umidi.c revision 1.66 1 /* $NetBSD: umidi.c,v 1.66 2014/12/21 23:00:35 mrg Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.66 2014/12/21 23:00:35 mrg Exp $");
36
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/device.h>
43 #include <sys/ioctl.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/select.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/poll.h>
50 #include <sys/intr.h>
51
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55
56 #include <dev/auconv.h>
57 #include <dev/usb/usbdevs.h>
58 #include <dev/usb/umidi_quirks.h>
59 #include <dev/midi_if.h>
60
61 /* Jack Descriptor */
62 #define UMIDI_MS_HEADER 0x01
63 #define UMIDI_IN_JACK 0x02
64 #define UMIDI_OUT_JACK 0x03
65
66 /* Jack Type */
67 #define UMIDI_EMBEDDED 0x01
68 #define UMIDI_EXTERNAL 0x02
69
70 /* generic, for iteration */
71 typedef struct {
72 uByte bLength;
73 uByte bDescriptorType;
74 uByte bDescriptorSubtype;
75 } UPACKED umidi_cs_descriptor_t;
76
77 typedef struct {
78 uByte bLength;
79 uByte bDescriptorType;
80 uByte bDescriptorSubtype;
81 uWord bcdMSC;
82 uWord wTotalLength;
83 } UPACKED umidi_cs_interface_descriptor_t;
84 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
85
86 typedef struct {
87 uByte bLength;
88 uByte bDescriptorType;
89 uByte bDescriptorSubtype;
90 uByte bNumEmbMIDIJack;
91 } UPACKED umidi_cs_endpoint_descriptor_t;
92 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
93
94 typedef struct {
95 uByte bLength;
96 uByte bDescriptorType;
97 uByte bDescriptorSubtype;
98 uByte bJackType;
99 uByte bJackID;
100 } UPACKED umidi_jack_descriptor_t;
101 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
102
103
104 #define TO_D(p) ((usb_descriptor_t *)(p))
105 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
106 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
107 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
108 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
109 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
110
111
112 #define UMIDI_PACKET_SIZE 4
113
114 /*
115 * hierarchie
116 *
117 * <-- parent child -->
118 *
119 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
120 * ^ | ^ |
121 * +-----+ +-----+
122 */
123
124 /* midi device */
125 struct umidi_mididev {
126 struct umidi_softc *sc;
127 device_t mdev;
128 /* */
129 struct umidi_jack *in_jack;
130 struct umidi_jack *out_jack;
131 char *label;
132 size_t label_len;
133 /* */
134 int opened;
135 int closing;
136 int flags;
137 };
138
139 /* Jack Information */
140 struct umidi_jack {
141 struct umidi_endpoint *endpoint;
142 /* */
143 int cable_number;
144 void *arg;
145 int bound;
146 int opened;
147 unsigned char *midiman_ppkt;
148 union {
149 struct {
150 void (*intr)(void *);
151 } out;
152 struct {
153 void (*intr)(void *, int);
154 } in;
155 } u;
156 };
157
158 #define UMIDI_MAX_EPJACKS 16
159 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
160 /* endpoint data */
161 struct umidi_endpoint {
162 struct umidi_softc *sc;
163 /* */
164 int addr;
165 usbd_pipe_handle pipe;
166 usbd_xfer_handle xfer;
167 umidi_packet_bufp buffer;
168 umidi_packet_bufp next_slot;
169 u_int32_t buffer_size;
170 int num_scheduled;
171 int num_open;
172 int num_jacks;
173 int soliciting;
174 void *solicit_cookie;
175 int armed;
176 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
177 u_int16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
178 u_int16_t next_schedule;
179 };
180
181 /* software context */
182 struct umidi_softc {
183 device_t sc_dev;
184 usbd_device_handle sc_udev;
185 usbd_interface_handle sc_iface;
186 const struct umidi_quirk *sc_quirk;
187
188 int sc_dying;
189
190 int sc_out_num_jacks;
191 struct umidi_jack *sc_out_jacks;
192 int sc_in_num_jacks;
193 struct umidi_jack *sc_in_jacks;
194 struct umidi_jack *sc_jacks;
195
196 int sc_num_mididevs;
197 struct umidi_mididev *sc_mididevs;
198
199 int sc_out_num_endpoints;
200 struct umidi_endpoint *sc_out_ep;
201 int sc_in_num_endpoints;
202 struct umidi_endpoint *sc_in_ep;
203 struct umidi_endpoint *sc_endpoints;
204 size_t sc_endpoints_len;
205 int cblnums_global;
206
207 kmutex_t sc_lock;
208 kcondvar_t sc_cv;
209 kcondvar_t sc_detach_cv;
210
211 int sc_refcnt;
212 };
213
214 #ifdef UMIDI_DEBUG
215 #define DPRINTF(x) if (umididebug) printf x
216 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
217 #include <sys/time.h>
218 static struct timeval umidi_tv;
219 int umididebug = 0;
220 #else
221 #define DPRINTF(x)
222 #define DPRINTFN(n,x)
223 #endif
224
225 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
226 (sc->sc_out_num_endpoints + \
227 sc->sc_in_num_endpoints))
228
229
230 static int umidi_open(void *, int,
231 void (*)(void *, int), void (*)(void *), void *);
232 static void umidi_close(void *);
233 static int umidi_channelmsg(void *, int, int, u_char *, int);
234 static int umidi_commonmsg(void *, int, u_char *, int);
235 static int umidi_sysex(void *, u_char *, int);
236 static int umidi_rtmsg(void *, int);
237 static void umidi_getinfo(void *, struct midi_info *);
238 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
239
240 static usbd_status alloc_pipe(struct umidi_endpoint *);
241 static void free_pipe(struct umidi_endpoint *);
242
243 static usbd_status alloc_all_endpoints(struct umidi_softc *);
244 static void free_all_endpoints(struct umidi_softc *);
245
246 static usbd_status alloc_all_jacks(struct umidi_softc *);
247 static void free_all_jacks(struct umidi_softc *);
248 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
249 struct umidi_jack *,
250 struct umidi_jack *,
251 struct umidi_mididev *);
252 static void unbind_jacks_from_mididev(struct umidi_mididev *);
253 static void unbind_all_jacks(struct umidi_softc *);
254 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
255 static usbd_status open_out_jack(struct umidi_jack *, void *,
256 void (*)(void *));
257 static usbd_status open_in_jack(struct umidi_jack *, void *,
258 void (*)(void *, int));
259 static void close_out_jack(struct umidi_jack *);
260 static void close_in_jack(struct umidi_jack *);
261
262 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
263 static usbd_status detach_mididev(struct umidi_mididev *, int);
264 static void deactivate_mididev(struct umidi_mididev *);
265 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
266 static void free_all_mididevs(struct umidi_softc *);
267 static usbd_status attach_all_mididevs(struct umidi_softc *);
268 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
269 static void deactivate_all_mididevs(struct umidi_softc *);
270 static void describe_mididev(struct umidi_mididev *);
271
272 #ifdef UMIDI_DEBUG
273 static void dump_sc(struct umidi_softc *);
274 static void dump_ep(struct umidi_endpoint *);
275 static void dump_jack(struct umidi_jack *);
276 #endif
277
278 static usbd_status start_input_transfer(struct umidi_endpoint *);
