umidi.c revision 1.65.12.2 1 /* $NetBSD: umidi.c,v 1.65.12.2 2017/04/05 19:54:20 snj Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.65.12.2 2017/04/05 19:54:20 snj Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59
60 #include <dev/auconv.h>
61 #include <dev/usb/usbdevs.h>
62 #include <dev/usb/umidi_quirks.h>
63 #include <dev/midi_if.h>
64
65 /* Jack Descriptor */
66 #define UMIDI_MS_HEADER 0x01
67 #define UMIDI_IN_JACK 0x02
68 #define UMIDI_OUT_JACK 0x03
69
70 /* Jack Type */
71 #define UMIDI_EMBEDDED 0x01
72 #define UMIDI_EXTERNAL 0x02
73
74 /* generic, for iteration */
75 typedef struct {
76 uByte bLength;
77 uByte bDescriptorType;
78 uByte bDescriptorSubtype;
79 } UPACKED umidi_cs_descriptor_t;
80
81 typedef struct {
82 uByte bLength;
83 uByte bDescriptorType;
84 uByte bDescriptorSubtype;
85 uWord bcdMSC;
86 uWord wTotalLength;
87 } UPACKED umidi_cs_interface_descriptor_t;
88 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
89
90 typedef struct {
91 uByte bLength;
92 uByte bDescriptorType;
93 uByte bDescriptorSubtype;
94 uByte bNumEmbMIDIJack;
95 } UPACKED umidi_cs_endpoint_descriptor_t;
96 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
97
98 typedef struct {
99 uByte bLength;
100 uByte bDescriptorType;
101 uByte bDescriptorSubtype;
102 uByte bJackType;
103 uByte bJackID;
104 } UPACKED umidi_jack_descriptor_t;
105 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
106
107
108 #define TO_D(p) ((usb_descriptor_t *)(p))
109 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
110 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
111 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
112 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
113 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
114
115
116 #define UMIDI_PACKET_SIZE 4
117
118 /*
119 * hierarchie
120 *
121 * <-- parent child -->
122 *
123 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
124 * ^ | ^ |
125 * +-----+ +-----+
126 */
127
128 /* midi device */
129 struct umidi_mididev {
130 struct umidi_softc *sc;
131 device_t mdev;
132 /* */
133 struct umidi_jack *in_jack;
134 struct umidi_jack *out_jack;
135 char *label;
136 size_t label_len;
137 /* */
138 int opened;
139 int closing;
140 int flags;
141 };
142
143 /* Jack Information */
144 struct umidi_jack {
145 struct umidi_endpoint *endpoint;
146 /* */
147 int cable_number;
148 void *arg;
149 int bound;
150 int opened;
151 unsigned char *midiman_ppkt;
152 union {
153 struct {
154 void (*intr)(void *);
155 } out;
156 struct {
157 void (*intr)(void *, int);
158 } in;
159 } u;
160 };
161
162 #define UMIDI_MAX_EPJACKS 16
163 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
164 /* endpoint data */
165 struct umidi_endpoint {
166 struct umidi_softc *sc;
167 /* */
168 int addr;
169 struct usbd_pipe *pipe;
170 struct usbd_xfer *xfer;
171 umidi_packet_bufp buffer;
172 umidi_packet_bufp next_slot;
173 uint32_t buffer_size;
174 int num_scheduled;
175 int num_open;
176 int num_jacks;
177 int soliciting;
178 void *solicit_cookie;
179 int armed;
180 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
181 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
182 uint16_t next_schedule;
183 };
184
185 /* software context */
186 struct umidi_softc {
187 device_t sc_dev;
188 struct usbd_device *sc_udev;
189 struct usbd_interface *sc_iface;
190 const struct umidi_quirk *sc_quirk;
191
192 int sc_dying;
193
194 int sc_out_num_jacks;
195 struct umidi_jack *sc_out_jacks;
196 int sc_in_num_jacks;
197 struct umidi_jack *sc_in_jacks;
198 struct umidi_jack *sc_jacks;
199
200 int sc_num_mididevs;
201 struct umidi_mididev *sc_mididevs;
202
203 int sc_out_num_endpoints;
204 struct umidi_endpoint *sc_out_ep;
205 int sc_in_num_endpoints;
206 struct umidi_endpoint *sc_in_ep;
207 struct umidi_endpoint *sc_endpoints;
208 size_t sc_endpoints_len;
209 int cblnums_global;
210
211 kmutex_t sc_lock;
212 kcondvar_t sc_cv;
213 kcondvar_t sc_detach_cv;
214
215 int sc_refcnt;
216 };
217
218 #ifdef UMIDI_DEBUG
219 #define DPRINTF(x) if (umididebug) printf x
220 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
221 #include <sys/time.h>
222 static struct timeval umidi_tv;
223 int umididebug = 0;
224 #else
225 #define DPRINTF(x)
226 #define DPRINTFN(n,x)
227 #endif
228
229 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
230 (sc->sc_out_num_endpoints + \
231 sc->sc_in_num_endpoints))
232
233
234 static int umidi_open(void *, int,
235 void (*)(void *, int), void (*)(void *), void *);
236 static void umidi_close(void *);
237 static int umidi_channelmsg(void *, int, int, u_char *, int);
238 static int umidi_commonmsg(void *, int, u_char *, int);
239 static int umidi_sysex(void *, u_char *, int);
240 static int umidi_rtmsg(void *, int);
241 static void umidi_getinfo(void *, struct midi_info *);
242 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
243
244 static usbd_status alloc_pipe(struct umidi_endpoint *);
245 static void free_pipe(struct umidi_endpoint *);
246
247 static usbd_status alloc_all_endpoints(struct umidi_softc *);
248 static void free_all_endpoints(struct umidi_softc *);
249
250 static usbd_status alloc_all_jacks(struct umidi_softc *);
251 static void free_all_jacks(struct umidi_softc *);
252 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
253 struct umidi_jack *,
254 struct umidi_jack *,
255 struct umidi_mididev *);
256 static void unbind_jacks_from_mididev(struct umidi_mididev *);
257 static void unbind_all_jacks(struct umidi_softc *);
258 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
259 static usbd_status open_out_jack(struct umidi_jack *, void *,
260 void (*)(void *));
261 static usbd_status open_in_jack(struct umidi_jack *, void *,
262 void (*)(void *, int));
263 static void close_out_jack(struct umidi_jack *);
264 static void close_in_jack(struct umidi_jack *);
265
266 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
267 static usbd_status detach_mididev(struct umidi_mididev *, int);
268 static void deactivate_mididev(struct umidi_mididev *);
269 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
270 static void free_all_mididevs(struct umidi_softc *);
271 static usbd_status attach_all_mididevs(struct umidi_softc *);
272 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
273 static void deactivate_all_mididevs(struct umidi_softc *);
274 static void describe_mididev(struct umidi_mididev *);
275
276 #ifdef UMIDI_DEBUG
277 static void dump_sc(struct umidi_softc *);
278 static void dump_ep(struct umidi_endpoint *);
279 static void dump_jack(struct umidi_jack *);
280 #endif
281
282 static usbd_status start_input_transfer(struct umidi_endpoint *);
283 static usbd_status start_output_transfer(struct umidi_endpoint *);
284 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
