umidi.c revision 1.65.14.15 1 /* $NetBSD: umidi.c,v 1.65.14.15 2017/08/28 17:52:28 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.65.14.15 2017/08/28 17:52:28 skrll Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59
60 #include <dev/auconv.h>
61 #include <dev/usb/usbdevs.h>
62 #include <dev/usb/umidi_quirks.h>
63 #include <dev/midi_if.h>
64
65 /* Jack Descriptor */
66 #define UMIDI_MS_HEADER 0x01
67 #define UMIDI_IN_JACK 0x02
68 #define UMIDI_OUT_JACK 0x03
69
70 /* Jack Type */
71 #define UMIDI_EMBEDDED 0x01
72 #define UMIDI_EXTERNAL 0x02
73
74 /* generic, for iteration */
75 typedef struct {
76 uByte bLength;
77 uByte bDescriptorType;
78 uByte bDescriptorSubtype;
79 } UPACKED umidi_cs_descriptor_t;
80
81 typedef struct {
82 uByte bLength;
83 uByte bDescriptorType;
84 uByte bDescriptorSubtype;
85 uWord bcdMSC;
86 uWord wTotalLength;
87 } UPACKED umidi_cs_interface_descriptor_t;
88 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
89
90 typedef struct {
91 uByte bLength;
92 uByte bDescriptorType;
93 uByte bDescriptorSubtype;
94 uByte bNumEmbMIDIJack;
95 } UPACKED umidi_cs_endpoint_descriptor_t;
96 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
97
98 typedef struct {
99 uByte bLength;
100 uByte bDescriptorType;
101 uByte bDescriptorSubtype;
102 uByte bJackType;
103 uByte bJackID;
104 } UPACKED umidi_jack_descriptor_t;
105 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
106
107
108 #define TO_D(p) ((usb_descriptor_t *)(p))
109 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
110 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
111 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
112 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
113 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
114
115
116 #define UMIDI_PACKET_SIZE 4
117
118 /*
119 * hierarchie
120 *
121 * <-- parent child -->
122 *
123 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
124 * ^ | ^ |
125 * +-----+ +-----+
126 */
127
128 /* midi device */
129 struct umidi_mididev {
130 struct umidi_softc *sc;
131 device_t mdev;
132 /* */
133 struct umidi_jack *in_jack;
134 struct umidi_jack *out_jack;
135 char *label;
136 size_t label_len;
137 /* */
138 int opened;
139 int closing;
140 int flags;
141 };
142
143 /* Jack Information */
144 struct umidi_jack {
145 struct umidi_endpoint *endpoint;
146 /* */
147 int cable_number;
148 void *arg;
149 int bound;
150 int opened;
151 unsigned char *midiman_ppkt;
152 union {
153 struct {
154 void (*intr)(void *);
155 } out;
156 struct {
157 void (*intr)(void *, int);
158 } in;
159 } u;
160 };
161
162 #define UMIDI_MAX_EPJACKS 16
163 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
164 /* endpoint data */
165 struct umidi_endpoint {
166 struct umidi_softc *sc;
167 /* */
168 int addr;
169 struct usbd_pipe *pipe;
170 struct usbd_xfer *xfer;
171 umidi_packet_bufp buffer;
172 umidi_packet_bufp next_slot;
173 uint32_t buffer_size;
174 int num_scheduled;
175 int num_open;
176 int num_jacks;
177 int soliciting;
178 void *solicit_cookie;
179 int armed;
180 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
181 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
182 uint16_t next_schedule;
183 };
184
185 /* software context */
186 struct umidi_softc {
187 device_t sc_dev;
188 struct usbd_device *sc_udev;
189 struct usbd_interface *sc_iface;
190 const struct umidi_quirk *sc_quirk;
191
192 int sc_dying;
193
194 int sc_out_num_jacks;
195 struct umidi_jack *sc_out_jacks;
196 int sc_in_num_jacks;
197 struct umidi_jack *sc_in_jacks;
198 struct umidi_jack *sc_jacks;
199
200 int sc_num_mididevs;
201 struct umidi_mididev *sc_mididevs;
202
203 int sc_out_num_endpoints;
204 struct umidi_endpoint *sc_out_ep;
205 int sc_in_num_endpoints;
206 struct umidi_endpoint *sc_in_ep;
207 struct umidi_endpoint *sc_endpoints;
208 size_t sc_endpoints_len;
209 int cblnums_global;
210
211 kmutex_t sc_lock;
212 kcondvar_t sc_cv;
213 kcondvar_t sc_detach_cv;
214
215 int sc_refcnt;
216 };
217
218 #ifdef UMIDI_DEBUG
219 #define DPRINTF(x) if (umididebug) printf x
220 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
221 #include <sys/time.h>
222 static struct timeval umidi_tv;
223 int umididebug = 0;
224 #else
225 #define DPRINTF(x)
226 #define DPRINTFN(n,x)
227 #endif
228
229 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
230 (sc->sc_out_num_endpoints + \
231 sc->sc_in_num_endpoints))
232
233
234 static int umidi_open(void *, int,
235 void (*)(void *, int), void (*)(void *), void *);
236 static void umidi_close(void *);
237 static int umidi_channelmsg(void *, int, int, u_char *, int);
238 static int umidi_commonmsg(void *, int, u_char *, int);
239 static int umidi_sysex(void *, u_char *, int);
240 static int umidi_rtmsg(void *, int);
241 static void umidi_getinfo(void *, struct midi_info *);
242 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
243
244 static usbd_status alloc_pipe(struct umidi_endpoint *);
245 static void free_pipe(struct umidi_endpoint *);
246
247 static usbd_status alloc_all_endpoints(struct umidi_softc *);
248 static void free_all_endpoints(struct umidi_softc *);
249
250 static usbd_status alloc_all_jacks(struct umidi_softc *);
251 static void free_all_jacks(struct umidi_softc *);
252 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
253 struct umidi_jack *,
254 struct umidi_jack *,
255 struct umidi_mididev *);
256 static void unbind_jacks_from_mididev(struct umidi_mididev *);
257 static void unbind_all_jacks(struct umidi_softc *);
258 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
259 static usbd_status open_out_jack(struct umidi_jack *, void *,
260 void (*)(void *));
261 static usbd_status open_in_jack(struct umidi_jack *, void *,
262 void (*)(void *, int));
263 static void close_out_jack(struct umidi_jack *);
264 static void close_in_jack(struct umidi_jack *);
265
266 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
267 static usbd_status detach_mididev(struct umidi_mididev *, int);
268 static void deactivate_mididev(struct umidi_mididev *);
269 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
270 static void free_all_mididevs(struct umidi_softc *);
271 static usbd_status attach_all_mididevs(struct umidi_softc *);
272 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
273 static void deactivate_all_mididevs(struct umidi_softc *);
274 static void describe_mididev(struct umidi_mididev *);
275
276 #ifdef UMIDI_DEBUG
277 static void dump_sc(struct umidi_softc *);
278 static void dump_ep(struct umidi_endpoint *);
279 static void dump_jack(struct umidi_jack *);
280 #endif
281
282 static usbd_status start_input_transfer(struct umidi_endpoint *);
283 static usbd_status start_output_transfer(struct umidi_endpoint *);
284 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