279 static usbd_status start_output_transfer(struct umidi_endpoint *);
280 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
281 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
282 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
283 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
284 static void out_solicit_locked(void *); /* pre-locked version */
285
286
287 const struct midi_hw_if umidi_hw_if = {
288 .open = umidi_open,
289 .close = umidi_close,
290 .output = umidi_rtmsg,
291 .getinfo = umidi_getinfo,
292 .get_locks = umidi_get_locks,
293 };
294
295 struct midi_hw_if_ext umidi_hw_if_ext = {
296 .channel = umidi_channelmsg,
297 .common = umidi_commonmsg,
298 .sysex = umidi_sysex,
299 };
300
301 struct midi_hw_if_ext umidi_hw_if_mm = {
302 .channel = umidi_channelmsg,
303 .common = umidi_commonmsg,
304 .sysex = umidi_sysex,
305 .compress = 1,
306 };
307
308 int umidi_match(device_t, cfdata_t, void *);
309 void umidi_attach(device_t, device_t, void *);
310 void umidi_childdet(device_t, device_t);
311 int umidi_detach(device_t, int);
312 int umidi_activate(device_t, enum devact);
313 extern struct cfdriver umidi_cd;
314 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
315 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
316
317 int
318 umidi_match(device_t parent, cfdata_t match, void *aux)
319 {
320 struct usbif_attach_arg *uaa = aux;
321
322 DPRINTFN(1,("umidi_match\n"));
323
324 if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
325 return UMATCH_IFACECLASS_IFACESUBCLASS;
326
327 if (uaa->class == UICLASS_AUDIO &&
328 uaa->subclass == UISUBCLASS_MIDISTREAM)
329 return UMATCH_IFACECLASS_IFACESUBCLASS;
330
331 return UMATCH_NONE;
332 }
333
334 void
335 umidi_attach(device_t parent, device_t self, void *aux)
336 {
337 usbd_status err;
338 struct umidi_softc *sc = device_private(self);
339 struct usbif_attach_arg *uaa = aux;
340 char *devinfop;
341
342 DPRINTFN(1,("umidi_attach\n"));
343
344 sc->sc_dev = self;
345
346 aprint_naive("\n");
347 aprint_normal("\n");
348
349 devinfop = usbd_devinfo_alloc(uaa->device, 0);
350 aprint_normal_dev(self, "%s\n", devinfop);
351 usbd_devinfo_free(devinfop);
352
353 sc->sc_iface = uaa->iface;
354 sc->sc_udev = uaa->device;
355
356 sc->sc_quirk =
357 umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
358 aprint_normal_dev(self, "");
359 umidi_print_quirk(sc->sc_quirk);
360
361 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
362 cv_init(&sc->sc_cv, "umidopcl");
363 cv_init(&sc->sc_detach_cv, "umidetcv");
364 sc->sc_refcnt = 0;
365
366 err = alloc_all_endpoints(sc);
367 if (err != USBD_NORMAL_COMPLETION) {
368 aprint_error_dev(self,
369 "alloc_all_endpoints failed. (err=%d)\n", err);
370 goto out;
371 }
372 err = alloc_all_jacks(sc);
373 if (err != USBD_NORMAL_COMPLETION) {
374 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
375 err);
376 goto out_free_endpoints;
377 }
378 aprint_normal_dev(self, "out=%d, in=%d\n",
379 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
380
381 err = assign_all_jacks_automatically(sc);
382 if (err != USBD_NORMAL_COMPLETION) {
383 aprint_error_dev(self,
384 "assign_all_jacks_automatically failed. (err=%d)\n", err);
385 goto out_free_jacks;
386 }
387 err = attach_all_mididevs(sc);
388 if (err != USBD_NORMAL_COMPLETION) {
389 goto out_free_jacks;
390 aprint_error_dev(self,
391 "attach_all_mididevs failed. (err=%d)\n", err);
392 }
393
394 #ifdef UMIDI_DEBUG
395 dump_sc(sc);
396 #endif
397
398 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
399 sc->sc_udev, sc->sc_dev);
400
401 return;
402
403 out_free_jacks:
404 unbind_all_jacks(sc);
405 free_all_jacks(sc);
406
407 out_free_endpoints:
408 free_all_endpoints(sc);
409
410 out:
411 aprint_error_dev(self, "disabled.\n");
412 sc->sc_dying = 1;
413 KERNEL_UNLOCK_ONE(curlwp);
414 return;
415 }
416
417 void
418 umidi_childdet(device_t self, device_t child)
419 {
420 int i;
421 struct umidi_softc *sc = device_private(self);
422
423 KASSERT(sc->sc_mididevs != NULL);
424
425 for (i = 0; i < sc->sc_num_mididevs; i++) {
426 if (sc->sc_mididevs[i].mdev == child)
427 break;
428 }
429 KASSERT(i < sc->sc_num_mididevs);
430 sc->sc_mididevs[i].mdev = NULL;
431 }
432
433 int
434 umidi_activate(device_t self, enum devact act)
435 {
436 struct umidi_softc *sc = device_private(self);
437
438 switch (act) {
439 case DVACT_DEACTIVATE:
440 DPRINTFN(1,("umidi_activate (deactivate)\n"));
441 sc->sc_dying = 1;
442 deactivate_all_mididevs(sc);
443 return 0;
444 default:
445 DPRINTFN(1,("umidi_activate (%d)\n", act));
446 return EOPNOTSUPP;
447 }
448 }
449
450 int
451 umidi_detach(device_t self, int flags)
452 {
453 struct umidi_softc *sc = device_private(self);
454
455 DPRINTFN(1,("umidi_detach\n"));
456
457 mutex_enter(&sc->sc_lock);
458 sc->sc_dying = 1;
459 if (--sc->sc_refcnt >= 0)
460 usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
461 mutex_exit(&sc->sc_lock);
462
463 detach_all_mididevs(sc, flags);
464 free_all_mididevs(sc);
465 free_all_jacks(sc);
466 free_all_endpoints(sc);
467
468 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
469 sc->sc_dev);
470
471 mutex_destroy(&sc->sc_lock);
472 cv_destroy(&sc->sc_detach_cv);
473 cv_destroy(&sc->sc_cv);
474
475 return 0;
476 }
477
478
479 /*
480 * midi_if stuffs
481 */
482 int
483 umidi_open(void *addr,
484 int flags,
485 void (*iintr)(void *, int),
486 void (*ointr)(void *),
487 void *arg)
488 {
489 struct umidi_mididev *mididev = addr;
490 struct umidi_softc *sc = mididev->sc;
491 usbd_status err;
492
493 KASSERT(mutex_owned(&sc->sc_lock));
494 DPRINTF(("umidi_open: sc=%p\n", sc));
495
496 if (!sc)
497 return ENXIO;
498 if (mididev->opened)
499 return EBUSY;
500 if (sc->sc_dying)
501 return EIO;
502
503 mididev->opened = 1;
504 mididev->flags = flags;
505 if ((mididev->flags & FWRITE) && mididev->out_jack) {
506 err = open_out_jack(mididev->out_jack, arg, ointr);
507 if (err != USBD_NORMAL_COMPLETION)
508 goto bad;
509 }
510 if ((mididev->flags & FREAD) && mididev->in_jack) {
511 err = open_in_jack(mididev->in_jack, arg, iintr);
512 KASSERT(mididev->opened);
513 if (err != USBD_NORMAL_COMPLETION &&
514 err != USBD_IN_PROGRESS) {
515 close_out_jack(mididev->out_jack);
516 goto bad;
517 }
518 }
519
520 return 0;
521 bad:
522 mididev->opened = 0;
523 DPRINTF(("umidi_open: usbd_status %d\n", err));
524 KASSERT(mutex_owned(&sc->sc_lock));
525 return USBD_IN_USE == err ? EBUSY : EIO;
526 }
527
528 void
529 umidi_close(void *addr)
530 {
531 struct umidi_mididev *mididev = addr;
532 struct umidi_softc *sc = mididev->sc;
533
534 KASSERT(mutex_owned(&sc->sc_lock));
535
536 if (mididev->closing)
537 return;
538
539 mididev->closing = 1;
540
541 sc->sc_refcnt++;
542
543 if ((mididev->flags & FWRITE) && mididev->out_jack)
544 close_out_jack(mididev->out_jack);
545 if ((mididev->flags & FREAD) && mididev->in_jack)
