umidi.c revision 1.74.4.2 1 /* $NetBSD: umidi.c,v 1.74.4.2 2020/04/08 14:08:13 martin Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.74.4.2 2020/04/08 14:08:13 martin Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59
60 #include <dev/usb/usbdevs.h>
61 #include <dev/usb/umidi_quirks.h>
62 #include <dev/midi_if.h>
63
64 /* Jack Descriptor */
65 #define UMIDI_MS_HEADER 0x01
66 #define UMIDI_IN_JACK 0x02
67 #define UMIDI_OUT_JACK 0x03
68
69 /* Jack Type */
70 #define UMIDI_EMBEDDED 0x01
71 #define UMIDI_EXTERNAL 0x02
72
73 /* generic, for iteration */
74 typedef struct {
75 uByte bLength;
76 uByte bDescriptorType;
77 uByte bDescriptorSubtype;
78 } UPACKED umidi_cs_descriptor_t;
79
80 typedef struct {
81 uByte bLength;
82 uByte bDescriptorType;
83 uByte bDescriptorSubtype;
84 uWord bcdMSC;
85 uWord wTotalLength;
86 } UPACKED umidi_cs_interface_descriptor_t;
87 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
88
89 typedef struct {
90 uByte bLength;
91 uByte bDescriptorType;
92 uByte bDescriptorSubtype;
93 uByte bNumEmbMIDIJack;
94 } UPACKED umidi_cs_endpoint_descriptor_t;
95 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
96
97 typedef struct {
98 uByte bLength;
99 uByte bDescriptorType;
100 uByte bDescriptorSubtype;
101 uByte bJackType;
102 uByte bJackID;
103 } UPACKED umidi_jack_descriptor_t;
104 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
105
106
107 #define TO_D(p) ((usb_descriptor_t *)(p))
108 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
109 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
110 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
111 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
112 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
113
114
115 #define UMIDI_PACKET_SIZE 4
116
117 /*
118 * hierarchie
119 *
120 * <-- parent child -->
121 *
122 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
123 * ^ | ^ |
124 * +-----+ +-----+
125 */
126
127 /* midi device */
128 struct umidi_mididev {
129 struct umidi_softc *sc;
130 device_t mdev;
131 /* */
132 struct umidi_jack *in_jack;
133 struct umidi_jack *out_jack;
134 char *label;
135 size_t label_len;
136 /* */
137 int opened;
138 int closing;
139 int flags;
140 };
141
142 /* Jack Information */
143 struct umidi_jack {
144 struct umidi_endpoint *endpoint;
145 /* */
146 int cable_number;
147 void *arg;
148 int bound;
149 int opened;
150 unsigned char *midiman_ppkt;
151 union {
152 struct {
153 void (*intr)(void *);
154 } out;
155 struct {
156 void (*intr)(void *, int);
157 } in;
158 } u;
159 };
160
161 #define UMIDI_MAX_EPJACKS 16
162 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
163 /* endpoint data */
164 struct umidi_endpoint {
165 struct umidi_softc *sc;
166 /* */
167 int addr;
168 struct usbd_pipe *pipe;
169 struct usbd_xfer *xfer;
170 umidi_packet_bufp buffer;
171 umidi_packet_bufp next_slot;
172 uint32_t buffer_size;
173 int num_scheduled;
174 int num_open;
175 int num_jacks;
176 int soliciting;
177 void *solicit_cookie;
178 int armed;
179 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
180 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
181 uint16_t next_schedule;
182 };
183
184 /* software context */
185 struct umidi_softc {
186 device_t sc_dev;
187 struct usbd_device *sc_udev;
188 struct usbd_interface *sc_iface;
189 const struct umidi_quirk *sc_quirk;
190
191 int sc_dying;
192
193 int sc_out_num_jacks;
194 struct umidi_jack *sc_out_jacks;
195 int sc_in_num_jacks;
196 struct umidi_jack *sc_in_jacks;
197 struct umidi_jack *sc_jacks;
198
199 int sc_num_mididevs;
200 struct umidi_mididev *sc_mididevs;
201
202 int sc_out_num_endpoints;
203 struct umidi_endpoint *sc_out_ep;
204 int sc_in_num_endpoints;
205 struct umidi_endpoint *sc_in_ep;
206 struct umidi_endpoint *sc_endpoints;
207 size_t sc_endpoints_len;
208 int cblnums_global;
209
210 kmutex_t sc_lock;
211 kcondvar_t sc_cv;
212 kcondvar_t sc_detach_cv;
213
214 int sc_refcnt;
215 };
216
217 #ifdef UMIDI_DEBUG
218 #define DPRINTF(x) if (umididebug) printf x
219 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
220 #include <sys/time.h>
221 static struct timeval umidi_tv;
222 int umididebug = 0;
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227
