umidi.c revision 1.69 1 /* $NetBSD: umidi.c,v 1.69 2016/04/23 10:15:32 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.69 2016/04/23 10:15:32 skrll Exp $");
36
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kmem.h>
42 #include <sys/device.h>
43 #include <sys/ioctl.h>
44 #include <sys/conf.h>
45 #include <sys/file.h>
46 #include <sys/select.h>
47 #include <sys/proc.h>
48 #include <sys/vnode.h>
49 #include <sys/poll.h>
50 #include <sys/intr.h>
51
52 #include <dev/usb/usb.h>
53 #include <dev/usb/usbdi.h>
54 #include <dev/usb/usbdi_util.h>
55
56 #include <dev/auconv.h>
57 #include <dev/usb/usbdevs.h>
58 #include <dev/usb/umidi_quirks.h>
59 #include <dev/midi_if.h>
60
61 /* Jack Descriptor */
62 #define UMIDI_MS_HEADER 0x01
63 #define UMIDI_IN_JACK 0x02
64 #define UMIDI_OUT_JACK 0x03
65
66 /* Jack Type */
67 #define UMIDI_EMBEDDED 0x01
68 #define UMIDI_EXTERNAL 0x02
69
70 /* generic, for iteration */
71 typedef struct {
72 uByte bLength;
73 uByte bDescriptorType;
74 uByte bDescriptorSubtype;
75 } UPACKED umidi_cs_descriptor_t;
76
77 typedef struct {
78 uByte bLength;
79 uByte bDescriptorType;
80 uByte bDescriptorSubtype;
81 uWord bcdMSC;
82 uWord wTotalLength;
83 } UPACKED umidi_cs_interface_descriptor_t;
84 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
85
86 typedef struct {
87 uByte bLength;
88 uByte bDescriptorType;
89 uByte bDescriptorSubtype;
90 uByte bNumEmbMIDIJack;
91 } UPACKED umidi_cs_endpoint_descriptor_t;
92 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
93
94 typedef struct {
95 uByte bLength;
96 uByte bDescriptorType;
97 uByte bDescriptorSubtype;
98 uByte bJackType;
99 uByte bJackID;
100 } UPACKED umidi_jack_descriptor_t;
101 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
102
103
104 #define TO_D(p) ((usb_descriptor_t *)(p))
105 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
106 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
107 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
108 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
109 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
110
111
112 #define UMIDI_PACKET_SIZE 4
113
114 /*
115 * hierarchie
116 *
117 * <-- parent child -->
118 *
119 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
120 * ^ | ^ |
121 * +-----+ +-----+
122 */
123
124 /* midi device */
125 struct umidi_mididev {
126 struct umidi_softc *sc;
127 device_t mdev;
128 /* */
129 struct umidi_jack *in_jack;
130 struct umidi_jack *out_jack;
131 char *label;
132 size_t label_len;
133 /* */
134 int opened;
135 int closing;
136 int flags;
137 };
138
139 /* Jack Information */
140 struct umidi_jack {
141 struct umidi_endpoint *endpoint;
142 /* */
143 int cable_number;
144 void *arg;
145 int bound;
146 int opened;
147 unsigned char *midiman_ppkt;
148 union {
149 struct {
150 void (*intr)(void *);
151 } out;
152 struct {
153 void (*intr)(void *, int);
154 } in;
155 } u;
156 };
157
158 #define UMIDI_MAX_EPJACKS 16
159 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
160 /* endpoint data */
161 struct umidi_endpoint {
162 struct umidi_softc *sc;
163 /* */
164 int addr;
165 struct usbd_pipe *pipe;
166 struct usbd_xfer *xfer;
167 umidi_packet_bufp buffer;
168 umidi_packet_bufp next_slot;
169 uint32_t buffer_size;
170 int num_scheduled;
171 int num_open;
172 int num_jacks;
173 int soliciting;
174 void *solicit_cookie;
175 int armed;
176 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
177 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
178 uint16_t next_schedule;
179 };
180
181 /* software context */
182 struct umidi_softc {
183 device_t sc_dev;
184 struct usbd_device *sc_udev;
185 struct usbd_interface *sc_iface;
186 const struct umidi_quirk *sc_quirk;
187
188 int sc_dying;
189
190 int sc_out_num_jacks;
191 struct umidi_jack *sc_out_jacks;
192 int sc_in_num_jacks;
193 struct umidi_jack *sc_in_jacks;
194 struct umidi_jack *sc_jacks;
195
196 int sc_num_mididevs;
197 struct umidi_mididev *sc_mididevs;
198
199 int sc_out_num_endpoints;
200 struct umidi_endpoint *sc_out_ep;
201 int sc_in_num_endpoints;
202 struct umidi_endpoint *sc_in_ep;
203 struct umidi_endpoint *sc_endpoints;
204 size_t sc_endpoints_len;
205 int cblnums_global;
206
207 kmutex_t sc_lock;
208 kcondvar_t sc_cv;
209 kcondvar_t sc_detach_cv;
210
211 int sc_refcnt;
212 };
213
214 #ifdef UMIDI_DEBUG
215 #define DPRINTF(x) if (umididebug) printf x
216 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
217 #include <sys/time.h>
218 static struct timeval umidi_tv;
219 int umididebug = 0;
220 #else
221 #define DPRINTF(x)
222 #define DPRINTFN(n,x)
223 #endif
224
225 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
226 (sc->sc_out_num_endpoints + \
227 sc->sc_in_num_endpoints))
228
229
230 static int umidi_open(void *, int,
231 void (*)(void *, int), void (*)(void *), void *);
232 static void umidi_close(void *);
233 static int umidi_channelmsg(void *, int, int, u_char *, int);
234 static int umidi_commonmsg(void *, int, u_char *, int);
235 static int umidi_sysex(void *, u_char *, int);
236 static int umidi_rtmsg(void *, int);
237 static void umidi_getinfo(void *, struct midi_info *);
238 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
239
240 static usbd_status alloc_pipe(struct umidi_endpoint *);
241 static void free_pipe(struct umidi_endpoint *);
242
243 static usbd_status alloc_all_endpoints(struct umidi_softc *);
244 static void free_all_endpoints(struct umidi_softc *);
245
246 static usbd_status alloc_all_jacks(struct umidi_softc *);
247 static void free_all_jacks(struct umidi_softc *);
248 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
249 struct umidi_jack *,
250 struct umidi_jack *,
251 struct umidi_mididev *);
252 static void unbind_jacks_from_mididev(struct umidi_mididev *);
253 static void unbind_all_jacks(struct umidi_softc *);
254 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
255 static usbd_status open_out_jack(struct umidi_jack *, void *,
256 void (*)(void *));
257 static usbd_status open_in_jack(struct umidi_jack *, void *,
258 void (*)(void *, int));
259 static void close_out_jack(struct umidi_jack *);
260 static void close_in_jack(struct umidi_jack *);
261
262 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
263 static usbd_status detach_mididev(struct umidi_mididev *, int);
264 static void deactivate_mididev(struct umidi_mididev *);
265 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
266 static void free_all_mididevs(struct umidi_softc *);
267 static usbd_status attach_all_mididevs(struct umidi_softc *);
268 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
269 static void deactivate_all_mididevs(struct umidi_softc *);
270 static void describe_mididev(struct umidi_mididev *);
271
272 #ifdef UMIDI_DEBUG
273 static void dump_sc(struct umidi_softc *);
274 static void dump_ep(struct umidi_endpoint *);
275 static void dump_jack(struct umidi_jack *);
276 #endif
277