546 close_in_jack(mididev->in_jack);
547
548 if (--sc->sc_refcnt < 0)
549 usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
550
551 mididev->opened = 0;
552 mididev->closing = 0;
553 }
554
555 int
556 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
557 int len)
558 {
559 struct umidi_mididev *mididev = addr;
560
561 KASSERT(mutex_owned(&mididev->sc->sc_lock));
562
563 if (!mididev->out_jack || !mididev->opened || mididev->closing)
564 return EIO;
565
566 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
567 }
568
569 int
570 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
571 {
572 struct umidi_mididev *mididev = addr;
573 int cin;
574
575 KASSERT(mutex_owned(&mididev->sc->sc_lock));
576
577 if (!mididev->out_jack || !mididev->opened || mididev->closing)
578 return EIO;
579
580 switch ( len ) {
581 case 1: cin = 5; break;
582 case 2: cin = 2; break;
583 case 3: cin = 3; break;
584 default: return EIO; /* or gcc warns of cin uninitialized */
585 }
586
587 return out_jack_output(mididev->out_jack, msg, len, cin);
588 }
589
590 int
591 umidi_sysex(void *addr, u_char *msg, int len)
592 {
593 struct umidi_mididev *mididev = addr;
594 int cin;
595
596 KASSERT(mutex_owned(&mididev->sc->sc_lock));
597
598 if (!mididev->out_jack || !mididev->opened || mididev->closing)
599 return EIO;
600
601 switch ( len ) {
602 case 1: cin = 5; break;
603 case 2: cin = 6; break;
604 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
605 default: return EIO; /* or gcc warns of cin uninitialized */
606 }
607
608 return out_jack_output(mididev->out_jack, msg, len, cin);
609 }
610
611 int
612 umidi_rtmsg(void *addr, int d)
613 {
614 struct umidi_mididev *mididev = addr;
615 u_char msg = d;
616
617 KASSERT(mutex_owned(&mididev->sc->sc_lock));
618
619 if (!mididev->out_jack || !mididev->opened || mididev->closing)
620 return EIO;
621
622 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
623 }
624
625 void
626 umidi_getinfo(void *addr, struct midi_info *mi)
627 {
628 struct umidi_mididev *mididev = addr;
629 struct umidi_softc *sc = mididev->sc;
630 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
631
632 KASSERT(mutex_owned(&sc->sc_lock));
633
634 mi->name = mididev->label;
635 mi->props = MIDI_PROP_OUT_INTR;
636 if (mididev->in_jack)
637 mi->props |= MIDI_PROP_CAN_INPUT;
638 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
639 }
640
641 static void
642 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
643 {
644 struct umidi_mididev *mididev = addr;
645 struct umidi_softc *sc = mididev->sc;
646
647 *intr = NULL;
648 *thread = &sc->sc_lock;
649 }
650
651 /*
652 * each endpoint stuffs
653 */
654
655 /* alloc/free pipe */
656 static usbd_status
657 alloc_pipe(struct umidi_endpoint *ep)
658 {
659 struct umidi_softc *sc = ep->sc;
660 usbd_status err;
661 usb_endpoint_descriptor_t *epd;
662
663 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
664 /*
665 * For output, an improvement would be to have a buffer bigger than
666 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
667 * allow out_solicit to fill the buffer to the full packet size in
668 * all cases. But to use usbd_alloc_buffer to get a slightly larger
669 * buffer would not be a good way to do that, because if the addition
670 * would make the buffer exceed USB_MEM_SMALL then a substantially
671 * larger block may be wastefully allocated. Some flavor of double
672 * buffering could serve the same purpose, but would increase the
673 * code complexity, so for now I will live with the current slight
674 * penalty of reducing max transfer size by (num_open-num_scheduled)
675 * packet slots.
676 */
677 ep->buffer_size = UGETW(epd->wMaxPacketSize);
678 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
679
680 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
681 device_xname(sc->sc_dev), ep, ep->buffer_size));
682 ep->num_scheduled = 0;
683 ep->this_schedule = 0;
684 ep->next_schedule = 0;
685 ep->soliciting = 0;
686 ep->armed = 0;
687 ep->xfer = usbd_alloc_xfer(sc->sc_udev);
688 if (ep->xfer == NULL) {
689 err = USBD_NOMEM;
690 goto quit;
691 }
692 ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
693 if (ep->buffer == NULL) {
694 usbd_free_xfer(ep->xfer);
695 err = USBD_NOMEM;
696 goto quit;
697 }
698 ep->next_slot = ep->buffer;
699 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
700 if (err)
701 usbd_free_xfer(ep->xfer);
702 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, out_solicit, ep);
703 quit:
704 return err;
705 }
706
707 static void
708 free_pipe(struct umidi_endpoint *ep)
709 {
710 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
711 usbd_abort_pipe(ep->pipe);
712 usbd_close_pipe(ep->pipe);
713 usbd_free_xfer(ep->xfer);
714 softint_disestablish(ep->solicit_cookie);
715 }
716
717
718 /* alloc/free the array of endpoint structures */
719
720 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
722 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
723
724 static usbd_status
725 alloc_all_endpoints(struct umidi_softc *sc)
726 {
727 usbd_status err;
728 struct umidi_endpoint *ep;
729 int i;
730
731 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
732 err = alloc_all_endpoints_fixed_ep(sc);
733 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
734 err = alloc_all_endpoints_yamaha(sc);
735 } else {
736 err = alloc_all_endpoints_genuine(sc);
737 }
738 if (err != USBD_NORMAL_COMPLETION)
739 return err;
740
741 ep = sc->sc_endpoints;
742 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
743 err = alloc_pipe(ep++);
744 if (err != USBD_NORMAL_COMPLETION) {
745 for (; ep != sc->sc_endpoints; ep--)
746 free_pipe(ep-1);
747 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
748 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
749 break;
750 }
751 }
752 return err;
753 }
754
755 static void
756 free_all_endpoints(struct umidi_softc *sc)
757 {
758 int i;
759
760 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
761 free_pipe(&sc->sc_endpoints[i]);
762 if (sc->sc_endpoints != NULL)
763 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
764 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
765 }
766
767 static usbd_status
768 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
769 {
770 usbd_status err;
771 const struct umq_fixed_ep_desc *fp;
772 struct umidi_endpoint *ep;
773 usb_endpoint_descriptor_t *epd;
774 int i;
775
776 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
777 UMQ_TYPE_FIXED_EP);
778 sc->sc_out_num_jacks = 0;
779 sc->sc_in_num_jacks = 0;
780 sc->sc_out_num_endpoints = fp->num_out_ep;
781 sc->sc_in_num_endpoints = fp->num_in_ep;
782 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
783 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
784 if (!sc->sc_endpoints)
785 return USBD_NOMEM;
786
787 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
788 sc->sc_in_ep =
789 sc->sc_in_num_endpoints ?
