
337 usbd_status err;
338 struct umidi_softc *sc = device_private(self);
339 struct usbif_attach_arg *uaa = aux;
340 char *devinfop;
341
342 DPRINTFN(1,("umidi_attach\n"));
343
344 sc->sc_dev = self;
345
346 aprint_naive("\n");
347 aprint_normal("\n");
348
349 devinfop = usbd_devinfo_alloc(uaa->device, 0);
350 aprint_normal_dev(self, "%s\n", devinfop);
351 usbd_devinfo_free(devinfop);
352
353 sc->sc_iface = uaa->iface;
354 sc->sc_udev = uaa->device;
355
356 sc->sc_quirk =
357 umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
358 aprint_normal_dev(self, "");
359 umidi_print_quirk(sc->sc_quirk);
360
361 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
362 cv_init(&sc->sc_cv, "umidopcl");
363 cv_init(&sc->sc_detach_cv, "umidetcv");
364 sc->sc_refcnt = 0;
365
366 err = alloc_all_endpoints(sc);
367 if (err != USBD_NORMAL_COMPLETION) {
368 aprint_error_dev(self,
369 "alloc_all_endpoints failed. (err=%d)\n", err);
370 goto out;
371 }
372 err = alloc_all_jacks(sc);
373 if (err != USBD_NORMAL_COMPLETION) {
374 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
375 err);
376 goto out_free_endpoints;
377 }
378 aprint_normal_dev(self, "out=%d, in=%d\n",
379 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
380
381 err = assign_all_jacks_automatically(sc);
382 if (err != USBD_NORMAL_COMPLETION) {
383 aprint_error_dev(self,
384 "assign_all_jacks_automatically failed. (err=%d)\n", err);
385 goto out_free_jacks;
386 }
387 err = attach_all_mididevs(sc);
388 if (err != USBD_NORMAL_COMPLETION) {
389 aprint_error_dev(self,
390 "attach_all_mididevs failed. (err=%d)\n", err);
391 goto out_free_jacks;
392 }
393
394 #ifdef UMIDI_DEBUG
395 dump_sc(sc);
396 #endif
397
398 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
399 sc->sc_udev, sc->sc_dev);
400
401 return;
402
403 out_free_jacks:
404 unbind_all_jacks(sc);
405 free_all_jacks(sc);
406
407 out_free_endpoints:
408 free_all_endpoints(sc);
409
410 out:
411 aprint_error_dev(self, "disabled.\n");
412 sc->sc_dying = 1;
413 KERNEL_UNLOCK_ONE(curlwp);
414 return;
415 }
416
417 void
418 umidi_childdet(device_t self, device_t child)
419 {
420 int i;
421 struct umidi_softc *sc = device_private(self);
422
423 KASSERT(sc->sc_mididevs != NULL);
424
425 for (i = 0; i < sc->sc_num_mididevs; i++) {
426 if (sc->sc_mididevs[i].mdev == child)
427 break;
428 }
429 KASSERT(i < sc->sc_num_mididevs);
430 sc->sc_mididevs[i].mdev = NULL;
431 }
432
433 int
434 umidi_activate(device_t self, enum devact act)
435 {
436 struct umidi_softc *sc = device_private(self);
437
438 switch (act) {
439 case DVACT_DEACTIVATE:
440 DPRINTFN(1,("umidi_activate (deactivate)\n"));
441 sc->sc_dying = 1;
442 deactivate_all_mididevs(sc);
443 return 0;
444 default:
445 DPRINTFN(1,("umidi_activate (%d)\n", act));
446 return EOPNOTSUPP;
447 }
448 }
449
450 int
451 umidi_detach(device_t self, int flags)
452 {
453 struct umidi_softc *sc = device_private(self);
454
455 DPRINTFN(1,("umidi_detach\n"));
456
457 mutex_enter(&sc->sc_lock);
458 sc->sc_dying = 1;
459 if (--sc->sc_refcnt >= 0)
460 usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
461 mutex_exit(&sc->sc_lock);
462
463 detach_all_mididevs(sc, flags);
464 free_all_mididevs(sc);
465 free_all_jacks(sc);
466 free_all_endpoints(sc);
467
468 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
469 sc->sc_dev);
470
471 mutex_destroy(&sc->sc_lock);
472 cv_destroy(&sc->sc_detach_cv);
473 cv_destroy(&sc->sc_cv);
474
475 return 0;
476 }
477
478
479 /*
480 * midi_if stuffs
481 */
482 int
483 umidi_open(void *addr,
484 int flags,
485 void (*iintr)(void *, int),
486 void (*ointr)(void *),
487 void *arg)
488 {
489 struct umidi_mididev *mididev = addr;
490 struct umidi_softc *sc = mididev->sc;
491 usbd_status err;
492
493 KASSERT(mutex_owned(&sc->sc_lock));
494 DPRINTF(("umidi_open: sc=%p\n", sc));
495
496 if (mididev->opened)
497 return EBUSY;
498 if (sc->sc_dying)
499 return EIO;
500
501 mididev->opened = 1;
502 mididev->flags = flags;
503 if ((mididev->flags & FWRITE) && mididev->out_jack) {
504 err = open_out_jack(mididev->out_jack, arg, ointr);
505 if (err != USBD_NORMAL_COMPLETION)
506 goto bad;
507 }
508 if ((mididev->flags & FREAD) && mididev->in_jack) {
509 err = open_in_jack(mididev->in_jack, arg, iintr);
510 KASSERT(mididev->opened);
511 if (err != USBD_NORMAL_COMPLETION &&
512 err != USBD_IN_PROGRESS) {
513 if (mididev->out_jack)
514 close_out_jack(mididev->out_jack);
515 goto bad;
516 }
517 }
518
519 return 0;
520 bad:
521 mididev->opened = 0;
522 DPRINTF(("umidi_open: usbd_status %d\n", err));
523 KASSERT(mutex_owned(&sc->sc_lock));
524 return USBD_IN_USE == err ? EBUSY : EIO;
525 }
526
527 void
528 umidi_close(void *addr)
529 {
530 struct umidi_mididev *mididev = addr;
531 struct umidi_softc *sc = mididev->sc;
532
533 KASSERT(mutex_owned(&sc->sc_lock));
534
535 if (mididev->closing)
536 return;
537
538 mididev->closing = 1;
539
540 sc->sc_refcnt++;
541
542 if ((mididev->flags & FWRITE) && mididev->out_jack)
543 close_out_jack(mididev->out_jack);
544 if ((mididev->flags & FREAD) && mididev->in_jack)
545 close_in_jack(mididev->in_jack);
546
547 if (--sc->sc_refcnt < 0)
548 usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
549
550 mididev->opened = 0;
551 mididev->closing = 0;
552 }
553
554 int
555 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
556 int len)
557 {
558 struct umidi_mididev *mididev = addr;
559
560 KASSERT(mutex_owned(&mididev->sc->sc_lock));
561
562 if (!mididev->out_jack || !mididev->opened || mididev->closing)
563 return EIO;
564
565 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
566 }
567
568 int
569 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
570 {
571 struct umidi_mididev *mididev = addr;
572 int cin;
573
574 KASSERT(mutex_owned(&mididev->sc->sc_lock));
575
576 if (!mididev->out_jack || !mididev->opened || mididev->closing)
577 return EIO;
578
579 switch ( len ) {
580 case 1: cin = 5; break;
581 case 2: cin = 2; break;