278 static usbd_status start_input_transfer(struct umidi_endpoint *);
279 static usbd_status start_output_transfer(struct umidi_endpoint *);
280 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
281 static void in_intr(struct usbd_xfer *, void *, usbd_status);
282 static void out_intr(struct usbd_xfer *, void *, usbd_status);
283 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
284 static void out_solicit_locked(void *); /* pre-locked version */
285
286
287 const struct midi_hw_if umidi_hw_if = {
288 .open = umidi_open,
289 .close = umidi_close,
290 .output = umidi_rtmsg,
291 .getinfo = umidi_getinfo,
292 .get_locks = umidi_get_locks,
293 };
294
295 struct midi_hw_if_ext umidi_hw_if_ext = {
296 .channel = umidi_channelmsg,
297 .common = umidi_commonmsg,
298 .sysex = umidi_sysex,
299 };
300
301 struct midi_hw_if_ext umidi_hw_if_mm = {
302 .channel = umidi_channelmsg,
303 .common = umidi_commonmsg,
304 .sysex = umidi_sysex,
305 .compress = 1,
306 };
307
308 int umidi_match(device_t, cfdata_t, void *);
309 void umidi_attach(device_t, device_t, void *);
310 void umidi_childdet(device_t, device_t);
311 int umidi_detach(device_t, int);
312 int umidi_activate(device_t, enum devact);
313 extern struct cfdriver umidi_cd;
314 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
315 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
316
317 int
318 umidi_match(device_t parent, cfdata_t match, void *aux)
319 {
320 struct usbif_attach_arg *uiaa = aux;
321
322 DPRINTFN(1,("umidi_match\n"));
323
324 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
325 uiaa->uiaa_ifaceno))
326 return UMATCH_IFACECLASS_IFACESUBCLASS;
327
328 if (uiaa->uiaa_class == UICLASS_AUDIO &&
329 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
330 return UMATCH_IFACECLASS_IFACESUBCLASS;
331
332 return UMATCH_NONE;
333 }
334
335 void
336 umidi_attach(device_t parent, device_t self, void *aux)
337 {
338 usbd_status err;
339 struct umidi_softc *sc = device_private(self);
340 struct usbif_attach_arg *uiaa = aux;
341 char *devinfop;
342
343 DPRINTFN(1,("umidi_attach\n"));
344
345 sc->sc_dev = self;
346
347 aprint_naive("\n");
348 aprint_normal("\n");
349
350 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
351 aprint_normal_dev(self, "%s\n", devinfop);
352 usbd_devinfo_free(devinfop);
353
354 sc->sc_iface = uiaa->uiaa_iface;
355 sc->sc_udev = uiaa->uiaa_device;
356
357 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
358 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
359
360 aprint_normal_dev(self, "");
361 umidi_print_quirk(sc->sc_quirk);
362
363 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
364 cv_init(&sc->sc_cv, "umidopcl");
365 cv_init(&sc->sc_detach_cv, "umidetcv");
366 sc->sc_refcnt = 0;
367
368 err = alloc_all_endpoints(sc);
369 if (err != USBD_NORMAL_COMPLETION) {
370 aprint_error_dev(self,
371 "alloc_all_endpoints failed. (err=%d)\n", err);
372 goto out;
373 }
374 err = alloc_all_jacks(sc);
375 if (err != USBD_NORMAL_COMPLETION) {
376 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
377 err);
378 goto out_free_endpoints;
379 }
380 aprint_normal_dev(self, "out=%d, in=%d\n",
381 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
382
383 err = assign_all_jacks_automatically(sc);
384 if (err != USBD_NORMAL_COMPLETION) {
385 aprint_error_dev(self,
386 "assign_all_jacks_automatically failed. (err=%d)\n", err);
387 goto out_free_jacks;
388 }
389 err = attach_all_mididevs(sc);
390 if (err != USBD_NORMAL_COMPLETION) {
391 aprint_error_dev(self,
392 "attach_all_mididevs failed. (err=%d)\n", err);
393 goto out_free_jacks;
394 }
395
396 #ifdef UMIDI_DEBUG
397 dump_sc(sc);
398 #endif
399
400 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
401 sc->sc_udev, sc->sc_dev);
402
403 return;
404
405 out_free_jacks:
406 unbind_all_jacks(sc);
407 free_all_jacks(sc);
408
409 out_free_endpoints:
410 free_all_endpoints(sc);
411
412 out:
413 aprint_error_dev(self, "disabled.\n");
414 sc->sc_dying = 1;
415 KERNEL_UNLOCK_ONE(curlwp);
416 return;
417 }
418
419 void
420 umidi_childdet(device_t self, device_t child)
421 {
422 int i;
423 struct umidi_softc *sc = device_private(self);
424
425 KASSERT(sc->sc_mididevs != NULL);
426
427 for (i = 0; i < sc->sc_num_mididevs; i++) {
428 if (sc->sc_mididevs[i].mdev == child)
429 break;
430 }
431 KASSERT(i < sc->sc_num_mididevs);
432 sc->sc_mididevs[i].mdev = NULL;
433 }
434
435 int
436 umidi_activate(device_t self, enum devact act)
437 {
438 struct umidi_softc *sc = device_private(self);
439
440 switch (act) {
441 case DVACT_DEACTIVATE:
442 DPRINTFN(1,("umidi_activate (deactivate)\n"));
443 sc->sc_dying = 1;
444 deactivate_all_mididevs(sc);
445 return 0;
446 default:
447 DPRINTFN(1,("umidi_activate (%d)\n", act));
448 return EOPNOTSUPP;
449 }
450 }
451
452 int
453 umidi_detach(device_t self, int flags)
454 {
455 struct umidi_softc *sc = device_private(self);
456
457 DPRINTFN(1,("umidi_detach\n"));
458
459 mutex_enter(&sc->sc_lock);
460 sc->sc_dying = 1;
461 if (--sc->sc_refcnt >= 0)
462 usb_detach_wait(sc->sc_dev, &sc->sc_detach_cv, &sc->sc_lock);
463 mutex_exit(&sc->sc_lock);
464
465 detach_all_mididevs(sc, flags);
466 free_all_mididevs(sc);
467 free_all_jacks(sc);
468 free_all_endpoints(sc);
469
470 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
471 sc->sc_dev);
472
473 mutex_destroy(&sc->sc_lock);
474 cv_destroy(&sc->sc_detach_cv);
475 cv_destroy(&sc->sc_cv);
476
477 return 0;
478 }
479
480
481 /*
482 * midi_if stuffs
483 */
484 int
485 umidi_open(void *addr,
486 int flags,
487 void (*iintr)(void *, int),
488 void (*ointr)(void *),
489 void *arg)
490 {
491 struct umidi_mididev *mididev = addr;
492 struct umidi_softc *sc = mididev->sc;
493 usbd_status err;
494
495 KASSERT(mutex_owned(&sc->sc_lock));
496 DPRINTF(("umidi_open: sc=%p\n", sc));
497
498 if (mididev->opened)
499 return EBUSY;
500 if (sc->sc_dying)
501 return EIO;
502
503 mididev->opened = 1;
504 mididev->flags = flags;
505 if ((mididev->flags & FWRITE) && mididev->out_jack) {
506 err = open_out_jack(mididev->out_jack, arg, ointr);
507 if (err != USBD_NORMAL_COMPLETION)
508 goto bad;
509 }
510 if ((mididev->flags & FREAD) && mididev->in_jack) {
511 err = open_in_jack(mididev->in_jack, arg, iintr);
512 KASSERT(mididev->opened);
513 if (err != USBD_NORMAL_COMPLETION &&
514 err != USBD_IN_PROGRESS) {
515 if (mididev->out_jack)
516 close_out_jack(mididev->out_jack);
517 goto bad;
518 }
519 }
520
521 return 0;
522 bad:
523 mididev->opened = 0;
524 DPRINTF(("umidi_open: usbd_status %d\n", err));
525 KASSERT(mutex_owned(&sc->sc_lock));
526 return USBD_IN_USE == err ? EBUSY : EIO;
527 }
528
529 void
530 umidi_close(void *addr)
531 {
532 struct umidi_mididev *mididev = addr;
533 struct umidi_softc *sc = mididev->sc;
534
535 KASSERT(mutex_owned(&sc->sc_lock));
536
537 if (mididev->closing)
538 return;
539
540 mididev->closing = 1;
541
542 sc->sc_refcnt++;
543
544 if ((mididev->flags & FWRITE) && mididev->out_jack)
545 close_out_jack(mididev->out_jack);