285 static void in_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_intr(struct usbd_xfer *, void *, usbd_status);
287 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
288 static void out_solicit_locked(void *); /* pre-locked version */
289
290
291 const struct midi_hw_if umidi_hw_if = {
292 .open = umidi_open,
293 .close = umidi_close,
294 .output = umidi_rtmsg,
295 .getinfo = umidi_getinfo,
296 .get_locks = umidi_get_locks,
297 };
298
299 struct midi_hw_if_ext umidi_hw_if_ext = {
300 .channel = umidi_channelmsg,
301 .common = umidi_commonmsg,
302 .sysex = umidi_sysex,
303 };
304
305 struct midi_hw_if_ext umidi_hw_if_mm = {
306 .channel = umidi_channelmsg,
307 .common = umidi_commonmsg,
308 .sysex = umidi_sysex,
309 .compress = 1,
310 };
311
312 int umidi_match(device_t, cfdata_t, void *);
313 void umidi_attach(device_t, device_t, void *);
314 void umidi_childdet(device_t, device_t);
315 int umidi_detach(device_t, int);
316 int umidi_activate(device_t, enum devact);
317 extern struct cfdriver umidi_cd;
318 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
319 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
320
321 int
322 umidi_match(device_t parent, cfdata_t match, void *aux)
323 {
324 struct usbif_attach_arg *uiaa = aux;
325
326 DPRINTFN(1,("umidi_match\n"));
327
328 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
329 uiaa->uiaa_ifaceno))
330 return UMATCH_IFACECLASS_IFACESUBCLASS;
331
332 if (uiaa->uiaa_class == UICLASS_AUDIO &&
333 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
334 return UMATCH_IFACECLASS_IFACESUBCLASS;
335
336 return UMATCH_NONE;
337 }
338
339 void
340 umidi_attach(device_t parent, device_t self, void *aux)
341 {
342 usbd_status err;
343 struct umidi_softc *sc = device_private(self);
344 struct usbif_attach_arg *uiaa = aux;
345 char *devinfop;
346
347 DPRINTFN(1,("umidi_attach\n"));
348
349 sc->sc_dev = self;
350
351 aprint_naive("\n");
352 aprint_normal("\n");
353
354 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
355 aprint_normal_dev(self, "%s\n", devinfop);
356 usbd_devinfo_free(devinfop);
357
358 sc->sc_iface = uiaa->uiaa_iface;
359 sc->sc_udev = uiaa->uiaa_device;
360
361 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
362 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
363
364 aprint_normal_dev(self, "");
365 umidi_print_quirk(sc->sc_quirk);
366
367 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
368 cv_init(&sc->sc_cv, "umidopcl");
369 cv_init(&sc->sc_detach_cv, "umidetcv");
370 sc->sc_refcnt = 0;
371
372 err = alloc_all_endpoints(sc);
373 if (err != USBD_NORMAL_COMPLETION) {
374 aprint_error_dev(self,
375 "alloc_all_endpoints failed. (err=%d)\n", err);
376 goto out;
377 }
378 err = alloc_all_jacks(sc);
379 if (err != USBD_NORMAL_COMPLETION) {
380 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
381 err);
382 goto out_free_endpoints;
383 }
384 aprint_normal_dev(self, "out=%d, in=%d\n",
385 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
386
387 err = assign_all_jacks_automatically(sc);
388 if (err != USBD_NORMAL_COMPLETION) {
389 aprint_error_dev(self,
390 "assign_all_jacks_automatically failed. (err=%d)\n", err);
391 goto out_free_jacks;
392 }
393 err = attach_all_mididevs(sc);
394 if (err != USBD_NORMAL_COMPLETION) {
395 aprint_error_dev(self,
396 "attach_all_mididevs failed. (err=%d)\n", err);
397 goto out_free_jacks;
398 }
399
400 #ifdef UMIDI_DEBUG
401 dump_sc(sc);
402 #endif
403
404 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
405
406 return;
407
408 out_free_jacks:
409 unbind_all_jacks(sc);
410 free_all_jacks(sc);
411
412 out_free_endpoints:
413 free_all_endpoints(sc);
414
415 out:
416 aprint_error_dev(self, "disabled.\n");
417 sc->sc_dying = 1;
418 KERNEL_UNLOCK_ONE(curlwp);
419 return;
420 }
421
422 void
423 umidi_childdet(device_t self, device_t child)
424 {
425 int i;
426 struct umidi_softc *sc = device_private(self);
427
428 KASSERT(sc->sc_mididevs != NULL);
429
430 for (i = 0; i < sc->sc_num_mididevs; i++) {
431 if (sc->sc_mididevs[i].mdev == child)
432 break;
433 }
434 KASSERT(i < sc->sc_num_mididevs);
435 sc->sc_mididevs[i].mdev = NULL;
436 }
437
438 int
439 umidi_activate(device_t self, enum devact act)
440 {
441 struct umidi_softc *sc = device_private(self);
442
443 switch (act) {
444 case DVACT_DEACTIVATE:
445 DPRINTFN(1,("umidi_activate (deactivate)\n"));
446 sc->sc_dying = 1;
447 deactivate_all_mididevs(sc);
448 return 0;
449 default:
450 DPRINTFN(1,("umidi_activate (%d)\n", act));
451 return EOPNOTSUPP;
452 }
453 }
454
455 int
456 umidi_detach(device_t self, int flags)
457 {
458 struct umidi_softc *sc = device_private(self);
459
460 DPRINTFN(1,("umidi_detach\n"));
461
462 mutex_enter(&sc->sc_lock);
463 sc->sc_dying = 1;
464 if (--sc->sc_refcnt >= 0)
465 if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60)) {
466 printf("%s: %s didn't detach\n", __func__,
467 device_xname(sc->sc_dev));
468 }
469 mutex_exit(&sc->sc_lock);
470
471 detach_all_mididevs(sc, flags);
472 free_all_mididevs(sc);
473 free_all_jacks(sc);
474 free_all_endpoints(sc);
475
476 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
477
478 mutex_destroy(&sc->sc_lock);
479 cv_destroy(&sc->sc_detach_cv);
480 cv_destroy(&sc->sc_cv);
481
482 return 0;
483 }
484
485
486 /*
487 * midi_if stuffs
488 */
489 int
490 umidi_open(void *addr,
491 int flags,
492 void (*iintr)(void *, int),
493 void (*ointr)(void *),
494 void *arg)
495 {
496 struct umidi_mididev *mididev = addr;
497 struct umidi_softc *sc = mididev->sc;
498 usbd_status err;
499
500 KASSERT(mutex_owned(&sc->sc_lock));
501 DPRINTF(("umidi_open: sc=%p\n", sc));
502
503 if (mididev->opened)
504 return EBUSY;
505 if (sc->sc_dying)
506 return EIO;
507
508 mididev->opened = 1;
509 mididev->flags = flags;
510 if ((mididev->flags & FWRITE) && mididev->out_jack) {
511 err = open_out_jack(mididev->out_jack, arg, ointr);
512 if (err != USBD_NORMAL_COMPLETION)
513 goto bad;
514 }
515 if ((mididev->flags & FREAD) && mididev->in_jack) {
516 err = open_in_jack(mididev->in_jack, arg, iintr);
517 KASSERT(mididev->opened);
518 if (err != USBD_NORMAL_COMPLETION &&
519 err != USBD_IN_PROGRESS) {
520 if (mididev->out_jack)
521 close_out_jack(mididev->out_jack);
522 goto bad;
523 }
524 }
525
526 return 0;
527 bad:
528 mididev->opened = 0;
529 DPRINTF(("umidi_open: usbd_status %d\n", err));
530 KASSERT(mutex_owned(&sc->sc_lock));
531 return USBD_IN_USE == err ? EBUSY : EIO;
532 }
533
534 void
535 umidi_close(void *addr)
536 {
537 struct umidi_mididev *mididev = addr;
538 struct umidi_softc *sc = mididev->sc;
539
540 KASSERT(mutex_owned(&sc->sc_lock));
541
542 if (mididev->closing)
543 return;
544
545 mididev->closing = 1;
546
547 sc->sc_refcnt++;
548
549 if ((mididev->flags & FWRITE) && mididev->out_jack)
550 close_out_jack(mididev->out_jack);
551 if ((mididev->flags & FREAD) && mididev->in_jack)