790 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
791
792 ep = &sc->sc_out_ep[0];
793 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
794 epd = usbd_interface2endpoint_descriptor(
795 sc->sc_iface,
796 fp->out_ep[i].ep);
797 if (!epd) {
798 aprint_error_dev(sc->sc_dev,
799 "cannot get endpoint descriptor(out:%d)\n",
800 fp->out_ep[i].ep);
801 err = USBD_INVAL;
802 goto error;
803 }
804 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
805 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
806 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
807 fp->out_ep[i].ep);
808 err = USBD_INVAL;
809 goto error;
810 }
811 ep->sc = sc;
812 ep->addr = epd->bEndpointAddress;
813 ep->num_jacks = fp->out_ep[i].num_jacks;
814 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
815 ep->num_open = 0;
816 ep++;
817 }
818 ep = &sc->sc_in_ep[0];
819 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
820 epd = usbd_interface2endpoint_descriptor(
821 sc->sc_iface,
822 fp->in_ep[i].ep);
823 if (!epd) {
824 aprint_error_dev(sc->sc_dev,
825 "cannot get endpoint descriptor(in:%d)\n",
826 fp->in_ep[i].ep);
827 err = USBD_INVAL;
828 goto error;
829 }
830 /*
831 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
832 * endpoint. The existing input logic in this driver seems
833 * to work successfully if we just stop treating an interrupt
834 * endpoint as illegal (or the in_progress status we get on
835 * the initial transfer). It does not seem necessary to
836 * actually use the interrupt flavor of alloc_pipe or make
837 * other serious rearrangements of logic. I like that.
838 */
839 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
840 case UE_BULK:
841 case UE_INTERRUPT:
842 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
843 break;
844 /*FALLTHROUGH*/
845 default:
846 aprint_error_dev(sc->sc_dev,
847 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
848 err = USBD_INVAL;
849 goto error;
850 }
851
852 ep->sc = sc;
853 ep->addr = epd->bEndpointAddress;
854 ep->num_jacks = fp->in_ep[i].num_jacks;
855 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
856 ep->num_open = 0;
857 ep++;
858 }
859
860 return USBD_NORMAL_COMPLETION;
861 error:
862 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
863 sc->sc_endpoints = NULL;
864 return err;
865 }
866
867 static usbd_status
868 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
869 {
870 /* This driver currently supports max 1in/1out bulk endpoints */
871 usb_descriptor_t *desc;
872 umidi_cs_descriptor_t *udesc;
873 usb_endpoint_descriptor_t *epd;
874 int out_addr, in_addr, i;
875 int dir;
876 size_t remain, descsize;
877
878 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
879 out_addr = in_addr = 0;
880
881 /* detect endpoints */
882 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
883 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
884 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
885 KASSERT(epd != NULL);
886 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
887 dir = UE_GET_DIR(epd->bEndpointAddress);
888 if (dir==UE_DIR_OUT && !out_addr)
889 out_addr = epd->bEndpointAddress;
890 else if (dir==UE_DIR_IN && !in_addr)
891 in_addr = epd->bEndpointAddress;
892 }
893 }
894 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
895
896 /* count jacks */
897 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
898 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
899 return USBD_INVAL;
900 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
901 (size_t)udesc->bLength;
902 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
903
904 while (remain >= sizeof(usb_descriptor_t)) {
905 descsize = udesc->bLength;
906 if (descsize>remain || descsize==0)
907 break;
908 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
909 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
910 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
911 sc->sc_out_num_jacks++;
912 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
913 sc->sc_in_num_jacks++;
914 }
915 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
916 remain -= descsize;
917 }
918
919 /* validate some parameters */
920 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
921 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
922 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
923 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
924 if (sc->sc_out_num_jacks && out_addr) {
925 sc->sc_out_num_endpoints = 1;
926 } else {
927 sc->sc_out_num_endpoints = 0;
928 sc->sc_out_num_jacks = 0;
929 }
930 if (sc->sc_in_num_jacks && in_addr) {
931 sc->sc_in_num_endpoints = 1;
932 } else {
933 sc->sc_in_num_endpoints = 0;
934 sc->sc_in_num_jacks = 0;
935 }
936 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
937 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
938 if (!sc->sc_endpoints)
939 return USBD_NOMEM;
940 if (sc->sc_out_num_endpoints) {
941 sc->sc_out_ep = sc->sc_endpoints;
942 sc->sc_out_ep->sc = sc;
943 sc->sc_out_ep->addr = out_addr;
944 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
945 sc->sc_out_ep->num_open = 0;
946 } else
947 sc->sc_out_ep = NULL;
948
949 if (sc->sc_in_num_endpoints) {
950 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
951 sc->sc_in_ep->sc = sc;
952 sc->sc_in_ep->addr = in_addr;
953 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
954 sc->sc_in_ep->num_open = 0;
955 } else
956 sc->sc_in_ep = NULL;
957
958 return USBD_NORMAL_COMPLETION;
959 }
960
961 static usbd_status
962 alloc_all_endpoints_genuine(struct umidi_softc *sc)
963 {
964 usb_interface_descriptor_t *interface_desc;
965 usb_config_descriptor_t *config_desc;
966 usb_descriptor_t *desc;
967 int num_ep;
968 size_t remain, descsize;
969 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
970 int epaddr;
971
972 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
973 num_ep = interface_desc->bNumEndpoints;
974 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
975 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
976 if (!p)
977 return USBD_NOMEM;
978
979 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
980 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
981 epaddr = -1;
982
983 /* get the list of endpoints for midi stream */
984 config_desc = usbd_get_config_descriptor(sc->sc_udev);
985 desc = (usb_descriptor_t *) config_desc;
986 remain = (size_t)UGETW(config_desc->wTotalLength);
987 while (remain>=sizeof(usb_descriptor_t)) {
988 descsize = desc->bLength;
989 if (descsize>remain || descsize==0)
990 break;
991 if (desc->bDescriptorType==UDESC_ENDPOINT &&
992 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
993 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
994 epaddr = TO_EPD(desc)->bEndpointAddress;
995 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
996 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
997 epaddr!=-1) {
998 if (num_ep>0) {
999 num_ep--;
1000 p->sc = sc;
1001 p->addr = epaddr;
1002 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1003 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1004 sc->sc_out_num_endpoints++;
1005 sc->sc_out_num_jacks += p->num_jacks;
1006 } else {
1007 sc->sc_in_num_endpoints++;
1008 sc->sc_in_num_jacks += p->num_jacks;
1009 }
1010 p++;
1011 }
1012 } else
1013 epaddr = -1;
1014 desc = NEXT_D(desc);
1015 remain-=descsize;
1016 }
1017
1018 /* sort endpoints */
1019 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1020 p = sc->sc_endpoints;
1021 endep = p + num_ep;
1022 while (p<endep) {
1023 lowest = p;
1024 for (q=p+1; q<endep; q++) {
1025 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1026 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1027 ((UE_GET_DIR(lowest->addr)==
1028 UE_GET_DIR(q->addr)) &&
1029 (UE_GET_ADDR(lowest->addr)>
1030 UE_GET_ADDR(q->addr))))
1031 lowest = q;
1032 }
1033 if (lowest != p) {
1034 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1035 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1036 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1037 }
1038 p->num_open = 0;
1039 p++;
1040 }
1041
1042 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1043 sc->sc_in_ep =
1044 sc->sc_in_num_endpoints ?