546 if ((mididev->flags & FREAD) && mididev->in_jack)
547 close_in_jack(mididev->in_jack);
548
549 if (--sc->sc_refcnt < 0)
550 usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
551
552 mididev->opened = 0;
553 mididev->closing = 0;
554 }
555
556 int
557 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
558 int len)
559 {
560 struct umidi_mididev *mididev = addr;
561
562 KASSERT(mutex_owned(&mididev->sc->sc_lock));
563
564 if (!mididev->out_jack || !mididev->opened || mididev->closing)
565 return EIO;
566
567 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
568 }
569
570 int
571 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
572 {
573 struct umidi_mididev *mididev = addr;
574 int cin;
575
576 KASSERT(mutex_owned(&mididev->sc->sc_lock));
577
578 if (!mididev->out_jack || !mididev->opened || mididev->closing)
579 return EIO;
580
581 switch ( len ) {
582 case 1: cin = 5; break;
583 case 2: cin = 2; break;
584 case 3: cin = 3; break;
585 default: return EIO; /* or gcc warns of cin uninitialized */
586 }
587
588 return out_jack_output(mididev->out_jack, msg, len, cin);
589 }
590
591 int
592 umidi_sysex(void *addr, u_char *msg, int len)
593 {
594 struct umidi_mididev *mididev = addr;
595 int cin;
596
597 KASSERT(mutex_owned(&mididev->sc->sc_lock));
598
599 if (!mididev->out_jack || !mididev->opened || mididev->closing)
600 return EIO;
601
602 switch ( len ) {
603 case 1: cin = 5; break;
604 case 2: cin = 6; break;
605 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
606 default: return EIO; /* or gcc warns of cin uninitialized */
607 }
608
609 return out_jack_output(mididev->out_jack, msg, len, cin);
610 }
611
612 int
613 umidi_rtmsg(void *addr, int d)
614 {
615 struct umidi_mididev *mididev = addr;
616 u_char msg = d;
617
618 KASSERT(mutex_owned(&mididev->sc->sc_lock));
619
620 if (!mididev->out_jack || !mididev->opened || mididev->closing)
621 return EIO;
622
623 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
624 }
625
626 void
627 umidi_getinfo(void *addr, struct midi_info *mi)
628 {
629 struct umidi_mididev *mididev = addr;
630 struct umidi_softc *sc = mididev->sc;
631 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
632
633 KASSERT(mutex_owned(&sc->sc_lock));
634
635 mi->name = mididev->label;
636 mi->props = MIDI_PROP_OUT_INTR;
637 if (mididev->in_jack)
638 mi->props |= MIDI_PROP_CAN_INPUT;
639 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
640 }
641
642 static void
643 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
644 {
645 struct umidi_mididev *mididev = addr;
646 struct umidi_softc *sc = mididev->sc;
647
648 *intr = NULL;
649 *thread = &sc->sc_lock;
650 }
651
652 /*
653 * each endpoint stuffs
654 */
655
656 /* alloc/free pipe */
657 static usbd_status
658 alloc_pipe(struct umidi_endpoint *ep)
659 {
660 struct umidi_softc *sc = ep->sc;
661 usbd_status err;
662 usb_endpoint_descriptor_t *epd;
663
664 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
665 /*
666 * For output, an improvement would be to have a buffer bigger than
667 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
668 * allow out_solicit to fill the buffer to the full packet size in
669 * all cases. But to use usbd_create_xfer to get a slightly larger
670 * buffer would not be a good way to do that, because if the addition
671 * would make the buffer exceed USB_MEM_SMALL then a substantially
672 * larger block may be wastefully allocated. Some flavor of double
673 * buffering could serve the same purpose, but would increase the
674 * code complexity, so for now I will live with the current slight
675 * penalty of reducing max transfer size by (num_open-num_scheduled)
676 * packet slots.
677 */
678 ep->buffer_size = UGETW(epd->wMaxPacketSize);
679 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
680
681 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
682 device_xname(sc->sc_dev), ep, ep->buffer_size));
683 ep->num_scheduled = 0;
684 ep->this_schedule = 0;
685 ep->next_schedule = 0;
686 ep->soliciting = 0;
687 ep->armed = 0;
688 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
689 if (err)
690 goto quit;
691 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
692 USBD_SHORT_XFER_OK, 0, &ep->xfer);
693 if (error) {
694 usbd_close_pipe(ep->pipe);
695 return USBD_NOMEM;
696 }
697 ep->buffer = usbd_get_buffer(ep->xfer);
698 ep->next_slot = ep->buffer;
699 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, out_solicit, ep);
700 quit:
701 return err;
702 }
703
704 static void
705 free_pipe(struct umidi_endpoint *ep)
706 {
707 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
708 usbd_abort_pipe(ep->pipe);
709 usbd_destroy_xfer(ep->xfer);
710 usbd_close_pipe(ep->pipe);
711 softint_disestablish(ep->solicit_cookie);
712 }
713
714
715 /* alloc/free the array of endpoint structures */
716
717 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
718 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
719 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
720
721 static usbd_status
722 alloc_all_endpoints(struct umidi_softc *sc)
723 {
724 usbd_status err;
725 struct umidi_endpoint *ep;
726 int i;
727
728 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
729 err = alloc_all_endpoints_fixed_ep(sc);
730 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
731 err = alloc_all_endpoints_yamaha(sc);
732 } else {
733 err = alloc_all_endpoints_genuine(sc);
734 }
735 if (err != USBD_NORMAL_COMPLETION)
736 return err;
737
738 ep = sc->sc_endpoints;
739 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
740 err = alloc_pipe(ep++);
741 if (err != USBD_NORMAL_COMPLETION) {
742 for (; ep != sc->sc_endpoints; ep--)
743 free_pipe(ep-1);
744 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
745 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
746 break;
747 }
748 }
749 return err;
750 }
751
752 static void
753 free_all_endpoints(struct umidi_softc *sc)
754 {
755 int i;
756
757 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
758 free_pipe(&sc->sc_endpoints[i]);
759 if (sc->sc_endpoints != NULL)
760 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
761 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
762 }
763
764 static usbd_status
765 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
766 {
767 usbd_status err;
768 const struct umq_fixed_ep_desc *fp;
769 struct umidi_endpoint *ep;
770 usb_endpoint_descriptor_t *epd;
771 int i;
772
773 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
774 UMQ_TYPE_FIXED_EP);
775 sc->sc_out_num_jacks = 0;
776 sc->sc_in_num_jacks = 0;
777 sc->sc_out_num_endpoints = fp->num_out_ep;
778 sc->sc_in_num_endpoints = fp->num_in_ep;
779 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
780 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
781 if (!sc->sc_endpoints)
782 return USBD_NOMEM;
783
784 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
785 sc->sc_in_ep =
786 sc->sc_in_num_endpoints ?