285 static void in_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_intr(struct usbd_xfer *, void *, usbd_status);
287 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
288 static void out_solicit_locked(void *); /* pre-locked version */
289
290
291 const struct midi_hw_if umidi_hw_if = {
292 .open = umidi_open,
293 .close = umidi_close,
294 .output = umidi_rtmsg,
295 .getinfo = umidi_getinfo,
296 .get_locks = umidi_get_locks,
297 };
298
299 struct midi_hw_if_ext umidi_hw_if_ext = {
300 .channel = umidi_channelmsg,
301 .common = umidi_commonmsg,
302 .sysex = umidi_sysex,
303 };
304
305 struct midi_hw_if_ext umidi_hw_if_mm = {
306 .channel = umidi_channelmsg,
307 .common = umidi_commonmsg,
308 .sysex = umidi_sysex,
309 .compress = 1,
310 };
311
312 int umidi_match(device_t, cfdata_t, void *);
313 void umidi_attach(device_t, device_t, void *);
314 void umidi_childdet(device_t, device_t);
315 int umidi_detach(device_t, int);
316 int umidi_activate(device_t, enum devact);
317 extern struct cfdriver umidi_cd;
318 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
319 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
320
321 int
322 umidi_match(device_t parent, cfdata_t match, void *aux)
323 {
324 struct usbif_attach_arg *uiaa = aux;
325
326 DPRINTFN(1,("umidi_match\n"));
327
328 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
329 uiaa->uiaa_ifaceno))
330 return UMATCH_IFACECLASS_IFACESUBCLASS;
331
332 if (uiaa->uiaa_class == UICLASS_AUDIO &&
333 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
334 return UMATCH_IFACECLASS_IFACESUBCLASS;
335
336 return UMATCH_NONE;
337 }
338
339 void
340 umidi_attach(device_t parent, device_t self, void *aux)
341 {
342 usbd_status err;
343 struct umidi_softc *sc = device_private(self);
344 struct usbif_attach_arg *uiaa = aux;
345 char *devinfop;
346
347 DPRINTFN(1,("umidi_attach\n"));
348
349 sc->sc_dev = self;
350
351 aprint_naive("\n");
352 aprint_normal("\n");
353
354 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
355 aprint_normal_dev(self, "%s\n", devinfop);
356 usbd_devinfo_free(devinfop);
357
358 sc->sc_iface = uiaa->uiaa_iface;
359 sc->sc_udev = uiaa->uiaa_device;
360
361 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
362 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
363
364 aprint_normal_dev(self, "");
365 umidi_print_quirk(sc->sc_quirk);
366
367 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
368 cv_init(&sc->sc_cv, "umidopcl");
369 cv_init(&sc->sc_detach_cv, "umidetcv");
370 sc->sc_refcnt = 0;
371
372 err = alloc_all_endpoints(sc);
373 if (err != USBD_NORMAL_COMPLETION) {
374 aprint_error_dev(self,
375 "alloc_all_endpoints failed. (err=%d)\n", err);
376 goto out;
377 }
378 err = alloc_all_jacks(sc);
379 if (err != USBD_NORMAL_COMPLETION) {
380 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
381 err);
382 goto out_free_endpoints;
383 }
384 aprint_normal_dev(self, "out=%d, in=%d\n",
385 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
386
387 err = assign_all_jacks_automatically(sc);
388 if (err != USBD_NORMAL_COMPLETION) {
389 aprint_error_dev(self,
390 "assign_all_jacks_automatically failed. (err=%d)\n", err);
391 goto out_free_jacks;
392 }
393 err = attach_all_mididevs(sc);
394 if (err != USBD_NORMAL_COMPLETION) {
395 aprint_error_dev(self,
396 "attach_all_mididevs failed. (err=%d)\n", err);
397 goto out_free_jacks;
398 }
399
400 #ifdef UMIDI_DEBUG
401 dump_sc(sc);
402 #endif
403
404 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
405
406 return;
407
408 out_free_jacks:
409 unbind_all_jacks(sc);
410 free_all_jacks(sc);
411
412 out_free_endpoints:
413 free_all_endpoints(sc);
414
415 out:
416 aprint_error_dev(self, "disabled.\n");
417 sc->sc_dying = 1;
418 KERNEL_UNLOCK_ONE(curlwp);
419 return;
420 }
421
422 void
423 umidi_childdet(device_t self, device_t child)
424 {
425 int i;
426 struct umidi_softc *sc = device_private(self);
427
428 KASSERT(sc->sc_mididevs != NULL);
429
430 for (i = 0; i < sc->sc_num_mididevs; i++) {
431 if (sc->sc_mididevs[i].mdev == child)
432 break;
433 }
434 KASSERT(i < sc->sc_num_mididevs);
435 sc->sc_mididevs[i].mdev = NULL;
436 }
437
438 int
439 umidi_activate(device_t self, enum devact act)
440 {
441 struct umidi_softc *sc = device_private(self);
442
443 switch (act) {
444 case DVACT_DEACTIVATE:
445 DPRINTFN(1,("umidi_activate (deactivate)\n"));
446 sc->sc_dying = 1;
447 deactivate_all_mididevs(sc);
448 return 0;
449 default:
450 DPRINTFN(1,("umidi_activate (%d)\n", act));
451 return EOPNOTSUPP;
452 }
453 }
454
455 int
456 umidi_detach(device_t self, int flags)
457 {
458 struct umidi_softc *sc = device_private(self);
459
460 DPRINTFN(1,("umidi_detach\n"));
461
462 mutex_enter(&sc->sc_lock);
463 sc->sc_dying = 1;
464 if (--sc->sc_refcnt >= 0)
465 if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60)) {
466 printf("%s: %s didn't detach\n", __func__,
467 device_xname(sc->sc_dev));
468 }
469 mutex_exit(&sc->sc_lock);
470
471 detach_all_mididevs(sc, flags);
472 free_all_mididevs(sc);
473 free_all_jacks(sc);
474 free_all_endpoints(sc);
475
476 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
477
478 mutex_destroy(&sc->sc_lock);
479 cv_destroy(&sc->sc_detach_cv);
480 cv_destroy(&sc->sc_cv);
481
482 return 0;
483 }
484
485
486 /*
487 * midi_if stuffs
488 */
489 int
490 umidi_open(void *addr,
491 int flags,
492 void (*iintr)(void *, int),
493 void (*ointr)(void *),
494 void *arg)
495 {
496 struct umidi_mididev *mididev = addr;
497 struct umidi_softc *sc = mididev->sc;
498 usbd_status err;
499
500 KASSERT(mutex_owned(&sc->sc_lock));
501 DPRINTF(("umidi_open: sc=%p\n", sc));
502
503 if (mididev->opened)
504 return EBUSY;
505 if (sc->sc_dying)
506 return EIO;
507
508 mididev->opened = 1;
509 mididev->flags = flags;
510 if ((mididev->flags & FWRITE) && mididev->out_jack) {
511 err = open_out_jack(mididev->out_jack, arg, ointr);
512 if (err != USBD_NORMAL_COMPLETION)
513 goto bad;
514 }
515 if ((mididev->flags & FREAD) && mididev->in_jack) {
516 err = open_in_jack(mididev->in_jack, arg, iintr);
517 KASSERT(mididev->opened);
518 if (err != USBD_NORMAL_COMPLETION &&
519 err != USBD_IN_PROGRESS) {
520 if (mididev->out_jack)
521 close_out_jack(mididev->out_jack);
522 goto bad;
523 }
524 }
525
526 return 0;
527 bad:
528 mididev->opened = 0;
529 DPRINTF(("umidi_open: usbd_status %d\n", err));
530 KASSERT(mutex_owned(&sc->sc_lock));
531 return USBD_IN_USE == err ? EBUSY : EIO;
532 }
533
534 void
535 umidi_close(void *addr)
536 {
537 struct umidi_mididev *mididev = addr;
538 struct umidi_softc *sc = mididev->sc;
539
540 KASSERT(mutex_owned(&sc->sc_lock));
541
542 if (mididev->closing)
543 return;
544
545 mididev->closing = 1;
546
547 sc->sc_refcnt++;
548
549 if ((mididev->flags & FWRITE) && mididev->out_jack)
550 close_out_jack(mididev->out_jack);
551 if ((mididev->flags & FREAD) && mididev->in_jack)
552 close_in_jack(mididev->in_jack);
