umidi.c revision 1.65.14.5 1 /* $NetBSD: umidi.c,v 1.65.14.5 2015/03/21 11:33:37 skrll Exp $ */
2 /*
3 * Copyright (c) 2001, 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
8 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
9 * (mrg (at) eterna.com.au).
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.65.14.5 2015/03/21 11:33:37 skrll Exp $");
35
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/device.h>
42 #include <sys/ioctl.h>
43 #include <sys/conf.h>
44 #include <sys/file.h>
45 #include <sys/select.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/poll.h>
49 #include <sys/intr.h>
50
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54
55 #include <dev/auconv.h>
56 #include <dev/usb/usbdevs.h>
57 #include <dev/usb/uaudioreg.h>
58 #include <dev/usb/umidireg.h>
59 #include <dev/usb/umidivar.h>
60 #include <dev/usb/umidi_quirks.h>
61
62 #include <dev/midi_if.h>
63
64 #ifdef UMIDI_DEBUG
65 #define DPRINTF(x) if (umididebug) printf x
66 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
67 #include <sys/time.h>
68 static struct timeval umidi_tv;
69 int umididebug = 0;
70 #else
71 #define DPRINTF(x)
72 #define DPRINTFN(n,x)
73 #endif
74
75 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
76 (sc->sc_out_num_endpoints + \
77 sc->sc_in_num_endpoints))
78
79
80 static int umidi_open(void *, int,
81 void (*)(void *, int), void (*)(void *), void *);
82 static void umidi_close(void *);
83 static int umidi_channelmsg(void *, int, int, u_char *, int);
84 static int umidi_commonmsg(void *, int, u_char *, int);
85 static int umidi_sysex(void *, u_char *, int);
86 static int umidi_rtmsg(void *, int);
87 static void umidi_getinfo(void *, struct midi_info *);
88 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
89
90 static usbd_status alloc_pipe(struct umidi_endpoint *);
91 static void free_pipe(struct umidi_endpoint *);
92
93 static usbd_status alloc_all_endpoints(struct umidi_softc *);
94 static void free_all_endpoints(struct umidi_softc *);
95
96 static usbd_status alloc_all_jacks(struct umidi_softc *);
97 static void free_all_jacks(struct umidi_softc *);
98 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
99 struct umidi_jack *,
100 struct umidi_jack *,
101 struct umidi_mididev *);
102 static void unbind_jacks_from_mididev(struct umidi_mididev *);
103 static void unbind_all_jacks(struct umidi_softc *);
104 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
105 static usbd_status open_out_jack(struct umidi_jack *, void *,
106 void (*)(void *));
107 static usbd_status open_in_jack(struct umidi_jack *, void *,
108 void (*)(void *, int));
109 static void close_out_jack(struct umidi_jack *);
110 static void close_in_jack(struct umidi_jack *);
111
112 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
113 static usbd_status detach_mididev(struct umidi_mididev *, int);
114 static void deactivate_mididev(struct umidi_mididev *);
115 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
116 static void free_all_mididevs(struct umidi_softc *);
117 static usbd_status attach_all_mididevs(struct umidi_softc *);
118 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
119 static void deactivate_all_mididevs(struct umidi_softc *);
120 static void describe_mididev(struct umidi_mididev *);
121
122 #ifdef UMIDI_DEBUG
123 static void dump_sc(struct umidi_softc *);
124 static void dump_ep(struct umidi_endpoint *);
125 static void dump_jack(struct umidi_jack *);
126 #endif
127
128 static usbd_status start_input_transfer(struct umidi_endpoint *);
129 static usbd_status start_output_transfer(struct umidi_endpoint *);
130 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
131 static void in_intr(struct usbd_xfer *, void *, usbd_status);
132 static void out_intr(struct usbd_xfer *, void *, usbd_status);
133 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
134 static void out_solicit_locked(void *); /* pre-locked version */
135
136
137 const struct midi_hw_if umidi_hw_if = {
138 .open = umidi_open,
139 .close = umidi_close,
140 .output = umidi_rtmsg,
141 .getinfo = umidi_getinfo,
142 .get_locks = umidi_get_locks,
143 };
144
145 struct midi_hw_if_ext umidi_hw_if_ext = {
146 .channel = umidi_channelmsg,
147 .common = umidi_commonmsg,
148 .sysex = umidi_sysex,
149 };
150
151 struct midi_hw_if_ext umidi_hw_if_mm = {
152 .channel = umidi_channelmsg,
153 .common = umidi_commonmsg,
154 .sysex = umidi_sysex,
155 .compress = 1,
156 };
157
158 int umidi_match(device_t, cfdata_t, void *);
159 void umidi_attach(device_t, device_t, void *);
160 void umidi_childdet(device_t, device_t);
161 int umidi_detach(device_t, int);
162 int umidi_activate(device_t, enum devact);
163 extern struct cfdriver umidi_cd;
164 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
165 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
166
167 int
168 umidi_match(device_t parent, cfdata_t match, void *aux)
169 {
170 struct usbif_attach_arg *uiaa = aux;
171
172 DPRINTFN(1,("umidi_match\n"));
173
174 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
175 uiaa->uiaa_ifaceno))
176 return UMATCH_IFACECLASS_IFACESUBCLASS;
177
178 if (uiaa->uiaa_class == UICLASS_AUDIO &&
179 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
180 return UMATCH_IFACECLASS_IFACESUBCLASS;
181
182 return UMATCH_NONE;
183 }
184
185 void
186 umidi_attach(device_t parent, device_t self, void *aux)
187 {
188 usbd_status err;
189 struct umidi_softc *sc = device_private(self);
190 struct usbif_attach_arg *uiaa = aux;
191 char *devinfop;
192
193 DPRINTFN(1,("umidi_attach\n"));
194
195 sc->sc_dev = self;
196
197 aprint_naive("\n");
198 aprint_normal("\n");
199
200 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
201 aprint_normal_dev(self, "%s\n", devinfop);
202 usbd_devinfo_free(devinfop);
203
204 sc->sc_iface = uiaa->uiaa_iface;
205 sc->sc_udev = uiaa->uiaa_device;
206
207 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
208 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
209
210 aprint_normal_dev(self, "");
211 umidi_print_quirk(sc->sc_quirk);
212
213 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
214 cv_init(&sc->sc_cv, "umidopcl");
215
216 err = alloc_all_endpoints(sc);
217 if (err != USBD_NORMAL_COMPLETION) {
218 aprint_error_dev(self,
219 "alloc_all_endpoints failed. (err=%d)\n", err);
220 goto error;
221 }
222 err = alloc_all_jacks(sc);
223 if (err != USBD_NORMAL_COMPLETION) {
224 free_all_endpoints(sc);
225 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
226 err);
227 goto error;
228 }
229 aprint_normal_dev(self, "out=%d, in=%d\n",
230 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
231
232 err = assign_all_jacks_automatically(sc);