787 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
788
789 ep = &sc->sc_out_ep[0];
790 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
791 epd = usbd_interface2endpoint_descriptor(
792 sc->sc_iface,
793 fp->out_ep[i].ep);
794 if (!epd) {
795 aprint_error_dev(sc->sc_dev,
796 "cannot get endpoint descriptor(out:%d)\n",
797 fp->out_ep[i].ep);
798 err = USBD_INVAL;
799 goto error;
800 }
801 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
802 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
803 aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
804 fp->out_ep[i].ep);
805 err = USBD_INVAL;
806 goto error;
807 }
808 ep->sc = sc;
809 ep->addr = epd->bEndpointAddress;
810 ep->num_jacks = fp->out_ep[i].num_jacks;
811 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
812 ep->num_open = 0;
813 ep++;
814 }
815 ep = &sc->sc_in_ep[0];
816 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
817 epd = usbd_interface2endpoint_descriptor(
818 sc->sc_iface,
819 fp->in_ep[i].ep);
820 if (!epd) {
821 aprint_error_dev(sc->sc_dev,
822 "cannot get endpoint descriptor(in:%d)\n",
823 fp->in_ep[i].ep);
824 err = USBD_INVAL;
825 goto error;
826 }
827 /*
828 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
829 * endpoint. The existing input logic in this driver seems
830 * to work successfully if we just stop treating an interrupt
831 * endpoint as illegal (or the in_progress status we get on
832 * the initial transfer). It does not seem necessary to
833 * actually use the interrupt flavor of alloc_pipe or make
834 * other serious rearrangements of logic. I like that.
835 */
836 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
837 case UE_BULK:
838 case UE_INTERRUPT:
839 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
840 break;
841 /*FALLTHROUGH*/
842 default:
843 aprint_error_dev(sc->sc_dev,
844 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
845 err = USBD_INVAL;
846 goto error;
847 }
848
849 ep->sc = sc;
850 ep->addr = epd->bEndpointAddress;
851 ep->num_jacks = fp->in_ep[i].num_jacks;
852 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
853 ep->num_open = 0;
854 ep++;
855 }
856
857 return USBD_NORMAL_COMPLETION;
858 error:
859 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
860 sc->sc_endpoints = NULL;
861 return err;
862 }
863
864 static usbd_status
865 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
866 {
867 /* This driver currently supports max 1in/1out bulk endpoints */
868 usb_descriptor_t *desc;
869 umidi_cs_descriptor_t *udesc;
870 usb_endpoint_descriptor_t *epd;
871 int out_addr, in_addr, i;
872 int dir;
873 size_t remain, descsize;
874
875 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
876 out_addr = in_addr = 0;
877
878 /* detect endpoints */
879 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
880 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
881 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
882 KASSERT(epd != NULL);
883 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
884 dir = UE_GET_DIR(epd->bEndpointAddress);
885 if (dir==UE_DIR_OUT && !out_addr)
886 out_addr = epd->bEndpointAddress;
887 else if (dir==UE_DIR_IN && !in_addr)
888 in_addr = epd->bEndpointAddress;
889 }
890 }
891 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
892
893 /* count jacks */
894 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
895 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
896 return USBD_INVAL;
897 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
898 (size_t)udesc->bLength;
899 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
900
901 while (remain >= sizeof(usb_descriptor_t)) {
902 descsize = udesc->bLength;
903 if (descsize>remain || descsize==0)
904 break;
905 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
906 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
907 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
908 sc->sc_out_num_jacks++;
909 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
910 sc->sc_in_num_jacks++;
911 }
912 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
913 remain -= descsize;
914 }
915
916 /* validate some parameters */
917 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
918 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
919 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
920 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
921 if (sc->sc_out_num_jacks && out_addr) {
922 sc->sc_out_num_endpoints = 1;
923 } else {
924 sc->sc_out_num_endpoints = 0;
925 sc->sc_out_num_jacks = 0;
926 }
927 if (sc->sc_in_num_jacks && in_addr) {
928 sc->sc_in_num_endpoints = 1;
929 } else {
930 sc->sc_in_num_endpoints = 0;
931 sc->sc_in_num_jacks = 0;
932 }
933 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
934 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
935 if (!sc->sc_endpoints)
936 return USBD_NOMEM;
937 if (sc->sc_out_num_endpoints) {
938 sc->sc_out_ep = sc->sc_endpoints;
939 sc->sc_out_ep->sc = sc;
940 sc->sc_out_ep->addr = out_addr;
941 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
942 sc->sc_out_ep->num_open = 0;
943 } else
944 sc->sc_out_ep = NULL;
945
946 if (sc->sc_in_num_endpoints) {
947 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
948 sc->sc_in_ep->sc = sc;
949 sc->sc_in_ep->addr = in_addr;
950 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
951 sc->sc_in_ep->num_open = 0;
952 } else
953 sc->sc_in_ep = NULL;
954
955 return USBD_NORMAL_COMPLETION;
956 }
957
958 static usbd_status
959 alloc_all_endpoints_genuine(struct umidi_softc *sc)
960 {
961 usb_interface_descriptor_t *interface_desc;
962 usb_config_descriptor_t *config_desc;
963 usb_descriptor_t *desc;
964 int num_ep;
965 size_t remain, descsize;
966 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
967 int epaddr;
968
969 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
970 num_ep = interface_desc->bNumEndpoints;
971 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
972 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
973 if (!p)
974 return USBD_NOMEM;
975
976 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
977 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
978 epaddr = -1;
979
980 /* get the list of endpoints for midi stream */
981 config_desc = usbd_get_config_descriptor(sc->sc_udev);
982 desc = (usb_descriptor_t *) config_desc;
983 remain = (size_t)UGETW(config_desc->wTotalLength);
984 while (remain>=sizeof(usb_descriptor_t)) {
985 descsize = desc->bLength;
986 if (descsize>remain || descsize==0)
987 break;
988 if (desc->bDescriptorType==UDESC_ENDPOINT &&
989 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
990 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
991 epaddr = TO_EPD(desc)->bEndpointAddress;
992 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
993 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
994 epaddr!=-1) {
995 if (num_ep>0) {
996 num_ep--;
997 p->sc = sc;
998 p->addr = epaddr;
999 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1000 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1001 sc->sc_out_num_endpoints++;
1002 sc->sc_out_num_jacks += p->num_jacks;
1003 } else {
1004 sc->sc_in_num_endpoints++;
1005 sc->sc_in_num_jacks += p->num_jacks;
1006 }
1007 p++;
1008 }
1009 } else
1010 epaddr = -1;
1011 desc = NEXT_D(desc);
1012 remain-=descsize;
1013 }
1014
1015 /* sort endpoints */
1016 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1017 p = sc->sc_endpoints;
1018 endep = p + num_ep;
1019 while (p<endep) {
1020 lowest = p;
1021 for (q=p+1; q<endep; q++) {
1022 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1023 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1024 ((UE_GET_DIR(lowest->addr)==
1025 UE_GET_DIR(q->addr)) &&
1026 (UE_GET_ADDR(lowest->addr)>
1027 UE_GET_ADDR(q->addr))))
1028 lowest = q;
1029 }
1030 if (lowest != p) {
1031 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1032 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1033 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1034 }
1035 p->num_open = 0;
1036 p++;
1037 }
1038
1039 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1040 sc->sc_in_ep =
1041 sc->sc_in_num_endpoints ?