553
554 if (--sc->sc_refcnt < 0)
555 cv_broadcast(&sc->sc_detach_cv);
556
557 mididev->opened = 0;
558 mididev->closing = 0;
559 }
560
561 int
562 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
563 int len)
564 {
565 struct umidi_mididev *mididev = addr;
566
567 KASSERT(mutex_owned(&mididev->sc->sc_lock));
568
569 if (!mididev->out_jack || !mididev->opened || mididev->closing)
570 return EIO;
571
572 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
573 }
574
575 int
576 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
577 {
578 struct umidi_mididev *mididev = addr;
579 int cin;
580
581 KASSERT(mutex_owned(&mididev->sc->sc_lock));
582
583 if (!mididev->out_jack || !mididev->opened || mididev->closing)
584 return EIO;
585
586 switch ( len ) {
587 case 1: cin = 5; break;
588 case 2: cin = 2; break;
589 case 3: cin = 3; break;
590 default: return EIO; /* or gcc warns of cin uninitialized */
591 }
592
593 return out_jack_output(mididev->out_jack, msg, len, cin);
594 }
595
596 int
597 umidi_sysex(void *addr, u_char *msg, int len)
598 {
599 struct umidi_mididev *mididev = addr;
600 int cin;
601
602 KASSERT(mutex_owned(&mididev->sc->sc_lock));
603
604 if (!mididev->out_jack || !mididev->opened || mididev->closing)
605 return EIO;
606
607 switch ( len ) {
608 case 1: cin = 5; break;
609 case 2: cin = 6; break;
610 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
611 default: return EIO; /* or gcc warns of cin uninitialized */
612 }
613
614 return out_jack_output(mididev->out_jack, msg, len, cin);
615 }
616
617 int
618 umidi_rtmsg(void *addr, int d)
619 {
620 struct umidi_mididev *mididev = addr;
621 u_char msg = d;
622
623 KASSERT(mutex_owned(&mididev->sc->sc_lock));
624
625 if (!mididev->out_jack || !mididev->opened || mididev->closing)
626 return EIO;
627
628 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
629 }
630
631 void
632 umidi_getinfo(void *addr, struct midi_info *mi)
633 {
634 struct umidi_mididev *mididev = addr;
635 struct umidi_softc *sc = mididev->sc;
636 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
637
638 KASSERT(mutex_owned(&sc->sc_lock));
639
640 mi->name = mididev->label;
641 mi->props = MIDI_PROP_OUT_INTR;
642 if (mididev->in_jack)
643 mi->props |= MIDI_PROP_CAN_INPUT;
644 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
645 }
646
647 static void
648 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
649 {
650 struct umidi_mididev *mididev = addr;
651 struct umidi_softc *sc = mididev->sc;
652
653 *intr = NULL;
654 *thread = &sc->sc_lock;
655 }
656
657 /*
658 * each endpoint stuffs
659 */
660
661 /* alloc/free pipe */
662 static usbd_status
663 alloc_pipe(struct umidi_endpoint *ep)
664 {
665 struct umidi_softc *sc = ep->sc;
666 usbd_status err;
667 usb_endpoint_descriptor_t *epd;
668
669 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
670 /*
671 * For output, an improvement would be to have a buffer bigger than
672 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
673 * allow out_solicit to fill the buffer to the full packet size in
674 * all cases. But to use usbd_create_xfer to get a slightly larger
675 * buffer would not be a good way to do that, because if the addition
676 * would make the buffer exceed USB_MEM_SMALL then a substantially
677 * larger block may be wastefully allocated. Some flavor of double
678 * buffering could serve the same purpose, but would increase the
679 * code complexity, so for now I will live with the current slight
680 * penalty of reducing max transfer size by (num_open-num_scheduled)
681 * packet slots.
682 */
683 ep->buffer_size = UGETW(epd->wMaxPacketSize);
684 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
685
686 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
687 device_xname(sc->sc_dev), ep, ep->buffer_size));
688 ep->num_scheduled = 0;
689 ep->this_schedule = 0;
690 ep->next_schedule = 0;
691 ep->soliciting = 0;
692 ep->armed = 0;
693 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
694 if (err)
695 goto quit;
696 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
697 USBD_SHORT_XFER_OK, 0, &ep->xfer);
698 if (error) {
699 usbd_close_pipe(ep->pipe);
700 return USBD_NOMEM;
701 }
702 ep->buffer = usbd_get_buffer(ep->xfer);
703 ep->next_slot = ep->buffer;
704 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
705 out_solicit, ep);
706 quit:
707 return err;
708 }
709
710 static void
711 free_pipe(struct umidi_endpoint *ep)
712 {
713 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
714 usbd_abort_pipe(ep->pipe);
715 usbd_destroy_xfer(ep->xfer);
716 usbd_close_pipe(ep->pipe);
717 softint_disestablish(ep->solicit_cookie);
718 }
719
720
721 /* alloc/free the array of endpoint structures */
722
723 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
724 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
725 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
726
727 static usbd_status
728 alloc_all_endpoints(struct umidi_softc *sc)
729 {
730 usbd_status err;
731 struct umidi_endpoint *ep;
732 int i;
733
734 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
735 err = alloc_all_endpoints_fixed_ep(sc);
736 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
737 err = alloc_all_endpoints_yamaha(sc);
738 } else {
739 err = alloc_all_endpoints_genuine(sc);
740 }
741 if (err != USBD_NORMAL_COMPLETION)
742 return err;
743
744 ep = sc->sc_endpoints;
745 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
746 err = alloc_pipe(ep++);
747 if (err != USBD_NORMAL_COMPLETION) {
748 for (; ep != sc->sc_endpoints; ep--)
749 free_pipe(ep-1);
750 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
751 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
752 break;
753 }
754 }
755 return err;
756 }
757
758 static void
759 free_all_endpoints(struct umidi_softc *sc)
760 {
761 int i;
762
763 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
764 free_pipe(&sc->sc_endpoints[i]);
765 if (sc->sc_endpoints != NULL)
766 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
767 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
768 }
769
770 static usbd_status
771 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
772 {
773 usbd_status err;
774 const struct umq_fixed_ep_desc *fp;
775 struct umidi_endpoint *ep;
776 usb_endpoint_descriptor_t *epd;
777 int i;
778
779 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
780 UMQ_TYPE_FIXED_EP);
781 sc->sc_out_num_jacks = 0;
782 sc->sc_in_num_jacks = 0;
783 sc->sc_out_num_endpoints = fp->num_out_ep;
784 sc->sc_in_num_endpoints = fp->num_in_ep;
785 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
786 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
787 if (!sc->sc_endpoints)
788 return USBD_NOMEM;
789
790 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
791 sc->sc_in_ep =
792 sc->sc_in_num_endpoints ?