552 close_in_jack(mididev->in_jack);
553
554 if (--sc->sc_refcnt < 0)
555 cv_broadcast(&sc->sc_detach_cv);
556
557 mididev->opened = 0;
558 mididev->closing = 0;
559 }
560
561 int
562 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
563 int len)
564 {
565 struct umidi_mididev *mididev = addr;
566
567 KASSERT(mutex_owned(&mididev->sc->sc_lock));
568
569 if (!mididev->out_jack || !mididev->opened || mididev->closing)
570 return EIO;
571
572 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
573 }
574
575 int
576 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
577 {
578 struct umidi_mididev *mididev = addr;
579 int cin;
580
581 KASSERT(mutex_owned(&mididev->sc->sc_lock));
582
583 if (!mididev->out_jack || !mididev->opened || mididev->closing)
584 return EIO;
585
586 switch ( len ) {
587 case 1: cin = 5; break;
588 case 2: cin = 2; break;
589 case 3: cin = 3; break;
590 default: return EIO; /* or gcc warns of cin uninitialized */
591 }
592
593 return out_jack_output(mididev->out_jack, msg, len, cin);
594 }
595
596 int
597 umidi_sysex(void *addr, u_char *msg, int len)
598 {
599 struct umidi_mididev *mididev = addr;
600 int cin;
601
602 KASSERT(mutex_owned(&mididev->sc->sc_lock));
603
604 if (!mididev->out_jack || !mididev->opened || mididev->closing)
605 return EIO;
606
607 switch ( len ) {
608 case 1: cin = 5; break;
609 case 2: cin = 6; break;
610 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
611 default: return EIO; /* or gcc warns of cin uninitialized */
612 }
613
614 return out_jack_output(mididev->out_jack, msg, len, cin);
615 }
616
617 int
618 umidi_rtmsg(void *addr, int d)
619 {
620 struct umidi_mididev *mididev = addr;
621 u_char msg = d;
622
623 KASSERT(mutex_owned(&mididev->sc->sc_lock));
624
625 if (!mididev->out_jack || !mididev->opened || mididev->closing)
626 return EIO;
627
628 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
629 }
630
631 void
632 umidi_getinfo(void *addr, struct midi_info *mi)
633 {
634 struct umidi_mididev *mididev = addr;
635 struct umidi_softc *sc = mididev->sc;
636 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
637
638 KASSERT(mutex_owned(&sc->sc_lock));
639
640 mi->name = mididev->label;
641 mi->props = MIDI_PROP_OUT_INTR;
642 if (mididev->in_jack)
643 mi->props |= MIDI_PROP_CAN_INPUT;
644 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
645 }
646
647 static void
648 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
649 {
650 struct umidi_mididev *mididev = addr;
651 struct umidi_softc *sc = mididev->sc;
652
653 *intr = NULL;
654 *thread = &sc->sc_lock;
655 }
656
657 /*
658 * each endpoint stuffs
659 */
660
661 /* alloc/free pipe */
662 static usbd_status
663 alloc_pipe(struct umidi_endpoint *ep)
664 {
665 struct umidi_softc *sc = ep->sc;
666 usbd_status err;
667 usb_endpoint_descriptor_t *epd;
668
669 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
670 /*
671 * For output, an improvement would be to have a buffer bigger than
672 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
673 * allow out_solicit to fill the buffer to the full packet size in
674 * all cases. But to use usbd_create_xfer to get a slightly larger
675 * buffer would not be a good way to do that, because if the addition
676 * would make the buffer exceed USB_MEM_SMALL then a substantially
677 * larger block may be wastefully allocated. Some flavor of double
678 * buffering could serve the same purpose, but would increase the
679 * code complexity, so for now I will live with the current slight
680 * penalty of reducing max transfer size by (num_open-num_scheduled)
681 * packet slots.
682 */
683 ep->buffer_size = UGETW(epd->wMaxPacketSize);
684 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
685
686 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
687 device_xname(sc->sc_dev), ep, ep->buffer_size));
688 ep->num_scheduled = 0;
689 ep->this_schedule = 0;
690 ep->next_schedule = 0;
691 ep->soliciting = 0;
692 ep->armed = 0;
693 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
694 if (err)
695 goto quit;
696 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
697 USBD_SHORT_XFER_OK, 0, &ep->xfer);
698 if (error) {
699 usbd_close_pipe(ep->pipe);
700 return USBD_NOMEM;
701 }
702 ep->buffer = usbd_get_buffer(ep->xfer);
703 ep->next_slot = ep->buffer;
704 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
705 out_solicit, ep);
706 quit:
707 return err;
708 }
709
710 static void
711 free_pipe(struct umidi_endpoint *ep)
712 {
713 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
714 usbd_abort_pipe(ep->pipe);
715 usbd_destroy_xfer(ep->xfer);
716 usbd_close_pipe(ep->pipe);
717 softint_disestablish(ep->solicit_cookie);
718 }
719
720
721 /* alloc/free the array of endpoint structures */
722
723 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
724 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
725 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
726
727 static usbd_status
728 alloc_all_endpoints(struct umidi_softc *sc)
729 {
730 usbd_status err;
731 struct umidi_endpoint *ep;
732 int i;
733
734 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
735 err = alloc_all_endpoints_fixed_ep(sc);
736 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
737 err = alloc_all_endpoints_yamaha(sc);
738 } else {
739 err = alloc_all_endpoints_genuine(sc);
740 }
741 if (err != USBD_NORMAL_COMPLETION)
742 return err;
743
744 ep = sc->sc_endpoints;
745 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
746 err = alloc_pipe(ep++);
747 if (err != USBD_NORMAL_COMPLETION) {
748 for (; ep != sc->sc_endpoints; ep--)
749 free_pipe(ep-1);
750 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
751 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
752 break;
753 }
754 }
755 return err;
756 }
757
758 static void
759 free_all_endpoints(struct umidi_softc *sc)
760 {
761 int i;
762
763 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
764 free_pipe(&sc->sc_endpoints[i]);
765 if (sc->sc_endpoints != NULL)
766 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
767 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
768 }
769
770 static usbd_status
771 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
772 {
773 usbd_status err;
774 const struct umq_fixed_ep_desc *fp;
775 struct umidi_endpoint *ep;
776 usb_endpoint_descriptor_t *epd;
777 int i;
778
779 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
780 UMQ_TYPE_FIXED_EP);
781 sc->sc_out_num_jacks = 0;
782 sc->sc_in_num_jacks = 0;
783 sc->sc_out_num_endpoints = fp->num_out_ep;
784 sc->sc_in_num_endpoints = fp->num_in_ep;
785 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
786 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
787 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
788 sc->sc_in_ep =
789 sc->sc_in_num_endpoints ?
