umidi.c revision 1.65.14.7 1 /* $NetBSD: umidi.c,v 1.65.14.7 2015/09/29 11:38:29 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.65.14.7 2015/09/29 11:38:29 skrll Exp $");
36
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/device.h>
43 #include <sys/ioctl.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/select.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/poll.h>
50 #include <sys/intr.h>
51
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55
56 #include <dev/auconv.h>
57 #include <dev/usb/usbdevs.h>
58 #include <dev/usb/umidi_quirks.h>
59 #include <dev/midi_if.h>
60
61 /* Jack Descriptor */
62 #define UMIDI_MS_HEADER 0x01
63 #define UMIDI_IN_JACK 0x02
64 #define UMIDI_OUT_JACK 0x03
65
66 /* Jack Type */
67 #define UMIDI_EMBEDDED 0x01
68 #define UMIDI_EXTERNAL 0x02
69
70 /* generic, for iteration */
71 typedef struct {
72 uByte bLength;
73 uByte bDescriptorType;
74 uByte bDescriptorSubtype;
75 } UPACKED umidi_cs_descriptor_t;
76
77 typedef struct {
78 uByte bLength;
79 uByte bDescriptorType;
80 uByte bDescriptorSubtype;
81 uWord bcdMSC;
82 uWord wTotalLength;
83 } UPACKED umidi_cs_interface_descriptor_t;
84 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
85
86 typedef struct {
87 uByte bLength;
88 uByte bDescriptorType;
89 uByte bDescriptorSubtype;
90 uByte bNumEmbMIDIJack;
91 } UPACKED umidi_cs_endpoint_descriptor_t;
92 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
93
94 typedef struct {
95 uByte bLength;
96 uByte bDescriptorType;
97 uByte bDescriptorSubtype;
98 uByte bJackType;
99 uByte bJackID;
100 } UPACKED umidi_jack_descriptor_t;
101 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
102
103
104 #define TO_D(p) ((usb_descriptor_t *)(p))
105 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
106 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
107 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
108 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
109 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
110
111
112 #define UMIDI_PACKET_SIZE 4
113
114 /*
115 * hierarchie
116 *
117 * <-- parent child -->
118 *
119 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
120 * ^ | ^ |
121 * +-----+ +-----+
122 */
123
124 /* midi device */
125 struct umidi_mididev {
126 struct umidi_softc *sc;
127 device_t mdev;
128 /* */
129 struct umidi_jack *in_jack;
130 struct umidi_jack *out_jack;
131 char *label;
132 size_t label_len;
133 /* */
134 int opened;
135 int closing;
136 int flags;
137 };
138
139 /* Jack Information */
140 struct umidi_jack {
141 struct umidi_endpoint *endpoint;
142 /* */
143 int cable_number;
144 void *arg;
145 int bound;
146 int opened;
147 unsigned char *midiman_ppkt;
148 union {
149 struct {
150 void (*intr)(void *);
151 } out;
152 struct {
153 void (*intr)(void *, int);
154 } in;
155 } u;
156 };
157
158 #define UMIDI_MAX_EPJACKS 16
159 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
160 /* endpoint data */
161 struct umidi_endpoint {
162 struct umidi_softc *sc;
163 /* */
164 int addr;
165 struct usbd_pipe *pipe;
166 struct usbd_xfer *xfer;
167 umidi_packet_bufp buffer;
168 umidi_packet_bufp next_slot;
169 uint32_t buffer_size;
170 int num_scheduled;
171 int num_open;
172 int num_jacks;
173 int soliciting;
174 void *solicit_cookie;
175 int armed;
176 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
177 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
178 uint16_t next_schedule;
179 };
180
181 /* software context */
182 struct umidi_softc {
183 device_t sc_dev;
184 struct usbd_device *sc_udev;
185 struct usbd_interface *sc_iface;
186 const struct umidi_quirk *sc_quirk;
187
188 int sc_dying;
189
190 int sc_out_num_jacks;
191 struct umidi_jack *sc_out_jacks;
192 int sc_in_num_jacks;
193 struct umidi_jack *sc_in_jacks;
194 struct umidi_jack *sc_jacks;
195
196 int sc_num_mididevs;
197 struct umidi_mididev *sc_mididevs;
198
199 int sc_out_num_endpoints;
200 struct umidi_endpoint *sc_out_ep;
201 int sc_in_num_endpoints;
202 struct umidi_endpoint *sc_in_ep;
203 struct umidi_endpoint *sc_endpoints;
204 size_t sc_endpoints_len;
205 int cblnums_global;
206
207 kmutex_t sc_lock;
208 kcondvar_t sc_cv;
209 kcondvar_t sc_detach_cv;
210
211 int sc_refcnt;
212 };
213
214 #ifdef UMIDI_DEBUG
215 #define DPRINTF(x) if (umididebug) printf x
216 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
217 #include <sys/time.h>
218 static struct timeval umidi_tv;
219 int umididebug = 0;
220 #else
221 #define DPRINTF(x)
222 #define DPRINTFN(n,x)
223 #endif
224
225 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
226 (sc->sc_out_num_endpoints + \
227 sc->sc_in_num_endpoints))
228
229
230 static int umidi_open(void *, int,
231 void (*)(void *, int), void (*)(void *), void *);
232 static void umidi_close(void *);
233 static int umidi_channelmsg(void *, int, int, u_char *, int);
234 static int umidi_commonmsg(void *, int, u_char *, int);
235 static int umidi_sysex(void *, u_char *, int);
236 static int umidi_rtmsg(void *, int);
237 static void umidi_getinfo(void *, struct midi_info *);
238 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
239
240 static usbd_status alloc_pipe(struct umidi_endpoint *);
241 static void free_pipe(struct umidi_endpoint *);
242
243 static usbd_status alloc_all_endpoints(struct umidi_softc *);
244 static void free_all_endpoints(struct umidi_softc *);
245
246 static usbd_status alloc_all_jacks(struct umidi_softc *);
247 static void free_all_jacks(struct umidi_softc *);
248 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
249 struct umidi_jack *,
250 struct umidi_jack *,
251 struct umidi_mididev *);
252 static void unbind_jacks_from_mididev(struct umidi_mididev *);
253 static void unbind_all_jacks(struct umidi_softc *);
254 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
255 static usbd_status open_out_jack(struct umidi_jack *, void *,
256 void (*)(void *));
257 static usbd_status open_in_jack(struct umidi_jack *, void *,
258 void (*)(void *, int));
259 static void close_out_jack(struct umidi_jack *);
260 static void close_in_jack(struct umidi_jack *);
261
262 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
263 static usbd_status detach_mididev(struct umidi_mididev *, int);
264 static void deactivate_mididev(struct umidi_mididev *);
265 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
266 static void free_all_mididevs(struct umidi_softc *);
267 static usbd_status attach_all_mididevs(struct umidi_softc *);
268 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
269 static void deactivate_all_mididevs(struct umidi_softc *);
270 static void describe_mididev(struct umidi_mididev *);
271
272 #ifdef UMIDI_DEBUG
273 static void dump_sc(struct umidi_softc *);
274 static void dump_ep(struct umidi_endpoint *);
275 static void dump_jack(struct umidi_jack *);
276 #endif
277
278 static usbd_status start_input_transfer(struct umidi_endpoint *);
279 static usbd_status start_output_transfer(struct umidi_endpoint *);