582 case 3: cin = 3; break;
583 default: return EIO; /* or gcc warns of cin uninitialized */
584 }
585
586 return out_jack_output(mididev->out_jack, msg, len, cin);
587 }
588
589 int
590 umidi_sysex(void *addr, u_char *msg, int len)
591 {
592 struct umidi_mididev *mididev = addr;
593 int cin;
594
595 KASSERT(mutex_owned(&mididev->sc->sc_lock));
596
597 if (!mididev->out_jack || !mididev->opened || mididev->closing)
598 return EIO;
599
600 switch ( len ) {
601 case 1: cin = 5; break;
602 case 2: cin = 6; break;
603 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
604 default: return EIO; /* or gcc warns of cin uninitialized */
605 }
606
607 return out_jack_output(mididev->out_jack, msg, len, cin);
608 }
609
610 int
611 umidi_rtmsg(void *addr, int d)
612 {
613 struct umidi_mididev *mididev = addr;
614 u_char msg = d;
615
616 KASSERT(mutex_owned(&mididev->sc->sc_lock));
617
618 if (!mididev->out_jack || !mididev->opened || mididev->closing)
619 return EIO;
620
621 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
622 }
623
624 void
625 umidi_getinfo(void *addr, struct midi_info *mi)
626 {
627 struct umidi_mididev *mididev = addr;
628 struct umidi_softc *sc = mididev->sc;
629 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
630
631 KASSERT(mutex_owned(&sc->sc_lock));
632
633 mi->name = mididev->label;
634 mi->props = MIDI_PROP_OUT_INTR;
635 if (mididev->in_jack)
636 mi->props |= MIDI_PROP_CAN_INPUT;
637 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
638 }
639
640 static void
641 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
642 {
643 struct umidi_mididev *mididev = addr;
644 struct umidi_softc *sc = mididev->sc;
645
646 *intr = NULL;
647 *thread = &sc->sc_lock;
648 }
649
650 /*
651 * each endpoint stuffs
652 */
653
654 /* alloc/free pipe */
655 static usbd_status
656 alloc_pipe(struct umidi_endpoint *ep)
657 {
658 struct umidi_softc *sc = ep->sc;
659 usbd_status err;
660 usb_endpoint_descriptor_t *epd;
661
662 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
663 /*
664 * For output, an improvement would be to have a buffer bigger than
665 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
666 * allow out_solicit to fill the buffer to the full packet size in
667 * all cases. But to use usbd_alloc_buffer to get a slightly larger
668 * buffer would not be a good way to do that, because if the addition
669 * would make the buffer exceed USB_MEM_SMALL then a substantially
670 * larger block may be wastefully allocated. Some flavor of double
671 * buffering could serve the same purpose, but would increase the
672 * code complexity, so for now I will live with the current slight
673 * penalty of reducing max transfer size by (num_open-num_scheduled)
674 * packet slots.
675 */
676 ep->buffer_size = UGETW(epd->wMaxPacketSize);
677 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
678
679 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
680 device_xname(sc->sc_dev), ep, ep->buffer_size));
681 ep->num_scheduled = 0;
682 ep->this_schedule = 0;
683 ep->next_schedule = 0;
684 ep->soliciting = 0;
685 ep->armed = 0;
686 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
687 if (ep->xfer == NULL) {
688 err = USBD_NOMEM;
689 goto quit;
690 }
691 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
692 if (ep->buffer == NULL) {
693 usbd_free_xfer(ep->xfer);
694 err = USBD_NOMEM;
695 goto quit;
696 }
697 ep->next_slot = ep->buffer;
698 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
699 if (err)
700 usbd_free_xfer(ep->xfer);
701 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, out_solicit, ep);
702 quit:
703 return err;
704 }
705
706 static void
707 free_pipe(struct umidi_endpoint *ep)
708 {
709 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
710 usbd_abort_pipe(ep->pipe);
711 usbd_close_pipe(ep->pipe);
712 usbd_free_xfer(ep->xfer);
713 softint_disestablish(ep->solicit_cookie);
714 }
715
716
717 /* alloc/free the array of endpoint structures */
718
719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
722
723 static usbd_status
724 alloc_all_endpoints(struct umidi_softc *sc)
725 {
726 usbd_status err;
727 struct umidi_endpoint *ep;
728 int i;
729
730 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
731 err = alloc_all_endpoints_fixed_ep(sc);
732 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
733 err = alloc_all_endpoints_yamaha(sc);
734 } else {
735 err = alloc_all_endpoints_genuine(sc);
736 }
737 if (err != USBD_NORMAL_COMPLETION)
738 return err;
739
740 ep = sc->sc_endpoints;
741 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
742 err = alloc_pipe(ep++);
743 if (err != USBD_NORMAL_COMPLETION) {
744 for (; ep != sc->sc_endpoints; ep--)
745 free_pipe(ep-1);
746 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
747 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
748 break;
749 }
750 }
751 return err;
752 }
753
754 static void
755 free_all_endpoints(struct umidi_softc *sc)
756 {
757 int i;
758
759 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
760 free_pipe(&sc->sc_endpoints[i]);
761 if (sc->sc_endpoints != NULL)
762 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
763 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
764 }
765
766 static usbd_status
767 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
768 {
769 usbd_status err;
770 const struct umq_fixed_ep_desc *fp;
771 struct umidi_endpoint *ep;
772 usb_endpoint_descriptor_t *epd;
773 int i;
774
775 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
776 UMQ_TYPE_FIXED_EP);
777 sc->sc_out_num_jacks = 0;
778 sc->sc_in_num_jacks = 0;
779 sc->sc_out_num_endpoints = fp->num_out_ep;
780 sc->sc_in_num_endpoints = fp->num_in_ep;
781 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
782 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
783 if (!sc->sc_endpoints)
784 return USBD_NOMEM;
785
786 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
787 sc->sc_in_ep =
788 sc->sc_in_num_endpoints ?