233 if (err != USBD_NORMAL_COMPLETION) {
234 unbind_all_jacks(sc);
235 free_all_jacks(sc);
236 free_all_endpoints(sc);
237 aprint_error_dev(self,
238 "assign_all_jacks_automatically failed. (err=%d)\n", err);
239 goto error;
240 }
241 err = attach_all_mididevs(sc);
242 if (err != USBD_NORMAL_COMPLETION) {
243 free_all_jacks(sc);
244 free_all_endpoints(sc);
245 aprint_error_dev(self,
246 "attach_all_mididevs failed. (err=%d)\n", err);
247 }
248
249 #ifdef UMIDI_DEBUG
250 dump_sc(sc);
251 #endif
252
253 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
254 sc->sc_udev, sc->sc_dev);
255
256 return;
257 error:
258 aprint_error_dev(self, "disabled.\n");
259 sc->sc_dying = 1;
260 KERNEL_UNLOCK_ONE(curlwp);
261 return;
262 }
263
264 void
265 umidi_childdet(device_t self, device_t child)
266 {
267 int i;
268 struct umidi_softc *sc = device_private(self);
269
270 KASSERT(sc->sc_mididevs != NULL);
271
272 for (i = 0; i < sc->sc_num_mididevs; i++) {
273 if (sc->sc_mididevs[i].mdev == child)
274 break;
275 }
276 KASSERT(i < sc->sc_num_mididevs);
277 sc->sc_mididevs[i].mdev = NULL;
278 }
279
280 int
281 umidi_activate(device_t self, enum devact act)
282 {
283 struct umidi_softc *sc = device_private(self);
284
285 switch (act) {
286 case DVACT_DEACTIVATE:
287 DPRINTFN(1,("umidi_activate (deactivate)\n"));
288 sc->sc_dying = 1;
289 deactivate_all_mididevs(sc);
290 return 0;
291 default:
292 DPRINTFN(1,("umidi_activate (%d)\n", act));
293 return EOPNOTSUPP;
294 }
295 }
296
297 int
298 umidi_detach(device_t self, int flags)
299 {
300 struct umidi_softc *sc = device_private(self);
301
302 DPRINTFN(1,("umidi_detach\n"));
303
304 sc->sc_dying = 1;
305 detach_all_mididevs(sc, flags);
306 free_all_mididevs(sc);
307 free_all_jacks(sc);
308 free_all_endpoints(sc);
309
310 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
311 sc->sc_dev);
312
313 mutex_destroy(&sc->sc_lock);
314 cv_destroy(&sc->sc_cv);
315
316 return 0;
317 }
318
319
320 /*
321 * midi_if stuffs
322 */
323 int
324 umidi_open(void *addr,
325 int flags,
326 void (*iintr)(void *, int),
327 void (*ointr)(void *),
328 void *arg)
329 {
330 struct umidi_mididev *mididev = addr;
331 struct umidi_softc *sc = mididev->sc;
332 usbd_status err;
333
334 DPRINTF(("umidi_open: sc=%p\n", sc));
335
336 if (!sc)
337 return ENXIO;
338 if (mididev->opened)
339 return EBUSY;
340 if (sc->sc_dying)
341 return EIO;
342
343 mididev->opened = 1;
344 mididev->closing = 0;
345 mididev->flags = flags;
346 if ((mididev->flags & FWRITE) && mididev->out_jack) {
347 err = open_out_jack(mididev->out_jack, arg, ointr);
348 if ( err != USBD_NORMAL_COMPLETION )
349 goto bad;
350 }
351 if ((mididev->flags & FREAD) && mididev->in_jack) {
352 err = open_in_jack(mididev->in_jack, arg, iintr);
353 if ( err != USBD_NORMAL_COMPLETION
354 && err != USBD_IN_PROGRESS )
355 goto bad;
356 }
357
358 return 0;
359 bad:
360 mididev->opened = 0;
361 DPRINTF(("umidi_open: usbd_status %d\n", err));
362 return USBD_IN_USE == err ? EBUSY : EIO;
363 }
364
365 void
366 umidi_close(void *addr)
367 {
368 struct umidi_mididev *mididev = addr;
369
370 mididev->closing = 1;
371
372 mutex_spin_exit(&mididev->sc->sc_lock);
373
374 if ((mididev->flags & FWRITE) && mididev->out_jack)
375 close_out_jack(mididev->out_jack);
376 if ((mididev->flags & FREAD) && mididev->in_jack)
377 close_in_jack(mididev->in_jack);
378
379 mutex_spin_enter(&mididev->sc->sc_lock);
380
381 mididev->opened = 0;
382 }
383
384 int
385 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
386 int len)
387 {
388 struct umidi_mididev *mididev = addr;
389
390 if (!mididev->out_jack || !mididev->opened || mididev->closing)
391 return EIO;
392
393 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
394 }
395
396 int
397 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
398 {
399 struct umidi_mididev *mididev = addr;
400 int cin;
401
402 if (!mididev->out_jack || !mididev->opened || mididev->closing)
403 return EIO;
404
405 switch ( len ) {
406 case 1: cin = 5; break;
407 case 2: cin = 2; break;
408 case 3: cin = 3; break;
409 default: return EIO; /* or gcc warns of cin uninitialized */
410 }
411
412 return out_jack_output(mididev->out_jack, msg, len, cin);
413 }
414
415 int
416 umidi_sysex(void *addr, u_char *msg, int len)
417 {
418 struct umidi_mididev *mididev = addr;
419 int cin;
420
421 if (!mididev->out_jack || !mididev->opened || mididev->closing)
422 return EIO;
423
424 switch ( len ) {
425 case 1: cin = 5; break;
426 case 2: cin = 6; break;
427 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
428 default: return EIO; /* or gcc warns of cin uninitialized */
429 }
430
431 return out_jack_output(mididev->out_jack, msg, len, cin);
432 }
433
434 int
435 umidi_rtmsg(void *addr, int d)
436 {
437 struct umidi_mididev *mididev = addr;
438 u_char msg = d;
439
440 if (!mididev->out_jack || !mididev->opened || mididev->closing)
441 return EIO;
442
443 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
444 }
445
446 void
447 umidi_getinfo(void *addr, struct midi_info *mi)
448 {
449 struct umidi_mididev *mididev = addr;
450 struct umidi_softc *sc = mididev->sc;
451 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
452
453 mi->name = mididev->label;
454 mi->props = MIDI_PROP_OUT_INTR;
455 if (mididev->in_jack)
456 mi->props |= MIDI_PROP_CAN_INPUT;
457 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
458 }
459
460 static void
461 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
462 {
463 struct umidi_mididev *mididev = addr;
464 struct umidi_softc *sc = mididev->sc;
465
466 *intr = NULL;
467 *thread = &sc->sc_lock;
468 }
469
470 /*
471 * each endpoint stuffs
472 */
473
474 /* alloc/free pipe */
475 static usbd_status
476 alloc_pipe(struct umidi_endpoint *ep)
477 {
478 struct umidi_softc *sc = ep->sc;
479 usbd_status err;
480 usb_endpoint_descriptor_t *epd;
481
482 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
483 /*
484 * For output, an improvement would be to have a buffer bigger than
485 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
486 * allow out_solicit to fill the buffer to the full packet size in
487 * all cases. But to use usbd_alloc_buffer to get a slightly larger
488 * buffer would not be a good way to do that, because if the addition
489 * would make the buffer exceed USB_MEM_SMALL then a substantially
490 * larger block may be wastefully allocated. Some flavor of double
491 * buffering could serve the same purpose, but would increase the
492 * code complexity, so for now I will live with the current slight
493 * penalty of reducing max transfer size by (num_open-num_scheduled)
494 * packet slots.