790 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
791
792 ep = &sc->sc_out_ep[0];
793 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
794 epd = usbd_interface2endpoint_descriptor(
795 sc->sc_iface,
796 fp->out_ep[i].ep);
797 if (!epd) {
798 aprint_error_dev(sc->sc_dev,
799 "cannot get endpoint descriptor(out:%d)\n",
800 fp->out_ep[i].ep);
801 err = USBD_INVAL;
802 goto error;
803 }
804 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
805 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
806 aprint_error_dev(sc->sc_dev,
807 "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
808 err = USBD_INVAL;
809 goto error;
810 }
811 ep->sc = sc;
812 ep->addr = epd->bEndpointAddress;
813 ep->num_jacks = fp->out_ep[i].num_jacks;
814 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
815 ep->num_open = 0;
816 ep++;
817 }
818 ep = &sc->sc_in_ep[0];
819 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
820 epd = usbd_interface2endpoint_descriptor(
821 sc->sc_iface,
822 fp->in_ep[i].ep);
823 if (!epd) {
824 aprint_error_dev(sc->sc_dev,
825 "cannot get endpoint descriptor(in:%d)\n",
826 fp->in_ep[i].ep);
827 err = USBD_INVAL;
828 goto error;
829 }
830 /*
831 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
832 * endpoint. The existing input logic in this driver seems
833 * to work successfully if we just stop treating an interrupt
834 * endpoint as illegal (or the in_progress status we get on
835 * the initial transfer). It does not seem necessary to
836 * actually use the interrupt flavor of alloc_pipe or make
837 * other serious rearrangements of logic. I like that.
838 */
839 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
840 case UE_BULK:
841 case UE_INTERRUPT:
842 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
843 break;
844 /*FALLTHROUGH*/
845 default:
846 aprint_error_dev(sc->sc_dev,
847 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
848 err = USBD_INVAL;
849 goto error;
850 }
851
852 ep->sc = sc;
853 ep->addr = epd->bEndpointAddress;
854 ep->num_jacks = fp->in_ep[i].num_jacks;
855 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
856 ep->num_open = 0;
857 ep++;
858 }
859
860 return USBD_NORMAL_COMPLETION;
861 error:
862 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
863 sc->sc_endpoints = NULL;
864 return err;
865 }
866
867 static usbd_status
868 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
869 {
870 /* This driver currently supports max 1in/1out bulk endpoints */
871 usb_descriptor_t *desc;
872 umidi_cs_descriptor_t *udesc;
873 usb_endpoint_descriptor_t *epd;
874 int out_addr, in_addr, i;
875 int dir;
876 size_t remain, descsize;
877
878 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
879 out_addr = in_addr = 0;
880
881 /* detect endpoints */
882 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
883 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
884 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
885 KASSERT(epd != NULL);
886 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
887 dir = UE_GET_DIR(epd->bEndpointAddress);
888 if (dir==UE_DIR_OUT && !out_addr)
889 out_addr = epd->bEndpointAddress;
890 else if (dir==UE_DIR_IN && !in_addr)
891 in_addr = epd->bEndpointAddress;
892 }
893 }
894 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
895
896 /* count jacks */
897 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
898 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
899 return USBD_INVAL;
900 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
901 (size_t)udesc->bLength;
902 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
903
904 while (remain >= sizeof(usb_descriptor_t)) {
905 descsize = udesc->bLength;
906 if (descsize>remain || descsize==0)
907 break;
908 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
909 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
910 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
911 sc->sc_out_num_jacks++;
912 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
913 sc->sc_in_num_jacks++;
914 }
915 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
916 remain -= descsize;
917 }
918
919 /* validate some parameters */
920 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
921 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
922 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
923 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
924 if (sc->sc_out_num_jacks && out_addr) {
925 sc->sc_out_num_endpoints = 1;
926 } else {
927 sc->sc_out_num_endpoints = 0;
928 sc->sc_out_num_jacks = 0;
929 }
930 if (sc->sc_in_num_jacks && in_addr) {
931 sc->sc_in_num_endpoints = 1;
932 } else {
933 sc->sc_in_num_endpoints = 0;
934 sc->sc_in_num_jacks = 0;
935 }
936 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
937 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
938 if (sc->sc_out_num_endpoints) {
939 sc->sc_out_ep = sc->sc_endpoints;
940 sc->sc_out_ep->sc = sc;
941 sc->sc_out_ep->addr = out_addr;
942 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
943 sc->sc_out_ep->num_open = 0;
944 } else
945 sc->sc_out_ep = NULL;
946
947 if (sc->sc_in_num_endpoints) {
948 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
949 sc->sc_in_ep->sc = sc;
950 sc->sc_in_ep->addr = in_addr;
951 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
952 sc->sc_in_ep->num_open = 0;
953 } else
954 sc->sc_in_ep = NULL;
955
956 return USBD_NORMAL_COMPLETION;
957 }
958
959 static usbd_status
960 alloc_all_endpoints_genuine(struct umidi_softc *sc)
961 {
962 usb_interface_descriptor_t *interface_desc;
963 usb_config_descriptor_t *config_desc;
964 usb_descriptor_t *desc;
965 int num_ep;
966 size_t remain, descsize;
967 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
968 int epaddr;
969
970 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
971 num_ep = interface_desc->bNumEndpoints;
972 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
973 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
974 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
975 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
976 epaddr = -1;
977
978 /* get the list of endpoints for midi stream */
979 config_desc = usbd_get_config_descriptor(sc->sc_udev);
980 desc = (usb_descriptor_t *) config_desc;
981 remain = (size_t)UGETW(config_desc->wTotalLength);
982 while (remain>=sizeof(usb_descriptor_t)) {
983 descsize = desc->bLength;
984 if (descsize>remain || descsize==0)
985 break;
986 if (desc->bDescriptorType==UDESC_ENDPOINT &&
987 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
988 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
989 epaddr = TO_EPD(desc)->bEndpointAddress;
990 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
991 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
992 epaddr!=-1) {
993 if (num_ep>0) {
994 num_ep--;
995 p->sc = sc;
996 p->addr = epaddr;
997 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
998 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
999 sc->sc_out_num_endpoints++;
1000 sc->sc_out_num_jacks += p->num_jacks;
1001 } else {
1002 sc->sc_in_num_endpoints++;
1003 sc->sc_in_num_jacks += p->num_jacks;
1004 }
1005 p++;
1006 }
1007 } else
1008 epaddr = -1;
1009 desc = NEXT_D(desc);
1010 remain-=descsize;
1011 }
1012
1013 /* sort endpoints */
1014 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1015 p = sc->sc_endpoints;
1016 endep = p + num_ep;
1017 while (p<endep) {
1018 lowest = p;
1019 for (q=p+1; q<endep; q++) {
1020 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1021 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1022 ((UE_GET_DIR(lowest->addr)==
1023 UE_GET_DIR(q->addr)) &&
1024 (UE_GET_ADDR(lowest->addr)>
1025 UE_GET_ADDR(q->addr))))
1026 lowest = q;
1027 }
1028 if (lowest != p) {
1029 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1030 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1031 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1032 }
1033 p->num_open = 0;
1034 p++;
1035 }
1036
1037 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1038 sc->sc_in_ep =
1039 sc->sc_in_num_endpoints ?
