umidi.c revision 1.65.14.13 1 /* $NetBSD: umidi.c,v 1.65.14.13 2016/10/27 07:46:19 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.65.14.13 2016/10/27 07:46:19 skrll Exp $");
36
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/device.h>
43 #include <sys/ioctl.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/select.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/poll.h>
50 #include <sys/intr.h>
51
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55
56 #include <dev/auconv.h>
57 #include <dev/usb/usbdevs.h>
58 #include <dev/usb/umidi_quirks.h>
59 #include <dev/midi_if.h>
60
61 /* Jack Descriptor */
62 #define UMIDI_MS_HEADER 0x01
63 #define UMIDI_IN_JACK 0x02
64 #define UMIDI_OUT_JACK 0x03
65
66 /* Jack Type */
67 #define UMIDI_EMBEDDED 0x01
68 #define UMIDI_EXTERNAL 0x02
69
70 /* generic, for iteration */
71 typedef struct {
72 uByte bLength;
73 uByte bDescriptorType;
74 uByte bDescriptorSubtype;
75 } UPACKED umidi_cs_descriptor_t;
76
77 typedef struct {
78 uByte bLength;
79 uByte bDescriptorType;
80 uByte bDescriptorSubtype;
81 uWord bcdMSC;
82 uWord wTotalLength;
83 } UPACKED umidi_cs_interface_descriptor_t;
84 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
85
86 typedef struct {
87 uByte bLength;
88 uByte bDescriptorType;
89 uByte bDescriptorSubtype;
90 uByte bNumEmbMIDIJack;
91 } UPACKED umidi_cs_endpoint_descriptor_t;
92 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
93
94 typedef struct {
95 uByte bLength;
96 uByte bDescriptorType;
97 uByte bDescriptorSubtype;
98 uByte bJackType;
99 uByte bJackID;
100 } UPACKED umidi_jack_descriptor_t;
101 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
102
103
104 #define TO_D(p) ((usb_descriptor_t *)(p))
105 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
106 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
107 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
108 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
109 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
110
111
112 #define UMIDI_PACKET_SIZE 4
113
114 /*
115 * hierarchie
116 *
117 * <-- parent child -->
118 *
119 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
120 * ^ | ^ |
121 * +-----+ +-----+
122 */
123
124 /* midi device */
125 struct umidi_mididev {
126 struct umidi_softc *sc;
127 device_t mdev;
128 /* */
129 struct umidi_jack *in_jack;
130 struct umidi_jack *out_jack;
131 char *label;
132 size_t label_len;
133 /* */
134 int opened;
135 int closing;
136 int flags;
137 };
138
139 /* Jack Information */
140 struct umidi_jack {
141 struct umidi_endpoint *endpoint;
142 /* */
143 int cable_number;
144 void *arg;
145 int bound;
146 int opened;
147 unsigned char *midiman_ppkt;
148 union {
149 struct {
150 void (*intr)(void *);
151 } out;
152 struct {
153 void (*intr)(void *, int);
154 } in;
155 } u;
156 };
157
158 #define UMIDI_MAX_EPJACKS 16
159 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
160 /* endpoint data */
161 struct umidi_endpoint {
162 struct umidi_softc *sc;
163 /* */
164 int addr;
165 struct usbd_pipe *pipe;
166 struct usbd_xfer *xfer;
167 umidi_packet_bufp buffer;
168 umidi_packet_bufp next_slot;
169 uint32_t buffer_size;
170 int num_scheduled;
171 int num_open;
172 int num_jacks;
173 int soliciting;
174 void *solicit_cookie;
175 int armed;
176 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
177 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
178 uint16_t next_schedule;
179 };
180
181 /* software context */
182 struct umidi_softc {
183 device_t sc_dev;
184 struct usbd_device *sc_udev;
185 struct usbd_interface *sc_iface;
186 const struct umidi_quirk *sc_quirk;
187
188 int sc_dying;
189
190 int sc_out_num_jacks;
191 struct umidi_jack *sc_out_jacks;
192 int sc_in_num_jacks;
193 struct umidi_jack *sc_in_jacks;
194 struct umidi_jack *sc_jacks;
195
196 int sc_num_mididevs;
197 struct umidi_mididev *sc_mididevs;
198
199 int sc_out_num_endpoints;
200 struct umidi_endpoint *sc_out_ep;
201 int sc_in_num_endpoints;
202 struct umidi_endpoint *sc_in_ep;
203 struct umidi_endpoint *sc_endpoints;
204 size_t sc_endpoints_len;
205 int cblnums_global;
206
207 kmutex_t sc_lock;
208 kcondvar_t sc_cv;
209 kcondvar_t sc_detach_cv;
210
211 int sc_refcnt;
212 };
213
214 #ifdef UMIDI_DEBUG
215 #define DPRINTF(x) if (umididebug) printf x
216 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
217 #include <sys/time.h>
218 static struct timeval umidi_tv;
219 int umididebug = 0;
220 #else
221 #define DPRINTF(x)
222 #define DPRINTFN(n,x)
223 #endif
224
225 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
226 (sc->sc_out_num_endpoints + \
227 sc->sc_in_num_endpoints))
228
229
230 static int umidi_open(void *, int,
231 void (*)(void *, int), void (*)(void *), void *);
232 static void umidi_close(void *);
233 static int umidi_channelmsg(void *, int, int, u_char *, int);
234 static int umidi_commonmsg(void *, int, u_char *, int);
235 static int umidi_sysex(void *, u_char *, int);
236 static int umidi_rtmsg(void *, int);
237 static void umidi_getinfo(void *, struct midi_info *);
238 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
239
240 static usbd_status alloc_pipe(struct umidi_endpoint *);
241 static void free_pipe(struct umidi_endpoint *);
242
243 static usbd_status alloc_all_endpoints(struct umidi_softc *);
244 static void free_all_endpoints(struct umidi_softc *);
245
246 static usbd_status alloc_all_jacks(struct umidi_softc *);
247 static void free_all_jacks(struct umidi_softc *);
248 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
249 struct umidi_jack *,
250 struct umidi_jack *,
251 struct umidi_mididev *);
252 static void unbind_jacks_from_mididev(struct umidi_mididev *);
253 static void unbind_all_jacks(struct umidi_softc *);
254 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
255 static usbd_status open_out_jack(struct umidi_jack *, void *,
256 void (*)(void *));
257 static usbd_status open_in_jack(struct umidi_jack *, void *,
258 void (*)(void *, int));
259 static void close_out_jack(struct umidi_jack *);
260 static void close_in_jack(struct umidi_jack *);
261
262 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
263 static usbd_status detach_mididev(struct umidi_mididev *, int);
264 static void deactivate_mididev(struct umidi_mididev *);
265 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
266 static void free_all_mididevs(struct umidi_softc *);
267 static usbd_status attach_all_mididevs(struct umidi_softc *);
268 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
269 static void deactivate_all_mididevs(struct umidi_softc *);
270 static void describe_mididev(struct umidi_mididev *);
271
272 #ifdef UMIDI_DEBUG
273 static void dump_sc(struct umidi_softc *);
274 static void dump_ep(struct umidi_endpoint *);
275 static void dump_jack(struct umidi_jack *);
276 #endif
277
278 static usbd_status start_input_transfer(struct umidi_endpoint *);