280 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
281 static void in_intr(struct usbd_xfer *, void *, usbd_status);
282 static void out_intr(struct usbd_xfer *, void *, usbd_status);
283 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
284 static void out_solicit_locked(void *); /* pre-locked version */
285
286
287 const struct midi_hw_if umidi_hw_if = {
288 .open = umidi_open,
289 .close = umidi_close,
290 .output = umidi_rtmsg,
291 .getinfo = umidi_getinfo,
292 .get_locks = umidi_get_locks,
293 };
294
295 struct midi_hw_if_ext umidi_hw_if_ext = {
296 .channel = umidi_channelmsg,
297 .common = umidi_commonmsg,
298 .sysex = umidi_sysex,
299 };
300
301 struct midi_hw_if_ext umidi_hw_if_mm = {
302 .channel = umidi_channelmsg,
303 .common = umidi_commonmsg,
304 .sysex = umidi_sysex,
305 .compress = 1,
306 };
307
308 int umidi_match(device_t, cfdata_t, void *);
309 void umidi_attach(device_t, device_t, void *);
310 void umidi_childdet(device_t, device_t);
311 int umidi_detach(device_t, int);
312 int umidi_activate(device_t, enum devact);
313 extern struct cfdriver umidi_cd;
314 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
315 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
316
317 int
318 umidi_match(device_t parent, cfdata_t match, void *aux)
319 {
320 struct usbif_attach_arg *uiaa = aux;
321
322 DPRINTFN(1,("umidi_match\n"));
323
324 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
325 uiaa->uiaa_ifaceno))
326 return UMATCH_IFACECLASS_IFACESUBCLASS;
327
328 if (uiaa->uiaa_class == UICLASS_AUDIO &&
329 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
330 return UMATCH_IFACECLASS_IFACESUBCLASS;
331
332 return UMATCH_NONE;
333 }
334
335 void
336 umidi_attach(device_t parent, device_t self, void *aux)
337 {
338 usbd_status err;
339 struct umidi_softc *sc = device_private(self);
340 struct usbif_attach_arg *uiaa = aux;
341 char *devinfop;
342
343 DPRINTFN(1,("umidi_attach\n"));
344
345 sc->sc_dev = self;
346
347 aprint_naive("\n");
348 aprint_normal("\n");
349
350 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
351 aprint_normal_dev(self, "%s\n", devinfop);
352 usbd_devinfo_free(devinfop);
353
354 sc->sc_iface = uiaa->uiaa_iface;
355 sc->sc_udev = uiaa->uiaa_device;
356
357 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
358 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
359
360 aprint_normal_dev(self, "");
361 umidi_print_quirk(sc->sc_quirk);
362
363 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
364 cv_init(&sc->sc_cv, "umidopcl");
365 cv_init(&sc->sc_detach_cv, "umidetcv");
366 sc->sc_refcnt = 0;
367
368 err = alloc_all_endpoints(sc);
369 if (err != USBD_NORMAL_COMPLETION) {
370 aprint_error_dev(self,
371 "alloc_all_endpoints failed. (err=%d)\n", err);
372 goto out;
373 }
374 err = alloc_all_jacks(sc);
375 if (err != USBD_NORMAL_COMPLETION) {
376 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
377 err);
378 goto out_free_endpoints;
379 }
380 aprint_normal_dev(self, "out=%d, in=%d\n",
381 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
382
383 err = assign_all_jacks_automatically(sc);
384 if (err != USBD_NORMAL_COMPLETION) {
385 aprint_error_dev(self,
386 "assign_all_jacks_automatically failed. (err=%d)\n", err);
387 goto out_free_jacks;
388 }
389 err = attach_all_mididevs(sc);
390 if (err != USBD_NORMAL_COMPLETION) {
391 aprint_error_dev(self,
392 "attach_all_mididevs failed. (err=%d)\n", err);
393 goto out_free_jacks;
394 }
395
396 #ifdef UMIDI_DEBUG
397 dump_sc(sc);
398 #endif
399
400 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
401 sc->sc_udev, sc->sc_dev);
402
403 return;
404
405 out_free_jacks:
406 unbind_all_jacks(sc);
407 free_all_jacks(sc);
408
409 out_free_endpoints:
410 free_all_endpoints(sc);
411
412 out:
413 aprint_error_dev(self, "disabled.\n");
414 sc->sc_dying = 1;
415 KERNEL_UNLOCK_ONE(curlwp);
416 return;
417 }
418
419 void
420 umidi_childdet(device_t self, device_t child)
421 {
422 int i;
423 struct umidi_softc *sc = device_private(self);
424
425 KASSERT(sc->sc_mididevs != NULL);
426
427 for (i = 0; i < sc->sc_num_mididevs; i++) {
428 if (sc->sc_mididevs[i].mdev == child)
429 break;
430 }
431 KASSERT(i < sc->sc_num_mididevs);
432 sc->sc_mididevs[i].mdev = NULL;
433 }
434
435 int
436 umidi_activate(device_t self, enum devact act)
437 {
438 struct umidi_softc *sc = device_private(self);
439
440 switch (act) {
441 case DVACT_DEACTIVATE:
442 DPRINTFN(1,("umidi_activate (deactivate)\n"));
443 sc->sc_dying = 1;
444 deactivate_all_mididevs(sc);
445 return 0;
446 default:
447 DPRINTFN(1,("umidi_activate (%d)\n", act));
448 return EOPNOTSUPP;
449 }
450 }
451
452 int
453 umidi_detach(device_t self, int flags)
454 {
455 struct umidi_softc *sc = device_private(self);
456
457 DPRINTFN(1,("umidi_detach\n"));
458
459 mutex_enter(&sc->sc_lock);
460 sc->sc_dying = 1;
461 if (--sc->sc_refcnt >= 0)
462 usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
463 mutex_exit(&sc->sc_lock);
464
465 detach_all_mididevs(sc, flags);
466 free_all_mididevs(sc);
467 free_all_jacks(sc);
468 free_all_endpoints(sc);
469
470 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
471 sc->sc_dev);
472
473 mutex_destroy(&sc->sc_lock);
474 cv_destroy(&sc->sc_detach_cv);
475 cv_destroy(&sc->sc_cv);
476
477 return 0;
478 }
479
480
481 /*
482 * midi_if stuffs
483 */
484 int
485 umidi_open(void *addr,
486 int flags,
487 void (*iintr)(void *, int),
488 void (*ointr)(void *),
489 void *arg)
490 {
491 struct umidi_mididev *mididev = addr;
492 struct umidi_softc *sc = mididev->sc;
493 usbd_status err;
494
495 KASSERT(mutex_owned(&sc->sc_lock));
496 DPRINTF(("umidi_open: sc=%p\n", sc));
497
498 if (mididev->opened)
499 return EBUSY;
500 if (sc->sc_dying)
501 return EIO;
502
503 mididev->opened = 1;
504 mididev->flags = flags;
505 if ((mididev->flags & FWRITE) && mididev->out_jack) {
506 err = open_out_jack(mididev->out_jack, arg, ointr);
507 if (err != USBD_NORMAL_COMPLETION)
508 goto bad;
509 }
510 if ((mididev->flags & FREAD) && mididev->in_jack) {
511 err = open_in_jack(mididev->in_jack, arg, iintr);
512 KASSERT(mididev->opened);
513 if (err != USBD_NORMAL_COMPLETION &&
514 err != USBD_IN_PROGRESS) {
515 if (mididev->out_jack)
516 close_out_jack(mididev->out_jack);
517 goto bad;
518 }
519 }
520
521 return 0;
522 bad:
523 mididev->opened = 0;
524 DPRINTF(("umidi_open: usbd_status %d\n", err));
525 KASSERT(mutex_owned(&sc->sc_lock));
526 return USBD_IN_USE == err ? EBUSY : EIO;
527 }
528
529 void
530 umidi_close(void *addr)
531 {
532 struct umidi_mididev *mididev = addr;
533 struct umidi_softc *sc = mididev->sc;
534
535 KASSERT(mutex_owned(&sc->sc_lock));
536
537 if (mididev->closing)
538 return;
539
540 mididev->closing = 1;
541
542 sc->sc_refcnt++;
543
544 if ((mididev->flags & FWRITE) && mididev->out_jack)
545 close_out_jack(mididev->out_jack);
546 if ((mididev->flags & FREAD) && mididev->in_jack)
547 close_in_jack(mididev->in_jack);