495 */
496 ep->buffer_size = UGETW(epd->wMaxPacketSize);
497 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
498
499 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
500 device_xname(sc->sc_dev), ep, ep->buffer_size));
501 ep->num_scheduled = 0;
502 ep->this_schedule = 0;
503 ep->next_schedule = 0;
504 ep->soliciting = 0;
505 ep->armed = 0;
506 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
507 if (ep->xfer == NULL) {
508 err = USBD_NOMEM;
509 goto quit;
510 }
511 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
512 if (ep->buffer == NULL) {
513 usbd_free_xfer(ep->xfer);
514 err = USBD_NOMEM;
515 goto quit;
516 }
517 ep->next_slot = ep->buffer;
518 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
519 if (err)
520 usbd_free_xfer(ep->xfer);
521 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, out_solicit, ep);
522 quit:
523 return err;
524 }
525
526 static void
527 free_pipe(struct umidi_endpoint *ep)
528 {
529 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
530 usbd_abort_pipe(ep->pipe);
531 usbd_close_pipe(ep->pipe);
532 usbd_free_xfer(ep->xfer);
533 softint_disestablish(ep->solicit_cookie);
534 }
535
536
537 /* alloc/free the array of endpoint structures */
538
539 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
540 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
541 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
542
543 static usbd_status
544 alloc_all_endpoints(struct umidi_softc *sc)
545 {
546 usbd_status err;
547 struct umidi_endpoint *ep;
548 int i;
549
550 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
551 err = alloc_all_endpoints_fixed_ep(sc);
552 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
553 err = alloc_all_endpoints_yamaha(sc);
554 } else {
555 err = alloc_all_endpoints_genuine(sc);
556 }
557 if (err != USBD_NORMAL_COMPLETION)
558 return err;
559
560 ep = sc->sc_endpoints;
561 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
562 err = alloc_pipe(ep++);
563 if (err != USBD_NORMAL_COMPLETION) {
564 for (; ep != sc->sc_endpoints; ep--)
565 free_pipe(ep-1);
566 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
567 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
568 break;
569 }
570 }
571 return err;
572 }
573
574 static void
575 free_all_endpoints(struct umidi_softc *sc)
576 {
577 int i;
578
579 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
580 free_pipe(&sc->sc_endpoints[i]);
581 if (sc->sc_endpoints != NULL)
582 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
583 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
584 }
585
586 static usbd_status
587 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
588 {
589 usbd_status err;
590 const struct umq_fixed_ep_desc *fp;
591 struct umidi_endpoint *ep;
592 usb_endpoint_descriptor_t *epd;
593 int i;
594
595 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
596 UMQ_TYPE_FIXED_EP);
597 sc->sc_out_num_jacks = 0;
598 sc->sc_in_num_jacks = 0;
599 sc->sc_out_num_endpoints = fp->num_out_ep;
600 sc->sc_in_num_endpoints = fp->num_in_ep;
601 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
602 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
603 if (!sc->sc_endpoints)
604 return USBD_NOMEM;
605
606 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
607 sc->sc_in_ep =
608 sc->sc_in_num_endpoints ?
609 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
610
611 ep = &sc->sc_out_ep[0];
612 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
613 epd = usbd_interface2endpoint_descriptor(
614 sc->sc_iface,
615 fp->out_ep[i].ep);
616 if (!epd) {
617 aprint_error_dev(sc->sc_dev,
618 "cannot get endpoint descriptor(out:%d)\n",
619 fp->out_ep[i].ep);
620 err = USBD_INVAL;
621 goto error;
622 }
623 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
624 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
625 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
626 fp->out_ep[i].ep);
627 err = USBD_INVAL;
628 goto error;
629 }
630 ep->sc = sc;
631 ep->addr = epd->bEndpointAddress;
632 ep->num_jacks = fp->out_ep[i].num_jacks;
633 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
634 ep->num_open = 0;
635 ep++;
636 }
637 ep = &sc->sc_in_ep[0];
638 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
639 epd = usbd_interface2endpoint_descriptor(
640 sc->sc_iface,
641 fp->in_ep[i].ep);
642 if (!epd) {
643 aprint_error_dev(sc->sc_dev,
644 "cannot get endpoint descriptor(in:%d)\n",
645 fp->in_ep[i].ep);
646 err = USBD_INVAL;
647 goto error;
648 }
649 /*
650 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
651 * endpoint. The existing input logic in this driver seems
652 * to work successfully if we just stop treating an interrupt
653 * endpoint as illegal (or the in_progress status we get on
654 * the initial transfer). It does not seem necessary to
655 * actually use the interrupt flavor of alloc_pipe or make
656 * other serious rearrangements of logic. I like that.