279 static usbd_status start_output_transfer(struct umidi_endpoint *);
280 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
281 static void in_intr(struct usbd_xfer *, void *, usbd_status);
282 static void out_intr(struct usbd_xfer *, void *, usbd_status);
283 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
284 static void out_solicit_locked(void *); /* pre-locked version */
285
286
287 const struct midi_hw_if umidi_hw_if = {
288 .open = umidi_open,
289 .close = umidi_close,
290 .output = umidi_rtmsg,
291 .getinfo = umidi_getinfo,
292 .get_locks = umidi_get_locks,
293 };
294
295 struct midi_hw_if_ext umidi_hw_if_ext = {
296 .channel = umidi_channelmsg,
297 .common = umidi_commonmsg,
298 .sysex = umidi_sysex,
299 };
300
301 struct midi_hw_if_ext umidi_hw_if_mm = {
302 .channel = umidi_channelmsg,
303 .common = umidi_commonmsg,
304 .sysex = umidi_sysex,
305 .compress = 1,
306 };
307
308 int umidi_match(device_t, cfdata_t, void *);
309 void umidi_attach(device_t, device_t, void *);
310 void umidi_childdet(device_t, device_t);
311 int umidi_detach(device_t, int);
312 int umidi_activate(device_t, enum devact);
313 extern struct cfdriver umidi_cd;
314 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
315 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
316
317 int
318 umidi_match(device_t parent, cfdata_t match, void *aux)
319 {
320 struct usbif_attach_arg *uiaa = aux;
321
322 DPRINTFN(1,("umidi_match\n"));
323
324 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
325 uiaa->uiaa_ifaceno))
326 return UMATCH_IFACECLASS_IFACESUBCLASS;
327
328 if (uiaa->uiaa_class == UICLASS_AUDIO &&
329 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
330 return UMATCH_IFACECLASS_IFACESUBCLASS;
331
332 return UMATCH_NONE;
333 }
334
335 void
336 umidi_attach(device_t parent, device_t self, void *aux)
337 {
338 usbd_status err;
339 struct umidi_softc *sc = device_private(self);
340 struct usbif_attach_arg *uiaa = aux;
341 char *devinfop;
342
343 DPRINTFN(1,("umidi_attach\n"));
344
345 sc->sc_dev = self;
346
347 aprint_naive("\n");
348 aprint_normal("\n");
349
350 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
351 aprint_normal_dev(self, "%s\n", devinfop);
352 usbd_devinfo_free(devinfop);
353
354 sc->sc_iface = uiaa->uiaa_iface;
355 sc->sc_udev = uiaa->uiaa_device;
356
357 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
358 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
359
360 aprint_normal_dev(self, "");
361 umidi_print_quirk(sc->sc_quirk);
362
363 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
364 cv_init(&sc->sc_cv, "umidopcl");
365 cv_init(&sc->sc_detach_cv, "umidetcv");
366 sc->sc_refcnt = 0;
367
368 err = alloc_all_endpoints(sc);
369 if (err != USBD_NORMAL_COMPLETION) {
370 aprint_error_dev(self,
371 "alloc_all_endpoints failed. (err=%d)\n", err);
372 goto out;
373 }
374 err = alloc_all_jacks(sc);
375 if (err != USBD_NORMAL_COMPLETION) {
376 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
377 err);
378 goto out_free_endpoints;
379 }
380 aprint_normal_dev(self, "out=%d, in=%d\n",
381 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
382
383 err = assign_all_jacks_automatically(sc);
384 if (err != USBD_NORMAL_COMPLETION) {
385 aprint_error_dev(self,
386 "assign_all_jacks_automatically failed. (err=%d)\n", err);
387 goto out_free_jacks;
388 }
389 err = attach_all_mididevs(sc);
390 if (err != USBD_NORMAL_COMPLETION) {
391 aprint_error_dev(self,
392 "attach_all_mididevs failed. (err=%d)\n", err);
393 goto out_free_jacks;
394 }
395
396 #ifdef UMIDI_DEBUG
397 dump_sc(sc);
398 #endif
399
400 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
401
402 return;
403
404 out_free_jacks:
405 unbind_all_jacks(sc);
406 free_all_jacks(sc);
407
408 out_free_endpoints:
409 free_all_endpoints(sc);
410
411 out:
412 aprint_error_dev(self, "disabled.\n");
413 sc->sc_dying = 1;
414 KERNEL_UNLOCK_ONE(curlwp);
415 return;
416 }
417
418 void
419 umidi_childdet(device_t self, device_t child)
420 {
421 int i;
422 struct umidi_softc *sc = device_private(self);
423
424 KASSERT(sc->sc_mididevs != NULL);
425
426 for (i = 0; i < sc->sc_num_mididevs; i++) {
427 if (sc->sc_mididevs[i].mdev == child)
428 break;
429 }
430 KASSERT(i < sc->sc_num_mididevs);
431 sc->sc_mididevs[i].mdev = NULL;
432 }
433
434 int
435 umidi_activate(device_t self, enum devact act)
436 {
437 struct umidi_softc *sc = device_private(self);
438
439 switch (act) {
440 case DVACT_DEACTIVATE:
441 DPRINTFN(1,("umidi_activate (deactivate)\n"));
442 sc->sc_dying = 1;
443 deactivate_all_mididevs(sc);
444 return 0;
445 default:
446 DPRINTFN(1,("umidi_activate (%d)\n", act));
447 return EOPNOTSUPP;
448 }
449 }
450
451 int
452 umidi_detach(device_t self, int flags)
453 {
454 struct umidi_softc *sc = device_private(self);
455
456 DPRINTFN(1,("umidi_detach\n"));
457
458 mutex_enter(&sc->sc_lock);
459 sc->sc_dying = 1;
460 if (--sc->sc_refcnt >= 0)
461 if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60)) {
462 printf("%s: %s didn't detach\n", __func__,
463 device_xname(sc->sc_dev));
464 }
465 mutex_exit(&sc->sc_lock);
466
467 detach_all_mididevs(sc, flags);
468 free_all_mididevs(sc);
469 free_all_jacks(sc);
470 free_all_endpoints(sc);
471
472 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
473
474 mutex_destroy(&sc->sc_lock);
475 cv_destroy(&sc->sc_detach_cv);
476 cv_destroy(&sc->sc_cv);
477
478 return 0;
479 }
480
481
482 /*
483 * midi_if stuffs
484 */
485 int
486 umidi_open(void *addr,
487 int flags,
488 void (*iintr)(void *, int),
489 void (*ointr)(void *),
490 void *arg)
491 {
492 struct umidi_mididev *mididev = addr;
493 struct umidi_softc *sc = mididev->sc;
494 usbd_status err;
495
496 KASSERT(mutex_owned(&sc->sc_lock));
497 DPRINTF(("umidi_open: sc=%p\n", sc));
498
499 if (mididev->opened)
500 return EBUSY;
501 if (sc->sc_dying)
502 return EIO;
503
504 mididev->opened = 1;
505 mididev->flags = flags;
506 if ((mididev->flags & FWRITE) && mididev->out_jack) {
507 err = open_out_jack(mididev->out_jack, arg, ointr);
508 if (err != USBD_NORMAL_COMPLETION)
509 goto bad;
510 }
511 if ((mididev->flags & FREAD) && mididev->in_jack) {
512 err = open_in_jack(mididev->in_jack, arg, iintr);
513 KASSERT(mididev->opened);
514 if (err != USBD_NORMAL_COMPLETION &&
515 err != USBD_IN_PROGRESS) {
516 if (mididev->out_jack)
517 close_out_jack(mididev->out_jack);
518 goto bad;
519 }
520 }
521
522 return 0;
523 bad:
524 mididev->opened = 0;
525 DPRINTF(("umidi_open: usbd_status %d\n", err));
526 KASSERT(mutex_owned(&sc->sc_lock));
527 return USBD_IN_USE == err ? EBUSY : EIO;
528 }
529
530 void
531 umidi_close(void *addr)
532 {
533 struct umidi_mididev *mididev = addr;
534 struct umidi_softc *sc = mididev->sc;
535
536 KASSERT(mutex_owned(&sc->sc_lock));
537
538 if (mididev->closing)
539 return;
540
541 mididev->closing = 1;
542
543 sc->sc_refcnt++;
544