1045 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1046
1047 return USBD_NORMAL_COMPLETION;
1048 }
1049
1050
1051 /*
1052 * jack stuffs
1053 */
1054
1055 static usbd_status
1056 alloc_all_jacks(struct umidi_softc *sc)
1057 {
1058 int i, j;
1059 struct umidi_endpoint *ep;
1060 struct umidi_jack *jack;
1061 const unsigned char *cn_spec;
1062
1063 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1064 sc->cblnums_global = 0;
1065 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1066 sc->cblnums_global = 1;
1067 else {
1068 /*
1069 * I don't think this default is correct, but it preserves
1070 * the prior behavior of the code. That's why I defined two
1071 * complementary quirks. Any device for which the default
1072 * behavior is wrong can be made to work by giving it an
1073 * explicit quirk, and if a pattern ever develops (as I suspect
1074 * it will) that a lot of otherwise standard USB MIDI devices
1075 * need the CN_SEQ_PER_EP "quirk," then this default can be
1076 * changed to 0, and the only devices that will break are those
1077 * listing neither quirk, and they'll easily be fixed by giving
1078 * them the CN_SEQ_GLOBAL quirk.
1079 */
1080 sc->cblnums_global = 1;
1081 }
1082
1083 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1084 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1085 UMQ_TYPE_CN_FIXED);
1086 else
1087 cn_spec = NULL;
1088
1089 /* allocate/initialize structures */
1090 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
1091 sc->sc_out_num_jacks), KM_SLEEP);
1092 if (!sc->sc_jacks)
1093 return USBD_NOMEM;
1094 sc->sc_out_jacks =
1095 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1096 sc->sc_in_jacks =
1097 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1098
1099 jack = &sc->sc_out_jacks[0];
1100 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1101 jack->opened = 0;
1102 jack->bound = 0;
1103 jack->arg = NULL;
1104 jack->u.out.intr = NULL;
1105 jack->midiman_ppkt = NULL;
1106 if (sc->cblnums_global)
1107 jack->cable_number = i;
1108 jack++;
1109 }
1110 jack = &sc->sc_in_jacks[0];
1111 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1112 jack->opened = 0;
1113 jack->bound = 0;
1114 jack->arg = NULL;
1115 jack->u.in.intr = NULL;
1116 if (sc->cblnums_global)
1117 jack->cable_number = i;
1118 jack++;
1119 }
1120
1121 /* assign each jacks to each endpoints */
1122 jack = &sc->sc_out_jacks[0];
1123 ep = &sc->sc_out_ep[0];
1124 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1125 for (j = 0; j < ep->num_jacks; j++) {
1126 jack->endpoint = ep;
1127 if (cn_spec != NULL)
1128 jack->cable_number = *cn_spec++;
1129 else if (!sc->cblnums_global)
1130 jack->cable_number = j;
1131 ep->jacks[jack->cable_number] = jack;
1132 jack++;
1133 }
1134 ep++;
1135 }
1136 jack = &sc->sc_in_jacks[0];
1137 ep = &sc->sc_in_ep[0];
1138 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1139 for (j = 0; j < ep->num_jacks; j++) {
1140 jack->endpoint = ep;
1141 if (cn_spec != NULL)
1142 jack->cable_number = *cn_spec++;
1143 else if (!sc->cblnums_global)
1144 jack->cable_number = j;
1145 ep->jacks[jack->cable_number] = jack;
1146 jack++;
1147 }
1148 ep++;
1149 }
1150
1151 return USBD_NORMAL_COMPLETION;
1152 }
1153
1154 static void
1155 free_all_jacks(struct umidi_softc *sc)
1156 {
1157 struct umidi_jack *jacks;
1158 size_t len;
1159
1160 mutex_enter(&sc->sc_lock);
1161 jacks = sc->sc_jacks;
1162 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
1163 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1164 mutex_exit(&sc->sc_lock);
1165
1166 if (jacks)
1167 kmem_free(jacks, len);
1168 }
1169
1170 static usbd_status
1171 bind_jacks_to_mididev(struct umidi_softc *sc,
1172 struct umidi_jack *out_jack,
1173 struct umidi_jack *in_jack,
1174 struct umidi_mididev *mididev)
1175 {
1176 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1177 return USBD_IN_USE;
1178 if (mididev->out_jack || mididev->in_jack)
1179 return USBD_IN_USE;
1180
1181 if (out_jack)
1182 out_jack->bound = 1;
1183 if (in_jack)
1184 in_jack->bound = 1;
1185 mididev->in_jack = in_jack;
1186 mididev->out_jack = out_jack;
1187
1188 mididev->closing = 0;
1189
1190 return USBD_NORMAL_COMPLETION;
1191 }
1192
1193 static void
1194 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1195 {
1196 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1197
1198 mididev->closing = 1;
1199
1200 if ((mididev->flags & FWRITE) && mididev->out_jack)
1201 close_out_jack(mididev->out_jack);
1202 if ((mididev->flags & FREAD) && mididev->in_jack)
1203 close_in_jack(mididev->in_jack);
1204
1205 if (mididev->out_jack) {
1206 mididev->out_jack->bound = 0;
1207 mididev->out_jack = NULL;
1208 }
1209 if (mididev->in_jack) {
1210 mididev->in_jack->bound = 0;
1211 mididev->in_jack = NULL;
1212 }
1213 }
1214
1215 static void
1216 unbind_all_jacks(struct umidi_softc *sc)
1217 {
1218 int i;
1219
1220 mutex_spin_enter(&sc->sc_lock);
1221 if (sc->sc_mididevs)
1222 for (i = 0; i < sc->sc_num_mididevs; i++)
1223 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1224 mutex_spin_exit(&sc->sc_lock);
1225 }
1226
1227 static usbd_status
1228 assign_all_jacks_automatically(struct umidi_softc *sc)
1229 {
1230 usbd_status err;
1231 int i;
1232 struct umidi_jack *out, *in;
1233 const signed char *asg_spec;
1234
1235 err =
1236 alloc_all_mididevs(sc,
1237 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1238 if (err!=USBD_NORMAL_COMPLETION)
1239 return err;
1240
1241 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1242 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1243 UMQ_TYPE_MD_FIXED);
1244 else
1245 asg_spec = NULL;
1246
1247 for (i = 0; i < sc->sc_num_mididevs; i++) {
1248 if (asg_spec != NULL) {
1249 if (*asg_spec == -1)
1250 out = NULL;
1251 else
1252 out = &sc->sc_out_jacks[*asg_spec];
1253 ++ asg_spec;
1254 if (*asg_spec == -1)
1255 in = NULL;
1256 else
1257 in = &sc->sc_in_jacks[*asg_spec];
1258 ++ asg_spec;
1259 } else {
1260 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1261 : NULL;
1262 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1263 : NULL;
1264 }
1265 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1266 if (err != USBD_NORMAL_COMPLETION) {
1267 free_all_mididevs(sc);
1268 return err;
1269 }
1270 }
1271
1272 return USBD_NORMAL_COMPLETION;
1273 }
1274
1275 static usbd_status
1276 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1277 {
1278 struct umidi_endpoint *ep = jack->endpoint;
1279 struct umidi_softc *sc = ep->sc;
1280 umidi_packet_bufp end;
1281 int err;
1282
1283 KASSERT(mutex_owned(&sc->sc_lock));
1284
1285 if (jack->opened)
1286 return USBD_IN_USE;
1287
1288 jack->arg = arg;
1289 jack->u.out.intr = intr;
1290 jack->midiman_ppkt = NULL;
1291 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1292 jack->opened = 1;
1293 ep->num_open++;
1294 /*
1295 * out_solicit maintains an invariant that there will always be
1296 * (num_open - num_scheduled) slots free in the buffer. as we have
1297 * just incremented num_open, the buffer may be too full to satisfy
1298 * the invariant until a transfer completes, for which we must wait.