1042 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1043
1044 return USBD_NORMAL_COMPLETION;
1045 }
1046
1047
1048 /*
1049 * jack stuffs
1050 */
1051
1052 static usbd_status
1053 alloc_all_jacks(struct umidi_softc *sc)
1054 {
1055 int i, j;
1056 struct umidi_endpoint *ep;
1057 struct umidi_jack *jack;
1058 const unsigned char *cn_spec;
1059
1060 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1061 sc->cblnums_global = 0;
1062 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1063 sc->cblnums_global = 1;
1064 else {
1065 /*
1066 * I don't think this default is correct, but it preserves
1067 * the prior behavior of the code. That's why I defined two
1068 * complementary quirks. Any device for which the default
1069 * behavior is wrong can be made to work by giving it an
1070 * explicit quirk, and if a pattern ever develops (as I suspect
1071 * it will) that a lot of otherwise standard USB MIDI devices
1072 * need the CN_SEQ_PER_EP "quirk," then this default can be
1073 * changed to 0, and the only devices that will break are those
1074 * listing neither quirk, and they'll easily be fixed by giving
1075 * them the CN_SEQ_GLOBAL quirk.
1076 */
1077 sc->cblnums_global = 1;
1078 }
1079
1080 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1081 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1082 UMQ_TYPE_CN_FIXED);
1083 else
1084 cn_spec = NULL;
1085
1086 /* allocate/initialize structures */
1087 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
1088 sc->sc_out_num_jacks), KM_SLEEP);
1089 if (!sc->sc_jacks)
1090 return USBD_NOMEM;
1091 sc->sc_out_jacks =
1092 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1093 sc->sc_in_jacks =
1094 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1095
1096 jack = &sc->sc_out_jacks[0];
1097 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1098 jack->opened = 0;
1099 jack->bound = 0;
1100 jack->arg = NULL;
1101 jack->u.out.intr = NULL;
1102 jack->midiman_ppkt = NULL;
1103 if (sc->cblnums_global)
1104 jack->cable_number = i;
1105 jack++;
1106 }
1107 jack = &sc->sc_in_jacks[0];
1108 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1109 jack->opened = 0;
1110 jack->bound = 0;
1111 jack->arg = NULL;
1112 jack->u.in.intr = NULL;
1113 if (sc->cblnums_global)
1114 jack->cable_number = i;
1115 jack++;
1116 }
1117
1118 /* assign each jacks to each endpoints */
1119 jack = &sc->sc_out_jacks[0];
1120 ep = &sc->sc_out_ep[0];
1121 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1122 for (j = 0; j < ep->num_jacks; j++) {
1123 jack->endpoint = ep;
1124 if (cn_spec != NULL)
1125 jack->cable_number = *cn_spec++;
1126 else if (!sc->cblnums_global)
1127 jack->cable_number = j;
1128 ep->jacks[jack->cable_number] = jack;
1129 jack++;
1130 }
1131 ep++;
1132 }
1133 jack = &sc->sc_in_jacks[0];
1134 ep = &sc->sc_in_ep[0];
1135 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1136 for (j = 0; j < ep->num_jacks; j++) {
1137 jack->endpoint = ep;
1138 if (cn_spec != NULL)
1139 jack->cable_number = *cn_spec++;
1140 else if (!sc->cblnums_global)
1141 jack->cable_number = j;
1142 ep->jacks[jack->cable_number] = jack;
1143 jack++;
1144 }
1145 ep++;
1146 }
1147
1148 return USBD_NORMAL_COMPLETION;
1149 }
1150
1151 static void
1152 free_all_jacks(struct umidi_softc *sc)
1153 {
1154 struct umidi_jack *jacks;
1155 size_t len;
1156
1157 mutex_enter(&sc->sc_lock);
1158 jacks = sc->sc_jacks;
1159 len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
1160 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1161 mutex_exit(&sc->sc_lock);
1162
1163 if (jacks)
1164 kmem_free(jacks, len);
1165 }
1166
1167 static usbd_status
1168 bind_jacks_to_mididev(struct umidi_softc *sc,
1169 struct umidi_jack *out_jack,
1170 struct umidi_jack *in_jack,
1171 struct umidi_mididev *mididev)
1172 {
1173 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1174 return USBD_IN_USE;
1175 if (mididev->out_jack || mididev->in_jack)
1176 return USBD_IN_USE;
1177
1178 if (out_jack)
1179 out_jack->bound = 1;
1180 if (in_jack)
1181 in_jack->bound = 1;
1182 mididev->in_jack = in_jack;
1183 mididev->out_jack = out_jack;
1184
1185 mididev->closing = 0;
1186
1187 return USBD_NORMAL_COMPLETION;
1188 }
1189
1190 static void
1191 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1192 {
1193 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1194
1195 mididev->closing = 1;
1196
1197 if ((mididev->flags & FWRITE) && mididev->out_jack)
1198 close_out_jack(mididev->out_jack);
1199 if ((mididev->flags & FREAD) && mididev->in_jack)
1200 close_in_jack(mididev->in_jack);
1201
1202 if (mididev->out_jack) {
1203 mididev->out_jack->bound = 0;
1204 mididev->out_jack = NULL;
1205 }
1206 if (mididev->in_jack) {
1207 mididev->in_jack->bound = 0;
1208 mididev->in_jack = NULL;
1209 }
1210 }
1211
1212 static void
1213 unbind_all_jacks(struct umidi_softc *sc)
1214 {
1215 int i;
1216
1217 mutex_enter(&sc->sc_lock);
1218 if (sc->sc_mididevs)
1219 for (i = 0; i < sc->sc_num_mididevs; i++)
1220 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1221 mutex_exit(&sc->sc_lock);
1222 }
1223
1224 static usbd_status
1225 assign_all_jacks_automatically(struct umidi_softc *sc)
1226 {
1227 usbd_status err;
1228 int i;
1229 struct umidi_jack *out, *in;
1230 const signed char *asg_spec;
1231
1232 err =
1233 alloc_all_mididevs(sc,
1234 max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1235 if (err!=USBD_NORMAL_COMPLETION)
1236 return err;
1237
1238 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1239 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1240 UMQ_TYPE_MD_FIXED);
1241 else
1242 asg_spec = NULL;
1243
1244 for (i = 0; i < sc->sc_num_mididevs; i++) {
1245 if (asg_spec != NULL) {
1246 if (*asg_spec == -1)
1247 out = NULL;
1248 else
1249 out = &sc->sc_out_jacks[*asg_spec];
1250 ++ asg_spec;
1251 if (*asg_spec == -1)
1252 in = NULL;
1253 else
1254 in = &sc->sc_in_jacks[*asg_spec];
1255 ++ asg_spec;
1256 } else {
1257 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1258 : NULL;
1259 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1260 : NULL;
1261 }
1262 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1263 if (err != USBD_NORMAL_COMPLETION) {
1264 free_all_mididevs(sc);
1265 return err;
1266 }
1267 }
1268
1269 return USBD_NORMAL_COMPLETION;
1270 }
1271
1272 static usbd_status
1273 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1274 {
1275 struct umidi_endpoint *ep = jack->endpoint;
1276 struct umidi_softc *sc = ep->sc;
1277 umidi_packet_bufp end;
1278 int err;
1279
1280 KASSERT(mutex_owned(&sc->sc_lock));
1281
1282 if (jack->opened)
1283 return USBD_IN_USE;
1284
1285 jack->arg = arg;
1286 jack->u.out.intr = intr;
1287 jack->midiman_ppkt = NULL;
1288 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1289 jack->opened = 1;
1290 ep->num_open++;
1291 /*
1292 * out_solicit maintains an invariant that there will always be
1293 * (num_open - num_scheduled) slots free in the buffer. as we have
1294 * just incremented num_open, the buffer may be too full to satisfy
1295 * the invariant until a transfer completes, for which we must wait.