657 */
658 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
659 case UE_BULK:
660 case UE_INTERRUPT:
661 if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
662 break;
663 /*FALLTHROUGH*/
664 default:
665 aprint_error_dev(sc->sc_dev,
666 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
667 err = USBD_INVAL;
668 goto error;
669 }
670
671 ep->sc = sc;
672 ep->addr = epd->bEndpointAddress;
673 ep->num_jacks = fp->in_ep[i].num_jacks;
674 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
675 ep->num_open = 0;
676 ep++;
677 }
678
679 return USBD_NORMAL_COMPLETION;
680 error:
681 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
682 sc->sc_endpoints = NULL;
683 return err;
684 }
685
686 static usbd_status
687 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
688 {
689 /* This driver currently supports max 1in/1out bulk endpoints */
690 usb_descriptor_t *desc;
691 umidi_cs_descriptor_t *udesc;
692 usb_endpoint_descriptor_t *epd;
693 int out_addr, in_addr, i;
694 int dir;
695 size_t remain, descsize;
696
697 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
698 out_addr = in_addr = 0;
699
700 /* detect endpoints */
701 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
702 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
703 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
704 KASSERT(epd != NULL);
705 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
706 dir = UE_GET_DIR(epd->bEndpointAddress);
707 if (dir==UE_DIR_OUT && !out_addr)
708 out_addr = epd->bEndpointAddress;
709 else if (dir==UE_DIR_IN && !in_addr)
710 in_addr = epd->bEndpointAddress;
711 }
712 }
713 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
714
715 /* count jacks */
716 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
717 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
718 return USBD_INVAL;
719 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
720 (size_t)udesc->bLength;
721 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
722
723 while (remain >= sizeof(usb_descriptor_t)) {
724 descsize = udesc->bLength;
725 if (descsize>remain || descsize==0)
726 break;
727 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
728 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
729 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
730 sc->sc_out_num_jacks++;
731 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
732 sc->sc_in_num_jacks++;
733 }
734 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
735 remain -= descsize;
736 }
737
738 /* validate some parameters */
739 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
740 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
741 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
742 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
743 if (sc->sc_out_num_jacks && out_addr) {
744 sc->sc_out_num_endpoints = 1;
745 } else {
746 sc->sc_out_num_endpoints = 0;
747 sc->sc_out_num_jacks = 0;
748 }
749 if (sc->sc_in_num_jacks && in_addr) {
750 sc->sc_in_num_endpoints = 1;
751 } else {
752 sc->sc_in_num_endpoints = 0;
753 sc->sc_in_num_jacks = 0;
754 }
755 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
756 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
757 if (!sc->sc_endpoints)
758 return USBD_NOMEM;
759 if (sc->sc_out_num_endpoints) {
760 sc->sc_out_ep = sc->sc_endpoints;
761 sc->sc_out_ep->sc = sc;
762 sc->sc_out_ep->addr = out_addr;
763 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
764 sc->sc_out_ep->num_open = 0;
765 } else
766 sc->sc_out_ep = NULL;
767
768 if (sc->sc_in_num_endpoints) {
769 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
770 sc->sc_in_ep->sc = sc;
771 sc->sc_in_ep->addr = in_addr;
772 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
773 sc->sc_in_ep->num_open = 0;
774 } else
775 sc->sc_in_ep = NULL;
776
777 return USBD_NORMAL_COMPLETION;
778 }
779
780 static usbd_status
781 alloc_all_endpoints_genuine(struct umidi_softc *sc)
782 {
783 usb_interface_descriptor_t *interface_desc;
784 usb_config_descriptor_t *config_desc;
785 usb_descriptor_t *desc;
786 int num_ep;
787 size_t remain, descsize;
788 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
789 int epaddr;
790
791 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
792 num_ep = interface_desc->bNumEndpoints;
793 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
794 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
795 if (!p)
796 return USBD_NOMEM;
797
798 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
799 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
800 epaddr = -1;
801
802 /* get the list of endpoints for midi stream */
803 config_desc = usbd_get_config_descriptor(sc->sc_udev);
804 desc = (usb_descriptor_t *) config_desc;
805 remain = (size_t)UGETW(config_desc->wTotalLength);
806 while (remain>=sizeof(usb_descriptor_t)) {
807 descsize = desc->bLength;
808 if (descsize>remain || descsize==0)
809 break;
810 if (desc->bDescriptorType==UDESC_ENDPOINT &&
811 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
812 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
813 epaddr = TO_EPD(desc)->bEndpointAddress;
814 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
815 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
816 epaddr!=-1) {
817 if (num_ep>0) {
818 num_ep--;
819 p->sc = sc;
820 p->addr = epaddr;
821 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
822 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
823 sc->sc_out_num_endpoints++;
824 sc->sc_out_num_jacks += p->num_jacks;
825 } else {
826 sc->sc_in_num_endpoints++;
827 sc->sc_in_num_jacks += p->num_jacks;
828 }
829 p++;
830 }
831 } else
832 epaddr = -1;
833 desc = NEXT_D(desc);
834 remain-=descsize;
835 }
836
837 /* sort endpoints */
838 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
839 p = sc->sc_endpoints;
840 endep = p + num_ep;
841 while (p<endep) {
842 lowest = p;
843 for (q=p+1; q<endep; q++) {
844 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
845 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
846 ((UE_GET_DIR(lowest->addr)==
847 UE_GET_DIR(q->addr)) &&
848 (UE_GET_ADDR(lowest->addr)>
849 UE_GET_ADDR(q->addr))))
850 lowest = q;
851 }
852 if (lowest != p) {
853 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
854 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
855 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
856 }
857 p->num_open = 0;
858 p++;
859 }
860
861 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
862 sc->sc_in_ep =
863 sc->sc_in_num_endpoints ?
864 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
865
866 return USBD_NORMAL_COMPLETION;
867 }
868
869
870 /*
871 * jack stuffs
872 */
873
874 static usbd_status
875 alloc_all_jacks(struct umidi_softc *sc)
876 {
877 int i, j;
878 struct umidi_endpoint *ep;
879 struct umidi_jack *jack;
880 const unsigned char *cn_spec;
881
882 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
883 sc->cblnums_global = 0;
884 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
885 sc->cblnums_global = 1;
886 else {
887 /*
888 * I don't think this default is correct, but it preserves
889 * the prior behavior of the code. That's why I defined two
890 * complementary quirks. Any device for which the default
891 * behavior is wrong can be made to work by giving it an
892 * explicit quirk, and if a pattern ever develops (as I suspect
893 * it will) that a lot of otherwise standard USB MIDI devices
894 * need the CN_SEQ_PER_EP "quirk," then this default can be
895 * changed to 0, and the only devices that will break are those
896 * listing neither quirk, and they'll easily be fixed by giving
897 * them the CN_SEQ_GLOBAL quirk.