789 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
790
791 ep = &sc->sc_out_ep[0];
792 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
793 epd = usbd_interface2endpoint_descriptor(
794 sc->sc_iface,
795 fp->out_ep[i].ep);
796 if (!epd) {
797 aprint_error_dev(sc->sc_dev,
798 "cannot get endpoint descriptor(out:%d)\n",
799 fp->out_ep[i].ep);
800 err = USBD_INVAL;
801 goto error;
802 }
803 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
804 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
805 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
806 fp->out_ep[i].ep);
807 err = USBD_INVAL;
808 goto error;
809 }
810 ep->sc = sc;
811 ep->addr = epd->bEndpointAddress;
812 ep->num_jacks = fp->out_ep[i].num_jacks;
813 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
814 ep->num_open = 0;
815 ep++;
816 }
817 ep = &sc->sc_in_ep[0];
818 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
819 epd = usbd_interface2endpoint_descriptor(
820 sc->sc_iface,
821 fp->in_ep[i].ep);
822 if (!epd) {
823 aprint_error_dev(sc->sc_dev,
824 "cannot get endpoint descriptor(in:%d)\n",
825 fp->in_ep[i].ep);
826 err = USBD_INVAL;
827 goto error;
828 }
829 /*
830 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
831 * endpoint. The existing input logic in this driver seems
832 * to work successfully if we just stop treating an interrupt
833 * endpoint as illegal (or the in_progress status we get on
834 * the initial transfer). It does not seem necessary to
835 * actually use the interrupt flavor of alloc_pipe or make
836 * other serious rearrangements of logic. I like that.
837 */
838 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
839 case UE_BULK:
840 case UE_INTERRUPT:
841 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
842 break;
843 /*FALLTHROUGH*/
844 default:
845 aprint_error_dev(sc->sc_dev,
846 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
847 err = USBD_INVAL;
848 goto error;
849 }
850
851 ep->sc = sc;
852 ep->addr = epd->bEndpointAddress;
853 ep->num_jacks = fp->in_ep[i].num_jacks;
854 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
855 ep->num_open = 0;
856 ep++;
857 }
858
859 return USBD_NORMAL_COMPLETION;
860 error:
861 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
862 sc->sc_endpoints = NULL;
863 return err;
864 }
865
866 static usbd_status
867 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
868 {
869 /* This driver currently supports max 1in/1out bulk endpoints */
870 usb_descriptor_t *desc;
871 umidi_cs_descriptor_t *udesc;
872 usb_endpoint_descriptor_t *epd;
873 int out_addr, in_addr, i;
874 int dir;
875 size_t remain, descsize;
876
877 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
878 out_addr = in_addr = 0;
879
880 /* detect endpoints */
881 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
882 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
883 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
884 KASSERT(epd != NULL);
885 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
886 dir = UE_GET_DIR(epd->bEndpointAddress);
887 if (dir==UE_DIR_OUT && !out_addr)
888 out_addr = epd->bEndpointAddress;
889 else if (dir==UE_DIR_IN && !in_addr)
890 in_addr = epd->bEndpointAddress;
891 }
892 }
893 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
894
895 /* count jacks */
896 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
897 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
898 return USBD_INVAL;
899 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
900 (size_t)udesc->bLength;
901 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
902
903 while (remain >= sizeof(usb_descriptor_t)) {
904 descsize = udesc->bLength;
905 if (descsize>remain || descsize==0)
906 break;
907 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
908 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
909 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
910 sc->sc_out_num_jacks++;
911 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
912 sc->sc_in_num_jacks++;
913 }
914 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
915 remain -= descsize;
916 }
917
918 /* validate some parameters */
919 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
920 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
921 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
922 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
923 if (sc->sc_out_num_jacks && out_addr) {
924 sc->sc_out_num_endpoints = 1;
925 } else {
926 sc->sc_out_num_endpoints = 0;
927 sc->sc_out_num_jacks = 0;
928 }
929 if (sc->sc_in_num_jacks && in_addr) {
930 sc->sc_in_num_endpoints = 1;
931 } else {
932 sc->sc_in_num_endpoints = 0;
933 sc->sc_in_num_jacks = 0;
934 }
935 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
936 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
937 if (!sc->sc_endpoints)
938 return USBD_NOMEM;
939 if (sc->sc_out_num_endpoints) {
940 sc->sc_out_ep = sc->sc_endpoints;
941 sc->sc_out_ep->sc = sc;
942 sc->sc_out_ep->addr = out_addr;
943 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
944 sc->sc_out_ep->num_open = 0;
945 } else
946 sc->sc_out_ep = NULL;
947
948 if (sc->sc_in_num_endpoints) {
949 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
950 sc->sc_in_ep->sc = sc;
951 sc->sc_in_ep->addr = in_addr;
952 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
953 sc->sc_in_ep->num_open = 0;
954 } else
955 sc->sc_in_ep = NULL;
956
957 return USBD_NORMAL_COMPLETION;
958 }
959
960 static usbd_status
961 alloc_all_endpoints_genuine(struct umidi_softc *sc)
962 {
963 usb_interface_descriptor_t *interface_desc;
964 usb_config_descriptor_t *config_desc;
965 usb_descriptor_t *desc;
966 int num_ep;
967 size_t remain, descsize;
968 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
969 int epaddr;
970
971 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
972 num_ep = interface_desc->bNumEndpoints;
973 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
974 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
975 if (!p)
976 return USBD_NOMEM;
977
978 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
979 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
980 epaddr = -1;
981
982 /* get the list of endpoints for midi stream */
983 config_desc = usbd_get_config_descriptor(sc->sc_udev);
984 desc = (usb_descriptor_t *) config_desc;
985 remain = (size_t)UGETW(config_desc->wTotalLength);
986 while (remain>=sizeof(usb_descriptor_t)) {
987 descsize = desc->bLength;
988 if (descsize>remain || descsize==0)
989 break;
990 if (desc->bDescriptorType==UDESC_ENDPOINT &&
991 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
992 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
993 epaddr = TO_EPD(desc)->bEndpointAddress;
994 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
995 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
996 epaddr!=-1) {
997 if (num_ep>0) {
998 num_ep--;
999 p->sc = sc;
1000 p->addr = epaddr;
1001 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1002 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1003 sc->sc_out_num_endpoints++;
1004 sc->sc_out_num_jacks += p->num_jacks;
1005 } else {
1006 sc->sc_in_num_endpoints++;
1007 sc->sc_in_num_jacks += p->num_jacks;
1008 }
1009 p++;
1010 }
1011 } else
1012 epaddr = -1;
1013 desc = NEXT_D(desc);
1014 remain-=descsize;
1015 }
1016
1017 /* sort endpoints */
1018 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1019 p = sc->sc_endpoints;
1020 endep = p + num_ep;
1021 while (p<endep) {
1022 lowest = p;
1023 for (q=p+1; q<endep; q++) {
1024 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1025 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1026 ((UE_GET_DIR(lowest->addr)==
1027 UE_GET_DIR(q->addr)) &&
1028 (UE_GET_ADDR(lowest->addr)>
1029 UE_GET_ADDR(q->addr))))
1030 lowest = q;
1031 }
1032 if (lowest != p) {
1033 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1034 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1035 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1036 }
1037 p->num_open = 0;
1038 p++;
1039 }
1040
1041 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1042 sc->sc_in_ep =
1043 sc->sc_in_num_endpoints ?