1299 */
1300 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1301 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1302 mstohz(10));
1303 if (err) {
1304 ep->num_open--;
1305 jack->opened = 0;
1306 return USBD_IOERROR;
1307 }
1308 }
1309
1310 return USBD_NORMAL_COMPLETION;
1311 }
1312
1313 static usbd_status
1314 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1315 {
1316 usbd_status err = USBD_NORMAL_COMPLETION;
1317 struct umidi_endpoint *ep = jack->endpoint;
1318
1319 KASSERT(mutex_owned(&ep->sc->sc_lock));
1320
1321 if (jack->opened)
1322 return USBD_IN_USE;
1323
1324 jack->arg = arg;
1325 jack->u.in.intr = intr;
1326 jack->opened = 1;
1327 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1328 /*
1329 * Can't hold the interrupt lock while calling into USB,
1330 * but we can safely drop it here.
1331 */
1332 mutex_exit(&ep->sc->sc_lock);
1333 err = start_input_transfer(ep);
1334 if (err != USBD_NORMAL_COMPLETION &&
1335 err != USBD_IN_PROGRESS) {
1336 ep->num_open--;
1337 }
1338 mutex_enter(&ep->sc->sc_lock);
1339 }
1340
1341 return err;
1342 }
1343
1344 static void
1345 close_out_jack(struct umidi_jack *jack)
1346 {
1347 struct umidi_endpoint *ep;
1348 struct umidi_softc *sc;
1349 u_int16_t mask;
1350 int err;
1351
1352 if (jack->opened) {
1353 ep = jack->endpoint;
1354 sc = ep->sc;
1355
1356 KASSERT(mutex_owned(&sc->sc_lock));
1357 mask = 1 << (jack->cable_number);
1358 while (mask & (ep->this_schedule | ep->next_schedule)) {
1359 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1360 mstohz(10));
1361 if (err)
1362 break;
1363 }
1364 /*
1365 * We can re-enter this function from both close() and
1366 * detach(). Make sure only one of them does this part.
1367 */
1368 if (jack->opened) {
1369 jack->opened = 0;
1370 jack->endpoint->num_open--;
1371 ep->this_schedule &= ~mask;
1372 ep->next_schedule &= ~mask;
1373 }
1374 }
1375 }
1376
1377 static void
1378 close_in_jack(struct umidi_jack *jack)
1379 {
1380 if (jack->opened) {
1381 struct umidi_softc *sc = jack->endpoint->sc;
1382
1383 KASSERT(mutex_owned(&sc->sc_lock));
1384
1385 jack->opened = 0;
1386 if (--jack->endpoint->num_open == 0) {
1387 /*
1388 * We have to drop the (interrupt) lock so that
1389 * the USB thread lock can be safely taken by
1390 * the abort operation. This is safe as this
1391 * either closing or dying will be set proerly.
1392 */
1393 mutex_spin_exit(&sc->sc_lock);
1394 usbd_abort_pipe(jack->endpoint->pipe);
1395 mutex_spin_enter(&sc->sc_lock);
1396 }
1397 }
1398 }
1399
1400 static usbd_status
1401 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1402 {
1403 if (mididev->sc)
1404 return USBD_IN_USE;
1405
1406 mididev->sc = sc;
1407
1408 describe_mididev(mididev);
1409
1410 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1411
1412 return USBD_NORMAL_COMPLETION;
1413 }
1414
1415 static usbd_status
1416 detach_mididev(struct umidi_mididev *mididev, int flags)
1417 {
1418 struct umidi_softc *sc = mididev->sc;
1419
1420 if (!sc)
1421 return USBD_NO_ADDR;
1422
1423 mutex_spin_enter(&sc->sc_lock);
1424 if (mididev->opened) {
1425 umidi_close(mididev);
1426 }
1427 unbind_jacks_from_mididev(mididev);
1428 mutex_spin_exit(&sc->sc_lock);
1429
1430 if (mididev->mdev != NULL)
1431 config_detach(mididev->mdev, flags);
1432
1433 if (NULL != mididev->label) {
1434 kmem_free(mididev->label, mididev->label_len);
1435 mididev->label = NULL;
1436 }
1437
1438 mididev->sc = NULL;
1439
1440 return USBD_NORMAL_COMPLETION;
1441 }
1442
1443 static void
1444 deactivate_mididev(struct umidi_mididev *mididev)
1445 {
1446 if (mididev->out_jack)
1447 mididev->out_jack->bound = 0;
1448 if (mididev->in_jack)
1449 mididev->in_jack->bound = 0;
1450 }
1451
1452 static usbd_status
1453 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1454 {
1455 sc->sc_num_mididevs = nmidi;
1456 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1457 if (!sc->sc_mididevs)
1458 return USBD_NOMEM;
1459
1460 return USBD_NORMAL_COMPLETION;
1461 }
1462
1463 static void
1464 free_all_mididevs(struct umidi_softc *sc)
1465 {
1466 struct umidi_mididev *mididevs;
1467 size_t len;
1468
1469 mutex_enter(&sc->sc_lock);
1470 mididevs = sc->sc_mididevs;
1471 if (mididevs)
1472 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1473 sc->sc_mididevs = NULL;
1474 sc->sc_num_mididevs = 0;
1475 mutex_exit(&sc->sc_lock);
1476
1477 if (mididevs)
1478 kmem_free(mididevs, len);
1479 }
1480
1481 static usbd_status
1482 attach_all_mididevs(struct umidi_softc *sc)
1483 {
1484 usbd_status err;
1485 int i;
1486
1487 if (sc->sc_mididevs)
1488 for (i = 0; i < sc->sc_num_mididevs; i++) {
1489 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1490 if (err != USBD_NORMAL_COMPLETION)
1491 return err;
1492 }
1493
1494 return USBD_NORMAL_COMPLETION;
1495 }
1496
1497 static usbd_status
1498 detach_all_mididevs(struct umidi_softc *sc, int flags)
1499 {
1500 usbd_status err;
1501 int i;
1502
1503 if (sc->sc_mididevs)
1504 for (i = 0; i < sc->sc_num_mididevs; i++) {
1505 err = detach_mididev(&sc->sc_mididevs[i], flags);
1506 if (err != USBD_NORMAL_COMPLETION)
1507 return err;
1508 }
1509
1510 return USBD_NORMAL_COMPLETION;
1511 }
1512
1513 static void
1514 deactivate_all_mididevs(struct umidi_softc *sc)
1515 {
1516 int i;
1517
1518 if (sc->sc_mididevs) {
1519 for (i = 0; i < sc->sc_num_mididevs; i++)
1520 deactivate_mididev(&sc->sc_mididevs[i]);
1521 }
1522 }
1523
1524 /*
1525 * TODO: the 0-based cable numbers will often not match the labeling of the
1526 * equipment. Ideally:
1527 * For class-compliant devices: get the iJack string from the jack descriptor.
1528 * Otherwise:
1529 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1530 * number for display)
1531 * - support an array quirk explictly giving a char * for each jack.
1532 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1533 * the CNs are not globally unique, each is shown with its associated endpoint
1534 * address in hex also. That should not be necessary when using iJack values
1535 * or a quirk array.