1296 */
1297 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1298 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1299 mstohz(10));
1300 if (err) {
1301 ep->num_open--;
1302 jack->opened = 0;
1303 return USBD_IOERROR;
1304 }
1305 }
1306
1307 return USBD_NORMAL_COMPLETION;
1308 }
1309
1310 static usbd_status
1311 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1312 {
1313 usbd_status err = USBD_NORMAL_COMPLETION;
1314 struct umidi_endpoint *ep = jack->endpoint;
1315
1316 KASSERT(mutex_owned(&ep->sc->sc_lock));
1317
1318 if (jack->opened)
1319 return USBD_IN_USE;
1320
1321 jack->arg = arg;
1322 jack->u.in.intr = intr;
1323 jack->opened = 1;
1324 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1325 /*
1326 * Can't hold the interrupt lock while calling into USB,
1327 * but we can safely drop it here.
1328 */
1329 mutex_exit(&ep->sc->sc_lock);
1330 err = start_input_transfer(ep);
1331 if (err != USBD_NORMAL_COMPLETION &&
1332 err != USBD_IN_PROGRESS) {
1333 ep->num_open--;
1334 }
1335 mutex_enter(&ep->sc->sc_lock);
1336 }
1337
1338 return err;
1339 }
1340
1341 static void
1342 close_out_jack(struct umidi_jack *jack)
1343 {
1344 struct umidi_endpoint *ep;
1345 struct umidi_softc *sc;
1346 uint16_t mask;
1347 int err;
1348
1349 if (jack->opened) {
1350 ep = jack->endpoint;
1351 sc = ep->sc;
1352
1353 KASSERT(mutex_owned(&sc->sc_lock));
1354 mask = 1 << (jack->cable_number);
1355 while (mask & (ep->this_schedule | ep->next_schedule)) {
1356 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1357 mstohz(10));
1358 if (err)
1359 break;
1360 }
1361 /*
1362 * We can re-enter this function from both close() and
1363 * detach(). Make sure only one of them does this part.
1364 */
1365 if (jack->opened) {
1366 jack->opened = 0;
1367 jack->endpoint->num_open--;
1368 ep->this_schedule &= ~mask;
1369 ep->next_schedule &= ~mask;
1370 }
1371 }
1372 }
1373
1374 static void
1375 close_in_jack(struct umidi_jack *jack)
1376 {
1377 if (jack->opened) {
1378 struct umidi_softc *sc = jack->endpoint->sc;
1379
1380 KASSERT(mutex_owned(&sc->sc_lock));
1381
1382 jack->opened = 0;
1383 if (--jack->endpoint->num_open == 0) {
1384 /*
1385 * We have to drop the (interrupt) lock so that
1386 * the USB thread lock can be safely taken by
1387 * the abort operation. This is safe as this
1388 * either closing or dying will be set proerly.
1389 */
1390 mutex_exit(&sc->sc_lock);
1391 usbd_abort_pipe(jack->endpoint->pipe);
1392 mutex_enter(&sc->sc_lock);
1393 }
1394 }
1395 }
1396
1397 static usbd_status
1398 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1399 {
1400 if (mididev->sc)
1401 return USBD_IN_USE;
1402
1403 mididev->sc = sc;
1404
1405 describe_mididev(mididev);
1406
1407 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1408
1409 return USBD_NORMAL_COMPLETION;
1410 }
1411
1412 static usbd_status
1413 detach_mididev(struct umidi_mididev *mididev, int flags)
1414 {
1415 struct umidi_softc *sc = mididev->sc;
1416
1417 if (!sc)
1418 return USBD_NO_ADDR;
1419
1420 mutex_enter(&sc->sc_lock);
1421 if (mididev->opened) {
1422 umidi_close(mididev);
1423 }
1424 unbind_jacks_from_mididev(mididev);
1425 mutex_exit(&sc->sc_lock);
1426
1427 if (mididev->mdev != NULL)
1428 config_detach(mididev->mdev, flags);
1429
1430 if (NULL != mididev->label) {
1431 kmem_free(mididev->label, mididev->label_len);
1432 mididev->label = NULL;
1433 }
1434
1435 mididev->sc = NULL;
1436
1437 return USBD_NORMAL_COMPLETION;
1438 }
1439
1440 static void
1441 deactivate_mididev(struct umidi_mididev *mididev)
1442 {
1443 if (mididev->out_jack)
1444 mididev->out_jack->bound = 0;
1445 if (mididev->in_jack)
1446 mididev->in_jack->bound = 0;
1447 }
1448
1449 static usbd_status
1450 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1451 {
1452 sc->sc_num_mididevs = nmidi;
1453 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1454 if (!sc->sc_mididevs)
1455 return USBD_NOMEM;
1456
1457 return USBD_NORMAL_COMPLETION;
1458 }
1459
1460 static void
1461 free_all_mididevs(struct umidi_softc *sc)
1462 {
1463 struct umidi_mididev *mididevs;
1464 size_t len;
1465
1466 mutex_enter(&sc->sc_lock);
1467 mididevs = sc->sc_mididevs;
1468 if (mididevs)
1469 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1470 sc->sc_mididevs = NULL;
1471 sc->sc_num_mididevs = 0;
1472 mutex_exit(&sc->sc_lock);
1473
1474 if (mididevs)
1475 kmem_free(mididevs, len);
1476 }
1477
1478 static usbd_status
1479 attach_all_mididevs(struct umidi_softc *sc)
1480 {
1481 usbd_status err;
1482 int i;
1483
1484 if (sc->sc_mididevs)
1485 for (i = 0; i < sc->sc_num_mididevs; i++) {
1486 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1487 if (err != USBD_NORMAL_COMPLETION)
1488 return err;
1489 }
1490
1491 return USBD_NORMAL_COMPLETION;
1492 }
1493
1494 static usbd_status
1495 detach_all_mididevs(struct umidi_softc *sc, int flags)
1496 {
1497 usbd_status err;
1498 int i;
1499
1500 if (sc->sc_mididevs)
1501 for (i = 0; i < sc->sc_num_mididevs; i++) {
1502 err = detach_mididev(&sc->sc_mididevs[i], flags);
1503 if (err != USBD_NORMAL_COMPLETION)
1504 return err;
1505 }
1506
1507 return USBD_NORMAL_COMPLETION;
1508 }
1509
1510 static void
1511 deactivate_all_mididevs(struct umidi_softc *sc)
1512 {
1513 int i;
1514
1515 if (sc->sc_mididevs) {
1516 for (i = 0; i < sc->sc_num_mididevs; i++)
1517 deactivate_mididev(&sc->sc_mididevs[i]);
1518 }
1519 }
1520
1521 /*
1522 * TODO: the 0-based cable numbers will often not match the labeling of the
1523 * equipment. Ideally:
1524 * For class-compliant devices: get the iJack string from the jack descriptor.
1525 * Otherwise:
1526 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1527 * number for display)
1528 * - support an array quirk explictly giving a char * for each jack.
1529 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1530 * the CNs are not globally unique, each is shown with its associated endpoint
1531 * address in hex also. That should not be necessary when using iJack values
1532 * or a quirk array.