548
549 if (--sc->sc_refcnt < 0)
550 usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
551
552 mididev->opened = 0;
553 mididev->closing = 0;
554 }
555
556 int
557 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
558 int len)
559 {
560 struct umidi_mididev *mididev = addr;
561
562 KASSERT(mutex_owned(&mididev->sc->sc_lock));
563
564 if (!mididev->out_jack || !mididev->opened || mididev->closing)
565 return EIO;
566
567 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
568 }
569
570 int
571 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
572 {
573 struct umidi_mididev *mididev = addr;
574 int cin;
575
576 KASSERT(mutex_owned(&mididev->sc->sc_lock));
577
578 if (!mididev->out_jack || !mididev->opened || mididev->closing)
579 return EIO;
580
581 switch ( len ) {
582 case 1: cin = 5; break;
583 case 2: cin = 2; break;
584 case 3: cin = 3; break;
585 default: return EIO; /* or gcc warns of cin uninitialized */
586 }
587
588 return out_jack_output(mididev->out_jack, msg, len, cin);
589 }
590
591 int
592 umidi_sysex(void *addr, u_char *msg, int len)
593 {
594 struct umidi_mididev *mididev = addr;
595 int cin;
596
597 KASSERT(mutex_owned(&mididev->sc->sc_lock));
598
599 if (!mididev->out_jack || !mididev->opened || mididev->closing)
600 return EIO;
601
602 switch ( len ) {
603 case 1: cin = 5; break;
604 case 2: cin = 6; break;
605 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
606 default: return EIO; /* or gcc warns of cin uninitialized */
607 }
608
609 return out_jack_output(mididev->out_jack, msg, len, cin);
610 }
611
612 int
613 umidi_rtmsg(void *addr, int d)
614 {
615 struct umidi_mididev *mididev = addr;
616 u_char msg = d;
617
618 KASSERT(mutex_owned(&mididev->sc->sc_lock));
619
620 if (!mididev->out_jack || !mididev->opened || mididev->closing)
621 return EIO;
622
623 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
624 }
625
626 void
627 umidi_getinfo(void *addr, struct midi_info *mi)
628 {
629 struct umidi_mididev *mididev = addr;
630 struct umidi_softc *sc = mididev->sc;
631 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
632
633 KASSERT(mutex_owned(&sc->sc_lock));
634
635 mi->name = mididev->label;
636 mi->props = MIDI_PROP_OUT_INTR;
637 if (mididev->in_jack)
638 mi->props |= MIDI_PROP_CAN_INPUT;
639 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
640 }
641
642 static void
643 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
644 {
645 struct umidi_mididev *mididev = addr;
646 struct umidi_softc *sc = mididev->sc;
647
648 *intr = NULL;
649 *thread = &sc->sc_lock;
650 }
651
652 /*
653 * each endpoint stuffs
654 */
655
656 /* alloc/free pipe */
657 static usbd_status
658 alloc_pipe(struct umidi_endpoint *ep)
659 {
660 struct umidi_softc *sc = ep->sc;
661 usbd_status err;
662 usb_endpoint_descriptor_t *epd;
663
664 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
665 /*
666 * For output, an improvement would be to have a buffer bigger than
667 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
668 * allow out_solicit to fill the buffer to the full packet size in
669 * all cases. But to use usbd_alloc_buffer to get a slightly larger
670 * buffer would not be a good way to do that, because if the addition
671 * would make the buffer exceed USB_MEM_SMALL then a substantially
672 * larger block may be wastefully allocated. Some flavor of double
673 * buffering could serve the same purpose, but would increase the
674 * code complexity, so for now I will live with the current slight
675 * penalty of reducing max transfer size by (num_open-num_scheduled)
676 * packet slots.
677 */
678 ep->buffer_size = UGETW(epd->wMaxPacketSize);
679 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
680
681 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
682 device_xname(sc->sc_dev), ep, ep->buffer_size));
683 ep->num_scheduled = 0;
684 ep->this_schedule = 0;
685 ep->next_schedule = 0;
686 ep->soliciting = 0;
687 ep->armed = 0;
688 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
689 if (ep->xfer == NULL) {
690 err = USBD_NOMEM;
691 goto quit;
692 }
693 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
694 if (ep->buffer == NULL) {
695 usbd_free_xfer(ep->xfer);
696 err = USBD_NOMEM;
697 goto quit;
698 }
699 ep->next_slot = ep->buffer;
700 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
701 if (err)
702 usbd_free_xfer(ep->xfer);
703 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, out_solicit, ep);
704 quit:
705 return err;
706 }
707
708 static void
709 free_pipe(struct umidi_endpoint *ep)
710 {
711 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
712 usbd_abort_pipe(ep->pipe);
713 usbd_close_pipe(ep->pipe);
714 usbd_free_xfer(ep->xfer);
715 softint_disestablish(ep->solicit_cookie);
716 }
717
718
719 /* alloc/free the array of endpoint structures */
720
721 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
722 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
723 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
724
725 static usbd_status
726 alloc_all_endpoints(struct umidi_softc *sc)
727 {
728 usbd_status err;
729 struct umidi_endpoint *ep;
730 int i;
731
732 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
733 err = alloc_all_endpoints_fixed_ep(sc);
734 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
735 err = alloc_all_endpoints_yamaha(sc);
736 } else {
737 err = alloc_all_endpoints_genuine(sc);
738 }
739 if (err != USBD_NORMAL_COMPLETION)
740 return err;
741
742 ep = sc->sc_endpoints;
743 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
744 err = alloc_pipe(ep++);
745 if (err != USBD_NORMAL_COMPLETION) {
746 for (; ep != sc->sc_endpoints; ep--)
747 free_pipe(ep-1);
748 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
749 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
750 break;
751 }
752 }
753 return err;
754 }
755
756 static void
757 free_all_endpoints(struct umidi_softc *sc)
758 {
759 int i;
760
761 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
762 free_pipe(&sc->sc_endpoints[i]);
763 if (sc->sc_endpoints != NULL)
764 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
765 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
766 }
767
768 static usbd_status
769 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
770 {
771 usbd_status err;
772 const struct umq_fixed_ep_desc *fp;
773 struct umidi_endpoint *ep;
774 usb_endpoint_descriptor_t *epd;
775 int i;
776
777 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
778 UMQ_TYPE_FIXED_EP);
779 sc->sc_out_num_jacks = 0;
780 sc->sc_in_num_jacks = 0;
781 sc->sc_out_num_endpoints = fp->num_out_ep;
782 sc->sc_in_num_endpoints = fp->num_in_ep;
783 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
784 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
785 if (!sc->sc_endpoints)
786 return USBD_NOMEM;
787
788 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
789 sc->sc_in_ep =
790 sc->sc_in_num_endpoints ?