545 if ((mididev->flags & FWRITE) && mididev->out_jack)
546 close_out_jack(mididev->out_jack);
547 if ((mididev->flags & FREAD) && mididev->in_jack)
548 close_in_jack(mididev->in_jack);
549
550 if (--sc->sc_refcnt < 0)
551 cv_broadcast(&sc->sc_detach_cv);
552
553 mididev->opened = 0;
554 mididev->closing = 0;
555 }
556
557 int
558 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
559 int len)
560 {
561 struct umidi_mididev *mididev = addr;
562
563 KASSERT(mutex_owned(&mididev->sc->sc_lock));
564
565 if (!mididev->out_jack || !mididev->opened || mididev->closing)
566 return EIO;
567
568 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
569 }
570
571 int
572 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
573 {
574 struct umidi_mididev *mididev = addr;
575 int cin;
576
577 KASSERT(mutex_owned(&mididev->sc->sc_lock));
578
579 if (!mididev->out_jack || !mididev->opened || mididev->closing)
580 return EIO;
581
582 switch ( len ) {
583 case 1: cin = 5; break;
584 case 2: cin = 2; break;
585 case 3: cin = 3; break;
586 default: return EIO; /* or gcc warns of cin uninitialized */
587 }
588
589 return out_jack_output(mididev->out_jack, msg, len, cin);
590 }
591
592 int
593 umidi_sysex(void *addr, u_char *msg, int len)
594 {
595 struct umidi_mididev *mididev = addr;
596 int cin;
597
598 KASSERT(mutex_owned(&mididev->sc->sc_lock));
599
600 if (!mididev->out_jack || !mididev->opened || mididev->closing)
601 return EIO;
602
603 switch ( len ) {
604 case 1: cin = 5; break;
605 case 2: cin = 6; break;
606 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
607 default: return EIO; /* or gcc warns of cin uninitialized */
608 }
609
610 return out_jack_output(mididev->out_jack, msg, len, cin);
611 }
612
613 int
614 umidi_rtmsg(void *addr, int d)
615 {
616 struct umidi_mididev *mididev = addr;
617 u_char msg = d;
618
619 KASSERT(mutex_owned(&mididev->sc->sc_lock));
620
621 if (!mididev->out_jack || !mididev->opened || mididev->closing)
622 return EIO;
623
624 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
625 }
626
627 void
628 umidi_getinfo(void *addr, struct midi_info *mi)
629 {
630 struct umidi_mididev *mididev = addr;
631 struct umidi_softc *sc = mididev->sc;
632 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
633
634 KASSERT(mutex_owned(&sc->sc_lock));
635
636 mi->name = mididev->label;
637 mi->props = MIDI_PROP_OUT_INTR;
638 if (mididev->in_jack)
639 mi->props |= MIDI_PROP_CAN_INPUT;
640 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
641 }
642
643 static void
644 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
645 {
646 struct umidi_mididev *mididev = addr;
647 struct umidi_softc *sc = mididev->sc;
648
649 *intr = NULL;
650 *thread = &sc->sc_lock;
651 }
652
653 /*
654 * each endpoint stuffs
655 */
656
657 /* alloc/free pipe */
658 static usbd_status
659 alloc_pipe(struct umidi_endpoint *ep)
660 {
661 struct umidi_softc *sc = ep->sc;
662 usbd_status err;
663 usb_endpoint_descriptor_t *epd;
664
665 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
666 /*
667 * For output, an improvement would be to have a buffer bigger than
668 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
669 * allow out_solicit to fill the buffer to the full packet size in
670 * all cases. But to use usbd_create_xfer to get a slightly larger
671 * buffer would not be a good way to do that, because if the addition
672 * would make the buffer exceed USB_MEM_SMALL then a substantially
673 * larger block may be wastefully allocated. Some flavor of double
674 * buffering could serve the same purpose, but would increase the
675 * code complexity, so for now I will live with the current slight
676 * penalty of reducing max transfer size by (num_open-num_scheduled)
677 * packet slots.
678 */
679 ep->buffer_size = UGETW(epd->wMaxPacketSize);
680 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
681
682 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
683 device_xname(sc->sc_dev), ep, ep->buffer_size));
684 ep->num_scheduled = 0;
685 ep->this_schedule = 0;
686 ep->next_schedule = 0;
687 ep->soliciting = 0;
688 ep->armed = 0;
689 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
690 if (err)
691 goto quit;
692 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
693 USBD_SHORT_XFER_OK, 0, &ep->xfer);
694 if (error) {
695 usbd_close_pipe(ep->pipe);
696 return USBD_NOMEM;
697 }
698 ep->buffer = usbd_get_buffer(ep->xfer);
699 ep->next_slot = ep->buffer;
700 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
701 out_solicit, ep);
702 quit:
703 return err;
704 }
705
706 static void
707 free_pipe(struct umidi_endpoint *ep)
708 {
709 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
710 usbd_abort_pipe(ep->pipe);
711 usbd_destroy_xfer(ep->xfer);
712 usbd_close_pipe(ep->pipe);
713 softint_disestablish(ep->solicit_cookie);
714 }
715
716
717 /* alloc/free the array of endpoint structures */
718
719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
722
723 static usbd_status
724 alloc_all_endpoints(struct umidi_softc *sc)
725 {
726 usbd_status err;
727 struct umidi_endpoint *ep;
728 int i;
729
730 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
731 err = alloc_all_endpoints_fixed_ep(sc);
732 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
733 err = alloc_all_endpoints_yamaha(sc);
734 } else {
735 err = alloc_all_endpoints_genuine(sc);
736 }
737 if (err != USBD_NORMAL_COMPLETION)
738 return err;
739
740 ep = sc->sc_endpoints;
741 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
742 err = alloc_pipe(ep++);
743 if (err != USBD_NORMAL_COMPLETION) {
744 for (; ep != sc->sc_endpoints; ep--)
745 free_pipe(ep-1);
746 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
747 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
748 break;
749 }
750 }
751 return err;
752 }
753
754 static void
755 free_all_endpoints(struct umidi_softc *sc)
756 {
757 int i;
758
759 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
760 free_pipe(&sc->sc_endpoints[i]);
761 if (sc->sc_endpoints != NULL)
762 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
763 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
764 }
765
766 static usbd_status
767 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
768 {
769 usbd_status err;
770 const struct umq_fixed_ep_desc *fp;
771 struct umidi_endpoint *ep;
772 usb_endpoint_descriptor_t *epd;
773 int i;
774
775 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
776 UMQ_TYPE_FIXED_EP);
777 sc->sc_out_num_jacks = 0;
778 sc->sc_in_num_jacks = 0;
779 sc->sc_out_num_endpoints = fp->num_out_ep;
780 sc->sc_in_num_endpoints = fp->num_in_ep;
781 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
782 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
783 if (!sc->sc_endpoints)
784 return USBD_NOMEM;
785
786 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
787 sc->sc_in_ep =
788 sc->sc_in_num_endpoints ?