1044 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1045
1046 return USBD_NORMAL_COMPLETION;
1047 }
1048
1049
1050 /*
1051 * jack stuffs
1052 */
1053
1054 static usbd_status
1055 alloc_all_jacks(struct umidi_softc *sc)
1056 {
1057 int i, j;
1058 struct umidi_endpoint *ep;
1059 struct umidi_jack *jack;
1060 const unsigned char *cn_spec;
1061
1062 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1063 sc->cblnums_global = 0;
1064 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1065 sc->cblnums_global = 1;
1066 else {
1067 /*
1068 * I don't think this default is correct, but it preserves
1069 * the prior behavior of the code. That's why I defined two
1070 * complementary quirks. Any device for which the default
1071 * behavior is wrong can be made to work by giving it an
1072 * explicit quirk, and if a pattern ever develops (as I suspect
1073 * it will) that a lot of otherwise standard USB MIDI devices
1074 * need the CN_SEQ_PER_EP "quirk," then this default can be
1075 * changed to 0, and the only devices that will break are those
1076 * listing neither quirk, and they'll easily be fixed by giving
1077 * them the CN_SEQ_GLOBAL quirk.
1078 */
1079 sc->cblnums_global = 1;
1080 }
1081
1082 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1083 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1084 UMQ_TYPE_CN_FIXED);
1085 else
1086 cn_spec = NULL;
1087
1088 /* allocate/initialize structures */
1089 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
1090 sc->sc_out_num_jacks), KM_SLEEP);
1091 if (!sc->sc_jacks)
1092 return USBD_NOMEM;
1093 sc->sc_out_jacks =
1094 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1095 sc->sc_in_jacks =
1096 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1097
1098 jack = &sc->sc_out_jacks[0];
1099 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1100 jack->opened = 0;
1101 jack->bound = 0;
1102 jack->arg = NULL;
1103 jack->u.out.intr = NULL;
1104 jack->midiman_ppkt = NULL;
1105 if (sc->cblnums_global)
1106 jack->cable_number = i;
1107 jack++;
1108 }
1109 jack = &sc->sc_in_jacks[0];
1110 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1111 jack->opened = 0;
1112 jack->bound = 0;
1113 jack->arg = NULL;
1114 jack->u.in.intr = NULL;
1115 if (sc->cblnums_global)
1116 jack->cable_number = i;
1117 jack++;
1118 }
1119
1120 /* assign each jacks to each endpoints */
1121 jack = &sc->sc_out_jacks[0];
1122 ep = &sc->sc_out_ep[0];
1123 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1124 for (j = 0; j < ep->num_jacks; j++) {
1125 jack->endpoint = ep;
1126 if (cn_spec != NULL)
1127 jack->cable_number = *cn_spec++;
1128 else if (!sc->cblnums_global)
1129 jack->cable_number = j;
1130 ep->jacks[jack->cable_number] = jack;
1131 jack++;
1132 }
1133 ep++;
1134 }
1135 jack = &sc->sc_in_jacks[0];
1136 ep = &sc->sc_in_ep[0];
1137 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1138 for (j = 0; j < ep->num_jacks; j++) {
1139 jack->endpoint = ep;
1140 if (cn_spec != NULL)
1141 jack->cable_number = *cn_spec++;
1142 else if (!sc->cblnums_global)
1143 jack->cable_number = j;
1144 ep->jacks[jack->cable_number] = jack;
1145 jack++;
1146 }
1147 ep++;
1148 }
1149
1150 return USBD_NORMAL_COMPLETION;
1151 }
1152
1153 static void
1154 free_all_jacks(struct umidi_softc *sc)
1155 {
1156 struct umidi_jack *jacks;
1157 size_t len;
1158
1159 mutex_enter(&sc->sc_lock);
1160 jacks = sc->sc_jacks;
1161 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
1162 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1163 mutex_exit(&sc->sc_lock);
1164
1165 if (jacks)
1166 kmem_free(jacks, len);
1167 }
1168
1169 static usbd_status
1170 bind_jacks_to_mididev(struct umidi_softc *sc,
1171 struct umidi_jack *out_jack,
1172 struct umidi_jack *in_jack,
1173 struct umidi_mididev *mididev)
1174 {
1175 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1176 return USBD_IN_USE;
1177 if (mididev->out_jack || mididev->in_jack)
1178 return USBD_IN_USE;
1179
1180 if (out_jack)
1181 out_jack->bound = 1;
1182 if (in_jack)
1183 in_jack->bound = 1;
1184 mididev->in_jack = in_jack;
1185 mididev->out_jack = out_jack;
1186
1187 mididev->closing = 0;
1188
1189 return USBD_NORMAL_COMPLETION;
1190 }
1191
1192 static void
1193 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1194 {
1195 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1196
1197 mididev->closing = 1;
1198
1199 if ((mididev->flags & FWRITE) && mididev->out_jack)
1200 close_out_jack(mididev->out_jack);
1201 if ((mididev->flags & FREAD) && mididev->in_jack)
1202 close_in_jack(mididev->in_jack);
1203
1204 if (mididev->out_jack) {
1205 mididev->out_jack->bound = 0;
1206 mididev->out_jack = NULL;
1207 }
1208 if (mididev->in_jack) {
1209 mididev->in_jack->bound = 0;