1040 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1041
1042 return USBD_NORMAL_COMPLETION;
1043 }
1044
1045
1046 /*
1047 * jack stuffs
1048 */
1049
1050 static usbd_status
1051 alloc_all_jacks(struct umidi_softc *sc)
1052 {
1053 int i, j;
1054 struct umidi_endpoint *ep;
1055 struct umidi_jack *jack;
1056 const unsigned char *cn_spec;
1057
1058 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1059 sc->cblnums_global = 0;
1060 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1061 sc->cblnums_global = 1;
1062 else {
1063 /*
1064 * I don't think this default is correct, but it preserves
1065 * the prior behavior of the code. That's why I defined two
1066 * complementary quirks. Any device for which the default
1067 * behavior is wrong can be made to work by giving it an
1068 * explicit quirk, and if a pattern ever develops (as I suspect
1069 * it will) that a lot of otherwise standard USB MIDI devices
1070 * need the CN_SEQ_PER_EP "quirk," then this default can be
1071 * changed to 0, and the only devices that will break are those
1072 * listing neither quirk, and they'll easily be fixed by giving
1073 * them the CN_SEQ_GLOBAL quirk.
1074 */
1075 sc->cblnums_global = 1;
1076 }
1077
1078 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1079 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1080 UMQ_TYPE_CN_FIXED);
1081 else
1082 cn_spec = NULL;
1083
1084 /* allocate/initialize structures */
1085 sc->sc_jacks =
1086 kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
1087 + sc->sc_out_num_jacks), KM_SLEEP);
1088 if (!sc->sc_jacks)
1089 return USBD_NOMEM;
1090 sc->sc_out_jacks =
1091 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1092 sc->sc_in_jacks =
1093 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1094
1095 jack = &sc->sc_out_jacks[0];
1096 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1097 jack->opened = 0;
1098 jack->bound = 0;
1099 jack->arg = NULL;
1100 jack->u.out.intr = NULL;
1101 jack->midiman_ppkt = NULL;
1102 if (sc->cblnums_global)
1103 jack->cable_number = i;
1104 jack++;
1105 }
1106 jack = &sc->sc_in_jacks[0];
1107 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1108 jack->opened = 0;
1109 jack->bound = 0;
1110 jack->arg = NULL;
1111 jack->u.in.intr = NULL;
1112 if (sc->cblnums_global)
1113 jack->cable_number = i;
1114 jack++;
1115 }
1116
1117 /* assign each jacks to each endpoints */
1118 jack = &sc->sc_out_jacks[0];
1119 ep = &sc->sc_out_ep[0];
1120 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1121 for (j = 0; j < ep->num_jacks; j++) {
1122 jack->endpoint = ep;
1123 if (cn_spec != NULL)
1124 jack->cable_number = *cn_spec++;
1125 else if (!sc->cblnums_global)
1126 jack->cable_number = j;
1127 ep->jacks[jack->cable_number] = jack;
1128 jack++;
1129 }
1130 ep++;
1131 }
1132 jack = &sc->sc_in_jacks[0];
1133 ep = &sc->sc_in_ep[0];
1134 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1135 for (j = 0; j < ep->num_jacks; j++) {
1136 jack->endpoint = ep;
1137 if (cn_spec != NULL)
1138 jack->cable_number = *cn_spec++;
1139 else if (!sc->cblnums_global)
1140 jack->cable_number = j;
1141 ep->jacks[jack->cable_number] = jack;
1142 jack++;
1143 }
1144 ep++;
1145 }
1146
1147 return USBD_NORMAL_COMPLETION;
1148 }
1149
1150 static void
1151 free_all_jacks(struct umidi_softc *sc)
1152 {
1153 struct umidi_jack *jacks;
1154 size_t len;
1155
1156 mutex_enter(&sc->sc_lock);
1157 jacks = sc->sc_jacks;
1158 len = sizeof(*sc->sc_out_jacks)
1159 * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1160 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1161 mutex_exit(&sc->sc_lock);
1162
1163 if (jacks)
1164 kmem_free(jacks, len);
1165 }
1166
1167 static usbd_status
1168 bind_jacks_to_mididev(struct umidi_softc *sc,
1169 struct umidi_jack *out_jack,
1170 struct umidi_jack *in_jack,
1171 struct umidi_mididev *mididev)
1172 {
1173 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1174 return USBD_IN_USE;
1175 if (mididev->out_jack || mididev->in_jack)
1176 return USBD_IN_USE;
1177
1178 if (out_jack)
1179 out_jack->bound = 1;
1180 if (in_jack)
1181 in_jack->bound = 1;
1182 mididev->in_jack = in_jack;
1183 mididev->out_jack = out_jack;
1184
1185 mididev->closing = 0;
1186
1187 return USBD_NORMAL_COMPLETION;
1188 }
1189
1190 static void
1191 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1192 {
1193 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1194
1195 mididev->closing = 1;
1196
1197 if ((mididev->flags & FWRITE) && mididev->out_jack)
1198 close_out_jack(mididev->out_jack);
1199 if ((mididev->flags & FREAD) && mididev->in_jack)
1200 close_in_jack(mididev->in_jack);
1201
1202 if (mididev->out_jack) {
1203 mididev->out_jack->bound = 0;
1204 mididev->out_jack = NULL;
1205 }
1206 if (mididev->in_jack) {
1207 mididev->in_jack->bound = 0;
1208 mididev->in_jack = NULL;
1209 }
1210 }
1211
1212 static void
1213 unbind_all_jacks(struct umidi_softc *sc)
1214 {
1215 int i;
1216
1217 mutex_enter(&sc->sc_lock);
1218 if (sc->sc_mididevs)
1219 for (i = 0; i < sc->sc_num_mididevs; i++)
1220 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1221 mutex_exit(&sc->sc_lock);
1222 }
1223
1224 static usbd_status
1225 assign_all_jacks_automatically(struct umidi_softc *sc)
1226 {
1227 usbd_status err;
1228 int i;
1229 struct umidi_jack *out, *in;
1230 const signed char *asg_spec;
1231
1232 err =
1233 alloc_all_mididevs(sc,
1234 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1235 if (err!=USBD_NORMAL_COMPLETION)
1236 return err;
1237
1238 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1239 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1240 UMQ_TYPE_MD_FIXED);
1241 else
1242 asg_spec = NULL;
1243
1244 for (i = 0; i < sc->sc_num_mididevs; i++) {
1245 if (asg_spec != NULL) {
1246 if (*asg_spec == -1)
1247 out = NULL;
1248 else
1249 out = &sc->sc_out_jacks[*asg_spec];
1250 ++ asg_spec;
1251 if (*asg_spec == -1)
1252 in = NULL;
1253 else
1254 in = &sc->sc_in_jacks[*asg_spec];
1255 ++ asg_spec;
1256 } else {
1257 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1258 : NULL;
1259 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1260 : NULL;
1261 }
1262 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1263 if (err != USBD_NORMAL_COMPLETION) {
1264 free_all_mididevs(sc);
1265 return err;
1266 }
1267 }
1268
1269 return USBD_NORMAL_COMPLETION;
1270 }
1271
1272 static usbd_status
1273 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1274 {
1275 struct umidi_endpoint *ep = jack->endpoint;
1276 struct umidi_softc *sc = ep->sc;
1277 umidi_packet_bufp end;
1278 int err;
1279
1280 KASSERT(mutex_owned(&sc->sc_lock));
1281
1282 if (jack->opened)
1283 return USBD_IN_USE;
1284
1285 jack->arg = arg;
1286 jack->u.out.intr = intr;
1287 jack->midiman_ppkt = NULL;
1288 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1289 jack->opened = 1;
1290 ep->num_open++;
1291 /*
1292 * out_solicit maintains an invariant that there will always be
1293 * (num_open - num_scheduled) slots free in the buffer. as we have
1294 * just incremented num_open, the buffer may be too full to satisfy
1295 * the invariant until a transfer completes, for which we must wait.