898 */
899 sc->cblnums_global = 1;
900 }
901
902 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
903 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
904 UMQ_TYPE_CN_FIXED);
905 else
906 cn_spec = NULL;
907
908 /* allocate/initialize structures */
909 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
910 sc->sc_out_num_jacks), KM_SLEEP);
911 if (!sc->sc_jacks)
912 return USBD_NOMEM;
913 sc->sc_out_jacks =
914 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
915 sc->sc_in_jacks =
916 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
917
918 jack = &sc->sc_out_jacks[0];
919 for (i = 0; i < sc->sc_out_num_jacks; i++) {
920 jack->opened = 0;
921 jack->binded = 0;
922 jack->arg = NULL;
923 jack->u.out.intr = NULL;
924 jack->midiman_ppkt = NULL;
925 if (sc->cblnums_global)
926 jack->cable_number = i;
927 jack++;
928 }
929 jack = &sc->sc_in_jacks[0];
930 for (i = 0; i < sc->sc_in_num_jacks; i++) {
931 jack->opened = 0;
932 jack->binded = 0;
933 jack->arg = NULL;
934 jack->u.in.intr = NULL;
935 if (sc->cblnums_global)
936 jack->cable_number = i;
937 jack++;
938 }
939
940 /* assign each jacks to each endpoints */
941 jack = &sc->sc_out_jacks[0];
942 ep = &sc->sc_out_ep[0];
943 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
944 for (j = 0; j < ep->num_jacks; j++) {
945 jack->endpoint = ep;
946 if (cn_spec != NULL)
947 jack->cable_number = *cn_spec++;
948 else if (!sc->cblnums_global)
949 jack->cable_number = j;
950 ep->jacks[jack->cable_number] = jack;
951 jack++;
952 }
953 ep++;
954 }
955 jack = &sc->sc_in_jacks[0];
956 ep = &sc->sc_in_ep[0];
957 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
958 for (j = 0; j < ep->num_jacks; j++) {
959 jack->endpoint = ep;
960 if (cn_spec != NULL)
961 jack->cable_number = *cn_spec++;
962 else if (!sc->cblnums_global)
963 jack->cable_number = j;
964 ep->jacks[jack->cable_number] = jack;
965 jack++;
966 }
967 ep++;
968 }
969
970 return USBD_NORMAL_COMPLETION;
971 }
972
973 static void
974 free_all_jacks(struct umidi_softc *sc)
975 {
976 struct umidi_jack *jacks;
977 size_t len;
978
979 mutex_enter(&sc->sc_lock);
980 jacks = sc->sc_jacks;
981 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
982 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
983 mutex_exit(&sc->sc_lock);
984
985 if (jacks)
986 kmem_free(jacks, len);
987 }
988
989 static usbd_status
990 bind_jacks_to_mididev(struct umidi_softc *sc,
991 struct umidi_jack *out_jack,
992 struct umidi_jack *in_jack,
993 struct umidi_mididev *mididev)
994 {
995 if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
996 return USBD_IN_USE;
997 if (mididev->out_jack || mididev->in_jack)
998 return USBD_IN_USE;
999
1000 if (out_jack)
1001 out_jack->binded = 1;
1002 if (in_jack)
1003 in_jack->binded = 1;
1004 mididev->in_jack = in_jack;
1005 mididev->out_jack = out_jack;
1006
1007 return USBD_NORMAL_COMPLETION;
1008 }
1009
1010 static void
1011 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1012 {
1013
1014 if ((mididev->flags & FWRITE) && mididev->out_jack)
1015 close_out_jack(mididev->out_jack);
1016 if ((mididev->flags & FREAD) && mididev->in_jack)
1017 close_in_jack(mididev->in_jack);
1018
1019 if (mididev->out_jack)
1020 mididev->out_jack->binded = 0;
1021 if (mididev->in_jack)
1022 mididev->in_jack->binded = 0;
1023 mididev->out_jack = mididev->in_jack = NULL;
1024 }
1025
1026 static void
1027 unbind_all_jacks(struct umidi_softc *sc)
1028 {
1029 int i;
1030
1031 if (sc->sc_mididevs)
1032 for (i = 0; i < sc->sc_num_mididevs; i++)
1033 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1034 }
1035
1036 static usbd_status
1037 assign_all_jacks_automatically(struct umidi_softc *sc)
1038 {
1039 usbd_status err;
1040 int i;
1041 struct umidi_jack *out, *in;
1042 const signed char *asg_spec;
1043
1044 err =
1045 alloc_all_mididevs(sc,
1046 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1047 if (err!=USBD_NORMAL_COMPLETION)
1048 return err;
1049
1050 if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1051 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1052 UMQ_TYPE_MD_FIXED);
1053 else
1054 asg_spec = NULL;
1055
1056 for (i = 0; i < sc->sc_num_mididevs; i++) {
1057 if (asg_spec != NULL) {
1058 if (*asg_spec == -1)
1059 out = NULL;
1060 else
1061 out = &sc->sc_out_jacks[*asg_spec];
1062 ++ asg_spec;
1063 if (*asg_spec == -1)
1064 in = NULL;
1065 else
1066 in = &sc->sc_in_jacks[*asg_spec];
1067 ++ asg_spec;
1068 } else {
1069 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1070 : NULL;
1071 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1072 : NULL;
1073 }
1074 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1075 if (err!=USBD_NORMAL_COMPLETION) {
1076 free_all_mididevs(sc);
1077 return err;
1078 }
1079 }
1080
1081 return USBD_NORMAL_COMPLETION;
1082 }
1083
1084 static usbd_status
1085 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1086 {
1087 struct umidi_endpoint *ep = jack->endpoint;
1088 struct umidi_softc *sc = ep->sc;
1089 umidi_packet_bufp end;
1090 int err;
1091
1092 KASSERT(mutex_owned(&sc->sc_lock));
1093
1094 if (jack->opened)
1095 return USBD_IN_USE;
1096
1097 jack->arg = arg;
1098 jack->u.out.intr = intr;
1099 jack->midiman_ppkt = NULL;
1100 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1101 jack->opened = 1;
1102 ep->num_open++;
1103 /*
1104 * out_solicit maintains an invariant that there will always be
1105 * (num_open - num_scheduled) slots free in the buffer. as we have
1106 * just incremented num_open, the buffer may be too full to satisfy
1107 * the invariant until a transfer completes, for which we must wait.
1108 */
1109 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1110 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1111 mstohz(10));
1112 if (err) {
1113 ep->num_open--;
1114 jack->opened = 0;
1115 return USBD_IOERROR;
1116 }
1117 }
1118
1119 return USBD_NORMAL_COMPLETION;
1120 }
1121
1122 static usbd_status
1123 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1124 {
1125 usbd_status err = USBD_NORMAL_COMPLETION;
1126 struct umidi_endpoint *ep = jack->endpoint;
1127
1128 KASSERT(mutex_owned(&ep->sc->sc_lock));
1129
1130 if (jack->opened)
1131 return USBD_IN_USE;
1132
1133 jack->arg = arg;
1134 jack->u.in.intr = intr;
1135 jack->opened = 1;
1136 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1137 err = start_input_transfer(ep);
1138 if (err != USBD_NORMAL_COMPLETION &&
1139 err != USBD_IN_PROGRESS) {
1140 ep->num_open--;
1141 }
1142 }
1143
1144 return err;
1145 }
1146
1147 static void
1148 close_out_jack(struct umidi_jack *jack)
1149 {
1150 struct umidi_endpoint *ep;
1151 struct umidi_softc *sc;
1152 uint16_t mask;
1153 int err;
1154
1155 if (jack->opened) {
1156 ep = jack->endpoint;
1157 sc = ep->sc;
1158 mutex_spin_enter(&sc->sc_lock);
1159 mask = 1 << (jack->cable_number);
1160 while (mask & (ep->this_schedule | ep->next_schedule)) {
1161 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1162 mstohz(10));
1163 if (err)
1164 break;
1165 }
1166 /*
1167 * We can re-enter this function from both close() and
1168 * detach(). Make sure only one of them does this part.