791 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
792
793 ep = &sc->sc_out_ep[0];
794 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
795 epd = usbd_interface2endpoint_descriptor(
796 sc->sc_iface,
797 fp->out_ep[i].ep);
798 if (!epd) {
799 aprint_error_dev(sc->sc_dev,
800 "cannot get endpoint descriptor(out:%d)\n",
801 fp->out_ep[i].ep);
802 err = USBD_INVAL;
803 goto error;
804 }
805 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
806 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
807 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
808 fp->out_ep[i].ep);
809 err = USBD_INVAL;
810 goto error;
811 }
812 ep->sc = sc;
813 ep->addr = epd->bEndpointAddress;
814 ep->num_jacks = fp->out_ep[i].num_jacks;
815 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
816 ep->num_open = 0;
817 ep++;
818 }
819 ep = &sc->sc_in_ep[0];
820 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
821 epd = usbd_interface2endpoint_descriptor(
822 sc->sc_iface,
823 fp->in_ep[i].ep);
824 if (!epd) {
825 aprint_error_dev(sc->sc_dev,
826 "cannot get endpoint descriptor(in:%d)\n",
827 fp->in_ep[i].ep);
828 err = USBD_INVAL;
829 goto error;
830 }
831 /*
832 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
833 * endpoint. The existing input logic in this driver seems
834 * to work successfully if we just stop treating an interrupt
835 * endpoint as illegal (or the in_progress status we get on
836 * the initial transfer). It does not seem necessary to
837 * actually use the interrupt flavor of alloc_pipe or make
838 * other serious rearrangements of logic. I like that.
839 */
840 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
841 case UE_BULK:
842 case UE_INTERRUPT:
843 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
844 break;
845 /*FALLTHROUGH*/
846 default:
847 aprint_error_dev(sc->sc_dev,
848 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
849 err = USBD_INVAL;
850 goto error;
851 }
852
853 ep->sc = sc;
854 ep->addr = epd->bEndpointAddress;
855 ep->num_jacks = fp->in_ep[i].num_jacks;
856 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
857 ep->num_open = 0;
858 ep++;
859 }
860
861 return USBD_NORMAL_COMPLETION;
862 error:
863 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
864 sc->sc_endpoints = NULL;
865 return err;
866 }
867
868 static usbd_status
869 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
870 {
871 /* This driver currently supports max 1in/1out bulk endpoints */
872 usb_descriptor_t *desc;
873 umidi_cs_descriptor_t *udesc;
874 usb_endpoint_descriptor_t *epd;
875 int out_addr, in_addr, i;
876 int dir;
877 size_t remain, descsize;
878
879 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
880 out_addr = in_addr = 0;
881
882 /* detect endpoints */
883 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
884 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
885 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
886 KASSERT(epd != NULL);
887 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
888 dir = UE_GET_DIR(epd->bEndpointAddress);
889 if (dir==UE_DIR_OUT && !out_addr)
890 out_addr = epd->bEndpointAddress;
891 else if (dir==UE_DIR_IN && !in_addr)
892 in_addr = epd->bEndpointAddress;
893 }
894 }
895 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
896
897 /* count jacks */
898 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
899 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
900 return USBD_INVAL;
901 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
902 (size_t)udesc->bLength;
903 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
904
905 while (remain >= sizeof(usb_descriptor_t)) {
906 descsize = udesc->bLength;
907 if (descsize>remain || descsize==0)
908 break;
909 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
910 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
911 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
912 sc->sc_out_num_jacks++;
913 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
914 sc->sc_in_num_jacks++;
915 }
916 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
917 remain -= descsize;
918 }
919
920 /* validate some parameters */
921 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
922 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
923 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
924 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
925 if (sc->sc_out_num_jacks && out_addr) {
926 sc->sc_out_num_endpoints = 1;
927 } else {
928 sc->sc_out_num_endpoints = 0;
929 sc->sc_out_num_jacks = 0;
930 }
931 if (sc->sc_in_num_jacks && in_addr) {
932 sc->sc_in_num_endpoints = 1;
933 } else {
934 sc->sc_in_num_endpoints = 0;
935 sc->sc_in_num_jacks = 0;
936 }
937 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
938 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
939 if (!sc->sc_endpoints)
940 return USBD_NOMEM;
941 if (sc->sc_out_num_endpoints) {
942 sc->sc_out_ep = sc->sc_endpoints;
943 sc->sc_out_ep->sc = sc;
944 sc->sc_out_ep->addr = out_addr;
945 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
946 sc->sc_out_ep->num_open = 0;
947 } else
948 sc->sc_out_ep = NULL;
949
950 if (sc->sc_in_num_endpoints) {
951 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
952 sc->sc_in_ep->sc = sc;
953 sc->sc_in_ep->addr = in_addr;
954 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
955 sc->sc_in_ep->num_open = 0;
956 } else
957 sc->sc_in_ep = NULL;
958
959 return USBD_NORMAL_COMPLETION;
960 }
961
962 static usbd_status
963 alloc_all_endpoints_genuine(struct umidi_softc *sc)
964 {
965 usb_interface_descriptor_t *interface_desc;
966 usb_config_descriptor_t *config_desc;
967 usb_descriptor_t *desc;
968 int num_ep;
969 size_t remain, descsize;
970 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
971 int epaddr;
972
973 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
974 num_ep = interface_desc->bNumEndpoints;
975 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
976 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
977 if (!p)
978 return USBD_NOMEM;
979
980 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
981 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
982 epaddr = -1;
983
984 /* get the list of endpoints for midi stream */
985 config_desc = usbd_get_config_descriptor(sc->sc_udev);
986 desc = (usb_descriptor_t *) config_desc;
987 remain = (size_t)UGETW(config_desc->wTotalLength);
988 while (remain>=sizeof(usb_descriptor_t)) {
989 descsize = desc->bLength;
990 if (descsize>remain || descsize==0)
991 break;
992 if (desc->bDescriptorType==UDESC_ENDPOINT &&
993 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
994 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
995 epaddr = TO_EPD(desc)->bEndpointAddress;
996 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
997 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
998 epaddr!=-1) {
999 if (num_ep>0) {
1000 num_ep--;
1001 p->sc = sc;
1002 p->addr = epaddr;
1003 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1004 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1005 sc->sc_out_num_endpoints++;
1006 sc->sc_out_num_jacks += p->num_jacks;
1007 } else {
1008 sc->sc_in_num_endpoints++;
1009 sc->sc_in_num_jacks += p->num_jacks;
1010 }
1011 p++;
1012 }
1013 } else
1014 epaddr = -1;
1015 desc = NEXT_D(desc);
1016 remain-=descsize;
1017 }
1018
1019 /* sort endpoints */
1020 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1021 p = sc->sc_endpoints;
1022 endep = p + num_ep;
1023 while (p<endep) {
1024 lowest = p;
1025 for (q=p+1; q<endep; q++) {
1026 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1027 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1028 ((UE_GET_DIR(lowest->addr)==
1029 UE_GET_DIR(q->addr)) &&
1030 (UE_GET_ADDR(lowest->addr)>
1031 UE_GET_ADDR(q->addr))))
1032 lowest = q;
1033 }
1034 if (lowest != p) {
1035 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1036 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1037 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1038 }
1039 p->num_open = 0;
1040 p++;
1041 }
1042
1043 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1044 sc->sc_in_ep =
1045 sc->sc_in_num_endpoints ?