789 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
790
791 ep = &sc->sc_out_ep[0];
792 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
793 epd = usbd_interface2endpoint_descriptor(
794 sc->sc_iface,
795 fp->out_ep[i].ep);
796 if (!epd) {
797 aprint_error_dev(sc->sc_dev,
798 "cannot get endpoint descriptor(out:%d)\n",
799 fp->out_ep[i].ep);
800 err = USBD_INVAL;
801 goto error;
802 }
803 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
804 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
805 aprint_error_dev(sc->sc_dev,
806 "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
807 err = USBD_INVAL;
808 goto error;
809 }
810 ep->sc = sc;
811 ep->addr = epd->bEndpointAddress;
812 ep->num_jacks = fp->out_ep[i].num_jacks;
813 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
814 ep->num_open = 0;
815 ep++;
816 }
817 ep = &sc->sc_in_ep[0];
818 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
819 epd = usbd_interface2endpoint_descriptor(
820 sc->sc_iface,
821 fp->in_ep[i].ep);
822 if (!epd) {
823 aprint_error_dev(sc->sc_dev,
824 "cannot get endpoint descriptor(in:%d)\n",
825 fp->in_ep[i].ep);
826 err = USBD_INVAL;
827 goto error;
828 }
829 /*
830 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
831 * endpoint. The existing input logic in this driver seems
832 * to work successfully if we just stop treating an interrupt
833 * endpoint as illegal (or the in_progress status we get on
834 * the initial transfer). It does not seem necessary to
835 * actually use the interrupt flavor of alloc_pipe or make
836 * other serious rearrangements of logic. I like that.
837 */
838 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
839 case UE_BULK:
840 case UE_INTERRUPT:
841 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
842 break;
843 /*FALLTHROUGH*/
844 default:
845 aprint_error_dev(sc->sc_dev,
846 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
847 err = USBD_INVAL;
848 goto error;
849 }
850
851 ep->sc = sc;
852 ep->addr = epd->bEndpointAddress;
853 ep->num_jacks = fp->in_ep[i].num_jacks;
854 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
855 ep->num_open = 0;
856 ep++;
857 }
858
859 return USBD_NORMAL_COMPLETION;
860 error:
861 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
862 sc->sc_endpoints = NULL;
863 return err;
864 }
865
866 static usbd_status
867 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
868 {
869 /* This driver currently supports max 1in/1out bulk endpoints */
870 usb_descriptor_t *desc;
871 umidi_cs_descriptor_t *udesc;
872 usb_endpoint_descriptor_t *epd;
873 int out_addr, in_addr, i;
874 int dir;
875 size_t remain, descsize;
876
877 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
878 out_addr = in_addr = 0;
879
880 /* detect endpoints */
881 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
882 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
883 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
884 KASSERT(epd != NULL);
885 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
886 dir = UE_GET_DIR(epd->bEndpointAddress);
887 if (dir==UE_DIR_OUT && !out_addr)
888 out_addr = epd->bEndpointAddress;
889 else if (dir==UE_DIR_IN && !in_addr)
890 in_addr = epd->bEndpointAddress;
891 }
892 }
893 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
894
895 /* count jacks */
896 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
897 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
898 return USBD_INVAL;
899 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
900 (size_t)udesc->bLength;
901 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
902
903 while (remain >= sizeof(usb_descriptor_t)) {
904 descsize = udesc->bLength;
905 if (descsize>remain || descsize==0)
906 break;
907 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
908 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
909 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
910 sc->sc_out_num_jacks++;
911 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
912 sc->sc_in_num_jacks++;
913 }
914 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
915 remain -= descsize;
916 }
917
918 /* validate some parameters */
919 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
920 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
921 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
922 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
923 if (sc->sc_out_num_jacks && out_addr) {
924 sc->sc_out_num_endpoints = 1;
925 } else {
926 sc->sc_out_num_endpoints = 0;
927 sc->sc_out_num_jacks = 0;
928 }
929 if (sc->sc_in_num_jacks && in_addr) {
930 sc->sc_in_num_endpoints = 1;
931 } else {
932 sc->sc_in_num_endpoints = 0;
933 sc->sc_in_num_jacks = 0;
934 }
935 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
936 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
937 if (!sc->sc_endpoints)
938 return USBD_NOMEM;
939 if (sc->sc_out_num_endpoints) {
940 sc->sc_out_ep = sc->sc_endpoints;
941 sc->sc_out_ep->sc = sc;
942 sc->sc_out_ep->addr = out_addr;
943 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
944 sc->sc_out_ep->num_open = 0;
945 } else
946 sc->sc_out_ep = NULL;
947
948 if (sc->sc_in_num_endpoints) {
949 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
950 sc->sc_in_ep->sc = sc;
951 sc->sc_in_ep->addr = in_addr;
952 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
953 sc->sc_in_ep->num_open = 0;
954 } else
955 sc->sc_in_ep = NULL;
956
957 return USBD_NORMAL_COMPLETION;
958 }
959
960 static usbd_status
961 alloc_all_endpoints_genuine(struct umidi_softc *sc)
962 {
963 usb_interface_descriptor_t *interface_desc;
964 usb_config_descriptor_t *config_desc;
965 usb_descriptor_t *desc;
966 int num_ep;
967 size_t remain, descsize;
968 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
969 int epaddr;
970
971 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
972 num_ep = interface_desc->bNumEndpoints;
973 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
974 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
975 if (!p)
976 return USBD_NOMEM;
977
978 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
979 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
980 epaddr = -1;
981
982 /* get the list of endpoints for midi stream */
983 config_desc = usbd_get_config_descriptor(sc->sc_udev);
984 desc = (usb_descriptor_t *) config_desc;
985 remain = (size_t)UGETW(config_desc->wTotalLength);
986 while (remain>=sizeof(usb_descriptor_t)) {
987 descsize = desc->bLength;
988 if (descsize>remain || descsize==0)
989 break;
990 if (desc->bDescriptorType==UDESC_ENDPOINT &&
991 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
992 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
993 epaddr = TO_EPD(desc)->bEndpointAddress;
994 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
995 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
996 epaddr!=-1) {
997 if (num_ep>0) {
998 num_ep--;
999 p->sc = sc;
1000 p->addr = epaddr;
1001 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1002 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1003 sc->sc_out_num_endpoints++;
1004 sc->sc_out_num_jacks += p->num_jacks;
1005 } else {
1006 sc->sc_in_num_endpoints++;
1007 sc->sc_in_num_jacks += p->num_jacks;
1008 }
1009 p++;
1010 }
1011 } else
1012 epaddr = -1;
1013 desc = NEXT_D(desc);
1014 remain-=descsize;
1015 }
1016
1017 /* sort endpoints */
1018 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1019 p = sc->sc_endpoints;
1020 endep = p + num_ep;
1021 while (p<endep) {
1022 lowest = p;
1023 for (q=p+1; q<endep; q++) {
1024 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1025 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1026 ((UE_GET_DIR(lowest->addr)==
1027 UE_GET_DIR(q->addr)) &&
1028 (UE_GET_ADDR(lowest->addr)>
1029 UE_GET_ADDR(q->addr))))
1030 lowest = q;
1031 }
1032 if (lowest != p) {
1033 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1034 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1035 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1036 }
1037 p->num_open = 0;
1038 p++;
1039 }
1040
1041 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1042 sc->sc_in_ep =
1043 sc->sc_in_num_endpoints ?