1169 */
1170 if (jack->opened) {
1171 jack->opened = 0;
1172 jack->endpoint->num_open--;
1173 ep->this_schedule &= ~mask;
1174 ep->next_schedule &= ~mask;
1175 }
1176 mutex_spin_exit(&sc->sc_lock);
1177 }
1178 }
1179
1180 static void
1181 close_in_jack(struct umidi_jack *jack)
1182 {
1183 if (jack->opened) {
1184 jack->opened = 0;
1185 if (--jack->endpoint->num_open == 0) {
1186 usbd_abort_pipe(jack->endpoint->pipe);
1187 }
1188 }
1189 }
1190
1191 static usbd_status
1192 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1193 {
1194 if (mididev->sc)
1195 return USBD_IN_USE;
1196
1197 mididev->sc = sc;
1198
1199 describe_mididev(mididev);
1200
1201 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1202
1203 return USBD_NORMAL_COMPLETION;
1204 }
1205
1206 static usbd_status
1207 detach_mididev(struct umidi_mididev *mididev, int flags)
1208 {
1209 if (!mididev->sc)
1210 return USBD_NO_ADDR;
1211
1212 if (mididev->opened) {
1213 umidi_close(mididev);
1214 }
1215 unbind_jacks_from_mididev(mididev);
1216
1217 if (mididev->mdev != NULL)
1218 config_detach(mididev->mdev, flags);
1219
1220 if (NULL != mididev->label) {
1221 kmem_free(mididev->label, mididev->label_len);
1222 mididev->label = NULL;
1223 }
1224
1225 mididev->sc = NULL;
1226
1227 return USBD_NORMAL_COMPLETION;
1228 }
1229
1230 static void
1231 deactivate_mididev(struct umidi_mididev *mididev)
1232 {
1233 if (mididev->out_jack)
1234 mididev->out_jack->binded = 0;
1235 if (mididev->in_jack)
1236 mididev->in_jack->binded = 0;
1237 }
1238
1239 static usbd_status
1240 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1241 {
1242 sc->sc_num_mididevs = nmidi;
1243 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1244 if (!sc->sc_mididevs)
1245 return USBD_NOMEM;
1246
1247 return USBD_NORMAL_COMPLETION;
1248 }
1249
1250 static void
1251 free_all_mididevs(struct umidi_softc *sc)
1252 {
1253 if (sc->sc_mididevs)
1254 kmem_free(sc->sc_mididevs,
1255 sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
1256 sc->sc_num_mididevs = 0;
1257 }
1258
1259 static usbd_status
1260 attach_all_mididevs(struct umidi_softc *sc)
1261 {
1262 usbd_status err;
1263 int i;
1264
1265 if (sc->sc_mididevs)
1266 for (i = 0; i < sc->sc_num_mididevs; i++) {
1267 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1268 if (err != USBD_NORMAL_COMPLETION)
1269 return err;
1270 }
1271
1272 return USBD_NORMAL_COMPLETION;
1273 }
1274
1275 static usbd_status
1276 detach_all_mididevs(struct umidi_softc *sc, int flags)
1277 {
1278 usbd_status err;
1279 int i;
1280
1281 if (sc->sc_mididevs)
1282 for (i = 0; i < sc->sc_num_mididevs; i++) {
1283 err = detach_mididev(&sc->sc_mididevs[i], flags);
1284 if (err != USBD_NORMAL_COMPLETION)
1285 return err;
1286 }
1287
1288 return USBD_NORMAL_COMPLETION;
1289 }
1290
1291 static void
1292 deactivate_all_mididevs(struct umidi_softc *sc)
1293 {
1294 int i;
1295
1296 if (sc->sc_mididevs) {
1297 for (i = 0; i < sc->sc_num_mididevs; i++)
1298 deactivate_mididev(&sc->sc_mididevs[i]);
1299 }
1300 }
1301
1302 /*
1303 * TODO: the 0-based cable numbers will often not match the labeling of the
1304 * equipment. Ideally:
1305 * For class-compliant devices: get the iJack string from the jack descriptor.
1306 * Otherwise:
1307 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1308 * number for display)
1309 * - support an array quirk explictly giving a char * for each jack.
1310 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1311 * the CNs are not globally unique, each is shown with its associated endpoint
1312 * address in hex also. That should not be necessary when using iJack values
1313 * or a quirk array.