1533 */
1534 void
1535 describe_mididev(struct umidi_mididev *md)
1536 {
1537 char in_label[16];
1538 char out_label[16];
1539 const char *unit_label;
1540 char *final_label;
1541 struct umidi_softc *sc;
1542 int show_ep_in;
1543 int show_ep_out;
1544 size_t len;
1545
1546 sc = md->sc;
1547 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1548 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1549
1550 if (NULL == md->in_jack)
1551 in_label[0] = '\0';
1552 else if (show_ep_in)
1553 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1554 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1555 else
1556 snprintf(in_label, sizeof(in_label), "<%d ",
1557 md->in_jack->cable_number);
1558
1559 if (NULL == md->out_jack)
1560 out_label[0] = '\0';
1561 else if (show_ep_out)
1562 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1563 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1564 else
1565 snprintf(out_label, sizeof(out_label), ">%d ",
1566 md->out_jack->cable_number);
1567
1568 unit_label = device_xname(sc->sc_dev);
1569
1570 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1571
1572 final_label = kmem_alloc(len, KM_SLEEP);
1573
1574 snprintf(final_label, len, "%s%son %s",
1575 in_label, out_label, unit_label);
1576
1577 md->label = final_label;
1578 md->label_len = len;
1579 }
1580
1581 #ifdef UMIDI_DEBUG
1582 static void
1583 dump_sc(struct umidi_softc *sc)
1584 {
1585 int i;
1586
1587 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1588 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1589 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1590 dump_ep(&sc->sc_out_ep[i]);
1591 }
1592 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1593 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1594 dump_ep(&sc->sc_in_ep[i]);
1595 }
1596 }
1597
1598 static void
1599 dump_ep(struct umidi_endpoint *ep)
1600 {
1601 int i;
1602 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1603 if (NULL==ep->jacks[i])
1604 continue;
1605 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1606 dump_jack(ep->jacks[i]);
1607 }
1608 }
1609 static void
1610 dump_jack(struct umidi_jack *jack)
1611 {
1612 DPRINTFN(10, ("\t\t\tep=%p\n",
1613 jack->endpoint));
1614 }
1615
1616 #endif /* UMIDI_DEBUG */
1617
1618
1619
1620 /*
1621 * MUX MIDI PACKET
1622 */
1623
1624 static const int packet_length[16] = {
1625 /*0*/ -1,
1626 /*1*/ -1,
1627 /*2*/ 2,
1628 /*3*/ 3,
1629 /*4*/ 3,
1630 /*5*/ 1,
1631 /*6*/ 2,
1632 /*7*/ 3,
1633 /*8*/ 3,
1634 /*9*/ 3,
1635 /*A*/ 3,
1636 /*B*/ 3,
1637 /*C*/ 2,
1638 /*D*/ 2,
1639 /*E*/ 3,
1640 /*F*/ 1,
1641 };
1642
1643 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1644 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1645 #define MIX_CN_CIN(cn, cin) \
1646 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1647 ((unsigned char)(cin)&0x0F)))
1648
1649 static usbd_status
1650 start_input_transfer(struct umidi_endpoint *ep)
1651 {
1652 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1653 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1654 return usbd_transfer(ep->xfer);
1655 }
1656
1657 static usbd_status
1658 start_output_transfer(struct umidi_endpoint *ep)
1659 {
1660 usbd_status rv;
1661 uint32_t length;
1662 int i;
1663
1664 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1665 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1666 ep->buffer, ep->next_slot, length));
1667
1668 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1669 USBD_NO_TIMEOUT, out_intr);
1670 rv = usbd_transfer(ep->xfer);
1671
1672 /*
1673 * Once the transfer is scheduled, no more adding to partial
1674 * packets within it.
1675 */
1676 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1677 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1678 if (NULL != ep->jacks[i])
1679 ep->jacks[i]->midiman_ppkt = NULL;
1680 }
1681
1682 return rv;
1683 }
1684
1685 #ifdef UMIDI_DEBUG
1686 #define DPR_PACKET(dir, sc, p) \
1687 if ((unsigned char)(p)[1]!=0xFE) \
1688 DPRINTFN(500, \
1689 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1690 device_xname(sc->sc_dev), \
1691 (unsigned char)(p)[0], \
1692 (unsigned char)(p)[1], \
1693 (unsigned char)(p)[2], \
1694 (unsigned char)(p)[3]));
1695 #else
1696 #define DPR_PACKET(dir, sc, p)
1697 #endif
1698
1699 /*
1700 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1701 * with the cable number and length in the last byte instead of the first,
1702 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1703 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1704 * with a cable nybble and a length nybble (which, unlike the CIN of a
1705 * real USB MIDI packet, has no semantics at all besides the length).
1706 * A packet received from a Midiman may contain part of a MIDI message,
1707 * more than one MIDI message, or parts of more than one MIDI message. A
1708 * three-byte MIDI message may arrive in three packets of data length 1, and
1709 * running status may be used. Happily, the midi(4) driver above us will put
1710 * it all back together, so the only cost is in USB bandwidth. The device
1711 * has an easier time with what it receives from us: we'll pack messages in
1712 * and across packets, but filling the packets whenever possible and,
1713 * as midi(4) hands us a complete message at a time, we'll never send one
1714 * in a dribble of short packets.
1715 */
1716
1717 static int
1718 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1719 {
1720 struct umidi_endpoint *ep = out_jack->endpoint;
1721 struct umidi_softc *sc = ep->sc;
1722 unsigned char *packet;
1723 int plen;
1724 int poff;
1725
1726 KASSERT(mutex_owned(&sc->sc_lock));
1727
1728 if (sc->sc_dying)
1729 return EIO;
1730
1731 if (!out_jack->opened)
1732 return ENODEV; /* XXX as it was, is this the right errno? */
1733
1734 sc->sc_refcnt++;
1735
1736 #ifdef UMIDI_DEBUG
1737 if (umididebug >= 100)
1738 microtime(&umidi_tv);
1739 #endif
1740 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1741 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1742 ep, out_jack->cable_number, len, cin));
1743
1744 packet = *ep->next_slot++;
1745 KASSERT(ep->buffer_size >=
1746 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1747 memset(packet, 0, UMIDI_PACKET_SIZE);
1748 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1749 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1750 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1751 plen = 3 - poff;
1752 if (plen > len)
1753 plen = len;
1754 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1755 src += plen;
1756 len -= plen;
1757 plen += poff;
1758 out_jack->midiman_ppkt[3] =
1759 MIX_CN_CIN(out_jack->cable_number, plen);
1760 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1761 if (3 == plen)
1762 out_jack->midiman_ppkt = NULL; /* no more */
1763 }
1764 if (0 == len)
1765 ep->next_slot--; /* won't be needed, nevermind */
1766 else {
1767 memcpy(packet, src, len);
1768 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1769 DPR_PACKET(out, sc, packet);
1770 if (len < 3)
1771 out_jack->midiman_ppkt = packet;
1772 }
1773 } else { /* the nice simple USB class-compliant case */
1774 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1775 memcpy(packet+1, src, len);
1776 DPR_PACKET(out, sc, packet);
1777 }
1778 ep->next_schedule |= 1<<(out_jack->cable_number);
1779 ++ ep->num_scheduled;
1780 if (!ep->armed && !ep->soliciting) {
1781 /*
1782 * It would be bad to call out_solicit directly here (the
1783 * caller need not be reentrant) but a soft interrupt allows
1784 * solicit to run immediately the caller exits its critical
1785 * section, and if the caller has more to write we can get it
1786 * before starting the USB transfer, and send a longer one.