1044 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1045
1046 return USBD_NORMAL_COMPLETION;
1047 }
1048
1049
1050 /*
1051 * jack stuffs
1052 */
1053
1054 static usbd_status
1055 alloc_all_jacks(struct umidi_softc *sc)
1056 {
1057 int i, j;
1058 struct umidi_endpoint *ep;
1059 struct umidi_jack *jack;
1060 const unsigned char *cn_spec;
1061
1062 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1063 sc->cblnums_global = 0;
1064 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1065 sc->cblnums_global = 1;
1066 else {
1067 /*
1068 * I don't think this default is correct, but it preserves
1069 * the prior behavior of the code. That's why I defined two
1070 * complementary quirks. Any device for which the default
1071 * behavior is wrong can be made to work by giving it an
1072 * explicit quirk, and if a pattern ever develops (as I suspect
1073 * it will) that a lot of otherwise standard USB MIDI devices
1074 * need the CN_SEQ_PER_EP "quirk," then this default can be
1075 * changed to 0, and the only devices that will break are those
1076 * listing neither quirk, and they'll easily be fixed by giving
1077 * them the CN_SEQ_GLOBAL quirk.
1078 */
1079 sc->cblnums_global = 1;
1080 }
1081
1082 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1083 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1084 UMQ_TYPE_CN_FIXED);
1085 else
1086 cn_spec = NULL;
1087
1088 /* allocate/initialize structures */
1089 sc->sc_jacks =
1090 kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
1091 + sc->sc_out_num_jacks), KM_SLEEP);
1092 if (!sc->sc_jacks)
1093 return USBD_NOMEM;
1094 sc->sc_out_jacks =
1095 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1096 sc->sc_in_jacks =
1097 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1098
1099 jack = &sc->sc_out_jacks[0];
1100 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1101 jack->opened = 0;
1102 jack->bound = 0;
1103 jack->arg = NULL;
1104 jack->u.out.intr = NULL;
1105 jack->midiman_ppkt = NULL;
1106 if (sc->cblnums_global)
1107 jack->cable_number = i;
1108 jack++;
1109 }
1110 jack = &sc->sc_in_jacks[0];
1111 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1112 jack->opened = 0;
1113 jack->bound = 0;
1114 jack->arg = NULL;
1115 jack->u.in.intr = NULL;
1116 if (sc->cblnums_global)
1117 jack->cable_number = i;
1118 jack++;
1119 }
1120
1121 /* assign each jacks to each endpoints */
1122 jack = &sc->sc_out_jacks[0];
1123 ep = &sc->sc_out_ep[0];
1124 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1125 for (j = 0; j < ep->num_jacks; j++) {
1126 jack->endpoint = ep;
1127 if (cn_spec != NULL)
1128 jack->cable_number = *cn_spec++;
1129 else if (!sc->cblnums_global)
1130 jack->cable_number = j;
1131 ep->jacks[jack->cable_number] = jack;
1132 jack++;
1133 }
1134 ep++;
1135 }
1136 jack = &sc->sc_in_jacks[0];
1137 ep = &sc->sc_in_ep[0];
1138 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1139 for (j = 0; j < ep->num_jacks; j++) {
1140 jack->endpoint = ep;
1141 if (cn_spec != NULL)
1142 jack->cable_number = *cn_spec++;
1143 else if (!sc->cblnums_global)
1144 jack->cable_number = j;
1145 ep->jacks[jack->cable_number] = jack;
1146 jack++;
1147 }
1148 ep++;
1149 }
1150
1151 return USBD_NORMAL_COMPLETION;
1152 }
1153
1154 static void
1155 free_all_jacks(struct umidi_softc *sc)
1156 {
1157 struct umidi_jack *jacks;
1158 size_t len;
1159
1160 mutex_enter(&sc->sc_lock);
1161 jacks = sc->sc_jacks;
1162 len = sizeof(*sc->sc_out_jacks)
1163 * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1164 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1165 mutex_exit(&sc->sc_lock);
1166
1167 if (jacks)
1168 kmem_free(jacks, len);
1169 }
1170
1171 static usbd_status
1172 bind_jacks_to_mididev(struct umidi_softc *sc,
1173 struct umidi_jack *out_jack,
1174 struct umidi_jack *in_jack,
1175 struct umidi_mididev *mididev)
1176 {
1177 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1178 return USBD_IN_USE;
1179 if (mididev->out_jack || mididev->in_jack)
1180 return USBD_IN_USE;
1181
1182 if (out_jack)
1183 out_jack->bound = 1;
1184 if (in_jack)
1185 in_jack->bound = 1;
1186 mididev->in_jack = in_jack;
1187 mididev->out_jack = out_jack;
1188
1189 mididev->closing = 0;
1190
1191 return USBD_NORMAL_COMPLETION;
1192 }
1193
1194 static void
1195 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1196 {
1197 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1198
1199 mididev->closing = 1;
1200
1201 if ((mididev->flags & FWRITE) && mididev->out_jack)
1202 close_out_jack(mididev->out_jack);
1203 if ((mididev->flags & FREAD) && mididev->in_jack)
1204 close_in_jack(mididev->in_jack);
1205
1206 if (mididev->out_jack) {
1207 mididev->out_jack->bound = 0;
1208 mididev->out_jack = NULL;
1209 }
1210 if (mididev->in_jack) {
1211 mididev->in_jack->bound = 0;
1212 mididev->in_jack = NULL;
1213 }
1214 }
1215
1216 static void
1217 unbind_all_jacks(struct umidi_softc *sc)
1218 {
1219 int i;
1220
1221 mutex_enter(&sc->sc_lock);
1222 if (sc->sc_mididevs)
1223 for (i = 0; i < sc->sc_num_mididevs; i++)
1224 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1225 mutex_exit(&sc->sc_lock);
1226 }
1227
1228 static usbd_status
1229 assign_all_jacks_automatically(struct umidi_softc *sc)
1230 {
1231 usbd_status err;
1232 int i;
1233 struct umidi_jack *out, *in;
1234 const signed char *asg_spec;
1235
1236 err =
1237 alloc_all_mididevs(sc,
1238 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1239 if (err!=USBD_NORMAL_COMPLETION)
1240 return err;
1241
1242 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1243 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1244 UMQ_TYPE_MD_FIXED);
1245 else
1246 asg_spec = NULL;
1247
1248 for (i = 0; i < sc->sc_num_mididevs; i++) {
1249 if (asg_spec != NULL) {
1250 if (*asg_spec == -1)
1251 out = NULL;
1252 else
1253 out = &sc->sc_out_jacks[*asg_spec];
1254 ++ asg_spec;
1255 if (*asg_spec == -1)
1256 in = NULL;
1257 else
1258 in = &sc->sc_in_jacks[*asg_spec];
1259 ++ asg_spec;
1260 } else {
1261 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1262 : NULL;
1263 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1264 : NULL;
1265 }
1266 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1267 if (err != USBD_NORMAL_COMPLETION) {
1268 free_all_mididevs(sc);
1269 return err;
1270 }
1271 }
1272
1273 return USBD_NORMAL_COMPLETION;
1274 }
1275
1276 static usbd_status
1277 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1278 {
1279 struct umidi_endpoint *ep = jack->endpoint;
1280 struct umidi_softc *sc = ep->sc;
1281 umidi_packet_bufp end;
1282 int err;
1283
1284 KASSERT(mutex_owned(&sc->sc_lock));
1285
1286 if (jack->opened)
1287 return USBD_IN_USE;
1288
1289 jack->arg = arg;
1290 jack->u.out.intr = intr;
1291 jack->midiman_ppkt = NULL;
1292 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1293 jack->opened = 1;
1294 ep->num_open++;
1295 /*
1296 * out_solicit maintains an invariant that there will always be
1297 * (num_open - num_scheduled) slots free in the buffer. as we have
1298 * just incremented num_open, the buffer may be too full to satisfy
1299 * the invariant until a transfer completes, for which we must wait.