1314 */
1315 void
1316 describe_mididev(struct umidi_mididev *md)
1317 {
1318 char in_label[16];
1319 char out_label[16];
1320 const char *unit_label;
1321 char *final_label;
1322 struct umidi_softc *sc;
1323 int show_ep_in;
1324 int show_ep_out;
1325 size_t len;
1326
1327 sc = md->sc;
1328 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1329 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1330
1331 if ( NULL == md->in_jack )
1332 in_label[0] = '\0';
1333 else if ( show_ep_in )
1334 snprintf(in_label, sizeof in_label, "<%d(%x) ",
1335 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1336 else
1337 snprintf(in_label, sizeof in_label, "<%d ",
1338 md->in_jack->cable_number);
1339
1340 if ( NULL == md->out_jack )
1341 out_label[0] = '\0';
1342 else if ( show_ep_out )
1343 snprintf(out_label, sizeof out_label, ">%d(%x) ",
1344 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1345 else
1346 snprintf(out_label, sizeof out_label, ">%d ",
1347 md->out_jack->cable_number);
1348
1349 unit_label = device_xname(sc->sc_dev);
1350
1351 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1352
1353 final_label = kmem_alloc(len, KM_SLEEP);
1354
1355 snprintf(final_label, len, "%s%son %s",
1356 in_label, out_label, unit_label);
1357
1358 md->label = final_label;
1359 md->label_len = len;
1360 }
1361
1362 #ifdef UMIDI_DEBUG
1363 static void
1364 dump_sc(struct umidi_softc *sc)
1365 {
1366 int i;
1367
1368 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1369 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1370 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1371 dump_ep(&sc->sc_out_ep[i]);
1372 }
1373 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1374 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1375 dump_ep(&sc->sc_in_ep[i]);
1376 }
1377 }
1378
1379 static void
1380 dump_ep(struct umidi_endpoint *ep)
1381 {
1382 int i;
1383 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1384 if (NULL==ep->jacks[i])
1385 continue;
1386 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1387 dump_jack(ep->jacks[i]);
1388 }
1389 }
1390 static void
1391 dump_jack(struct umidi_jack *jack)
1392 {
1393 DPRINTFN(10, ("\t\t\tep=%p\n",
1394 jack->endpoint));
1395 }
1396
1397 #endif /* UMIDI_DEBUG */
1398
1399
1400
1401 /*
1402 * MUX MIDI PACKET
1403 */
1404
1405 static const int packet_length[16] = {
1406 /*0*/ -1,
1407 /*1*/ -1,
1408 /*2*/ 2,
1409 /*3*/ 3,
1410 /*4*/ 3,
1411 /*5*/ 1,
1412 /*6*/ 2,
1413 /*7*/ 3,
1414 /*8*/ 3,
1415 /*9*/ 3,
1416 /*A*/ 3,
1417 /*B*/ 3,
1418 /*C*/ 2,
1419 /*D*/ 2,
1420 /*E*/ 3,
1421 /*F*/ 1,
1422 };
1423
1424 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1425 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1426 #define MIX_CN_CIN(cn, cin) \
1427 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1428 ((unsigned char)(cin)&0x0F)))
1429
1430 static usbd_status
1431 start_input_transfer(struct umidi_endpoint *ep)
1432 {
1433 usbd_setup_xfer(ep->xfer, ep->pipe,
1434 (void *)ep,
1435 ep->buffer, ep->buffer_size,
1436 USBD_SHORT_XFER_OK,
1437 USBD_NO_TIMEOUT, in_intr);
1438 return usbd_transfer(ep->xfer);
1439 }
1440
1441 static usbd_status
1442 start_output_transfer(struct umidi_endpoint *ep)
1443 {
1444 usbd_status rv;
1445 uint32_t length;
1446 int i;
1447
1448 length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1449 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1450 ep->buffer, ep->next_slot, length));
1451 usbd_setup_xfer(ep->xfer, ep->pipe,
1452 (void *)ep,
1453 ep->buffer, length,
1454 0, USBD_NO_TIMEOUT, out_intr);
1455 rv = usbd_transfer(ep->xfer);
1456
1457 /*
1458 * Once the transfer is scheduled, no more adding to partial
1459 * packets within it.
1460 */
1461 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1462 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1463 if (NULL != ep->jacks[i])
1464 ep->jacks[i]->midiman_ppkt = NULL;
1465 }
1466
1467 return rv;
1468 }
1469
1470 #ifdef UMIDI_DEBUG
1471 #define DPR_PACKET(dir, sc, p) \
1472 if ((unsigned char)(p)[1]!=0xFE) \
1473 DPRINTFN(500, \
1474 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1475 device_xname(sc->sc_dev), \
1476 (unsigned char)(p)[0], \
1477 (unsigned char)(p)[1], \
1478 (unsigned char)(p)[2], \
1479 (unsigned char)(p)[3]));
1480 #else
1481 #define DPR_PACKET(dir, sc, p)
1482 #endif
1483
1484 /*
1485 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1486 * with the cable number and length in the last byte instead of the first,
1487 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1488 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1489 * with a cable nybble and a length nybble (which, unlike the CIN of a
1490 * real USB MIDI packet, has no semantics at all besides the length).
1491 * A packet received from a Midiman may contain part of a MIDI message,
1492 * more than one MIDI message, or parts of more than one MIDI message. A
1493 * three-byte MIDI message may arrive in three packets of data length 1, and
1494 * running status may be used. Happily, the midi(4) driver above us will put
1495 * it all back together, so the only cost is in USB bandwidth. The device
1496 * has an easier time with what it receives from us: we'll pack messages in
1497 * and across packets, but filling the packets whenever possible and,
1498 * as midi(4) hands us a complete message at a time, we'll never send one
1499 * in a dribble of short packets.
1500 */
1501
1502 static int
1503 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1504 {
1505 struct umidi_endpoint *ep = out_jack->endpoint;
1506 struct umidi_softc *sc = ep->sc;
1507 unsigned char *packet;
1508 int plen;
1509 int poff;
1510
1511 if (sc->sc_dying)
1512 return EIO;
1513
1514 if (!out_jack->opened)
1515 return ENODEV; /* XXX as it was, is this the right errno? */
1516
1517 #ifdef UMIDI_DEBUG
1518 if ( umididebug >= 100 )
1519 microtime(&umidi_tv);
1520 #endif
1521 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1522 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1523 ep, out_jack->cable_number, len, cin));
1524
1525 packet = *ep->next_slot++;
1526 KASSERT(ep->buffer_size >=
1527 (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1528 memset(packet, 0, UMIDI_PACKET_SIZE);
1529 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1530 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1531 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1532 plen = 3 - poff;
1533 if (plen > len)
1534 plen = len;
1535 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1536 src += plen;
1537 len -= plen;
1538 plen += poff;
1539 out_jack->midiman_ppkt[3] =
1540 MIX_CN_CIN(out_jack->cable_number, plen);
1541 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1542 if (3 == plen)
1543 out_jack->midiman_ppkt = NULL; /* no more */
1544 }
1545 if (0 == len)
1546 ep->next_slot--; /* won't be needed, nevermind */
1547 else {
1548 memcpy(packet, src, len);
1549 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1550 DPR_PACKET(out, sc, packet);
1551 if (len < 3)
1552 out_jack->midiman_ppkt = packet;
1553 }
1554 } else { /* the nice simple USB class-compliant case */
1555 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1556 memcpy(packet+1, src, len);
1557 DPR_PACKET(out, sc, packet);
1558 }
1559 ep->next_schedule |= 1<<(out_jack->cable_number);
1560 ++ ep->num_scheduled;
1561 if ( !ep->armed && !ep->soliciting ) {
1562 /*
1563 * It would be bad to call out_solicit directly here (the
1564 * caller need not be reentrant) but a soft interrupt allows
1565 * solicit to run immediately the caller exits its critical
1566 * section, and if the caller has more to write we can get it
1567 * before starting the USB transfer, and send a longer one.