793 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
794
795 ep = &sc->sc_out_ep[0];
796 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
797 epd = usbd_interface2endpoint_descriptor(
798 sc->sc_iface,
799 fp->out_ep[i].ep);
800 if (!epd) {
801 aprint_error_dev(sc->sc_dev,
802 "cannot get endpoint descriptor(out:%d)\n",
803 fp->out_ep[i].ep);
804 err = USBD_INVAL;
805 goto error;
806 }
807 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
808 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
809 aprint_error_dev(sc->sc_dev,
810 "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
811 err = USBD_INVAL;
812 goto error;
813 }
814 ep->sc = sc;
815 ep->addr = epd->bEndpointAddress;
816 ep->num_jacks = fp->out_ep[i].num_jacks;
817 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
818 ep->num_open = 0;
819 ep++;
820 }
821 ep = &sc->sc_in_ep[0];
822 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
823 epd = usbd_interface2endpoint_descriptor(
824 sc->sc_iface,
825 fp->in_ep[i].ep);
826 if (!epd) {
827 aprint_error_dev(sc->sc_dev,
828 "cannot get endpoint descriptor(in:%d)\n",
829 fp->in_ep[i].ep);
830 err = USBD_INVAL;
831 goto error;
832 }
833 /*
834 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
835 * endpoint. The existing input logic in this driver seems
836 * to work successfully if we just stop treating an interrupt
837 * endpoint as illegal (or the in_progress status we get on
838 * the initial transfer). It does not seem necessary to
839 * actually use the interrupt flavor of alloc_pipe or make
840 * other serious rearrangements of logic. I like that.
841 */
842 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
843 case UE_BULK:
844 case UE_INTERRUPT:
845 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
846 break;
847 /*FALLTHROUGH*/
848 default:
849 aprint_error_dev(sc->sc_dev,
850 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
851 err = USBD_INVAL;
852 goto error;
853 }
854
855 ep->sc = sc;
856 ep->addr = epd->bEndpointAddress;
857 ep->num_jacks = fp->in_ep[i].num_jacks;
858 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
859 ep->num_open = 0;
860 ep++;
861 }
862
863 return USBD_NORMAL_COMPLETION;
864 error:
865 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
866 sc->sc_endpoints = NULL;
867 return err;
868 }
869
870 static usbd_status
871 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
872 {
873 /* This driver currently supports max 1in/1out bulk endpoints */
874 usb_descriptor_t *desc;
875 umidi_cs_descriptor_t *udesc;
876 usb_endpoint_descriptor_t *epd;
877 int out_addr, in_addr, i;
878 int dir;
879 size_t remain, descsize;
880
881 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
882 out_addr = in_addr = 0;
883
884 /* detect endpoints */
885 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
886 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
887 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
888 KASSERT(epd != NULL);
889 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
890 dir = UE_GET_DIR(epd->bEndpointAddress);
891 if (dir==UE_DIR_OUT && !out_addr)
892 out_addr = epd->bEndpointAddress;
893 else if (dir==UE_DIR_IN && !in_addr)
894 in_addr = epd->bEndpointAddress;
895 }
896 }
897 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
898
899 /* count jacks */
900 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
901 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
902 return USBD_INVAL;
903 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
904 (size_t)udesc->bLength;
905 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
906
907 while (remain >= sizeof(usb_descriptor_t)) {
908 descsize = udesc->bLength;
909 if (descsize>remain || descsize==0)
910 break;
911 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
912 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
913 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
914 sc->sc_out_num_jacks++;
915 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
916 sc->sc_in_num_jacks++;
917 }
918 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
919 remain -= descsize;
920 }
921
922 /* validate some parameters */
923 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
924 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
925 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
926 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
927 if (sc->sc_out_num_jacks && out_addr) {
928 sc->sc_out_num_endpoints = 1;
929 } else {
930 sc->sc_out_num_endpoints = 0;
931 sc->sc_out_num_jacks = 0;
932 }
933 if (sc->sc_in_num_jacks && in_addr) {
934 sc->sc_in_num_endpoints = 1;
935 } else {
936 sc->sc_in_num_endpoints = 0;
937 sc->sc_in_num_jacks = 0;
938 }
939 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
940 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
941 if (!sc->sc_endpoints)
942 return USBD_NOMEM;
943 if (sc->sc_out_num_endpoints) {
944 sc->sc_out_ep = sc->sc_endpoints;
945 sc->sc_out_ep->sc = sc;
946 sc->sc_out_ep->addr = out_addr;
947 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
948 sc->sc_out_ep->num_open = 0;
949 } else
950 sc->sc_out_ep = NULL;
951
952 if (sc->sc_in_num_endpoints) {
953 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
954 sc->sc_in_ep->sc = sc;
955 sc->sc_in_ep->addr = in_addr;
956 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
957 sc->sc_in_ep->num_open = 0;
958 } else
959 sc->sc_in_ep = NULL;
960
961 return USBD_NORMAL_COMPLETION;
962 }
963
964 static usbd_status
965 alloc_all_endpoints_genuine(struct umidi_softc *sc)
966 {
967 usb_interface_descriptor_t *interface_desc;
968 usb_config_descriptor_t *config_desc;
969 usb_descriptor_t *desc;
970 int num_ep;
971 size_t remain, descsize;
972 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
973 int epaddr;
974
975 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
976 num_ep = interface_desc->bNumEndpoints;
977 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
978 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
979 if (!p)
980 return USBD_NOMEM;
981
982 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
983 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
984 epaddr = -1;
985
986 /* get the list of endpoints for midi stream */
987 config_desc = usbd_get_config_descriptor(sc->sc_udev);
988 desc = (usb_descriptor_t *) config_desc;
989 remain = (size_t)UGETW(config_desc->wTotalLength);
990 while (remain>=sizeof(usb_descriptor_t)) {
991 descsize = desc->bLength;
992 if (descsize>remain || descsize==0)
993 break;
994 if (desc->bDescriptorType==UDESC_ENDPOINT &&
995 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
996 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
997 epaddr = TO_EPD(desc)->bEndpointAddress;
998 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
999 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
1000 epaddr!=-1) {
1001 if (num_ep>0) {
1002 num_ep--;
1003 p->sc = sc;
1004 p->addr = epaddr;
1005 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1006 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1007 sc->sc_out_num_endpoints++;
1008 sc->sc_out_num_jacks += p->num_jacks;
1009 } else {
1010 sc->sc_in_num_endpoints++;
1011 sc->sc_in_num_jacks += p->num_jacks;
1012 }
1013 p++;
1014 }
1015 } else
1016 epaddr = -1;
1017 desc = NEXT_D(desc);
1018 remain-=descsize;
1019 }
1020
1021 /* sort endpoints */
1022 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1023 p = sc->sc_endpoints;
1024 endep = p + num_ep;
1025 while (p<endep) {
1026 lowest = p;
1027 for (q=p+1; q<endep; q++) {
1028 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1029 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1030 ((UE_GET_DIR(lowest->addr)==
1031 UE_GET_DIR(q->addr)) &&
1032 (UE_GET_ADDR(lowest->addr)>
1033 UE_GET_ADDR(q->addr))))
1034 lowest = q;
1035 }
1036 if (lowest != p) {
1037 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1038 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1039 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1040 }
1041 p->num_open = 0;
1042 p++;
1043 }
1044
1045 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1046 sc->sc_in_ep =
1047 sc->sc_in_num_endpoints ?