1300 */
1301 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1302 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1303 mstohz(10));
1304 if (err) {
1305 ep->num_open--;
1306 jack->opened = 0;
1307 return USBD_IOERROR;
1308 }
1309 }
1310
1311 return USBD_NORMAL_COMPLETION;
1312 }
1313
1314 static usbd_status
1315 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1316 {
1317 usbd_status err = USBD_NORMAL_COMPLETION;
1318 struct umidi_endpoint *ep = jack->endpoint;
1319
1320 KASSERT(mutex_owned(&ep->sc->sc_lock));
1321
1322 if (jack->opened)
1323 return USBD_IN_USE;
1324
1325 jack->arg = arg;
1326 jack->u.in.intr = intr;
1327 jack->opened = 1;
1328 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1329 /*
1330 * Can't hold the interrupt lock while calling into USB,
1331 * but we can safely drop it here.
1332 */
1333 mutex_exit(&ep->sc->sc_lock);
1334 err = start_input_transfer(ep);
1335 if (err != USBD_NORMAL_COMPLETION &&
1336 err != USBD_IN_PROGRESS) {
1337 ep->num_open--;
1338 }
1339 mutex_enter(&ep->sc->sc_lock);
1340 }
1341
1342 return err;
1343 }
1344
1345 static void
1346 close_out_jack(struct umidi_jack *jack)
1347 {
1348 struct umidi_endpoint *ep;
1349 struct umidi_softc *sc;
1350 uint16_t mask;
1351 int err;
1352
1353 if (jack->opened) {
1354 ep = jack->endpoint;
1355 sc = ep->sc;
1356
1357 KASSERT(mutex_owned(&sc->sc_lock));
1358 mask = 1 << (jack->cable_number);
1359 while (mask & (ep->this_schedule | ep->next_schedule)) {
1360 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1361 mstohz(10));
1362 if (err)
1363 break;
1364 }
1365 /*
1366 * We can re-enter this function from both close() and
1367 * detach(). Make sure only one of them does this part.
1368 */
1369 if (jack->opened) {
1370 jack->opened = 0;
1371 jack->endpoint->num_open--;
1372 ep->this_schedule &= ~mask;
1373 ep->next_schedule &= ~mask;
1374 }
1375 }
1376 }
1377
1378 static void
1379 close_in_jack(struct umidi_jack *jack)
1380 {
1381 if (jack->opened) {
1382 struct umidi_softc *sc = jack->endpoint->sc;
1383
1384 KASSERT(mutex_owned(&sc->sc_lock));
1385
1386 jack->opened = 0;
1387 if (--jack->endpoint->num_open == 0) {
1388 /*
1389 * We have to drop the (interrupt) lock so that
1390 * the USB thread lock can be safely taken by
1391 * the abort operation. This is safe as this
1392 * either closing or dying will be set proerly.
1393 */
1394 mutex_exit(&sc->sc_lock);
1395 usbd_abort_pipe(jack->endpoint->pipe);
1396 mutex_enter(&sc->sc_lock);
1397 }
1398 }
1399 }
1400
1401 static usbd_status
1402 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1403 {
1404 if (mididev->sc)
1405 return USBD_IN_USE;
1406
1407 mididev->sc = sc;
1408
1409 describe_mididev(mididev);
1410
1411 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1412
1413 return USBD_NORMAL_COMPLETION;
1414 }
1415
1416 static usbd_status
1417 detach_mididev(struct umidi_mididev *mididev, int flags)
1418 {
1419 struct umidi_softc *sc = mididev->sc;
1420
1421 if (!sc)
1422 return USBD_NO_ADDR;
1423
1424 mutex_enter(&sc->sc_lock);
1425 if (mididev->opened) {
1426 umidi_close(mididev);
1427 }
1428 unbind_jacks_from_mididev(mididev);
1429 mutex_exit(&sc->sc_lock);
1430
1431 if (mididev->mdev != NULL)
1432 config_detach(mididev->mdev, flags);
1433
1434 if (NULL != mididev->label) {
1435 kmem_free(mididev->label, mididev->label_len);
1436 mididev->label = NULL;
1437 }
1438
1439 mididev->sc = NULL;
1440
1441 return USBD_NORMAL_COMPLETION;
1442 }
1443
1444 static void
1445 deactivate_mididev(struct umidi_mididev *mididev)
1446 {
1447 if (mididev->out_jack)
1448 mididev->out_jack->bound = 0;
1449 if (mididev->in_jack)
1450 mididev->in_jack->bound = 0;
1451 }
1452
1453 static usbd_status
1454 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1455 {
1456 sc->sc_num_mididevs = nmidi;
1457 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1458 if (!sc->sc_mididevs)
1459 return USBD_NOMEM;
1460
1461 return USBD_NORMAL_COMPLETION;
1462 }
1463
1464 static void
1465 free_all_mididevs(struct umidi_softc *sc)
1466 {
1467 struct umidi_mididev *mididevs;
1468 size_t len;
1469
1470 mutex_enter(&sc->sc_lock);
1471 mididevs = sc->sc_mididevs;
1472 if (mididevs)
1473 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1474 sc->sc_mididevs = NULL;
1475 sc->sc_num_mididevs = 0;
1476 mutex_exit(&sc->sc_lock);
1477
1478 if (mididevs)
1479 kmem_free(mididevs, len);
1480 }
1481
1482 static usbd_status
1483 attach_all_mididevs(struct umidi_softc *sc)
1484 {
1485 usbd_status err;
1486 int i;
1487
1488 if (sc->sc_mididevs)
1489 for (i = 0; i < sc->sc_num_mididevs; i++) {
1490 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1491 if (err != USBD_NORMAL_COMPLETION)
1492 return err;
1493 }
1494
1495 return USBD_NORMAL_COMPLETION;
1496 }
1497
1498 static usbd_status
1499 detach_all_mididevs(struct umidi_softc *sc, int flags)
1500 {
1501 usbd_status err;
1502 int i;
1503
1504 if (sc->sc_mididevs)
1505 for (i = 0; i < sc->sc_num_mididevs; i++) {
1506 err = detach_mididev(&sc->sc_mididevs[i], flags);
1507 if (err != USBD_NORMAL_COMPLETION)
1508 return err;
1509 }
1510
1511 return USBD_NORMAL_COMPLETION;
1512 }
1513
1514 static void
1515 deactivate_all_mididevs(struct umidi_softc *sc)
1516 {
1517 int i;
1518
1519 if (sc->sc_mididevs) {
1520 for (i = 0; i < sc->sc_num_mididevs; i++)
1521 deactivate_mididev(&sc->sc_mididevs[i]);
1522 }
1523 }
1524
1525 /*
1526 * TODO: the 0-based cable numbers will often not match the labeling of the
1527 * equipment. Ideally:
1528 * For class-compliant devices: get the iJack string from the jack descriptor.
1529 * Otherwise:
1530 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1531 * number for display)
1532 * - support an array quirk explictly giving a char * for each jack.
1533 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1534 * the CNs are not globally unique, each is shown with its associated endpoint
1535 * address in hex also. That should not be necessary when using iJack values
1536 * or a quirk array.