1296 */
1297 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1298 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1299 mstohz(10));
1300 if (err) {
1301 ep->num_open--;
1302 jack->opened = 0;
1303 return USBD_IOERROR;
1304 }
1305 }
1306
1307 return USBD_NORMAL_COMPLETION;
1308 }
1309
1310 static usbd_status
1311 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1312 {
1313 usbd_status err = USBD_NORMAL_COMPLETION;
1314 struct umidi_endpoint *ep = jack->endpoint;
1315
1316 KASSERT(mutex_owned(&ep->sc->sc_lock));
1317
1318 if (jack->opened)
1319 return USBD_IN_USE;
1320
1321 jack->arg = arg;
1322 jack->u.in.intr = intr;
1323 jack->opened = 1;
1324 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1325 /*
1326 * Can't hold the interrupt lock while calling into USB,
1327 * but we can safely drop it here.
1328 */
1329 mutex_exit(&ep->sc->sc_lock);
1330 err = start_input_transfer(ep);
1331 if (err != USBD_NORMAL_COMPLETION &&
1332 err != USBD_IN_PROGRESS) {
1333 ep->num_open--;
1334 }
1335 mutex_enter(&ep->sc->sc_lock);
1336 }
1337
1338 return err;
1339 }
1340
1341 static void
1342 close_out_jack(struct umidi_jack *jack)
1343 {
1344 struct umidi_endpoint *ep;
1345 struct umidi_softc *sc;
1346 uint16_t mask;
1347 int err;
1348
1349 if (jack->opened) {
1350 ep = jack->endpoint;
1351 sc = ep->sc;
1352
1353 KASSERT(mutex_owned(&sc->sc_lock));
1354 mask = 1 << (jack->cable_number);
1355 while (mask & (ep->this_schedule | ep->next_schedule)) {
1356 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1357 mstohz(10));
1358 if (err)
1359 break;
1360 }
1361 /*
1362 * We can re-enter this function from both close() and
1363 * detach(). Make sure only one of them does this part.
1364 */
1365 if (jack->opened) {
1366 jack->opened = 0;
1367 jack->endpoint->num_open--;
1368 ep->this_schedule &= ~mask;
1369 ep->next_schedule &= ~mask;
1370 }
1371 }
1372 }
1373
1374 static void
1375 close_in_jack(struct umidi_jack *jack)
1376 {
1377 if (jack->opened) {
1378 struct umidi_softc *sc = jack->endpoint->sc;
1379
1380 KASSERT(mutex_owned(&sc->sc_lock));
1381
1382 jack->opened = 0;
1383 if (--jack->endpoint->num_open == 0) {
1384 /*
1385 * We have to drop the (interrupt) lock so that
1386 * the USB thread lock can be safely taken by
1387 * the abort operation. This is safe as this
1388 * either closing or dying will be set proerly.
1389 */
1390 mutex_exit(&sc->sc_lock);
1391 usbd_abort_pipe(jack->endpoint->pipe);
1392 mutex_enter(&sc->sc_lock);
1393 }
1394 }
1395 }
1396
1397 static usbd_status
1398 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1399 {
1400 if (mididev->sc)
1401 return USBD_IN_USE;
1402
1403 mididev->sc = sc;
1404
1405 describe_mididev(mididev);
1406
1407 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1408
1409 return USBD_NORMAL_COMPLETION;
1410 }
1411
1412 static usbd_status
1413 detach_mididev(struct umidi_mididev *mididev, int flags)
1414 {
1415 struct umidi_softc *sc = mididev->sc;
1416
1417 if (!sc)
1418 return USBD_NO_ADDR;
1419
1420 mutex_enter(&sc->sc_lock);
1421 if (mididev->opened) {
1422 umidi_close(mididev);
1423 }
1424 unbind_jacks_from_mididev(mididev);
1425 mutex_exit(&sc->sc_lock);
1426
1427 if (mididev->mdev != NULL)
1428 config_detach(mididev->mdev, flags);
1429
1430 if (NULL != mididev->label) {
1431 kmem_free(mididev->label, mididev->label_len);
1432 mididev->label = NULL;
1433 }
1434
1435 mididev->sc = NULL;
1436
1437 return USBD_NORMAL_COMPLETION;
1438 }
1439
1440 static void
1441 deactivate_mididev(struct umidi_mididev *mididev)
1442 {
1443 if (mididev->out_jack)
1444 mididev->out_jack->bound = 0;
1445 if (mididev->in_jack)
1446 mididev->in_jack->bound = 0;
1447 }
1448
1449 static usbd_status
1450 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1451 {
1452 sc->sc_num_mididevs = nmidi;
1453 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1454 return USBD_NORMAL_COMPLETION;
1455 }
1456
1457 static void
1458 free_all_mididevs(struct umidi_softc *sc)
1459 {
1460 struct umidi_mididev *mididevs;
1461 size_t len;
1462
1463 mutex_enter(&sc->sc_lock);
1464 mididevs = sc->sc_mididevs;
1465 if (mididevs)
1466 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1467 sc->sc_mididevs = NULL;
1468 sc->sc_num_mididevs = 0;
1469 mutex_exit(&sc->sc_lock);
1470
1471 if (mididevs)
1472 kmem_free(mididevs, len);
1473 }
1474
1475 static usbd_status
1476 attach_all_mididevs(struct umidi_softc *sc)
1477 {
1478 usbd_status err;
1479 int i;
1480
1481 if (sc->sc_mididevs)
1482 for (i = 0; i < sc->sc_num_mididevs; i++) {
1483 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1484 if (err != USBD_NORMAL_COMPLETION)
1485 return err;
1486 }
1487
1488 return USBD_NORMAL_COMPLETION;
1489 }
1490
1491 static usbd_status
1492 detach_all_mididevs(struct umidi_softc *sc, int flags)
1493 {
1494 usbd_status err;
1495 int i;
1496
1497 if (sc->sc_mididevs)
1498 for (i = 0; i < sc->sc_num_mididevs; i++) {
1499 err = detach_mididev(&sc->sc_mididevs[i], flags);
1500 if (err != USBD_NORMAL_COMPLETION)
1501 return err;
1502 }
1503
1504 return USBD_NORMAL_COMPLETION;
1505 }
1506
1507 static void
1508 deactivate_all_mididevs(struct umidi_softc *sc)
1509 {
1510 int i;
1511
1512 if (sc->sc_mididevs) {
1513 for (i = 0; i < sc->sc_num_mididevs; i++)
1514 deactivate_mididev(&sc->sc_mididevs[i]);
1515 }
1516 }
1517
1518 /*
1519 * TODO: the 0-based cable numbers will often not match the labeling of the
1520 * equipment. Ideally:
1521 * For class-compliant devices: get the iJack string from the jack descriptor.
1522 * Otherwise:
1523 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1524 * number for display)
1525 * - support an array quirk explictly giving a char * for each jack.
1526 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1527 * the CNs are not globally unique, each is shown with its associated endpoint
1528 * address in hex also. That should not be necessary when using iJack values
1529 * or a quirk array.