1048 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1049
1050 return USBD_NORMAL_COMPLETION;
1051 }
1052
1053
1054 /*
1055 * jack stuffs
1056 */
1057
1058 static usbd_status
1059 alloc_all_jacks(struct umidi_softc *sc)
1060 {
1061 int i, j;
1062 struct umidi_endpoint *ep;
1063 struct umidi_jack *jack;
1064 const unsigned char *cn_spec;
1065
1066 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1067 sc->cblnums_global = 0;
1068 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1069 sc->cblnums_global = 1;
1070 else {
1071 /*
1072 * I don't think this default is correct, but it preserves
1073 * the prior behavior of the code. That's why I defined two
1074 * complementary quirks. Any device for which the default
1075 * behavior is wrong can be made to work by giving it an
1076 * explicit quirk, and if a pattern ever develops (as I suspect
1077 * it will) that a lot of otherwise standard USB MIDI devices
1078 * need the CN_SEQ_PER_EP "quirk," then this default can be
1079 * changed to 0, and the only devices that will break are those
1080 * listing neither quirk, and they'll easily be fixed by giving
1081 * them the CN_SEQ_GLOBAL quirk.
1082 */
1083 sc->cblnums_global = 1;
1084 }
1085
1086 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1087 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1088 UMQ_TYPE_CN_FIXED);
1089 else
1090 cn_spec = NULL;
1091
1092 /* allocate/initialize structures */
1093 sc->sc_jacks =
1094 kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
1095 + sc->sc_out_num_jacks), KM_SLEEP);
1096 if (!sc->sc_jacks)
1097 return USBD_NOMEM;
1098 sc->sc_out_jacks =
1099 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1100 sc->sc_in_jacks =
1101 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1102
1103 jack = &sc->sc_out_jacks[0];
1104 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1105 jack->opened = 0;
1106 jack->bound = 0;
1107 jack->arg = NULL;
1108 jack->u.out.intr = NULL;
1109 jack->midiman_ppkt = NULL;
1110 if (sc->cblnums_global)
1111 jack->cable_number = i;
1112 jack++;
1113 }
1114 jack = &sc->sc_in_jacks[0];
1115 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1116 jack->opened = 0;
1117 jack->bound = 0;
1118 jack->arg = NULL;
1119 jack->u.in.intr = NULL;
1120 if (sc->cblnums_global)
1121 jack->cable_number = i;
1122 jack++;
1123 }
1124
1125 /* assign each jacks to each endpoints */
1126 jack = &sc->sc_out_jacks[0];
1127 ep = &sc->sc_out_ep[0];
1128 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1129 for (j = 0; j < ep->num_jacks; j++) {
1130 jack->endpoint = ep;
1131 if (cn_spec != NULL)
1132 jack->cable_number = *cn_spec++;
1133 else if (!sc->cblnums_global)
1134 jack->cable_number = j;
1135 ep->jacks[jack->cable_number] = jack;
1136 jack++;
1137 }
1138 ep++;
1139 }
1140 jack = &sc->sc_in_jacks[0];
1141 ep = &sc->sc_in_ep[0];
1142 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1143 for (j = 0; j < ep->num_jacks; j++) {
1144 jack->endpoint = ep;
1145 if (cn_spec != NULL)
1146 jack->cable_number = *cn_spec++;
1147 else if (!sc->cblnums_global)
1148 jack->cable_number = j;
1149 ep->jacks[jack->cable_number] = jack;
1150 jack++;
1151 }
1152 ep++;
1153 }
1154
1155 return USBD_NORMAL_COMPLETION;
1156 }
1157
1158 static void
1159 free_all_jacks(struct umidi_softc *sc)
1160 {
1161 struct umidi_jack *jacks;
1162 size_t len;
1163
1164 mutex_enter(&sc->sc_lock);
1165 jacks = sc->sc_jacks;
1166 len = sizeof(*sc->sc_out_jacks)
1167 * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1168 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1169 mutex_exit(&sc->sc_lock);
1170
1171 if (jacks)
1172 kmem_free(jacks, len);
1173 }
1174
1175 static usbd_status
1176 bind_jacks_to_mididev(struct umidi_softc *sc,
1177 struct umidi_jack *out_jack,
1178 struct umidi_jack *in_jack,
1179 struct umidi_mididev *mididev)
1180 {
1181 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1182 return USBD_IN_USE;
1183 if (mididev->out_jack || mididev->in_jack)
1184 return USBD_IN_USE;
1185
1186 if (out_jack)
1187 out_jack->bound = 1;
1188 if (in_jack)
1189 in_jack->bound = 1;
1190 mididev->in_jack = in_jack;
1191 mididev->out_jack = out_jack;
1192
1193 mididev->closing = 0;
1194
1195 return USBD_NORMAL_COMPLETION;
1196 }
1197
1198 static void
1199 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1200 {
1201 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1202
1203 mididev->closing = 1;
1204
1205 if ((mididev->flags & FWRITE) && mididev->out_jack)
1206 close_out_jack(mididev->out_jack);
1207 if ((mididev->flags & FREAD) && mididev->in_jack)
1208 close_in_jack(mididev->in_jack);
1209
1210 if (mididev->out_jack) {
1211 mididev->out_jack->bound = 0;
1212 mididev->out_jack = NULL;
1213 }
1214 if (mididev->in_jack) {
1215 mididev->in_jack->bound = 0;
1216 mididev->in_jack = NULL;
1217 }
1218 }
1219
1220 static void
1221 unbind_all_jacks(struct umidi_softc *sc)
1222 {
1223 int i;
1224
1225 mutex_enter(&sc->sc_lock);
1226 if (sc->sc_mididevs)
1227 for (i = 0; i < sc->sc_num_mididevs; i++)
1228 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1229 mutex_exit(&sc->sc_lock);
1230 }
1231
1232 static usbd_status
1233 assign_all_jacks_automatically(struct umidi_softc *sc)
1234 {
1235 usbd_status err;
1236 int i;
1237 struct umidi_jack *out, *in;
1238 const signed char *asg_spec;
1239
1240 err =
1241 alloc_all_mididevs(sc,
1242 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1243 if (err!=USBD_NORMAL_COMPLETION)
1244 return err;
1245
1246 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1247 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1248 UMQ_TYPE_MD_FIXED);
1249 else
1250 asg_spec = NULL;
1251
1252 for (i = 0; i < sc->sc_num_mididevs; i++) {
1253 if (asg_spec != NULL) {
1254 if (*asg_spec == -1)
1255 out = NULL;
1256 else
1257 out = &sc->sc_out_jacks[*asg_spec];
1258 ++ asg_spec;
1259 if (*asg_spec == -1)
1260 in = NULL;
1261 else
1262 in = &sc->sc_in_jacks[*asg_spec];
1263 ++ asg_spec;
1264 } else {
1265 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1266 : NULL;
1267 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1268 : NULL;
1269 }
1270 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1271 if (err != USBD_NORMAL_COMPLETION) {
1272 free_all_mididevs(sc);
1273 return err;
1274 }
1275 }
1276
1277 return USBD_NORMAL_COMPLETION;
1278 }
1279
1280 static usbd_status
1281 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1282 {
1283 struct umidi_endpoint *ep = jack->endpoint;
1284 struct umidi_softc *sc = ep->sc;
1285 umidi_packet_bufp end;
1286 int err;
1287
1288 KASSERT(mutex_owned(&sc->sc_lock));
1289
1290 if (jack->opened)
1291 return USBD_IN_USE;
1292
1293 jack->arg = arg;
1294 jack->u.out.intr = intr;
1295 jack->midiman_ppkt = NULL;
1296 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1297 jack->opened = 1;
1298 ep->num_open++;
1299 /*
1300 * out_solicit maintains an invariant that there will always be
1301 * (num_open - num_scheduled) slots free in the buffer. as we have
1302 * just incremented num_open, the buffer may be too full to satisfy
1303 * the invariant until a transfer completes, for which we must wait.