1537 */
1538 void
1539 describe_mididev(struct umidi_mididev *md)
1540 {
1541 char in_label[16];
1542 char out_label[16];
1543 const char *unit_label;
1544 char *final_label;
1545 struct umidi_softc *sc;
1546 int show_ep_in;
1547 int show_ep_out;
1548 size_t len;
1549
1550 sc = md->sc;
1551 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1552 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1553
1554 if (NULL == md->in_jack)
1555 in_label[0] = '\0';
1556 else if (show_ep_in)
1557 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1558 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1559 else
1560 snprintf(in_label, sizeof(in_label), "<%d ",
1561 md->in_jack->cable_number);
1562
1563 if (NULL == md->out_jack)
1564 out_label[0] = '\0';
1565 else if (show_ep_out)
1566 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1567 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1568 else
1569 snprintf(out_label, sizeof(out_label), ">%d ",
1570 md->out_jack->cable_number);
1571
1572 unit_label = device_xname(sc->sc_dev);
1573
1574 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1575
1576 final_label = kmem_alloc(len, KM_SLEEP);
1577
1578 snprintf(final_label, len, "%s%son %s",
1579 in_label, out_label, unit_label);
1580
1581 md->label = final_label;
1582 md->label_len = len;
1583 }
1584
1585 #ifdef UMIDI_DEBUG
1586 static void
1587 dump_sc(struct umidi_softc *sc)
1588 {
1589 int i;
1590
1591 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1592 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1593 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1594 dump_ep(&sc->sc_out_ep[i]);
1595 }
1596 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1597 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1598 dump_ep(&sc->sc_in_ep[i]);
1599 }
1600 }
1601
1602 static void
1603 dump_ep(struct umidi_endpoint *ep)
1604 {
1605 int i;
1606 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1607 if (NULL==ep->jacks[i])
1608 continue;
1609 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1610 dump_jack(ep->jacks[i]);
1611 }
1612 }
1613 static void
1614 dump_jack(struct umidi_jack *jack)
1615 {
1616 DPRINTFN(10, ("\t\t\tep=%p\n",
1617 jack->endpoint));
1618 }
1619
1620 #endif /* UMIDI_DEBUG */
1621
1622
1623
1624 /*
1625 * MUX MIDI PACKET
1626 */
1627
1628 static const int packet_length[16] = {
1629 /*0*/ -1,
1630 /*1*/ -1,
1631 /*2*/ 2,
1632 /*3*/ 3,
1633 /*4*/ 3,
1634 /*5*/ 1,
1635 /*6*/ 2,
1636 /*7*/ 3,
1637 /*8*/ 3,
1638 /*9*/ 3,
1639 /*A*/ 3,
1640 /*B*/ 3,
1641 /*C*/ 2,
1642 /*D*/ 2,
1643 /*E*/ 3,
1644 /*F*/ 1,
1645 };
1646
1647 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1648 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1649 #define MIX_CN_CIN(cn, cin) \
1650 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1651 ((unsigned char)(cin)&0x0F)))
1652
1653 static usbd_status
1654 start_input_transfer(struct umidi_endpoint *ep)
1655 {
1656 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1657 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1658 return usbd_transfer(ep->xfer);
1659 }
1660
1661 static usbd_status
1662 start_output_transfer(struct umidi_endpoint *ep)
1663 {
1664 usbd_status rv;
1665 uint32_t length;
1666 int i;
1667
1668 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1669 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1670 ep->buffer, ep->next_slot, length));
1671
1672 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1673 USBD_NO_TIMEOUT, out_intr);
1674 rv = usbd_transfer(ep->xfer);
1675
1676 /*
1677 * Once the transfer is scheduled, no more adding to partial
1678 * packets within it.
1679 */
1680 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1681 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1682 if (NULL != ep->jacks[i])
1683 ep->jacks[i]->midiman_ppkt = NULL;
1684 }
1685
1686 return rv;
1687 }
1688
1689 #ifdef UMIDI_DEBUG
1690 #define DPR_PACKET(dir, sc, p) \
1691 if ((unsigned char)(p)[1]!=0xFE) \
1692 DPRINTFN(500, \
1693 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1694 device_xname(sc->sc_dev), \
1695 (unsigned char)(p)[0], \
1696 (unsigned char)(p)[1], \
1697 (unsigned char)(p)[2], \
1698 (unsigned char)(p)[3]));
1699 #else
1700 #define DPR_PACKET(dir, sc, p)
1701 #endif
1702
1703 /*
1704 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1705 * with the cable number and length in the last byte instead of the first,
1706 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1707 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1708 * with a cable nybble and a length nybble (which, unlike the CIN of a
1709 * real USB MIDI packet, has no semantics at all besides the length).
1710 * A packet received from a Midiman may contain part of a MIDI message,
1711 * more than one MIDI message, or parts of more than one MIDI message. A
1712 * three-byte MIDI message may arrive in three packets of data length 1, and
1713 * running status may be used. Happily, the midi(4) driver above us will put
1714 * it all back together, so the only cost is in USB bandwidth. The device
1715 * has an easier time with what it receives from us: we'll pack messages in
1716 * and across packets, but filling the packets whenever possible and,
1717 * as midi(4) hands us a complete message at a time, we'll never send one
1718 * in a dribble of short packets.
1719 */
1720
1721 static int
1722 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1723 {
1724 struct umidi_endpoint *ep = out_jack->endpoint;
1725 struct umidi_softc *sc = ep->sc;
1726 unsigned char *packet;
1727 int plen;
1728 int poff;
1729
1730 KASSERT(mutex_owned(&sc->sc_lock));
1731
1732 if (sc->sc_dying)
1733 return EIO;
1734
1735 if (!out_jack->opened)
1736 return ENODEV; /* XXX as it was, is this the right errno? */
1737
1738 sc->sc_refcnt++;
1739
1740 #ifdef UMIDI_DEBUG
1741 if (umididebug >= 100)
1742 microtime(&umidi_tv);
1743 #endif
1744 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1745 "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1746 (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1747
1748 packet = *ep->next_slot++;
1749 KASSERT(ep->buffer_size >=
1750 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1751 memset(packet, 0, UMIDI_PACKET_SIZE);
1752 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1753 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1754 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1755 plen = 3 - poff;
1756 if (plen > len)
1757 plen = len;
1758 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1759 src += plen;
1760 len -= plen;
1761 plen += poff;
1762 out_jack->midiman_ppkt[3] =
1763 MIX_CN_CIN(out_jack->cable_number, plen);
1764 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1765 if (3 == plen)
1766 out_jack->midiman_ppkt = NULL; /* no more */
1767 }
1768 if (0 == len)
1769 ep->next_slot--; /* won't be needed, nevermind */
1770 else {
1771 memcpy(packet, src, len);
1772 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1773 DPR_PACKET(out, sc, packet);
1774 if (len < 3)
1775 out_jack->midiman_ppkt = packet;
1776 }
1777 } else { /* the nice simple USB class-compliant case */
1778 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1779 memcpy(packet+1, src, len);
1780 DPR_PACKET(out, sc, packet);
1781 }
1782 ep->next_schedule |= 1<<(out_jack->cable_number);
1783 ++ ep->num_scheduled;
1784 if (!ep->armed && !ep->soliciting) {
1785 /*
1786 * It would be bad to call out_solicit directly here (the
1787 * caller need not be reentrant) but a soft interrupt allows
1788 * solicit to run immediately the caller exits its critical
1789 * section, and if the caller has more to write we can get it
1790 * before starting the USB transfer, and send a longer one.