1210 mididev->in_jack = NULL;
1211 }
1212 }
1213
1214 static void
1215 unbind_all_jacks(struct umidi_softc *sc)
1216 {
1217 int i;
1218
1219 mutex_spin_enter(&sc->sc_lock);
1220 if (sc->sc_mididevs)
1221 for (i = 0; i < sc->sc_num_mididevs; i++)
1222 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1223 mutex_spin_exit(&sc->sc_lock);
1224 }
1225
1226 static usbd_status
1227 assign_all_jacks_automatically(struct umidi_softc *sc)
1228 {
1229 usbd_status err;
1230 int i;
1231 struct umidi_jack *out, *in;
1232 const signed char *asg_spec;
1233
1234 err =
1235 alloc_all_mididevs(sc,
1236 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1237 if (err!=USBD_NORMAL_COMPLETION)
1238 return err;
1239
1240 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1241 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1242 UMQ_TYPE_MD_FIXED);
1243 else
1244 asg_spec = NULL;
1245
1246 for (i = 0; i < sc->sc_num_mididevs; i++) {
1247 if (asg_spec != NULL) {
1248 if (*asg_spec == -1)
1249 out = NULL;
1250 else
1251 out = &sc->sc_out_jacks[*asg_spec];
1252 ++ asg_spec;
1253 if (*asg_spec == -1)
1254 in = NULL;
1255 else
1256 in = &sc->sc_in_jacks[*asg_spec];
1257 ++ asg_spec;
1258 } else {
1259 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1260 : NULL;
1261 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1262 : NULL;
1263 }
1264 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1265 if (err != USBD_NORMAL_COMPLETION) {
1266 free_all_mididevs(sc);
1267 return err;
1268 }
1269 }
1270
1271 return USBD_NORMAL_COMPLETION;
1272 }
1273
1274 static usbd_status
1275 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1276 {
1277 struct umidi_endpoint *ep = jack->endpoint;
1278 struct umidi_softc *sc = ep->sc;
1279 umidi_packet_bufp end;
1280 int err;
1281
1282 KASSERT(mutex_owned(&sc->sc_lock));
1283
1284 if (jack->opened)
1285 return USBD_IN_USE;
1286
1287 jack->arg = arg;
1288 jack->u.out.intr = intr;
1289 jack->midiman_ppkt = NULL;
1290 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1291 jack->opened = 1;
1292 ep->num_open++;
1293 /*
1294 * out_solicit maintains an invariant that there will always be
1295 * (num_open - num_scheduled) slots free in the buffer. as we have
1296 * just incremented num_open, the buffer may be too full to satisfy
1297 * the invariant until a transfer completes, for which we must wait.
1298 */
1299 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1300 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1301 mstohz(10));
1302 if (err) {
1303 ep->num_open--;
1304 jack->opened = 0;
1305 return USBD_IOERROR;
1306 }
1307 }
1308
1309 return USBD_NORMAL_COMPLETION;
1310 }
1311
1312 static usbd_status
1313 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1314 {
1315 usbd_status err = USBD_NORMAL_COMPLETION;
1316 struct umidi_endpoint *ep = jack->endpoint;
1317
1318 KASSERT(mutex_owned(&ep->sc->sc_lock));
1319
1320 if (jack->opened)
1321 return USBD_IN_USE;
1322
1323 jack->arg = arg;
1324 jack->u.in.intr = intr;
1325 jack->opened = 1;
1326 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1327 /*
1328 * Can't hold the interrupt lock while calling into USB,
1329 * but we can safely drop it here.
1330 */
1331 mutex_exit(&ep->sc->sc_lock);
1332 err = start_input_transfer(ep);
1333 if (err != USBD_NORMAL_COMPLETION &&
1334 err != USBD_IN_PROGRESS) {
1335 ep->num_open--;
1336 }
1337 mutex_enter(&ep->sc->sc_lock);
1338 }
1339
1340 return err;
1341 }
1342
1343 static void
1344 close_out_jack(struct umidi_jack *jack)
1345 {
1346 struct umidi_endpoint *ep;
1347 struct umidi_softc *sc;
1348 u_int16_t mask;
1349 int err;
1350
1351 if (jack->opened) {
1352 ep = jack->endpoint;
1353 sc = ep->sc;
1354
1355 KASSERT(mutex_owned(&sc->sc_lock));
1356 mask = 1 << (jack->cable_number);
1357 while (mask & (ep->this_schedule | ep->next_schedule)) {
1358 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1359 mstohz(10));
1360 if (err)
1361 break;
1362 }
1363 /*
1364 * We can re-enter this function from both close() and
1365 * detach(). Make sure only one of them does this part.
1366 */
1367 if (jack->opened) {
1368 jack->opened = 0;
1369 jack->endpoint->num_open--;
1370 ep->this_schedule &= ~mask;
1371 ep->next_schedule &= ~mask;
1372 }
1373 }
1374 }
1375
1376 static void
1377 close_in_jack(struct umidi_jack *jack)
1378 {
1379 if (jack->opened) {
1380 struct umidi_softc *sc = jack->endpoint->sc;
1381
1382 KASSERT(mutex_owned(&sc->sc_lock));
1383
1384 jack->opened = 0;
1385 if (--jack->endpoint->num_open == 0) {
1386 /*
1387 * We have to drop the (interrupt) lock so that
1388 * the USB thread lock can be safely taken by
1389 * the abort operation. This is safe as this
1390 * either closing or dying will be set proerly.