1536 */
1537 void
1538 describe_mididev(struct umidi_mididev *md)
1539 {
1540 char in_label[16];
1541 char out_label[16];
1542 const char *unit_label;
1543 char *final_label;
1544 struct umidi_softc *sc;
1545 int show_ep_in;
1546 int show_ep_out;
1547 size_t len;
1548
1549 sc = md->sc;
1550 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1551 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1552
1553 if (NULL == md->in_jack)
1554 in_label[0] = '\0';
1555 else if (show_ep_in)
1556 snprintf(in_label, sizeof in_label, "<%d(%x) ",
1557 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1558 else
1559 snprintf(in_label, sizeof in_label, "<%d ",
1560 md->in_jack->cable_number);
1561
1562 if (NULL == md->out_jack)
1563 out_label[0] = '\0';
1564 else if (show_ep_out)
1565 snprintf(out_label, sizeof out_label, ">%d(%x) ",
1566 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1567 else
1568 snprintf(out_label, sizeof out_label, ">%d ",
1569 md->out_jack->cable_number);
1570
1571 unit_label = device_xname(sc->sc_dev);
1572
1573 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1574
1575 final_label = kmem_alloc(len, KM_SLEEP);
1576
1577 snprintf(final_label, len, "%s%son %s",
1578 in_label, out_label, unit_label);
1579
1580 md->label = final_label;
1581 md->label_len = len;
1582 }
1583
1584 #ifdef UMIDI_DEBUG
1585 static void
1586 dump_sc(struct umidi_softc *sc)
1587 {
1588 int i;
1589
1590 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1591 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1592 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1593 dump_ep(&sc->sc_out_ep[i]);
1594 }
1595 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1596 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1597 dump_ep(&sc->sc_in_ep[i]);
1598 }
1599 }
1600
1601 static void
1602 dump_ep(struct umidi_endpoint *ep)
1603 {
1604 int i;
1605 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1606 if (NULL==ep->jacks[i])
1607 continue;
1608 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1609 dump_jack(ep->jacks[i]);
1610 }
1611 }
1612 static void
1613 dump_jack(struct umidi_jack *jack)
1614 {
1615 DPRINTFN(10, ("\t\t\tep=%p\n",
1616 jack->endpoint));
1617 }
1618
1619 #endif /* UMIDI_DEBUG */
1620
1621
1622
1623 /*
1624 * MUX MIDI PACKET
1625 */
1626
1627 static const int packet_length[16] = {
1628 /*0*/ -1,
1629 /*1*/ -1,
1630 /*2*/ 2,
1631 /*3*/ 3,
1632 /*4*/ 3,
1633 /*5*/ 1,
1634 /*6*/ 2,
1635 /*7*/ 3,
1636 /*8*/ 3,
1637 /*9*/ 3,
1638 /*A*/ 3,
1639 /*B*/ 3,
1640 /*C*/ 2,
1641 /*D*/ 2,
1642 /*E*/ 3,
1643 /*F*/ 1,
1644 };
1645
1646 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1647 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1648 #define MIX_CN_CIN(cn, cin) \
1649 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1650 ((unsigned char)(cin)&0x0F)))
1651
1652 static usbd_status
1653 start_input_transfer(struct umidi_endpoint *ep)
1654 {
1655 usbd_setup_xfer(ep->xfer, ep->pipe,
1656 (usbd_private_handle)ep,
1657 ep->buffer, ep->buffer_size,
1658 USBD_SHORT_XFER_OK | USBD_NO_COPY,
1659 USBD_NO_TIMEOUT, in_intr);
1660 return usbd_transfer(ep->xfer);
1661 }
1662
1663 static usbd_status
1664 start_output_transfer(struct umidi_endpoint *ep)
1665 {
1666 usbd_status rv;
1667 u_int32_t length;
1668 int i;
1669
1670 length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1671 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1672 ep->buffer, ep->next_slot, length));
1673 usbd_setup_xfer(ep->xfer, ep->pipe,
1674 (usbd_private_handle)ep,
1675 ep->buffer, length,
1676 USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1677 rv = usbd_transfer(ep->xfer);
1678
1679 /*
1680 * Once the transfer is scheduled, no more adding to partial
1681 * packets within it.
1682 */
1683 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1684 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1685 if (NULL != ep->jacks[i])
1686 ep->jacks[i]->midiman_ppkt = NULL;
1687 }
1688
1689 return rv;
1690 }
1691
1692 #ifdef UMIDI_DEBUG
1693 #define DPR_PACKET(dir, sc, p) \
1694 if ((unsigned char)(p)[1]!=0xFE) \
1695 DPRINTFN(500, \
1696 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1697 device_xname(sc->sc_dev), \
1698 (unsigned char)(p)[0], \
1699 (unsigned char)(p)[1], \
1700 (unsigned char)(p)[2], \
1701 (unsigned char)(p)[3]));
1702 #else
1703 #define DPR_PACKET(dir, sc, p)
1704 #endif
1705
1706 /*
1707 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1708 * with the cable number and length in the last byte instead of the first,
1709 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1710 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1711 * with a cable nybble and a length nybble (which, unlike the CIN of a
1712 * real USB MIDI packet, has no semantics at all besides the length).
1713 * A packet received from a Midiman may contain part of a MIDI message,
1714 * more than one MIDI message, or parts of more than one MIDI message. A
1715 * three-byte MIDI message may arrive in three packets of data length 1, and
1716 * running status may be used. Happily, the midi(4) driver above us will put
1717 * it all back together, so the only cost is in USB bandwidth. The device
1718 * has an easier time with what it receives from us: we'll pack messages in
1719 * and across packets, but filling the packets whenever possible and,
1720 * as midi(4) hands us a complete message at a time, we'll never send one
1721 * in a dribble of short packets.
1722 */
1723
1724 static int
1725 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1726 {
1727 struct umidi_endpoint *ep = out_jack->endpoint;
1728 struct umidi_softc *sc = ep->sc;
1729 unsigned char *packet;
1730 int plen;
1731 int poff;
1732
1733 KASSERT(mutex_owned(&sc->sc_lock));
1734
1735 if (sc->sc_dying)
1736 return EIO;
1737
1738 if (!out_jack->opened)
1739 return ENODEV; /* XXX as it was, is this the right errno? */
1740
1741 sc->sc_refcnt++;
1742
1743 #ifdef UMIDI_DEBUG
1744 if (umididebug >= 100)
1745 microtime(&umidi_tv);
1746 #endif
1747 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1748 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1749 ep, out_jack->cable_number, len, cin));
1750
1751 packet = *ep->next_slot++;
1752 KASSERT(ep->buffer_size >=
1753 (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1754 memset(packet, 0, UMIDI_PACKET_SIZE);
1755 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1756 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1757 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1758 plen = 3 - poff;
1759 if (plen > len)
1760 plen = len;
1761 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1762 src += plen;
1763 len -= plen;
1764 plen += poff;
1765 out_jack->midiman_ppkt[3] =
1766 MIX_CN_CIN(out_jack->cable_number, plen);
1767 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1768 if (3 == plen)
1769 out_jack->midiman_ppkt = NULL; /* no more */
1770 }
1771 if (0 == len)
1772 ep->next_slot--; /* won't be needed, nevermind */
1773 else {
1774 memcpy(packet, src, len);
1775 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1776 DPR_PACKET(out, sc, packet);
1777 if (len < 3)
1778 out_jack->midiman_ppkt = packet;
1779 }
1780 } else { /* the nice simple USB class-compliant case */
1781 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1782 memcpy(packet+1, src, len);
1783 DPR_PACKET(out, sc, packet);
1784 }
1785 ep->next_schedule |= 1<<(out_jack->cable_number);
1786 ++ ep->num_scheduled;
1787 if (!ep->armed && !ep->soliciting) {
1788 /*
1789 * It would be bad to call out_solicit directly here (the
1790 * caller need not be reentrant) but a soft interrupt allows
1791 * solicit to run immediately the caller exits its critical
1792 * section, and if the caller has more to write we can get it
1793 * before starting the USB transfer, and send a longer one.