1787 */
1788 ep->soliciting = 1;
1789 softint_schedule(ep->solicit_cookie);
1790 }
1791
1792 if (--sc->sc_refcnt < 0)
1793 usb_detach_broadcast(sc->sc_dev, &sc->sc_detach_cv);
1794
1795 return 0;
1796 }
1797
1798 static void
1799 in_intr(struct usbd_xfer *xfer, void *priv,
1800 usbd_status status)
1801 {
1802 int cn, len, i;
1803 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1804 struct umidi_softc *sc = ep->sc;
1805 struct umidi_jack *jack;
1806 unsigned char *packet;
1807 umidi_packet_bufp slot;
1808 umidi_packet_bufp end;
1809 unsigned char *data;
1810 uint32_t count;
1811
1812 if (ep->sc->sc_dying || !ep->num_open)
1813 return;
1814
1815 mutex_enter(&sc->sc_lock);
1816 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1817 if (0 == count % UMIDI_PACKET_SIZE) {
1818 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1819 device_xname(ep->sc->sc_dev), ep, count));
1820 } else {
1821 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1822 device_xname(ep->sc->sc_dev), ep, count));
1823 }
1824
1825 slot = ep->buffer;
1826 end = slot + count / sizeof(*slot);
1827
1828 for (packet = *slot; slot < end; packet = *++slot) {
1829
1830 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1831 cn = (0xf0&(packet[3]))>>4;
1832 len = 0x0f&(packet[3]);
1833 data = packet;
1834 } else {
1835 cn = GET_CN(packet[0]);
1836 len = packet_length[GET_CIN(packet[0])];
1837 data = packet + 1;
1838 }
1839 /* 0 <= cn <= 15 by inspection of above code */
1840 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1841 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1842 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1843 device_xname(ep->sc->sc_dev), ep, cn, len,
1844 (unsigned)data[0],
1845 (unsigned)data[1],
1846 (unsigned)data[2]));
1847 mutex_exit(&sc->sc_lock);
1848 return;
1849 }
1850
1851 if (!jack->bound || !jack->opened)
1852 continue;
1853
1854 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1855 "%02X %02X %02X\n",
1856 device_xname(ep->sc->sc_dev), ep, cn, len,
1857 (unsigned)data[0],
1858 (unsigned)data[1],
1859 (unsigned)data[2]));
1860
1861 if (jack->u.in.intr) {
1862 for (i = 0; i < len; i++) {
1863 (*jack->u.in.intr)(jack->arg, data[i]);
1864 }
1865 }
1866
1867 }
1868
1869 (void)start_input_transfer(ep);
1870 mutex_exit(&sc->sc_lock);
1871 }
1872
1873 static void
1874 out_intr(struct usbd_xfer *xfer, void *priv,
1875 usbd_status status)
1876 {
1877 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1878 struct umidi_softc *sc = ep->sc;
1879 uint32_t count;
1880
1881 if (sc->sc_dying)
1882 return;
1883
1884 mutex_enter(&sc->sc_lock);
1885 #ifdef UMIDI_DEBUG
1886 if (umididebug >= 200)
1887 microtime(&umidi_tv);
1888 #endif
1889 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1890 if (0 == count % UMIDI_PACKET_SIZE) {
1891 DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1892 device_xname(ep->sc->sc_dev),
1893 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1894 } else {
1895 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1896 device_xname(ep->sc->sc_dev), ep, count));
1897 }
1898 count /= UMIDI_PACKET_SIZE;
1899
1900 /*
1901 * If while the transfer was pending we buffered any new messages,
1902 * move them to the start of the buffer.
1903 */
1904 ep->next_slot -= count;
1905 if (ep->buffer < ep->next_slot) {
1906 memcpy(ep->buffer, ep->buffer + count,
1907 (char *)ep->next_slot - (char *)ep->buffer);
1908 }
1909 cv_broadcast(&sc->sc_cv);
1910 /*
1911 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1912 * Running at IPL_USB so the following should happen to be safe.
1913 */
1914 ep->armed = 0;
1915 if (!ep->soliciting) {
1916 ep->soliciting = 1;
1917 out_solicit_locked(ep);
1918 }
1919 mutex_exit(&sc->sc_lock);
1920 }
1921
1922 /*
1923 * A jack on which we have received a packet must be called back on its
1924 * out.intr handler before it will send us another; it is considered
1925 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1926 * we need no extra buffer space for it.
1927 *
1928 * In contrast, a jack that is open but not scheduled may supply us a packet
1929 * at any time, driven by the top half, and we must be able to accept it, no
1930 * excuses. So we must ensure that at any point in time there are at least
1931 * (num_open - num_scheduled) slots free.
1932 *
1933 * As long as there are more slots free than that minimum, we can loop calling
1934 * scheduled jacks back on their "interrupt" handlers, soliciting more
1935 * packets, starting the USB transfer only when the buffer space is down to
1936 * the minimum or no jack has any more to send.
1937 */
1938
1939 static void
1940 out_solicit_locked(void *arg)
1941 {
1942 struct umidi_endpoint *ep = arg;
1943 umidi_packet_bufp end;
1944 uint16_t which;
1945 struct umidi_jack *jack;
1946
1947 KASSERT(mutex_owned(&ep->sc->sc_lock));
1948
1949 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1950
1951 for ( ;; ) {
1952 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1953 break; /* at IPL_USB */
1954 if (ep->this_schedule == 0) {
1955 if (ep->next_schedule == 0)
1956 break; /* at IPL_USB */
1957 ep->this_schedule = ep->next_schedule;
1958 ep->next_schedule = 0;
1959 }
1960 /*
1961 * At least one jack is scheduled. Find and mask off the least
1962 * set bit in this_schedule and decrement num_scheduled.
1963 * Convert mask to bit index to find the corresponding jack,
1964 * and call its intr handler. If it has a message, it will call
1965 * back one of the output methods, which will set its bit in
1966 * next_schedule (not copied into this_schedule until the
1967 * latter is empty). In this way we round-robin the jacks that
1968 * have messages to send, until the buffer is as full as we
1969 * dare, and then start a transfer.
1970 */
1971 which = ep->this_schedule;
1972 which &= (~which)+1; /* now mask of least set bit */
1973 ep->this_schedule &= ~which;
1974 --ep->num_scheduled;
1975
1976 --which; /* now 1s below mask - count 1s to get index */
1977 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1978 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1979 which = (((which >> 4) + which) & 0x0f0f);
1980 which += (which >> 8);
1981 which &= 0x1f; /* the bit index a/k/a jack number */
1982
1983 jack = ep->jacks[which];
1984 if (jack->u.out.intr)
1985 (*jack->u.out.intr)(jack->arg);
1986 }
1987 /* intr lock held at loop exit */
1988 if (!ep->armed && ep->next_slot > ep->buffer) {
1989 /*
1990 * Can't hold the interrupt lock while calling into USB,
1991 * but we can safely drop it here.
1992 */
1993 mutex_exit(&ep->sc->sc_lock);
1994 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1995 mutex_enter(&ep->sc->sc_lock);
1996 }
1997 ep->soliciting = 0;
1998 }
1999
2000 /* Entry point for the softintr. */
2001 static void
2002 out_solicit(void *arg)
2003 {
2004 struct umidi_endpoint *ep = arg;
2005 struct umidi_softc *sc = ep->sc;
2006
2007 mutex_enter(&sc->sc_lock);
2008 out_solicit_locked(arg);
2009 mutex_exit(&sc->sc_lock);
2010 }
2011