1304 */
1305 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1306 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1307 mstohz(10));
1308 if (err) {
1309 ep->num_open--;
1310 jack->opened = 0;
1311 return USBD_IOERROR;
1312 }
1313 }
1314
1315 return USBD_NORMAL_COMPLETION;
1316 }
1317
1318 static usbd_status
1319 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1320 {
1321 usbd_status err = USBD_NORMAL_COMPLETION;
1322 struct umidi_endpoint *ep = jack->endpoint;
1323
1324 KASSERT(mutex_owned(&ep->sc->sc_lock));
1325
1326 if (jack->opened)
1327 return USBD_IN_USE;
1328
1329 jack->arg = arg;
1330 jack->u.in.intr = intr;
1331 jack->opened = 1;
1332 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1333 /*
1334 * Can't hold the interrupt lock while calling into USB,
1335 * but we can safely drop it here.
1336 */
1337 mutex_exit(&ep->sc->sc_lock);
1338 err = start_input_transfer(ep);
1339 if (err != USBD_NORMAL_COMPLETION &&
1340 err != USBD_IN_PROGRESS) {
1341 ep->num_open--;
1342 }
1343 mutex_enter(&ep->sc->sc_lock);
1344 }
1345
1346 return err;
1347 }
1348
1349 static void
1350 close_out_jack(struct umidi_jack *jack)
1351 {
1352 struct umidi_endpoint *ep;
1353 struct umidi_softc *sc;
1354 uint16_t mask;
1355 int err;
1356
1357 if (jack->opened) {
1358 ep = jack->endpoint;
1359 sc = ep->sc;
1360
1361 KASSERT(mutex_owned(&sc->sc_lock));
1362 mask = 1 << (jack->cable_number);
1363 while (mask & (ep->this_schedule | ep->next_schedule)) {
1364 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1365 mstohz(10));
1366 if (err)
1367 break;
1368 }
1369 /*
1370 * We can re-enter this function from both close() and
1371 * detach(). Make sure only one of them does this part.
1372 */
1373 if (jack->opened) {
1374 jack->opened = 0;
1375 jack->endpoint->num_open--;
1376 ep->this_schedule &= ~mask;
1377 ep->next_schedule &= ~mask;
1378 }
1379 }
1380 }
1381
1382 static void
1383 close_in_jack(struct umidi_jack *jack)
1384 {
1385 if (jack->opened) {
1386 struct umidi_softc *sc = jack->endpoint->sc;
1387
1388 KASSERT(mutex_owned(&sc->sc_lock));
1389
1390 jack->opened = 0;
1391 if (--jack->endpoint->num_open == 0) {
1392 /*
1393 * We have to drop the (interrupt) lock so that
1394 * the USB thread lock can be safely taken by
1395 * the abort operation. This is safe as this
1396 * either closing or dying will be set proerly.
1397 */
1398 mutex_exit(&sc->sc_lock);
1399 usbd_abort_pipe(jack->endpoint->pipe);
1400 mutex_enter(&sc->sc_lock);
1401 }
1402 }
1403 }
1404
1405 static usbd_status
1406 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1407 {
1408 if (mididev->sc)
1409 return USBD_IN_USE;
1410
1411 mididev->sc = sc;
1412
1413 describe_mididev(mididev);
1414
1415 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1416
1417 return USBD_NORMAL_COMPLETION;
1418 }
1419
1420 static usbd_status
1421 detach_mididev(struct umidi_mididev *mididev, int flags)
1422 {
1423 struct umidi_softc *sc = mididev->sc;
1424
1425 if (!sc)
1426 return USBD_NO_ADDR;
1427
1428 mutex_enter(&sc->sc_lock);
1429 if (mididev->opened) {
1430 umidi_close(mididev);
1431 }
1432 unbind_jacks_from_mididev(mididev);
1433 mutex_exit(&sc->sc_lock);
1434
1435 if (mididev->mdev != NULL)
1436 config_detach(mididev->mdev, flags);
1437
1438 if (NULL != mididev->label) {
1439 kmem_free(mididev->label, mididev->label_len);
1440 mididev->label = NULL;
1441 }
1442
1443 mididev->sc = NULL;
1444
1445 return USBD_NORMAL_COMPLETION;
1446 }
1447
1448 static void
1449 deactivate_mididev(struct umidi_mididev *mididev)
1450 {
1451 if (mididev->out_jack)
1452 mididev->out_jack->bound = 0;
1453 if (mididev->in_jack)
1454 mididev->in_jack->bound = 0;
1455 }
1456
1457 static usbd_status
1458 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1459 {
1460 sc->sc_num_mididevs = nmidi;
1461 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1462 if (!sc->sc_mididevs)
1463 return USBD_NOMEM;
1464
1465 return USBD_NORMAL_COMPLETION;
1466 }
1467
1468 static void
1469 free_all_mididevs(struct umidi_softc *sc)
1470 {
1471 struct umidi_mididev *mididevs;
1472 size_t len;
1473
1474 mutex_enter(&sc->sc_lock);
1475 mididevs = sc->sc_mididevs;
1476 if (mididevs)
1477 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1478 sc->sc_mididevs = NULL;
1479 sc->sc_num_mididevs = 0;
1480 mutex_exit(&sc->sc_lock);
1481
1482 if (mididevs)
1483 kmem_free(mididevs, len);
1484 }
1485
1486 static usbd_status
1487 attach_all_mididevs(struct umidi_softc *sc)
1488 {
1489 usbd_status err;
1490 int i;
1491
1492 if (sc->sc_mididevs)
1493 for (i = 0; i < sc->sc_num_mididevs; i++) {
1494 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1495 if (err != USBD_NORMAL_COMPLETION)
1496 return err;
1497 }
1498
1499 return USBD_NORMAL_COMPLETION;
1500 }
1501
1502 static usbd_status
1503 detach_all_mididevs(struct umidi_softc *sc, int flags)
1504 {
1505 usbd_status err;
1506 int i;
1507
1508 if (sc->sc_mididevs)
1509 for (i = 0; i < sc->sc_num_mididevs; i++) {
1510 err = detach_mididev(&sc->sc_mididevs[i], flags);
1511 if (err != USBD_NORMAL_COMPLETION)
1512 return err;
1513 }
1514
1515 return USBD_NORMAL_COMPLETION;
1516 }
1517
1518 static void
1519 deactivate_all_mididevs(struct umidi_softc *sc)
1520 {
1521 int i;
1522
1523 if (sc->sc_mididevs) {
1524 for (i = 0; i < sc->sc_num_mididevs; i++)
1525 deactivate_mididev(&sc->sc_mididevs[i]);
1526 }
1527 }
1528
1529 /*
1530 * TODO: the 0-based cable numbers will often not match the labeling of the
1531 * equipment. Ideally:
1532 * For class-compliant devices: get the iJack string from the jack descriptor.
1533 * Otherwise:
1534 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1535 * number for display)
1536 * - support an array quirk explictly giving a char * for each jack.
1537 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1538 * the CNs are not globally unique, each is shown with its associated endpoint
1539 * address in hex also. That should not be necessary when using iJack values
1540 * or a quirk array.