1794 */
1795 ep->soliciting = 1;
1796 softint_schedule(ep->solicit_cookie);
1797 }
1798
1799 if (--sc->sc_refcnt < 0)
1800 usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
1801
1802 return 0;
1803 }
1804
1805 static void
1806 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1807 usbd_status status)
1808 {
1809 int cn, len, i;
1810 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1811 struct umidi_softc *sc = ep->sc;
1812 struct umidi_jack *jack;
1813 unsigned char *packet;
1814 umidi_packet_bufp slot;
1815 umidi_packet_bufp end;
1816 unsigned char *data;
1817 u_int32_t count;
1818
1819 if (ep->sc->sc_dying || !ep->num_open)
1820 return;
1821
1822 mutex_enter(&sc->sc_lock);
1823 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1824 if (0 == count % UMIDI_PACKET_SIZE) {
1825 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1826 device_xname(ep->sc->sc_dev), ep, count));
1827 } else {
1828 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1829 device_xname(ep->sc->sc_dev), ep, count));
1830 }
1831
1832 slot = ep->buffer;
1833 end = slot + count / sizeof *slot;
1834
1835 for (packet = *slot; slot < end; packet = *++slot) {
1836
1837 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1838 cn = (0xf0&(packet[3]))>>4;
1839 len = 0x0f&(packet[3]);
1840 data = packet;
1841 } else {
1842 cn = GET_CN(packet[0]);
1843 len = packet_length[GET_CIN(packet[0])];
1844 data = packet + 1;
1845 }
1846 /* 0 <= cn <= 15 by inspection of above code */
1847 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1848 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1849 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1850 device_xname(ep->sc->sc_dev), ep, cn, len,
1851 (unsigned)data[0],
1852 (unsigned)data[1],
1853 (unsigned)data[2]));
1854 mutex_exit(&sc->sc_lock);
1855 return;
1856 }
1857
1858 if (!jack->bound || !jack->opened)
1859 continue;
1860
1861 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1862 "%02X %02X %02X\n",
1863 device_xname(ep->sc->sc_dev), ep, cn, len,
1864 (unsigned)data[0],
1865 (unsigned)data[1],
1866 (unsigned)data[2]));
1867
1868 if (jack->u.in.intr) {
1869 for (i = 0; i < len; i++) {
1870 (*jack->u.in.intr)(jack->arg, data[i]);
1871 }
1872 }
1873
1874 }
1875
1876 (void)start_input_transfer(ep);
1877 mutex_exit(&sc->sc_lock);
1878 }
1879
1880 static void
1881 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1882 usbd_status status)
1883 {
1884 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1885 struct umidi_softc *sc = ep->sc;
1886 u_int32_t count;
1887
1888 if (sc->sc_dying)
1889 return;
1890
1891 mutex_enter(&sc->sc_lock);
1892 #ifdef UMIDI_DEBUG
1893 if (umididebug >= 200)
1894 microtime(&umidi_tv);
1895 #endif
1896 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1897 if (0 == count % UMIDI_PACKET_SIZE) {
1898 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1899 device_xname(ep->sc->sc_dev),
1900 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1901 } else {
1902 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1903 device_xname(ep->sc->sc_dev), ep, count));
1904 }
1905 count /= UMIDI_PACKET_SIZE;
1906
1907 /*
1908 * If while the transfer was pending we buffered any new messages,
1909 * move them to the start of the buffer.
1910 */
1911 ep->next_slot -= count;
1912 if (ep->buffer < ep->next_slot) {
1913 memcpy(ep->buffer, ep->buffer + count,
1914 (char *)ep->next_slot - (char *)ep->buffer);
1915 }
1916 cv_broadcast(&sc->sc_cv);
1917 /*
1918 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1919 * Running at IPL_USB so the following should happen to be safe.
1920 */
1921 ep->armed = 0;
1922 if (!ep->soliciting) {
1923 ep->soliciting = 1;
1924 out_solicit_locked(ep);
1925 }
1926 mutex_exit(&sc->sc_lock);
1927 }
1928
1929 /*
1930 * A jack on which we have received a packet must be called back on its
1931 * out.intr handler before it will send us another; it is considered
1932 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1933 * we need no extra buffer space for it.
1934 *
1935 * In contrast, a jack that is open but not scheduled may supply us a packet
1936 * at any time, driven by the top half, and we must be able to accept it, no
1937 * excuses. So we must ensure that at any point in time there are at least
1938 * (num_open - num_scheduled) slots free.
1939 *
1940 * As long as there are more slots free than that minimum, we can loop calling
1941 * scheduled jacks back on their "interrupt" handlers, soliciting more
1942 * packets, starting the USB transfer only when the buffer space is down to
1943 * the minimum or no jack has any more to send.
1944 */
1945
1946 static void
1947 out_solicit_locked(void *arg)
1948 {
1949 struct umidi_endpoint *ep = arg;
1950 umidi_packet_bufp end;
1951 u_int16_t which;
1952 struct umidi_jack *jack;
1953
1954 KASSERT(mutex_owned(&ep->sc->sc_lock));
1955
1956 end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1957
1958 for ( ;; ) {
1959 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1960 break; /* at IPL_USB */
1961 if (ep->this_schedule == 0) {
1962 if (ep->next_schedule == 0)
1963 break; /* at IPL_USB */
1964 ep->this_schedule = ep->next_schedule;
1965 ep->next_schedule = 0;
1966 }
1967 /*
1968 * At least one jack is scheduled. Find and mask off the least
1969 * set bit in this_schedule and decrement num_scheduled.
1970 * Convert mask to bit index to find the corresponding jack,
1971 * and call its intr handler. If it has a message, it will call
1972 * back one of the output methods, which will set its bit in
1973 * next_schedule (not copied into this_schedule until the
1974 * latter is empty). In this way we round-robin the jacks that
1975 * have messages to send, until the buffer is as full as we
1976 * dare, and then start a transfer.
1977 */
1978 which = ep->this_schedule;
1979 which &= (~which)+1; /* now mask of least set bit */
1980 ep->this_schedule &= ~which;
1981 --ep->num_scheduled;
1982
1983 --which; /* now 1s below mask - count 1s to get index */
1984 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1985 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1986 which = (((which >> 4) + which) & 0x0f0f);
1987 which += (which >> 8);
1988 which &= 0x1f; /* the bit index a/k/a jack number */
1989
1990 jack = ep->jacks[which];
1991 if (jack->u.out.intr)
1992 (*jack->u.out.intr)(jack->arg);
1993 }
1994 /* intr lock held at loop exit */
1995 if (!ep->armed && ep->next_slot > ep->buffer) {
1996 /*
1997 * Can't hold the interrupt lock while calling into USB,
1998 * but we can safely drop it here.
1999 */
2000 mutex_exit(&ep->sc->sc_lock);
2001 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
2002 mutex_enter(&ep->sc->sc_lock);
2003 }
2004 ep->soliciting = 0;
2005 }
2006
2007 /* Entry point for the softintr. */
2008 static void
2009 out_solicit(void *arg)
2010 {
2011 struct umidi_endpoint *ep = arg;
2012 struct umidi_softc *sc = ep->sc;
2013
2014 mutex_enter(&sc->sc_lock);
2015 out_solicit_locked(arg);
2016 mutex_exit(&sc->sc_lock);
2017 }
2018