1046 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1047
1048 return USBD_NORMAL_COMPLETION;
1049 }
1050
1051
1052 /*
1053 * jack stuffs
1054 */
1055
1056 static usbd_status
1057 alloc_all_jacks(struct umidi_softc *sc)
1058 {
1059 int i, j;
1060 struct umidi_endpoint *ep;
1061 struct umidi_jack *jack;
1062 const unsigned char *cn_spec;
1063
1064 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1065 sc->cblnums_global = 0;
1066 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1067 sc->cblnums_global = 1;
1068 else {
1069 /*
1070 * I don't think this default is correct, but it preserves
1071 * the prior behavior of the code. That's why I defined two
1072 * complementary quirks. Any device for which the default
1073 * behavior is wrong can be made to work by giving it an
1074 * explicit quirk, and if a pattern ever develops (as I suspect
1075 * it will) that a lot of otherwise standard USB MIDI devices
1076 * need the CN_SEQ_PER_EP "quirk," then this default can be
1077 * changed to 0, and the only devices that will break are those
1078 * listing neither quirk, and they'll easily be fixed by giving
1079 * them the CN_SEQ_GLOBAL quirk.
1080 */
1081 sc->cblnums_global = 1;
1082 }
1083
1084 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1085 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1086 UMQ_TYPE_CN_FIXED);
1087 else
1088 cn_spec = NULL;
1089
1090 /* allocate/initialize structures */
1091 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
1092 sc->sc_out_num_jacks), KM_SLEEP);
1093 if (!sc->sc_jacks)
1094 return USBD_NOMEM;
1095 sc->sc_out_jacks =
1096 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1097 sc->sc_in_jacks =
1098 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1099
1100 jack = &sc->sc_out_jacks[0];
1101 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1102 jack->opened = 0;
1103 jack->bound = 0;
1104 jack->arg = NULL;
1105 jack->u.out.intr = NULL;
1106 jack->midiman_ppkt = NULL;
1107 if (sc->cblnums_global)
1108 jack->cable_number = i;
1109 jack++;
1110 }
1111 jack = &sc->sc_in_jacks[0];
1112 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1113 jack->opened = 0;
1114 jack->bound = 0;
1115 jack->arg = NULL;
1116 jack->u.in.intr = NULL;
1117 if (sc->cblnums_global)
1118 jack->cable_number = i;
1119 jack++;
1120 }
1121
1122 /* assign each jacks to each endpoints */
1123 jack = &sc->sc_out_jacks[0];
1124 ep = &sc->sc_out_ep[0];
1125 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1126 for (j = 0; j < ep->num_jacks; j++) {
1127 jack->endpoint = ep;
1128 if (cn_spec != NULL)
1129 jack->cable_number = *cn_spec++;
1130 else if (!sc->cblnums_global)
1131 jack->cable_number = j;
1132 ep->jacks[jack->cable_number] = jack;
1133 jack++;
1134 }
1135 ep++;
1136 }
1137 jack = &sc->sc_in_jacks[0];
1138 ep = &sc->sc_in_ep[0];
1139 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1140 for (j = 0; j < ep->num_jacks; j++) {
1141 jack->endpoint = ep;
1142 if (cn_spec != NULL)
1143 jack->cable_number = *cn_spec++;
1144 else if (!sc->cblnums_global)
1145 jack->cable_number = j;
1146 ep->jacks[jack->cable_number] = jack;
1147 jack++;
1148 }
1149 ep++;
1150 }
1151
1152 return USBD_NORMAL_COMPLETION;
1153 }
1154
1155 static void
1156 free_all_jacks(struct umidi_softc *sc)
1157 {
1158 struct umidi_jack *jacks;
1159 size_t len;
1160
1161 mutex_enter(&sc->sc_lock);
1162 jacks = sc->sc_jacks;
1163 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
1164 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1165 mutex_exit(&sc->sc_lock);
1166
1167 if (jacks)
1168 kmem_free(jacks, len);
1169 }
1170
1171 static usbd_status
1172 bind_jacks_to_mididev(struct umidi_softc *sc,
1173 struct umidi_jack *out_jack,
1174 struct umidi_jack *in_jack,
1175 struct umidi_mididev *mididev)
1176 {
1177 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1178 return USBD_IN_USE;
1179 if (mididev->out_jack || mididev->in_jack)
1180 return USBD_IN_USE;
1181
1182 if (out_jack)
1183 out_jack->bound = 1;
1184 if (in_jack)
1185 in_jack->bound = 1;
1186 mididev->in_jack = in_jack;
1187 mididev->out_jack = out_jack;
1188
1189 mididev->closing = 0;
1190
1191 return USBD_NORMAL_COMPLETION;
1192 }
1193
1194 static void
1195 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1196 {
1197 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1198
1199 mididev->closing = 1;
1200
1201 if ((mididev->flags & FWRITE) && mididev->out_jack)
1202 close_out_jack(mididev->out_jack);
1203 if ((mididev->flags & FREAD) && mididev->in_jack)
1204 close_in_jack(mididev->in_jack);
1205
1206 if (mididev->out_jack) {
1207 mididev->out_jack->bound = 0;
1208 mididev->out_jack = NULL;
1209 }
1210 if (mididev->in_jack) {
1211 mididev->in_jack->bound = 0;
1212 mididev->in_jack = NULL;
1213 }
1214 }
1215
1216 static void
1217 unbind_all_jacks(struct umidi_softc *sc)
1218 {
1219 int i;
1220
1221 mutex_spin_enter(&sc->sc_lock);
1222 if (sc->sc_mididevs)
1223 for (i = 0; i < sc->sc_num_mididevs; i++)
1224 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1225 mutex_spin_exit(&sc->sc_lock);
1226 }
1227
1228 static usbd_status
1229 assign_all_jacks_automatically(struct umidi_softc *sc)
1230 {
1231 usbd_status err;
1232 int i;
1233 struct umidi_jack *out, *in;
1234 const signed char *asg_spec;
1235
1236 err =
1237 alloc_all_mididevs(sc,
1238 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1239 if (err!=USBD_NORMAL_COMPLETION)
1240 return err;
1241
1242 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1243 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1244 UMQ_TYPE_MD_FIXED);
1245 else
1246 asg_spec = NULL;
1247
1248 for (i = 0; i < sc->sc_num_mididevs; i++) {
1249 if (asg_spec != NULL) {
1250 if (*asg_spec == -1)
1251 out = NULL;
1252 else
1253 out = &sc->sc_out_jacks[*asg_spec];
1254 ++ asg_spec;
1255 if (*asg_spec == -1)
1256 in = NULL;
1257 else
1258 in = &sc->sc_in_jacks[*asg_spec];
1259 ++ asg_spec;
1260 } else {
1261 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1262 : NULL;
1263 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1264 : NULL;
1265 }
1266 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1267 if (err != USBD_NORMAL_COMPLETION) {
1268 free_all_mididevs(sc);
1269 return err;
1270 }
1271 }
1272
1273 return USBD_NORMAL_COMPLETION;
1274 }
1275
1276 static usbd_status
1277 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1278 {
1279 struct umidi_endpoint *ep = jack->endpoint;
1280 struct umidi_softc *sc = ep->sc;
1281 umidi_packet_bufp end;
1282 int err;
1283
1284 KASSERT(mutex_owned(&sc->sc_lock));
1285
1286 if (jack->opened)
1287 return USBD_IN_USE;
1288
1289 jack->arg = arg;
1290 jack->u.out.intr = intr;
1291 jack->midiman_ppkt = NULL;
1292 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1293 jack->opened = 1;
1294 ep->num_open++;
1295 /*
1296 * out_solicit maintains an invariant that there will always be
1297 * (num_open - num_scheduled) slots free in the buffer. as we have
1298 * just incremented num_open, the buffer may be too full to satisfy
1299 * the invariant until a transfer completes, for which we must wait.