1541 */
1542 void
1543 describe_mididev(struct umidi_mididev *md)
1544 {
1545 char in_label[16];
1546 char out_label[16];
1547 const char *unit_label;
1548 char *final_label;
1549 struct umidi_softc *sc;
1550 int show_ep_in;
1551 int show_ep_out;
1552 size_t len;
1553
1554 sc = md->sc;
1555 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1556 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1557
1558 if (NULL == md->in_jack)
1559 in_label[0] = '\0';
1560 else if (show_ep_in)
1561 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1562 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1563 else
1564 snprintf(in_label, sizeof(in_label), "<%d ",
1565 md->in_jack->cable_number);
1566
1567 if (NULL == md->out_jack)
1568 out_label[0] = '\0';
1569 else if (show_ep_out)
1570 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1571 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1572 else
1573 snprintf(out_label, sizeof(out_label), ">%d ",
1574 md->out_jack->cable_number);
1575
1576 unit_label = device_xname(sc->sc_dev);
1577
1578 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1579
1580 final_label = kmem_alloc(len, KM_SLEEP);
1581
1582 snprintf(final_label, len, "%s%son %s",
1583 in_label, out_label, unit_label);
1584
1585 md->label = final_label;
1586 md->label_len = len;
1587 }
1588
1589 #ifdef UMIDI_DEBUG
1590 static void
1591 dump_sc(struct umidi_softc *sc)
1592 {
1593 int i;
1594
1595 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1596 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1597 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1598 dump_ep(&sc->sc_out_ep[i]);
1599 }
1600 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1601 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1602 dump_ep(&sc->sc_in_ep[i]);
1603 }
1604 }
1605
1606 static void
1607 dump_ep(struct umidi_endpoint *ep)
1608 {
1609 int i;
1610 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1611 if (NULL==ep->jacks[i])
1612 continue;
1613 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1614 dump_jack(ep->jacks[i]);
1615 }
1616 }
1617 static void
1618 dump_jack(struct umidi_jack *jack)
1619 {
1620 DPRINTFN(10, ("\t\t\tep=%p\n",
1621 jack->endpoint));
1622 }
1623
1624 #endif /* UMIDI_DEBUG */
1625
1626
1627
1628 /*
1629 * MUX MIDI PACKET
1630 */
1631
1632 static const int packet_length[16] = {
1633 /*0*/ -1,
1634 /*1*/ -1,
1635 /*2*/ 2,
1636 /*3*/ 3,
1637 /*4*/ 3,
1638 /*5*/ 1,
1639 /*6*/ 2,
1640 /*7*/ 3,
1641 /*8*/ 3,
1642 /*9*/ 3,
1643 /*A*/ 3,
1644 /*B*/ 3,
1645 /*C*/ 2,
1646 /*D*/ 2,
1647 /*E*/ 3,
1648 /*F*/ 1,
1649 };
1650
1651 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1652 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1653 #define MIX_CN_CIN(cn, cin) \
1654 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1655 ((unsigned char)(cin)&0x0F)))
1656
1657 static usbd_status
1658 start_input_transfer(struct umidi_endpoint *ep)
1659 {
1660 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1661 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1662 return usbd_transfer(ep->xfer);
1663 }
1664
1665 static usbd_status
1666 start_output_transfer(struct umidi_endpoint *ep)
1667 {
1668 usbd_status rv;
1669 uint32_t length;
1670 int i;
1671
1672 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1673 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1674 ep->buffer, ep->next_slot, length));
1675
1676 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1677 USBD_NO_TIMEOUT, out_intr);
1678 rv = usbd_transfer(ep->xfer);
1679
1680 /*
1681 * Once the transfer is scheduled, no more adding to partial
1682 * packets within it.
1683 */
1684 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1685 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1686 if (NULL != ep->jacks[i])
1687 ep->jacks[i]->midiman_ppkt = NULL;
1688 }
1689
1690 return rv;
1691 }
1692
1693 #ifdef UMIDI_DEBUG
1694 #define DPR_PACKET(dir, sc, p) \
1695 if ((unsigned char)(p)[1]!=0xFE) \
1696 DPRINTFN(500, \
1697 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1698 device_xname(sc->sc_dev), \
1699 (unsigned char)(p)[0], \
1700 (unsigned char)(p)[1], \
1701 (unsigned char)(p)[2], \
1702 (unsigned char)(p)[3]));
1703 #else
1704 #define DPR_PACKET(dir, sc, p)
1705 #endif
1706
1707 /*
1708 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1709 * with the cable number and length in the last byte instead of the first,
1710 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1711 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1712 * with a cable nybble and a length nybble (which, unlike the CIN of a
1713 * real USB MIDI packet, has no semantics at all besides the length).
1714 * A packet received from a Midiman may contain part of a MIDI message,
1715 * more than one MIDI message, or parts of more than one MIDI message. A
1716 * three-byte MIDI message may arrive in three packets of data length 1, and
1717 * running status may be used. Happily, the midi(4) driver above us will put
1718 * it all back together, so the only cost is in USB bandwidth. The device
1719 * has an easier time with what it receives from us: we'll pack messages in
1720 * and across packets, but filling the packets whenever possible and,
1721 * as midi(4) hands us a complete message at a time, we'll never send one
1722 * in a dribble of short packets.
1723 */
1724
1725 static int
1726 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1727 {
1728 struct umidi_endpoint *ep = out_jack->endpoint;
1729 struct umidi_softc *sc = ep->sc;
1730 unsigned char *packet;
1731 int plen;
1732 int poff;
1733
1734 KASSERT(mutex_owned(&sc->sc_lock));
1735
1736 if (sc->sc_dying)
1737 return EIO;
1738
1739 if (!out_jack->opened)
1740 return ENODEV; /* XXX as it was, is this the right errno? */
1741
1742 sc->sc_refcnt++;
1743
1744 #ifdef UMIDI_DEBUG
1745 if (umididebug >= 100)
1746 microtime(&umidi_tv);
1747 #endif
1748 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1749 "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1750 (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1751
1752 packet = *ep->next_slot++;
1753 KASSERT(ep->buffer_size >=
1754 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1755 memset(packet, 0, UMIDI_PACKET_SIZE);
1756 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1757 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1758 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1759 plen = 3 - poff;
1760 if (plen > len)
1761 plen = len;
1762 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1763 src += plen;
1764 len -= plen;
1765 plen += poff;
1766 out_jack->midiman_ppkt[3] =
1767 MIX_CN_CIN(out_jack->cable_number, plen);
1768 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1769 if (3 == plen)
1770 out_jack->midiman_ppkt = NULL; /* no more */
1771 }
1772 if (0 == len)
1773 ep->next_slot--; /* won't be needed, nevermind */
1774 else {
1775 memcpy(packet, src, len);
1776 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1777 DPR_PACKET(out, sc, packet);
1778 if (len < 3)
1779 out_jack->midiman_ppkt = packet;
1780 }
1781 } else { /* the nice simple USB class-compliant case */
1782 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1783 memcpy(packet+1, src, len);
1784 DPR_PACKET(out, sc, packet);
1785 }
1786 ep->next_schedule |= 1<<(out_jack->cable_number);
1787 ++ ep->num_scheduled;
1788 if (!ep->armed && !ep->soliciting) {
1789 /*
1790 * It would be bad to call out_solicit directly here (the
1791 * caller need not be reentrant) but a soft interrupt allows
1792 * solicit to run immediately the caller exits its critical
1793 * section, and if the caller has more to write we can get it
1794 * before starting the USB transfer, and send a longer one.