1391 */
1392 mutex_spin_exit(&sc->sc_lock);
1393 usbd_abort_pipe(jack->endpoint->pipe);
1394 mutex_spin_enter(&sc->sc_lock);
1395 }
1396 }
1397 }
1398
1399 static usbd_status
1400 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1401 {
1402 if (mididev->sc)
1403 return USBD_IN_USE;
1404
1405 mididev->sc = sc;
1406
1407 describe_mididev(mididev);
1408
1409 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1410
1411 return USBD_NORMAL_COMPLETION;
1412 }
1413
1414 static usbd_status
1415 detach_mididev(struct umidi_mididev *mididev, int flags)
1416 {
1417 struct umidi_softc *sc = mididev->sc;
1418
1419 if (!sc)
1420 return USBD_NO_ADDR;
1421
1422 mutex_spin_enter(&sc->sc_lock);
1423 if (mididev->opened) {
1424 umidi_close(mididev);
1425 }
1426 unbind_jacks_from_mididev(mididev);
1427 mutex_spin_exit(&sc->sc_lock);
1428
1429 if (mididev->mdev != NULL)
1430 config_detach(mididev->mdev, flags);
1431
1432 if (NULL != mididev->label) {
1433 kmem_free(mididev->label, mididev->label_len);
1434 mididev->label = NULL;
1435 }
1436
1437 mididev->sc = NULL;
1438
1439 return USBD_NORMAL_COMPLETION;
1440 }
1441
1442 static void
1443 deactivate_mididev(struct umidi_mididev *mididev)
1444 {
1445 if (mididev->out_jack)
1446 mididev->out_jack->bound = 0;
1447 if (mididev->in_jack)
1448 mididev->in_jack->bound = 0;
1449 }
1450
1451 static usbd_status
1452 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1453 {
1454 sc->sc_num_mididevs = nmidi;
1455 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1456 if (!sc->sc_mididevs)
1457 return USBD_NOMEM;
1458
1459 return USBD_NORMAL_COMPLETION;
1460 }
1461
1462 static void
1463 free_all_mididevs(struct umidi_softc *sc)
1464 {
1465 struct umidi_mididev *mididevs;
1466 size_t len;
1467
1468 mutex_enter(&sc->sc_lock);
1469 mididevs = sc->sc_mididevs;
1470 if (mididevs)
1471 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1472 sc->sc_mididevs = NULL;
1473 sc->sc_num_mididevs = 0;
1474 mutex_exit(&sc->sc_lock);
1475
1476 if (mididevs)
1477 kmem_free(mididevs, len);
1478 }
1479
1480 static usbd_status
1481 attach_all_mididevs(struct umidi_softc *sc)
1482 {
1483 usbd_status err;
1484 int i;
1485
1486 if (sc->sc_mididevs)
1487 for (i = 0; i < sc->sc_num_mididevs; i++) {
1488 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1489 if (err != USBD_NORMAL_COMPLETION)
1490 return err;
1491 }
1492
1493 return USBD_NORMAL_COMPLETION;
1494 }
1495
1496 static usbd_status
1497 detach_all_mididevs(struct umidi_softc *sc, int flags)
1498 {
1499 usbd_status err;
1500 int i;
1501
1502 if (sc->sc_mididevs)
1503 for (i = 0; i < sc->sc_num_mididevs; i++) {
1504 err = detach_mididev(&sc->sc_mididevs[i], flags);
1505 if (err != USBD_NORMAL_COMPLETION)
1506 return err;
1507 }
1508
1509 return USBD_NORMAL_COMPLETION;
1510 }
1511
1512 static void
1513 deactivate_all_mididevs(struct umidi_softc *sc)
1514 {
1515 int i;
1516
1517 if (sc->sc_mididevs) {
1518 for (i = 0; i < sc->sc_num_mididevs; i++)
1519 deactivate_mididev(&sc->sc_mididevs[i]);
1520 }
1521 }
1522
1523 /*
1524 * TODO: the 0-based cable numbers will often not match the labeling of the
1525 * equipment. Ideally:
1526 * For class-compliant devices: get the iJack string from the jack descriptor.
1527 * Otherwise:
1528 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1529 * number for display)
1530 * - support an array quirk explictly giving a char * for each jack.
1531 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1532 * the CNs are not globally unique, each is shown with its associated endpoint
1533 * address in hex also. That should not be necessary when using iJack values
1534 * or a quirk array.
1535 */
1536 void
1537 describe_mididev(struct umidi_mididev *md)
1538 {
1539 char in_label[16];
1540 char out_label[16];
1541 const char *unit_label;
1542 char *final_label;
1543 struct umidi_softc *sc;
1544 int show_ep_in;
1545 int show_ep_out;
1546 size_t len;
1547
1548 sc = md->sc;
1549 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1550 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1551
1552 if (NULL == md->in_jack)
1553 in_label[0] = '\0';
1554 else if (show_ep_in)
1555 snprintf(in_label, sizeof in_label, "<%d(%x) ",
1556 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1557 else
1558 snprintf(in_label, sizeof in_label, "<%d ",
1559 md->in_jack->cable_number);
1560
1561 if (NULL == md->out_jack)
1562 out_label[0] = '\0';
1563 else if (show_ep_out)
1564 snprintf(out_label, sizeof out_label, ">%d(%x) ",
1565 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1566 else
1567 snprintf(out_label, sizeof out_label, ">%d ",
1568 md->out_jack->cable_number);
1569
1570 unit_label = device_xname(sc->sc_dev);
1571
1572 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1573
1574 final_label = kmem_alloc(len, KM_SLEEP);
1575
1576 snprintf(final_label, len, "%s%son %s",
1577 in_label, out_label, unit_label);
1578
1579 md->label = final_label;
1580 md->label_len = len;
1581 }
1582
1583 #ifdef UMIDI_DEBUG
1584 static void
1585 dump_sc(struct umidi_softc *sc)
1586 {
1587 int i;
1588
1589 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1590 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1591 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1592 dump_ep(&sc->sc_out_ep[i]);
1593 }
1594 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1595 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1596 dump_ep(&sc->sc_in_ep[i]);
1597 }
1598 }
1599
1600 static void
1601 dump_ep(struct umidi_endpoint *ep)
1602 {
1603 int i;
1604 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1605 if (NULL==ep->jacks[i])
1606 continue;
1607 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1608 dump_jack(ep->jacks[i]);
1609 }
1610 }
1611 static void
1612 dump_jack(struct umidi_jack *jack)
1613 {
1614 DPRINTFN(10, ("\t\t\tep=%p\n",
1615 jack->endpoint));
1616 }
1617
1618 #endif /* UMIDI_DEBUG */
1619
1620
1621
1622 /*
1623 * MUX MIDI PACKET
1624 */
1625
1626 static const int packet_length[16] = {
1627 /*0*/ -1,
1628 /*1*/ -1,
1629 /*2*/ 2,
1630 /*3*/ 3,
1631 /*4*/ 3,
1632 /*5*/ 1,
1633 /*6*/ 2,
1634 /*7*/ 3,
1635 /*8*/ 3,
1636 /*9*/ 3,
1637 /*A*/ 3,
1638 /*B*/ 3,
1639 /*C*/ 2,
1640 /*D*/ 2,
1641 /*E*/ 3,
1642 /*F*/ 1,
1643 };
1644
1645 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1646 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1647 #define MIX_CN_CIN(cn, cin) \
1648 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1649 ((unsigned char)(cin)&0x0F)))
1650
1651 static usbd_status
1652 start_input_transfer(struct umidi_endpoint *ep)
1653 {
1654 usbd_setup_xfer(ep->xfer, ep->pipe,
1655 (usbd_private_handle)ep,
1656 ep->buffer, ep->buffer_size,
1657 USBD_SHORT_XFER_OK | USBD_NO_COPY,
1658 USBD_NO_TIMEOUT, in_intr);
1659 return usbd_transfer(ep->xfer);
1660 }
1661
1662 static usbd_status
1663 start_output_transfer(struct umidi_endpoint *ep)
1664 {
1665 usbd_status rv;
1666 u_int32_t length;
1667 int i;
1668
1669 length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1670 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1671 ep->buffer, ep->next_slot, length));
1672 usbd_setup_xfer(ep->xfer, ep->pipe,
1673 (usbd_private_handle)ep,
1674 ep->buffer, length,
1675 USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1676 rv = usbd_transfer(ep->xfer);
1677
1678 /*
1679 * Once the transfer is scheduled, no more adding to partial
1680 * packets within it.