1300 */
1301 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1302 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1303 mstohz(10));
1304 if (err) {
1305 ep->num_open--;
1306 jack->opened = 0;
1307 return USBD_IOERROR;
1308 }
1309 }
1310
1311 return USBD_NORMAL_COMPLETION;
1312 }
1313
1314 static usbd_status
1315 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1316 {
1317 usbd_status err = USBD_NORMAL_COMPLETION;
1318 struct umidi_endpoint *ep = jack->endpoint;
1319
1320 KASSERT(mutex_owned(&ep->sc->sc_lock));
1321
1322 if (jack->opened)
1323 return USBD_IN_USE;
1324
1325 jack->arg = arg;
1326 jack->u.in.intr = intr;
1327 jack->opened = 1;
1328 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1329 /*
1330 * Can't hold the interrupt lock while calling into USB,
1331 * but we can safely drop it here.
1332 */
1333 mutex_exit(&ep->sc->sc_lock);
1334 err = start_input_transfer(ep);
1335 if (err != USBD_NORMAL_COMPLETION &&
1336 err != USBD_IN_PROGRESS) {
1337 ep->num_open--;
1338 }
1339 mutex_enter(&ep->sc->sc_lock);
1340 }
1341
1342 return err;
1343 }
1344
1345 static void
1346 close_out_jack(struct umidi_jack *jack)
1347 {
1348 struct umidi_endpoint *ep;
1349 struct umidi_softc *sc;
1350 uint16_t mask;
1351 int err;
1352
1353 if (jack->opened) {
1354 ep = jack->endpoint;
1355 sc = ep->sc;
1356
1357 KASSERT(mutex_owned(&sc->sc_lock));
1358 mask = 1 << (jack->cable_number);
1359 while (mask & (ep->this_schedule | ep->next_schedule)) {
1360 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1361 mstohz(10));
1362 if (err)
1363 break;
1364 }
1365 /*
1366 * We can re-enter this function from both close() and
1367 * detach(). Make sure only one of them does this part.
1368 */
1369 if (jack->opened) {
1370 jack->opened = 0;
1371 jack->endpoint->num_open--;
1372 ep->this_schedule &= ~mask;
1373 ep->next_schedule &= ~mask;
1374 }
1375 }
1376 }
1377
1378 static void
1379 close_in_jack(struct umidi_jack *jack)
1380 {
1381 if (jack->opened) {
1382 struct umidi_softc *sc = jack->endpoint->sc;
1383
1384 KASSERT(mutex_owned(&sc->sc_lock));
1385
1386 jack->opened = 0;
1387 if (--jack->endpoint->num_open == 0) {
1388 /*
1389 * We have to drop the (interrupt) lock so that
1390 * the USB thread lock can be safely taken by
1391 * the abort operation. This is safe as this
1392 * either closing or dying will be set proerly.
1393 */
1394 mutex_spin_exit(&sc->sc_lock);
1395 usbd_abort_pipe(jack->endpoint->pipe);
1396 mutex_spin_enter(&sc->sc_lock);
1397 }
1398 }
1399 }
1400
1401 static usbd_status
1402 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1403 {
1404 if (mididev->sc)
1405 return USBD_IN_USE;
1406
1407 mididev->sc = sc;
1408
1409 describe_mididev(mididev);
1410
1411 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1412
1413 return USBD_NORMAL_COMPLETION;
1414 }
1415
1416 static usbd_status
1417 detach_mididev(struct umidi_mididev *mididev, int flags)
1418 {
1419 struct umidi_softc *sc = mididev->sc;
1420
1421 if (!sc)
1422 return USBD_NO_ADDR;
1423
1424 mutex_spin_enter(&sc->sc_lock);
1425 if (mididev->opened) {
1426 umidi_close(mididev);
1427 }
1428 unbind_jacks_from_mididev(mididev);
1429 mutex_spin_exit(&sc->sc_lock);
1430
1431 if (mididev->mdev != NULL)
1432 config_detach(mididev->mdev, flags);
1433
1434 if (NULL != mididev->label) {
1435 kmem_free(mididev->label, mididev->label_len);
1436 mididev->label = NULL;
1437 }
1438
1439 mididev->sc = NULL;
1440
1441 return USBD_NORMAL_COMPLETION;
1442 }
1443
1444 static void
1445 deactivate_mididev(struct umidi_mididev *mididev)
1446 {
1447 if (mididev->out_jack)
1448 mididev->out_jack->bound = 0;
1449 if (mididev->in_jack)
1450 mididev->in_jack->bound = 0;
1451 }
1452
1453 static usbd_status
1454 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1455 {
1456 sc->sc_num_mididevs = nmidi;
1457 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1458 if (!sc->sc_mididevs)
1459 return USBD_NOMEM;
1460
1461 return USBD_NORMAL_COMPLETION;
1462 }
1463
1464 static void
1465 free_all_mididevs(struct umidi_softc *sc)
1466 {
1467 struct umidi_mididev *mididevs;
1468 size_t len;
1469
1470 mutex_enter(&sc->sc_lock);
1471 mididevs = sc->sc_mididevs;
1472 if (mididevs)
1473 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1474 sc->sc_mididevs = NULL;
1475 sc->sc_num_mididevs = 0;
1476 mutex_exit(&sc->sc_lock);
1477
1478 if (mididevs)
1479 kmem_free(mididevs, len);
1480 }
1481
1482 static usbd_status
1483 attach_all_mididevs(struct umidi_softc *sc)
1484 {
1485 usbd_status err;
1486 int i;
1487
1488 if (sc->sc_mididevs)
1489 for (i = 0; i < sc->sc_num_mididevs; i++) {
1490 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1491 if (err != USBD_NORMAL_COMPLETION)
1492 return err;
1493 }
1494
1495 return USBD_NORMAL_COMPLETION;
1496 }
1497
1498 static usbd_status
1499 detach_all_mididevs(struct umidi_softc *sc, int flags)
1500 {
1501 usbd_status err;
1502 int i;
1503
1504 if (sc->sc_mididevs)
1505 for (i = 0; i < sc->sc_num_mididevs; i++) {
1506 err = detach_mididev(&sc->sc_mididevs[i], flags);
1507 if (err != USBD_NORMAL_COMPLETION)
1508 return err;
1509 }
1510
1511 return USBD_NORMAL_COMPLETION;
1512 }
1513
1514 static void
1515 deactivate_all_mididevs(struct umidi_softc *sc)
1516 {
1517 int i;
1518
1519 if (sc->sc_mididevs) {
1520 for (i = 0; i < sc->sc_num_mididevs; i++)
1521 deactivate_mididev(&sc->sc_mididevs[i]);
1522 }
1523 }
1524
1525 /*
1526 * TODO: the 0-based cable numbers will often not match the labeling of the
1527 * equipment. Ideally:
1528 * For class-compliant devices: get the iJack string from the jack descriptor.
1529 * Otherwise:
1530 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1531 * number for display)
1532 * - support an array quirk explictly giving a char * for each jack.
1533 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1534 * the CNs are not globally unique, each is shown with its associated endpoint
1535 * address in hex also. That should not be necessary when using iJack values
1536 * or a quirk array.