1530 */
1531 void
1532 describe_mididev(struct umidi_mididev *md)
1533 {
1534 char in_label[16];
1535 char out_label[16];
1536 const char *unit_label;
1537 char *final_label;
1538 struct umidi_softc *sc;
1539 int show_ep_in;
1540 int show_ep_out;
1541 size_t len;
1542
1543 sc = md->sc;
1544 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1545 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1546
1547 if (NULL == md->in_jack)
1548 in_label[0] = '\0';
1549 else if (show_ep_in)
1550 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1551 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1552 else
1553 snprintf(in_label, sizeof(in_label), "<%d ",
1554 md->in_jack->cable_number);
1555
1556 if (NULL == md->out_jack)
1557 out_label[0] = '\0';
1558 else if (show_ep_out)
1559 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1560 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1561 else
1562 snprintf(out_label, sizeof(out_label), ">%d ",
1563 md->out_jack->cable_number);
1564
1565 unit_label = device_xname(sc->sc_dev);
1566
1567 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1568
1569 final_label = kmem_alloc(len, KM_SLEEP);
1570
1571 snprintf(final_label, len, "%s%son %s",
1572 in_label, out_label, unit_label);
1573
1574 md->label = final_label;
1575 md->label_len = len;
1576 }
1577
1578 #ifdef UMIDI_DEBUG
1579 static void
1580 dump_sc(struct umidi_softc *sc)
1581 {
1582 int i;
1583
1584 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1585 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1586 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1587 dump_ep(&sc->sc_out_ep[i]);
1588 }
1589 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1590 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1591 dump_ep(&sc->sc_in_ep[i]);
1592 }
1593 }
1594
1595 static void
1596 dump_ep(struct umidi_endpoint *ep)
1597 {
1598 int i;
1599 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1600 if (NULL==ep->jacks[i])
1601 continue;
1602 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1603 dump_jack(ep->jacks[i]);
1604 }
1605 }
1606 static void
1607 dump_jack(struct umidi_jack *jack)
1608 {
1609 DPRINTFN(10, ("\t\t\tep=%p\n",
1610 jack->endpoint));
1611 }
1612
1613 #endif /* UMIDI_DEBUG */
1614
1615
1616
1617 /*
1618 * MUX MIDI PACKET
1619 */
1620
1621 static const int packet_length[16] = {
1622 /*0*/ -1,
1623 /*1*/ -1,
1624 /*2*/ 2,
1625 /*3*/ 3,
1626 /*4*/ 3,
1627 /*5*/ 1,
1628 /*6*/ 2,
1629 /*7*/ 3,
1630 /*8*/ 3,
1631 /*9*/ 3,
1632 /*A*/ 3,
1633 /*B*/ 3,
1634 /*C*/ 2,
1635 /*D*/ 2,
1636 /*E*/ 3,
1637 /*F*/ 1,
1638 };
1639
1640 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1641 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1642 #define MIX_CN_CIN(cn, cin) \
1643 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1644 ((unsigned char)(cin)&0x0F)))
1645
1646 static usbd_status
1647 start_input_transfer(struct umidi_endpoint *ep)
1648 {
1649 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1650 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1651 return usbd_transfer(ep->xfer);
1652 }
1653
1654 static usbd_status
1655 start_output_transfer(struct umidi_endpoint *ep)
1656 {
1657 usbd_status rv;
1658 uint32_t length;
1659 int i;
1660
1661 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1662 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1663 ep->buffer, ep->next_slot, length));
1664
1665 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1666 USBD_NO_TIMEOUT, out_intr);
1667 rv = usbd_transfer(ep->xfer);
1668
1669 /*
1670 * Once the transfer is scheduled, no more adding to partial
1671 * packets within it.
1672 */
1673 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1674 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1675 if (NULL != ep->jacks[i])
1676 ep->jacks[i]->midiman_ppkt = NULL;
1677 }
1678
1679 return rv;
1680 }
1681
1682 #ifdef UMIDI_DEBUG
1683 #define DPR_PACKET(dir, sc, p) \
1684 if ((unsigned char)(p)[1]!=0xFE) \
1685 DPRINTFN(500, \
1686 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1687 device_xname(sc->sc_dev), \
1688 (unsigned char)(p)[0], \
1689 (unsigned char)(p)[1], \
1690 (unsigned char)(p)[2], \
1691 (unsigned char)(p)[3]));
1692 #else
1693 #define DPR_PACKET(dir, sc, p)
1694 #endif
1695
1696 /*
1697 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1698 * with the cable number and length in the last byte instead of the first,
1699 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1700 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1701 * with a cable nybble and a length nybble (which, unlike the CIN of a
1702 * real USB MIDI packet, has no semantics at all besides the length).
1703 * A packet received from a Midiman may contain part of a MIDI message,
1704 * more than one MIDI message, or parts of more than one MIDI message. A
1705 * three-byte MIDI message may arrive in three packets of data length 1, and
1706 * running status may be used. Happily, the midi(4) driver above us will put
1707 * it all back together, so the only cost is in USB bandwidth. The device
1708 * has an easier time with what it receives from us: we'll pack messages in
1709 * and across packets, but filling the packets whenever possible and,
1710 * as midi(4) hands us a complete message at a time, we'll never send one
1711 * in a dribble of short packets.
1712 */
1713
1714 static int
1715 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1716 {
1717 struct umidi_endpoint *ep = out_jack->endpoint;
1718 struct umidi_softc *sc = ep->sc;
1719 unsigned char *packet;
1720 int plen;
1721 int poff;
1722
1723 KASSERT(mutex_owned(&sc->sc_lock));
1724
1725 if (sc->sc_dying)
1726 return EIO;
1727
1728 if (!out_jack->opened)
1729 return ENODEV; /* XXX as it was, is this the right errno? */
1730
1731 sc->sc_refcnt++;
1732
1733 #ifdef UMIDI_DEBUG
1734 if (umididebug >= 100)
1735 microtime(&umidi_tv);
1736 #endif
1737 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1738 "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1739 (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1740
1741 packet = *ep->next_slot++;
1742 KASSERT(ep->buffer_size >=
1743 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1744 memset(packet, 0, UMIDI_PACKET_SIZE);
1745 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1746 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1747 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1748 plen = 3 - poff;
1749 if (plen > len)
1750 plen = len;
1751 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1752 src += plen;
1753 len -= plen;
1754 plen += poff;
1755 out_jack->midiman_ppkt[3] =
1756 MIX_CN_CIN(out_jack->cable_number, plen);
1757 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1758 if (3 == plen)
1759 out_jack->midiman_ppkt = NULL; /* no more */
1760 }
1761 if (0 == len)
1762 ep->next_slot--; /* won't be needed, nevermind */
1763 else {
1764 memcpy(packet, src, len);
1765 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1766 DPR_PACKET(out, sc, packet);
1767 if (len < 3)
1768 out_jack->midiman_ppkt = packet;
1769 }
1770 } else { /* the nice simple USB class-compliant case */
1771 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1772 memcpy(packet+1, src, len);
1773 DPR_PACKET(out, sc, packet);
1774 }
1775 ep->next_schedule |= 1<<(out_jack->cable_number);
1776 ++ ep->num_scheduled;
1777 if (!ep->armed && !ep->soliciting) {
1778 /*
1779 * It would be bad to call out_solicit directly here (the
1780 * caller need not be reentrant) but a soft interrupt allows
1781 * solicit to run immediately the caller exits its critical
1782 * section, and if the caller has more to write we can get it
1783 * before starting the USB transfer, and send a longer one.