1791 */
1792 ep->soliciting = 1;
1793 kpreempt_disable();
1794 softint_schedule(ep->solicit_cookie);
1795 kpreempt_enable();
1796 }
1797
1798 if (--sc->sc_refcnt < 0)
1799 cv_broadcast(&sc->sc_detach_cv);
1800
1801 return 0;
1802 }
1803
1804 static void
1805 in_intr(struct usbd_xfer *xfer, void *priv,
1806 usbd_status status)
1807 {
1808 int cn, len, i;
1809 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1810 struct umidi_softc *sc = ep->sc;
1811 struct umidi_jack *jack;
1812 unsigned char *packet;
1813 umidi_packet_bufp slot;
1814 umidi_packet_bufp end;
1815 unsigned char *data;
1816 uint32_t count;
1817
1818 if (ep->sc->sc_dying || !ep->num_open)
1819 return;
1820
1821 mutex_enter(&sc->sc_lock);
1822 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1823 if (0 == count % UMIDI_PACKET_SIZE) {
1824 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1825 device_xname(ep->sc->sc_dev), ep, count));
1826 } else {
1827 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1828 device_xname(ep->sc->sc_dev), ep, count));
1829 }
1830
1831 slot = ep->buffer;
1832 end = slot + count / sizeof(*slot);
1833
1834 for (packet = *slot; slot < end; packet = *++slot) {
1835
1836 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1837 cn = (0xf0&(packet[3]))>>4;
1838 len = 0x0f&(packet[3]);
1839 data = packet;
1840 } else {
1841 cn = GET_CN(packet[0]);
1842 len = packet_length[GET_CIN(packet[0])];
1843 data = packet + 1;
1844 }
1845 /* 0 <= cn <= 15 by inspection of above code */
1846 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1847 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1848 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1849 device_xname(ep->sc->sc_dev), ep, cn, len,
1850 (unsigned)data[0],
1851 (unsigned)data[1],
1852 (unsigned)data[2]));
1853 mutex_exit(&sc->sc_lock);
1854 return;
1855 }
1856
1857 if (!jack->bound || !jack->opened)
1858 continue;
1859
1860 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1861 "%02X %02X %02X\n",
1862 device_xname(ep->sc->sc_dev), ep, cn, len,
1863 (unsigned)data[0],
1864 (unsigned)data[1],
1865 (unsigned)data[2]));
1866
1867 if (jack->u.in.intr) {
1868 for (i = 0; i < len; i++) {
1869 (*jack->u.in.intr)(jack->arg, data[i]);
1870 }
1871 }
1872
1873 }
1874
1875 (void)start_input_transfer(ep);
1876 mutex_exit(&sc->sc_lock);
1877 }
1878
1879 static void
1880 out_intr(struct usbd_xfer *xfer, void *priv,
1881 usbd_status status)
1882 {
1883 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1884 struct umidi_softc *sc = ep->sc;
1885 uint32_t count;
1886
1887 if (sc->sc_dying)
1888 return;
1889
1890 mutex_enter(&sc->sc_lock);
1891 #ifdef UMIDI_DEBUG
1892 if (umididebug >= 200)
1893 microtime(&umidi_tv);
1894 #endif
1895 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1896 if (0 == count % UMIDI_PACKET_SIZE) {
1897 DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1898 "length %u\n", device_xname(ep->sc->sc_dev),
1899 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1900 count));
1901 } else {
1902 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1903 device_xname(ep->sc->sc_dev), ep, count));
1904 }
1905 count /= UMIDI_PACKET_SIZE;
1906
1907 /*
1908 * If while the transfer was pending we buffered any new messages,
1909 * move them to the start of the buffer.
1910 */
1911 ep->next_slot -= count;
1912 if (ep->buffer < ep->next_slot) {
1913 memcpy(ep->buffer, ep->buffer + count,
1914 (char *)ep->next_slot - (char *)ep->buffer);
1915 }
1916 cv_broadcast(&sc->sc_cv);
1917 /*
1918 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1919 * Running at IPL_USB so the following should happen to be safe.
1920 */
1921 ep->armed = 0;
1922 if (!ep->soliciting) {
1923 ep->soliciting = 1;
1924 out_solicit_locked(ep);
1925 }
1926 mutex_exit(&sc->sc_lock);
1927 }
1928
1929 /*
1930 * A jack on which we have received a packet must be called back on its
1931 * out.intr handler before it will send us another; it is considered
1932 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1933 * we need no extra buffer space for it.
1934 *
1935 * In contrast, a jack that is open but not scheduled may supply us a packet
1936 * at any time, driven by the top half, and we must be able to accept it, no
1937 * excuses. So we must ensure that at any point in time there are at least
1938 * (num_open - num_scheduled) slots free.
1939 *
1940 * As long as there are more slots free than that minimum, we can loop calling
1941 * scheduled jacks back on their "interrupt" handlers, soliciting more
1942 * packets, starting the USB transfer only when the buffer space is down to
1943 * the minimum or no jack has any more to send.
1944 */
1945
1946 static void
1947 out_solicit_locked(void *arg)
1948 {
1949 struct umidi_endpoint *ep = arg;
1950 umidi_packet_bufp end;
1951 uint16_t which;
1952 struct umidi_jack *jack;
1953
1954 KASSERT(mutex_owned(&ep->sc->sc_lock));
1955
1956 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1957
1958 for ( ;; ) {
1959 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1960 break; /* at IPL_USB */
1961 if (ep->this_schedule == 0) {
1962 if (ep->next_schedule == 0)
1963 break; /* at IPL_USB */
1964 ep->this_schedule = ep->next_schedule;
1965 ep->next_schedule = 0;
1966 }
1967 /*
1968 * At least one jack is scheduled. Find and mask off the least
1969 * set bit in this_schedule and decrement num_scheduled.
1970 * Convert mask to bit index to find the corresponding jack,
1971 * and call its intr handler. If it has a message, it will call
1972 * back one of the output methods, which will set its bit in
1973 * next_schedule (not copied into this_schedule until the
1974 * latter is empty). In this way we round-robin the jacks that
1975 * have messages to send, until the buffer is as full as we
1976 * dare, and then start a transfer.
1977 */
1978 which = ep->this_schedule;
1979 which &= (~which)+1; /* now mask of least set bit */
1980 ep->this_schedule &= ~which;
1981 --ep->num_scheduled;
1982
1983 --which; /* now 1s below mask - count 1s to get index */
1984 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1985 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1986 which = (((which >> 4) + which) & 0x0f0f);
1987 which += (which >> 8);
1988 which &= 0x1f; /* the bit index a/k/a jack number */
1989
1990 jack = ep->jacks[which];
1991 if (jack->u.out.intr)
1992 (*jack->u.out.intr)(jack->arg);
1993 }
1994 /* intr lock held at loop exit */
1995 if (!ep->armed && ep->next_slot > ep->buffer) {
1996 /*
1997 * Can't hold the interrupt lock while calling into USB,
1998 * but we can safely drop it here.
1999 */
2000 mutex_exit(&ep->sc->sc_lock);
2001 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
2002 mutex_enter(&ep->sc->sc_lock);
2003 }
2004 ep->soliciting = 0;
2005 }
2006
2007 /* Entry point for the softintr. */
2008 static void
2009 out_solicit(void *arg)
2010 {
2011 struct umidi_endpoint *ep = arg;
2012 struct umidi_softc *sc = ep->sc;
2013
2014 mutex_enter(&sc->sc_lock);
2015 out_solicit_locked(arg);
2016 mutex_exit(&sc->sc_lock);
2017 }
2018