1537 */
1538 void
1539 describe_mididev(struct umidi_mididev *md)
1540 {
1541 char in_label[16];
1542 char out_label[16];
1543 const char *unit_label;
1544 char *final_label;
1545 struct umidi_softc *sc;
1546 int show_ep_in;
1547 int show_ep_out;
1548 size_t len;
1549
1550 sc = md->sc;
1551 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1552 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1553
1554 if (NULL == md->in_jack)
1555 in_label[0] = '\0';
1556 else if (show_ep_in)
1557 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1558 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1559 else
1560 snprintf(in_label, sizeof(in_label), "<%d ",
1561 md->in_jack->cable_number);
1562
1563 if (NULL == md->out_jack)
1564 out_label[0] = '\0';
1565 else if (show_ep_out)
1566 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1567 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1568 else
1569 snprintf(out_label, sizeof(out_label), ">%d ",
1570 md->out_jack->cable_number);
1571
1572 unit_label = device_xname(sc->sc_dev);
1573
1574 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1575
1576 final_label = kmem_alloc(len, KM_SLEEP);
1577
1578 snprintf(final_label, len, "%s%son %s",
1579 in_label, out_label, unit_label);
1580
1581 md->label = final_label;
1582 md->label_len = len;
1583 }
1584
1585 #ifdef UMIDI_DEBUG
1586 static void
1587 dump_sc(struct umidi_softc *sc)
1588 {
1589 int i;
1590
1591 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1592 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1593 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1594 dump_ep(&sc->sc_out_ep[i]);
1595 }
1596 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1597 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1598 dump_ep(&sc->sc_in_ep[i]);
1599 }
1600 }
1601
1602 static void
1603 dump_ep(struct umidi_endpoint *ep)
1604 {
1605 int i;
1606 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1607 if (NULL==ep->jacks[i])
1608 continue;
1609 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1610 dump_jack(ep->jacks[i]);
1611 }
1612 }
1613 static void
1614 dump_jack(struct umidi_jack *jack)
1615 {
1616 DPRINTFN(10, ("\t\t\tep=%p\n",
1617 jack->endpoint));
1618 }
1619
1620 #endif /* UMIDI_DEBUG */
1621
1622
1623
1624 /*
1625 * MUX MIDI PACKET
1626 */
1627
1628 static const int packet_length[16] = {
1629 /*0*/ -1,
1630 /*1*/ -1,
1631 /*2*/ 2,
1632 /*3*/ 3,
1633 /*4*/ 3,
1634 /*5*/ 1,
1635 /*6*/ 2,
1636 /*7*/ 3,
1637 /*8*/ 3,
1638 /*9*/ 3,
1639 /*A*/ 3,
1640 /*B*/ 3,
1641 /*C*/ 2,
1642 /*D*/ 2,
1643 /*E*/ 3,
1644 /*F*/ 1,
1645 };
1646
1647 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1648 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1649 #define MIX_CN_CIN(cn, cin) \
1650 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1651 ((unsigned char)(cin)&0x0F)))
1652
1653 static usbd_status
1654 start_input_transfer(struct umidi_endpoint *ep)
1655 {
1656 usbd_setup_xfer(ep->xfer, ep->pipe,
1657 (void *)ep,
1658 ep->buffer, ep->buffer_size,
1659 USBD_SHORT_XFER_OK,
1660 USBD_NO_TIMEOUT, in_intr);
1661 return usbd_transfer(ep->xfer);
1662 }
1663
1664 static usbd_status
1665 start_output_transfer(struct umidi_endpoint *ep)
1666 {
1667 usbd_status rv;
1668 uint32_t length;
1669 int i;
1670
1671 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1672 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1673 ep->buffer, ep->next_slot, length));
1674 usbd_setup_xfer(ep->xfer, ep->pipe,
1675 (void *)ep,
1676 ep->buffer, length,
1677 0, USBD_NO_TIMEOUT, out_intr);
1678 rv = usbd_transfer(ep->xfer);
1679
1680 /*
1681 * Once the transfer is scheduled, no more adding to partial
1682 * packets within it.
1683 */
1684 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1685 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1686 if (NULL != ep->jacks[i])
1687 ep->jacks[i]->midiman_ppkt = NULL;
1688 }
1689
1690 return rv;
1691 }
1692
1693 #ifdef UMIDI_DEBUG
1694 #define DPR_PACKET(dir, sc, p) \
1695 if ((unsigned char)(p)[1]!=0xFE) \
1696 DPRINTFN(500, \
1697 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1698 device_xname(sc->sc_dev), \
1699 (unsigned char)(p)[0], \
1700 (unsigned char)(p)[1], \
1701 (unsigned char)(p)[2], \
1702 (unsigned char)(p)[3]));
1703 #else
1704 #define DPR_PACKET(dir, sc, p)
1705 #endif
1706
1707 /*
1708 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1709 * with the cable number and length in the last byte instead of the first,
1710 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1711 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1712 * with a cable nybble and a length nybble (which, unlike the CIN of a
1713 * real USB MIDI packet, has no semantics at all besides the length).
1714 * A packet received from a Midiman may contain part of a MIDI message,
1715 * more than one MIDI message, or parts of more than one MIDI message. A
1716 * three-byte MIDI message may arrive in three packets of data length 1, and
1717 * running status may be used. Happily, the midi(4) driver above us will put
1718 * it all back together, so the only cost is in USB bandwidth. The device
1719 * has an easier time with what it receives from us: we'll pack messages in
1720 * and across packets, but filling the packets whenever possible and,
1721 * as midi(4) hands us a complete message at a time, we'll never send one
1722 * in a dribble of short packets.
1723 */
1724
1725 static int
1726 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1727 {
1728 struct umidi_endpoint *ep = out_jack->endpoint;
1729 struct umidi_softc *sc = ep->sc;
1730 unsigned char *packet;
1731 int plen;
1732 int poff;
1733
1734 KASSERT(mutex_owned(&sc->sc_lock));
1735
1736 if (sc->sc_dying)
1737 return EIO;
1738
1739 if (!out_jack->opened)
1740 return ENODEV; /* XXX as it was, is this the right errno? */
1741
1742 sc->sc_refcnt++;
1743
1744 #ifdef UMIDI_DEBUG
1745 if (umididebug >= 100)
1746 microtime(&umidi_tv);
1747 #endif
1748 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1749 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1750 ep, out_jack->cable_number, len, cin));
1751
1752 packet = *ep->next_slot++;
1753 KASSERT(ep->buffer_size >=
1754 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1755 memset(packet, 0, UMIDI_PACKET_SIZE);
1756 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1757 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1758 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1759 plen = 3 - poff;
1760 if (plen > len)
1761 plen = len;
1762 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1763 src += plen;
1764 len -= plen;
1765 plen += poff;
1766 out_jack->midiman_ppkt[3] =
1767 MIX_CN_CIN(out_jack->cable_number, plen);
1768 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1769 if (3 == plen)
1770 out_jack->midiman_ppkt = NULL; /* no more */
1771 }
1772 if (0 == len)
1773 ep->next_slot--; /* won't be needed, nevermind */
1774 else {
1775 memcpy(packet, src, len);
1776 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1777 DPR_PACKET(out, sc, packet);
1778 if (len < 3)
1779 out_jack->midiman_ppkt = packet;
1780 }
1781 } else { /* the nice simple USB class-compliant case */
1782 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1783 memcpy(packet+1, src, len);
1784 DPR_PACKET(out, sc, packet);
1785 }
1786 ep->next_schedule |= 1<<(out_jack->cable_number);
1787 ++ ep->num_scheduled;
1788 if (!ep->armed && !ep->soliciting) {
1789 /*
1790 * It would be bad to call out_solicit directly here (the
1791 * caller need not be reentrant) but a soft interrupt allows
1792 * solicit to run immediately the caller exits its critical
1793 * section, and if the caller has more to write we can get it
1794 * before starting the USB transfer, and send a longer one.