1784 */
1785 ep->soliciting = 1;
1786 kpreempt_disable();
1787 softint_schedule(ep->solicit_cookie);
1788 kpreempt_enable();
1789 }
1790
1791 if (--sc->sc_refcnt < 0)
1792 cv_broadcast(&sc->sc_detach_cv);
1793
1794 return 0;
1795 }
1796
1797 static void
1798 in_intr(struct usbd_xfer *xfer, void *priv,
1799 usbd_status status)
1800 {
1801 int cn, len, i;
1802 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1803 struct umidi_softc *sc = ep->sc;
1804 struct umidi_jack *jack;
1805 unsigned char *packet;
1806 umidi_packet_bufp slot;
1807 umidi_packet_bufp end;
1808 unsigned char *data;
1809 uint32_t count;
1810
1811 if (ep->sc->sc_dying || !ep->num_open)
1812 return;
1813
1814 mutex_enter(&sc->sc_lock);
1815 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1816 if (0 == count % UMIDI_PACKET_SIZE) {
1817 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1818 device_xname(ep->sc->sc_dev), ep, count));
1819 } else {
1820 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1821 device_xname(ep->sc->sc_dev), ep, count));
1822 }
1823
1824 slot = ep->buffer;
1825 end = slot + count / sizeof(*slot);
1826
1827 for (packet = *slot; slot < end; packet = *++slot) {
1828
1829 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1830 cn = (0xf0&(packet[3]))>>4;
1831 len = 0x0f&(packet[3]);
1832 data = packet;
1833 } else {
1834 cn = GET_CN(packet[0]);
1835 len = packet_length[GET_CIN(packet[0])];
1836 data = packet + 1;
1837 }
1838 /* 0 <= cn <= 15 by inspection of above code */
1839 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1840 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1841 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1842 device_xname(ep->sc->sc_dev), ep, cn, len,
1843 (unsigned)data[0],
1844 (unsigned)data[1],
1845 (unsigned)data[2]));
1846 mutex_exit(&sc->sc_lock);
1847 return;
1848 }
1849
1850 if (!jack->bound || !jack->opened)
1851 continue;
1852
1853 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1854 "%02X %02X %02X\n",
1855 device_xname(ep->sc->sc_dev), ep, cn, len,
1856 (unsigned)data[0],
1857 (unsigned)data[1],
1858 (unsigned)data[2]));
1859
1860 if (jack->u.in.intr) {
1861 for (i = 0; i < len; i++) {
1862 (*jack->u.in.intr)(jack->arg, data[i]);
1863 }
1864 }
1865
1866 }
1867
1868 (void)start_input_transfer(ep);
1869 mutex_exit(&sc->sc_lock);
1870 }
1871
1872 static void
1873 out_intr(struct usbd_xfer *xfer, void *priv,
1874 usbd_status status)
1875 {
1876 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1877 struct umidi_softc *sc = ep->sc;
1878 uint32_t count;
1879
1880 if (sc->sc_dying)
1881 return;
1882
1883 mutex_enter(&sc->sc_lock);
1884 #ifdef UMIDI_DEBUG
1885 if (umididebug >= 200)
1886 microtime(&umidi_tv);
1887 #endif
1888 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1889 if (0 == count % UMIDI_PACKET_SIZE) {
1890 DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1891 "length %u\n", device_xname(ep->sc->sc_dev),
1892 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1893 count));
1894 } else {
1895 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1896 device_xname(ep->sc->sc_dev), ep, count));
1897 }
1898 count /= UMIDI_PACKET_SIZE;
1899
1900 /*
1901 * If while the transfer was pending we buffered any new messages,
1902 * move them to the start of the buffer.
1903 */
1904 ep->next_slot -= count;
1905 if (ep->buffer < ep->next_slot) {
1906 memcpy(ep->buffer, ep->buffer + count,
1907 (char *)ep->next_slot - (char *)ep->buffer);
1908 }
1909 cv_broadcast(&sc->sc_cv);
1910 /*
1911 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1912 * Running at IPL_USB so the following should happen to be safe.
1913 */
1914 ep->armed = 0;
1915 if (!ep->soliciting) {
1916 ep->soliciting = 1;
1917 out_solicit_locked(ep);
1918 }
1919 mutex_exit(&sc->sc_lock);
1920 }
1921
1922 /*
1923 * A jack on which we have received a packet must be called back on its
1924 * out.intr handler before it will send us another; it is considered
1925 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1926 * we need no extra buffer space for it.
1927 *
1928 * In contrast, a jack that is open but not scheduled may supply us a packet
1929 * at any time, driven by the top half, and we must be able to accept it, no
1930 * excuses. So we must ensure that at any point in time there are at least
1931 * (num_open - num_scheduled) slots free.
1932 *
1933 * As long as there are more slots free than that minimum, we can loop calling
1934 * scheduled jacks back on their "interrupt" handlers, soliciting more
1935 * packets, starting the USB transfer only when the buffer space is down to
1936 * the minimum or no jack has any more to send.
1937 */
1938
1939 static void
1940 out_solicit_locked(void *arg)
1941 {
1942 struct umidi_endpoint *ep = arg;
1943 umidi_packet_bufp end;
1944 uint16_t which;
1945 struct umidi_jack *jack;
1946
1947 KASSERT(mutex_owned(&ep->sc->sc_lock));
1948
1949 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1950
1951 for ( ;; ) {
1952 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1953 break; /* at IPL_USB */
1954 if (ep->this_schedule == 0) {
1955 if (ep->next_schedule == 0)
1956 break; /* at IPL_USB */
1957 ep->this_schedule = ep->next_schedule;
1958 ep->next_schedule = 0;
1959 }
1960 /*
1961 * At least one jack is scheduled. Find and mask off the least
1962 * set bit in this_schedule and decrement num_scheduled.
1963 * Convert mask to bit index to find the corresponding jack,
1964 * and call its intr handler. If it has a message, it will call
1965 * back one of the output methods, which will set its bit in
1966 * next_schedule (not copied into this_schedule until the
1967 * latter is empty). In this way we round-robin the jacks that
1968 * have messages to send, until the buffer is as full as we
1969 * dare, and then start a transfer.
1970 */
1971 which = ep->this_schedule;
1972 which &= (~which)+1; /* now mask of least set bit */
1973 ep->this_schedule &= ~which;
1974 --ep->num_scheduled;
1975
1976 --which; /* now 1s below mask - count 1s to get index */
1977 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1978 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1979 which = (((which >> 4) + which) & 0x0f0f);
1980 which += (which >> 8);
1981 which &= 0x1f; /* the bit index a/k/a jack number */
1982
1983 jack = ep->jacks[which];
1984 if (jack->u.out.intr)
1985 (*jack->u.out.intr)(jack->arg);
1986 }
1987 /* intr lock held at loop exit */
1988 if (!ep->armed && ep->next_slot > ep->buffer) {
1989 /*
1990 * Can't hold the interrupt lock while calling into USB,
1991 * but we can safely drop it here.
1992 */
1993 mutex_exit(&ep->sc->sc_lock);
1994 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1995 mutex_enter(&ep->sc->sc_lock);
1996 }
1997 ep->soliciting = 0;
1998 }
1999
2000 /* Entry point for the softintr. */
2001 static void
2002 out_solicit(void *arg)
2003 {
2004 struct umidi_endpoint *ep = arg;
2005 struct umidi_softc *sc = ep->sc;
2006
2007 mutex_enter(&sc->sc_lock);
2008 out_solicit_locked(arg);
2009 mutex_exit(&sc->sc_lock);
2010 }
2011