1795 */
1796 ep->soliciting = 1;
1797 kpreempt_disable();
1798 softint_schedule(ep->solicit_cookie);
1799 kpreempt_enable();
1800 }
1801
1802 if (--sc->sc_refcnt < 0)
1803 cv_broadcast(&sc->sc_detach_cv);
1804
1805 return 0;
1806 }
1807
1808 static void
1809 in_intr(struct usbd_xfer *xfer, void *priv,
1810 usbd_status status)
1811 {
1812 int cn, len, i;
1813 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1814 struct umidi_softc *sc = ep->sc;
1815 struct umidi_jack *jack;
1816 unsigned char *packet;
1817 umidi_packet_bufp slot;
1818 umidi_packet_bufp end;
1819 unsigned char *data;
1820 uint32_t count;
1821
1822 if (ep->sc->sc_dying || !ep->num_open)
1823 return;
1824
1825 mutex_enter(&sc->sc_lock);
1826 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1827 if (0 == count % UMIDI_PACKET_SIZE) {
1828 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1829 device_xname(ep->sc->sc_dev), ep, count));
1830 } else {
1831 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1832 device_xname(ep->sc->sc_dev), ep, count));
1833 }
1834
1835 slot = ep->buffer;
1836 end = slot + count / sizeof(*slot);
1837
1838 for (packet = *slot; slot < end; packet = *++slot) {
1839
1840 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1841 cn = (0xf0&(packet[3]))>>4;
1842 len = 0x0f&(packet[3]);
1843 data = packet;
1844 } else {
1845 cn = GET_CN(packet[0]);
1846 len = packet_length[GET_CIN(packet[0])];
1847 data = packet + 1;
1848 }
1849 /* 0 <= cn <= 15 by inspection of above code */
1850 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1851 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1852 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1853 device_xname(ep->sc->sc_dev), ep, cn, len,
1854 (unsigned)data[0],
1855 (unsigned)data[1],
1856 (unsigned)data[2]));
1857 mutex_exit(&sc->sc_lock);
1858 return;
1859 }
1860
1861 if (!jack->bound || !jack->opened)
1862 continue;
1863
1864 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1865 "%02X %02X %02X\n",
1866 device_xname(ep->sc->sc_dev), ep, cn, len,
1867 (unsigned)data[0],
1868 (unsigned)data[1],
1869 (unsigned)data[2]));
1870
1871 if (jack->u.in.intr) {
1872 for (i = 0; i < len; i++) {
1873 (*jack->u.in.intr)(jack->arg, data[i]);
1874 }
1875 }
1876
1877 }
1878
1879 (void)start_input_transfer(ep);
1880 mutex_exit(&sc->sc_lock);
1881 }
1882
1883 static void
1884 out_intr(struct usbd_xfer *xfer, void *priv,
1885 usbd_status status)
1886 {
1887 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1888 struct umidi_softc *sc = ep->sc;
1889 uint32_t count;
1890
1891 if (sc->sc_dying)
1892 return;
1893
1894 mutex_enter(&sc->sc_lock);
1895 #ifdef UMIDI_DEBUG
1896 if (umididebug >= 200)
1897 microtime(&umidi_tv);
1898 #endif
1899 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1900 if (0 == count % UMIDI_PACKET_SIZE) {
1901 DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1902 "length %u\n", device_xname(ep->sc->sc_dev),
1903 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1904 count));
1905 } else {
1906 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1907 device_xname(ep->sc->sc_dev), ep, count));
1908 }
1909 count /= UMIDI_PACKET_SIZE;
1910
1911 /*
1912 * If while the transfer was pending we buffered any new messages,
1913 * move them to the start of the buffer.
1914 */
1915 ep->next_slot -= count;
1916 if (ep->buffer < ep->next_slot) {
1917 memcpy(ep->buffer, ep->buffer + count,
1918 (char *)ep->next_slot - (char *)ep->buffer);
1919 }
1920 cv_broadcast(&sc->sc_cv);
1921 /*
1922 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1923 * Running at IPL_USB so the following should happen to be safe.
1924 */
1925 ep->armed = 0;
1926 if (!ep->soliciting) {
1927 ep->soliciting = 1;
1928 out_solicit_locked(ep);
1929 }
1930 mutex_exit(&sc->sc_lock);
1931 }
1932
1933 /*
1934 * A jack on which we have received a packet must be called back on its
1935 * out.intr handler before it will send us another; it is considered
1936 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1937 * we need no extra buffer space for it.
1938 *
1939 * In contrast, a jack that is open but not scheduled may supply us a packet
1940 * at any time, driven by the top half, and we must be able to accept it, no
1941 * excuses. So we must ensure that at any point in time there are at least
1942 * (num_open - num_scheduled) slots free.
1943 *
1944 * As long as there are more slots free than that minimum, we can loop calling
1945 * scheduled jacks back on their "interrupt" handlers, soliciting more
1946 * packets, starting the USB transfer only when the buffer space is down to
1947 * the minimum or no jack has any more to send.
1948 */
1949
1950 static void
1951 out_solicit_locked(void *arg)
1952 {
1953 struct umidi_endpoint *ep = arg;
1954 umidi_packet_bufp end;
1955 uint16_t which;
1956 struct umidi_jack *jack;
1957
1958 KASSERT(mutex_owned(&ep->sc->sc_lock));
1959
1960 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1961
1962 for ( ;; ) {
1963 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1964 break; /* at IPL_USB */
1965 if (ep->this_schedule == 0) {
1966 if (ep->next_schedule == 0)
1967 break; /* at IPL_USB */
1968 ep->this_schedule = ep->next_schedule;
1969 ep->next_schedule = 0;
1970 }
1971 /*
1972 * At least one jack is scheduled. Find and mask off the least
1973 * set bit in this_schedule and decrement num_scheduled.
1974 * Convert mask to bit index to find the corresponding jack,
1975 * and call its intr handler. If it has a message, it will call
1976 * back one of the output methods, which will set its bit in
1977 * next_schedule (not copied into this_schedule until the
1978 * latter is empty). In this way we round-robin the jacks that
1979 * have messages to send, until the buffer is as full as we
1980 * dare, and then start a transfer.
1981 */
1982 which = ep->this_schedule;
1983 which &= (~which)+1; /* now mask of least set bit */
1984 ep->this_schedule &= ~which;
1985 --ep->num_scheduled;
1986
1987 --which; /* now 1s below mask - count 1s to get index */
1988 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1989 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1990 which = (((which >> 4) + which) & 0x0f0f);
1991 which += (which >> 8);
1992 which &= 0x1f; /* the bit index a/k/a jack number */
1993
1994 jack = ep->jacks[which];
1995 if (jack->u.out.intr)
1996 (*jack->u.out.intr)(jack->arg);
1997 }
1998 /* intr lock held at loop exit */
1999 if (!ep->armed && ep->next_slot > ep->buffer) {
2000 /*
2001 * Can't hold the interrupt lock while calling into USB,
2002 * but we can safely drop it here.
2003 */
2004 mutex_exit(&ep->sc->sc_lock);
2005 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
2006 mutex_enter(&ep->sc->sc_lock);
2007 }
2008 ep->soliciting = 0;
2009 }
2010
2011 /* Entry point for the softintr. */
2012 static void
2013 out_solicit(void *arg)
2014 {
2015 struct umidi_endpoint *ep = arg;
2016 struct umidi_softc *sc = ep->sc;
2017
2018 mutex_enter(&sc->sc_lock);
2019 out_solicit_locked(arg);
2020 mutex_exit(&sc->sc_lock);
2021 }
2022