1681 */
1682 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1683 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1684 if (NULL != ep->jacks[i])
1685 ep->jacks[i]->midiman_ppkt = NULL;
1686 }
1687
1688 return rv;
1689 }
1690
1691 #ifdef UMIDI_DEBUG
1692 #define DPR_PACKET(dir, sc, p) \
1693 if ((unsigned char)(p)[1]!=0xFE) \
1694 DPRINTFN(500, \
1695 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1696 device_xname(sc->sc_dev), \
1697 (unsigned char)(p)[0], \
1698 (unsigned char)(p)[1], \
1699 (unsigned char)(p)[2], \
1700 (unsigned char)(p)[3]));
1701 #else
1702 #define DPR_PACKET(dir, sc, p)
1703 #endif
1704
1705 /*
1706 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1707 * with the cable number and length in the last byte instead of the first,
1708 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1709 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1710 * with a cable nybble and a length nybble (which, unlike the CIN of a
1711 * real USB MIDI packet, has no semantics at all besides the length).
1712 * A packet received from a Midiman may contain part of a MIDI message,
1713 * more than one MIDI message, or parts of more than one MIDI message. A
1714 * three-byte MIDI message may arrive in three packets of data length 1, and
1715 * running status may be used. Happily, the midi(4) driver above us will put
1716 * it all back together, so the only cost is in USB bandwidth. The device
1717 * has an easier time with what it receives from us: we'll pack messages in
1718 * and across packets, but filling the packets whenever possible and,
1719 * as midi(4) hands us a complete message at a time, we'll never send one
1720 * in a dribble of short packets.
1721 */
1722
1723 static int
1724 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1725 {
1726 struct umidi_endpoint *ep = out_jack->endpoint;
1727 struct umidi_softc *sc = ep->sc;
1728 unsigned char *packet;
1729 int plen;
1730 int poff;
1731
1732 KASSERT(mutex_owned(&sc->sc_lock));
1733
1734 if (sc->sc_dying)
1735 return EIO;
1736
1737 if (!out_jack->opened)
1738 return ENODEV; /* XXX as it was, is this the right errno? */
1739
1740 sc->sc_refcnt++;
1741
1742 #ifdef UMIDI_DEBUG
1743 if (umididebug >= 100)
1744 microtime(&umidi_tv);
1745 #endif
1746 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1747 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1748 ep, out_jack->cable_number, len, cin));
1749
1750 packet = *ep->next_slot++;
1751 KASSERT(ep->buffer_size >=
1752 (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1753 memset(packet, 0, UMIDI_PACKET_SIZE);
1754 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1755 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1756 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1757 plen = 3 - poff;
1758 if (plen > len)
1759 plen = len;
1760 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1761 src += plen;
1762 len -= plen;
1763 plen += poff;
1764 out_jack->midiman_ppkt[3] =
1765 MIX_CN_CIN(out_jack->cable_number, plen);
1766 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1767 if (3 == plen)
1768 out_jack->midiman_ppkt = NULL; /* no more */
1769 }
1770 if (0 == len)
1771 ep->next_slot--; /* won't be needed, nevermind */
1772 else {
1773 memcpy(packet, src, len);
1774 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1775 DPR_PACKET(out, sc, packet);
1776 if (len < 3)
1777 out_jack->midiman_ppkt = packet;
1778 }
1779 } else { /* the nice simple USB class-compliant case */
1780 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1781 memcpy(packet+1, src, len);
1782 DPR_PACKET(out, sc, packet);
1783 }
1784 ep->next_schedule |= 1<<(out_jack->cable_number);
1785 ++ ep->num_scheduled;
1786 if (!ep->armed && !ep->soliciting) {
1787 /*
1788 * It would be bad to call out_solicit directly here (the
1789 * caller need not be reentrant) but a soft interrupt allows
1790 * solicit to run immediately the caller exits its critical
1791 * section, and if the caller has more to write we can get it
1792 * before starting the USB transfer, and send a longer one.