1795 */
1796 ep->soliciting = 1;
1797 softint_schedule(ep->solicit_cookie);
1798 }
1799
1800 if (--sc->sc_refcnt < 0)
1801 usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
1802
1803 return 0;
1804 }
1805
1806 static void
1807 in_intr(struct usbd_xfer *xfer, void *priv,
1808 usbd_status status)
1809 {
1810 int cn, len, i;
1811 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1812 struct umidi_softc *sc = ep->sc;
1813 struct umidi_jack *jack;
1814 unsigned char *packet;
1815 umidi_packet_bufp slot;
1816 umidi_packet_bufp end;
1817 unsigned char *data;
1818 uint32_t count;
1819
1820 if (ep->sc->sc_dying || !ep->num_open)
1821 return;
1822
1823 mutex_enter(&sc->sc_lock);
1824 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1825 if (0 == count % UMIDI_PACKET_SIZE) {
1826 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1827 device_xname(ep->sc->sc_dev), ep, count));
1828 } else {
1829 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1830 device_xname(ep->sc->sc_dev), ep, count));
1831 }
1832
1833 slot = ep->buffer;
1834 end = slot + count / sizeof(*slot);
1835
1836 for (packet = *slot; slot < end; packet = *++slot) {
1837
1838 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1839 cn = (0xf0&(packet[3]))>>4;
1840 len = 0x0f&(packet[3]);
1841 data = packet;
1842 } else {
1843 cn = GET_CN(packet[0]);
1844 len = packet_length[GET_CIN(packet[0])];
1845 data = packet + 1;
1846 }
1847 /* 0 <= cn <= 15 by inspection of above code */
1848 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1849 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1850 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1851 device_xname(ep->sc->sc_dev), ep, cn, len,
1852 (unsigned)data[0],
1853 (unsigned)data[1],
1854 (unsigned)data[2]));
1855 mutex_exit(&sc->sc_lock);
1856 return;
1857 }
1858
1859 if (!jack->bound || !jack->opened)
1860 continue;
1861
1862 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1863 "%02X %02X %02X\n",
1864 device_xname(ep->sc->sc_dev), ep, cn, len,
1865 (unsigned)data[0],
1866 (unsigned)data[1],
1867 (unsigned)data[2]));
1868
1869 if (jack->u.in.intr) {
1870 for (i = 0; i < len; i++) {
1871 (*jack->u.in.intr)(jack->arg, data[i]);
1872 }
1873 }
1874
1875 }
1876
1877 (void)start_input_transfer(ep);
1878 mutex_exit(&sc->sc_lock);
1879 }
1880
1881 static void
1882 out_intr(struct usbd_xfer *xfer, void *priv,
1883 usbd_status status)
1884 {
1885 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1886 struct umidi_softc *sc = ep->sc;
1887 uint32_t count;
1888
1889 if (sc->sc_dying)
1890 return;
1891
1892 mutex_enter(&sc->sc_lock);
1893 #ifdef UMIDI_DEBUG
1894 if (umididebug >= 200)
1895 microtime(&umidi_tv);
1896 #endif
1897 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1898 if (0 == count % UMIDI_PACKET_SIZE) {
1899 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1900 device_xname(ep->sc->sc_dev),
1901 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1902 } else {
1903 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1904 device_xname(ep->sc->sc_dev), ep, count));
1905 }
1906 count /= UMIDI_PACKET_SIZE;
1907
1908 /*
1909 * If while the transfer was pending we buffered any new messages,
1910 * move them to the start of the buffer.
1911 */
1912 ep->next_slot -= count;
1913 if (ep->buffer < ep->next_slot) {
1914 memcpy(ep->buffer, ep->buffer + count,
1915 (char *)ep->next_slot - (char *)ep->buffer);
1916 }
1917 cv_broadcast(&sc->sc_cv);
1918 /*
1919 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1920 * Running at IPL_USB so the following should happen to be safe.
1921 */
1922 ep->armed = 0;
1923 if (!ep->soliciting) {
1924 ep->soliciting = 1;
1925 out_solicit_locked(ep);
1926 }
1927 mutex_exit(&sc->sc_lock);
1928 }
1929
1930 /*
1931 * A jack on which we have received a packet must be called back on its
1932 * out.intr handler before it will send us another; it is considered
1933 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1934 * we need no extra buffer space for it.
1935 *
1936 * In contrast, a jack that is open but not scheduled may supply us a packet
1937 * at any time, driven by the top half, and we must be able to accept it, no
1938 * excuses. So we must ensure that at any point in time there are at least
1939 * (num_open - num_scheduled) slots free.
1940 *
1941 * As long as there are more slots free than that minimum, we can loop calling
1942 * scheduled jacks back on their "interrupt" handlers, soliciting more
1943 * packets, starting the USB transfer only when the buffer space is down to
1944 * the minimum or no jack has any more to send.
1945 */
1946
1947 static void
1948 out_solicit_locked(void *arg)
1949 {
1950 struct umidi_endpoint *ep = arg;
1951 umidi_packet_bufp end;
1952 uint16_t which;
1953 struct umidi_jack *jack;
1954
1955 KASSERT(mutex_owned(&ep->sc->sc_lock));
1956
1957 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1958
1959 for ( ;; ) {
1960 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1961 break; /* at IPL_USB */
1962 if (ep->this_schedule == 0) {
1963 if (ep->next_schedule == 0)
1964 break; /* at IPL_USB */
1965 ep->this_schedule = ep->next_schedule;
1966 ep->next_schedule = 0;
1967 }
1968 /*
1969 * At least one jack is scheduled. Find and mask off the least
1970 * set bit in this_schedule and decrement num_scheduled.
1971 * Convert mask to bit index to find the corresponding jack,
1972 * and call its intr handler. If it has a message, it will call
1973 * back one of the output methods, which will set its bit in
1974 * next_schedule (not copied into this_schedule until the
1975 * latter is empty). In this way we round-robin the jacks that
1976 * have messages to send, until the buffer is as full as we
1977 * dare, and then start a transfer.
1978 */
1979 which = ep->this_schedule;
1980 which &= (~which)+1; /* now mask of least set bit */
1981 ep->this_schedule &= ~which;
1982 --ep->num_scheduled;
1983
1984 --which; /* now 1s below mask - count 1s to get index */
1985 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1986 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1987 which = (((which >> 4) + which) & 0x0f0f);
1988 which += (which >> 8);
1989 which &= 0x1f; /* the bit index a/k/a jack number */
1990
1991 jack = ep->jacks[which];
1992 if (jack->u.out.intr)
1993 (*jack->u.out.intr)(jack->arg);
1994 }
1995 /* intr lock held at loop exit */
1996 if (!ep->armed && ep->next_slot > ep->buffer) {
1997 /*
1998 * Can't hold the interrupt lock while calling into USB,
1999 * but we can safely drop it here.
2000 */
2001 mutex_exit(&ep->sc->sc_lock);
2002 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
2003 mutex_enter(&ep->sc->sc_lock);
2004 }
2005 ep->soliciting = 0;
2006 }
2007
2008 /* Entry point for the softintr. */
2009 static void
2010 out_solicit(void *arg)
2011 {
2012 struct umidi_endpoint *ep = arg;
2013 struct umidi_softc *sc = ep->sc;
2014
2015 mutex_enter(&sc->sc_lock);
2016 out_solicit_locked(arg);
2017 mutex_exit(&sc->sc_lock);
2018 }
2019