1568 */
1569 ep->soliciting = 1;
1570 softint_schedule(ep->solicit_cookie);
1571 }
1572
1573 return 0;
1574 }
1575
1576 static void
1577 in_intr(struct usbd_xfer *xfer, void *priv,
1578 usbd_status status)
1579 {
1580 int cn, len, i;
1581 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1582 struct umidi_softc *sc = ep->sc;
1583 struct umidi_jack *jack;
1584 unsigned char *packet;
1585 umidi_packet_bufp slot;
1586 umidi_packet_bufp end;
1587 unsigned char *data;
1588 uint32_t count;
1589
1590 if (ep->sc->sc_dying || !ep->num_open)
1591 return;
1592
1593 mutex_enter(&sc->sc_lock);
1594 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1595 if (0 == count % UMIDI_PACKET_SIZE) {
1596 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1597 device_xname(ep->sc->sc_dev), ep, count));
1598 } else {
1599 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1600 device_xname(ep->sc->sc_dev), ep, count));
1601 }
1602
1603 slot = ep->buffer;
1604 end = slot + count / sizeof *slot;
1605
1606 for (packet = *slot; slot < end; packet = *++slot) {
1607
1608 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1609 cn = (0xf0&(packet[3]))>>4;
1610 len = 0x0f&(packet[3]);
1611 data = packet;
1612 } else {
1613 cn = GET_CN(packet[0]);
1614 len = packet_length[GET_CIN(packet[0])];
1615 data = packet + 1;
1616 }
1617 /* 0 <= cn <= 15 by inspection of above code */
1618 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1619 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1620 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1621 device_xname(ep->sc->sc_dev), ep, cn, len,
1622 (unsigned)data[0],
1623 (unsigned)data[1],
1624 (unsigned)data[2]));
1625 mutex_exit(&sc->sc_lock);
1626 return;
1627 }
1628
1629 if (!jack->binded || !jack->opened)
1630 continue;
1631
1632 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1633 "%02X %02X %02X\n",
1634 device_xname(ep->sc->sc_dev), ep, cn, len,
1635 (unsigned)data[0],
1636 (unsigned)data[1],
1637 (unsigned)data[2]));
1638
1639 if (jack->u.in.intr) {
1640 for (i = 0; i < len; i++) {
1641 (*jack->u.in.intr)(jack->arg, data[i]);
1642 }
1643 }
1644
1645 }
1646
1647 (void)start_input_transfer(ep);
1648 mutex_exit(&sc->sc_lock);
1649 }
1650
1651 static void
1652 out_intr(struct usbd_xfer *xfer, void *priv,
1653 usbd_status status)
1654 {
1655 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1656 struct umidi_softc *sc = ep->sc;
1657 uint32_t count;
1658
1659 if (sc->sc_dying)
1660 return;
1661
1662 mutex_enter(&sc->sc_lock);
1663 #ifdef UMIDI_DEBUG
1664 if ( umididebug >= 200 )
1665 microtime(&umidi_tv);
1666 #endif
1667 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1668 if ( 0 == count % UMIDI_PACKET_SIZE ) {
1669 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1670 device_xname(ep->sc->sc_dev),
1671 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1672 } else {
1673 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1674 device_xname(ep->sc->sc_dev), ep, count));
1675 }
1676 count /= UMIDI_PACKET_SIZE;
1677
1678 /*
1679 * If while the transfer was pending we buffered any new messages,
1680 * move them to the start of the buffer.
1681 */
1682 ep->next_slot -= count;
1683 if (ep->buffer < ep->next_slot) {
1684 memcpy(ep->buffer, ep->buffer + count,
1685 (char *)ep->next_slot - (char *)ep->buffer);
1686 }
1687 cv_broadcast(&sc->sc_cv);
1688 /*
1689 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1690 * Running at IPL_USB so the following should happen to be safe.
1691 */
1692 ep->armed = 0;
1693 if (!ep->soliciting) {
1694 ep->soliciting = 1;
1695 out_solicit_locked(ep);
1696 }
1697 mutex_exit(&sc->sc_lock);
1698 }
1699
1700 /*
1701 * A jack on which we have received a packet must be called back on its
1702 * out.intr handler before it will send us another; it is considered
1703 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1704 * we need no extra buffer space for it.
1705 *
1706 * In contrast, a jack that is open but not scheduled may supply us a packet
1707 * at any time, driven by the top half, and we must be able to accept it, no
1708 * excuses. So we must ensure that at any point in time there are at least
1709 * (num_open - num_scheduled) slots free.
1710 *
1711 * As long as there are more slots free than that minimum, we can loop calling
1712 * scheduled jacks back on their "interrupt" handlers, soliciting more
1713 * packets, starting the USB transfer only when the buffer space is down to
1714 * the minimum or no jack has any more to send.
1715 */
1716
1717 static void
1718 out_solicit_locked(void *arg)
1719 {
1720 struct umidi_endpoint *ep = arg;
1721 umidi_packet_bufp end;
1722 uint16_t which;
1723 struct umidi_jack *jack;
1724
1725 KASSERT(mutex_owned(&ep->sc->sc_lock));
1726
1727 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1728
1729 for ( ;; ) {
1730 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1731 break; /* at IPL_USB */
1732 if (ep->this_schedule == 0) {
1733 if (ep->next_schedule == 0)
1734 break; /* at IPL_USB */
1735 ep->this_schedule = ep->next_schedule;
1736 ep->next_schedule = 0;
1737 }
1738 /*
1739 * At least one jack is scheduled. Find and mask off the least
1740 * set bit in this_schedule and decrement num_scheduled.
1741 * Convert mask to bit index to find the corresponding jack,
1742 * and call its intr handler. If it has a message, it will call
1743 * back one of the output methods, which will set its bit in
1744 * next_schedule (not copied into this_schedule until the
1745 * latter is empty). In this way we round-robin the jacks that
1746 * have messages to send, until the buffer is as full as we
1747 * dare, and then start a transfer.
1748 */
1749 which = ep->this_schedule;
1750 which &= (~which)+1; /* now mask of least set bit */
1751 ep->this_schedule &= ~which;
1752 --ep->num_scheduled;
1753
1754 --which; /* now 1s below mask - count 1s to get index */
1755 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1756 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1757 which = (((which >> 4) + which) & 0x0f0f);
1758 which += (which >> 8);
1759 which &= 0x1f; /* the bit index a/k/a jack number */
1760
1761 jack = ep->jacks[which];
1762 if (jack->u.out.intr)
1763 (*jack->u.out.intr)(jack->arg);
1764 }
1765 /* intr lock held at loop exit */
1766 if (!ep->armed && ep->next_slot > ep->buffer)
1767 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1768 ep->soliciting = 0;
1769 }
1770
1771 /* Entry point for the softintr. */
1772 static void
1773 out_solicit(void *arg)
1774 {
1775 struct umidi_endpoint *ep = arg;
1776 struct umidi_softc *sc = ep->sc;
1777
1778 mutex_enter(&sc->sc_lock);
1779 out_solicit_locked(arg);
1780 mutex_exit(&sc->sc_lock);
1781 }
1782