1793 */
1794 ep->soliciting = 1;
1795 softint_schedule(ep->solicit_cookie);
1796 }
1797
1798 if (--sc->sc_refcnt < 0)
1799 usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
1800
1801 return 0;
1802 }
1803
1804 static void
1805 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1806 usbd_status status)
1807 {
1808 int cn, len, i;
1809 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1810 struct umidi_softc *sc = ep->sc;
1811 struct umidi_jack *jack;
1812 unsigned char *packet;
1813 umidi_packet_bufp slot;
1814 umidi_packet_bufp end;
1815 unsigned char *data;
1816 u_int32_t count;
1817
1818 if (ep->sc->sc_dying || !ep->num_open)
1819 return;
1820
1821 mutex_enter(&sc->sc_lock);
1822 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1823 if (0 == count % UMIDI_PACKET_SIZE) {
1824 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1825 device_xname(ep->sc->sc_dev), ep, count));
1826 } else {
1827 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1828 device_xname(ep->sc->sc_dev), ep, count));
1829 }
1830
1831 slot = ep->buffer;
1832 end = slot + count / sizeof *slot;
1833
1834 for (packet = *slot; slot < end; packet = *++slot) {
1835
1836 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1837 cn = (0xf0&(packet[3]))>>4;
1838 len = 0x0f&(packet[3]);
1839 data = packet;
1840 } else {
1841 cn = GET_CN(packet[0]);
1842 len = packet_length[GET_CIN(packet[0])];
1843 data = packet + 1;
1844 }
1845 /* 0 <= cn <= 15 by inspection of above code */
1846 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1847 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1848 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1849 device_xname(ep->sc->sc_dev), ep, cn, len,
1850 (unsigned)data[0],
1851 (unsigned)data[1],
1852 (unsigned)data[2]));
1853 mutex_exit(&sc->sc_lock);
1854 return;
1855 }
1856
1857 if (!jack->bound || !jack->opened)
1858 continue;
1859
1860 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1861 "%02X %02X %02X\n",
1862 device_xname(ep->sc->sc_dev), ep, cn, len,
1863 (unsigned)data[0],
1864 (unsigned)data[1],
1865 (unsigned)data[2]));
1866
1867 if (jack->u.in.intr) {
1868 for (i = 0; i < len; i++) {
1869 (*jack->u.in.intr)(jack->arg, data[i]);
1870 }
1871 }
1872
1873 }
1874
1875 (void)start_input_transfer(ep);
1876 mutex_exit(&sc->sc_lock);
1877 }
1878
1879 static void
1880 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1881 usbd_status status)
1882 {
1883 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1884 struct umidi_softc *sc = ep->sc;
1885 u_int32_t count;
1886
1887 if (sc->sc_dying)
1888 return;
1889
1890 mutex_enter(&sc->sc_lock);
1891 #ifdef UMIDI_DEBUG
1892 if (umididebug >= 200)
1893 microtime(&umidi_tv);
1894 #endif
1895 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1896 if (0 == count % UMIDI_PACKET_SIZE) {
1897 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1898 device_xname(ep->sc->sc_dev),
1899 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1900 } else {
1901 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1902 device_xname(ep->sc->sc_dev), ep, count));
1903 }
1904 count /= UMIDI_PACKET_SIZE;
1905
1906 /*
1907 * If while the transfer was pending we buffered any new messages,
1908 * move them to the start of the buffer.
1909 */
1910 ep->next_slot -= count;
1911 if (ep->buffer < ep->next_slot) {
1912 memcpy(ep->buffer, ep->buffer + count,
1913 (char *)ep->next_slot - (char *)ep->buffer);
1914 }
1915 cv_broadcast(&sc->sc_cv);
1916 /*
1917 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1918 * Running at IPL_USB so the following should happen to be safe.
1919 */
1920 ep->armed = 0;
1921 if (!ep->soliciting) {
1922 ep->soliciting = 1;
1923 out_solicit_locked(ep);
1924 }
1925 mutex_exit(&sc->sc_lock);
1926 }
1927
1928 /*
1929 * A jack on which we have received a packet must be called back on its
1930 * out.intr handler before it will send us another; it is considered
1931 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1932 * we need no extra buffer space for it.
1933 *
1934 * In contrast, a jack that is open but not scheduled may supply us a packet
1935 * at any time, driven by the top half, and we must be able to accept it, no
1936 * excuses. So we must ensure that at any point in time there are at least
1937 * (num_open - num_scheduled) slots free.
1938 *
1939 * As long as there are more slots free than that minimum, we can loop calling
1940 * scheduled jacks back on their "interrupt" handlers, soliciting more
1941 * packets, starting the USB transfer only when the buffer space is down to
1942 * the minimum or no jack has any more to send.
1943 */
1944
1945 static void
1946 out_solicit_locked(void *arg)
1947 {
1948 struct umidi_endpoint *ep = arg;
1949 umidi_packet_bufp end;
1950 u_int16_t which;
1951 struct umidi_jack *jack;
1952
1953 KASSERT(mutex_owned(&ep->sc->sc_lock));
1954
1955 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1956
1957 for ( ;; ) {
1958 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1959 break; /* at IPL_USB */
1960 if (ep->this_schedule == 0) {
1961 if (ep->next_schedule == 0)
1962 break; /* at IPL_USB */
1963 ep->this_schedule = ep->next_schedule;
1964 ep->next_schedule = 0;
1965 }
1966 /*
1967 * At least one jack is scheduled. Find and mask off the least
1968 * set bit in this_schedule and decrement num_scheduled.
1969 * Convert mask to bit index to find the corresponding jack,
1970 * and call its intr handler. If it has a message, it will call
1971 * back one of the output methods, which will set its bit in
1972 * next_schedule (not copied into this_schedule until the
1973 * latter is empty). In this way we round-robin the jacks that
1974 * have messages to send, until the buffer is as full as we
1975 * dare, and then start a transfer.
1976 */
1977 which = ep->this_schedule;
1978 which &= (~which)+1; /* now mask of least set bit */
1979 ep->this_schedule &= ~which;
1980 --ep->num_scheduled;
1981
1982 --which; /* now 1s below mask - count 1s to get index */
1983 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1984 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1985 which = (((which >> 4) + which) & 0x0f0f);
1986 which += (which >> 8);
1987 which &= 0x1f; /* the bit index a/k/a jack number */
1988
1989 jack = ep->jacks[which];
1990 if (jack->u.out.intr)
1991 (*jack->u.out.intr)(jack->arg);
1992 }
1993 /* intr lock held at loop exit */
1994 if (!ep->armed && ep->next_slot > ep->buffer) {
1995 /*
1996 * Can't hold the interrupt lock while calling into USB,
1997 * but we can safely drop it here.
1998 */
1999 mutex_exit(&ep->sc->sc_lock);
2000 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
2001 mutex_enter(&ep->sc->sc_lock);
2002 }
2003 ep->soliciting = 0;
2004 }
2005
2006 /* Entry point for the softintr. */
2007 static void
2008 out_solicit(void *arg)
2009 {
2010 struct umidi_endpoint *ep = arg;
2011 struct umidi_softc *sc = ep->sc;
2012
2013 mutex_enter(&sc->sc_lock);
2014 out_solicit_locked(arg);
2015 mutex_exit(&sc->sc_lock);
2016 }
2017