228 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
229 (sc->sc_out_num_endpoints + \
230 sc->sc_in_num_endpoints))
231
232
233 static int umidi_open(void *, int,
234 void (*)(void *, int), void (*)(void *), void *);
235 static void umidi_close(void *);
236 static int umidi_channelmsg(void *, int, int, u_char *, int);
237 static int umidi_commonmsg(void *, int, u_char *, int);
238 static int umidi_sysex(void *, u_char *, int);
239 static int umidi_rtmsg(void *, int);
240 static void umidi_getinfo(void *, struct midi_info *);
241 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
242
243 static usbd_status alloc_pipe(struct umidi_endpoint *);
244 static void free_pipe(struct umidi_endpoint *);
245
246 static usbd_status alloc_all_endpoints(struct umidi_softc *);
247 static void free_all_endpoints(struct umidi_softc *);
248
249 static usbd_status alloc_all_jacks(struct umidi_softc *);
250 static void free_all_jacks(struct umidi_softc *);
251 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
252 struct umidi_jack *,
253 struct umidi_jack *,
254 struct umidi_mididev *);
255 static void unbind_jacks_from_mididev(struct umidi_mididev *);
256 static void unbind_all_jacks(struct umidi_softc *);
257 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
258 static usbd_status open_out_jack(struct umidi_jack *, void *,
259 void (*)(void *));
260 static usbd_status open_in_jack(struct umidi_jack *, void *,
261 void (*)(void *, int));
262 static void close_out_jack(struct umidi_jack *);
263 static void close_in_jack(struct umidi_jack *);
264
265 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
266 static usbd_status detach_mididev(struct umidi_mididev *, int);
267 static void deactivate_mididev(struct umidi_mididev *);
268 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
269 static void free_all_mididevs(struct umidi_softc *);
270 static usbd_status attach_all_mididevs(struct umidi_softc *);
271 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
272 static void deactivate_all_mididevs(struct umidi_softc *);
273 static void describe_mididev(struct umidi_mididev *);
274
275 #ifdef UMIDI_DEBUG
276 static void dump_sc(struct umidi_softc *);
277 static void dump_ep(struct umidi_endpoint *);
278 static void dump_jack(struct umidi_jack *);
279 #endif
280
281 static usbd_status start_input_transfer(struct umidi_endpoint *);
282 static usbd_status start_output_transfer(struct umidi_endpoint *);
283 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
284 static void in_intr(struct usbd_xfer *, void *, usbd_status);
285 static void out_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
287 static void out_solicit_locked(void *); /* pre-locked version */
288
289
290 const struct midi_hw_if umidi_hw_if = {
291 .open = umidi_open,
292 .close = umidi_close,
293 .output = umidi_rtmsg,
294 .getinfo = umidi_getinfo,
295 .get_locks = umidi_get_locks,
296 };
297
298 struct midi_hw_if_ext umidi_hw_if_ext = {
299 .channel = umidi_channelmsg,
300 .common = umidi_commonmsg,
301 .sysex = umidi_sysex,
302 };
303
304 struct midi_hw_if_ext umidi_hw_if_mm = {
305 .channel = umidi_channelmsg,
306 .common = umidi_commonmsg,
307 .sysex = umidi_sysex,
308 .compress = 1,
309 };
310
311 static int umidi_match(device_t, cfdata_t, void *);
312 static void umidi_attach(device_t, device_t, void *);
313 static void umidi_childdet(device_t, device_t);
314 static int umidi_detach(device_t, int);
315 static int umidi_activate(device_t, enum devact);
316
317 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
318 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
319
320 static int
321 umidi_match(device_t parent, cfdata_t match, void *aux)
322 {
323 struct usbif_attach_arg *uiaa = aux;
324
325 DPRINTFN(1,("umidi_match\n"));
326
327 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
328 uiaa->uiaa_ifaceno))
329 return UMATCH_IFACECLASS_IFACESUBCLASS;
330
331 if (uiaa->uiaa_class == UICLASS_AUDIO &&
332 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
333 return UMATCH_IFACECLASS_IFACESUBCLASS;
334
335 return UMATCH_NONE;
336 }
337
338 static void
339 umidi_attach(device_t parent, device_t self, void *aux)
340 {
341 usbd_status err;
342 struct umidi_softc *sc = device_private(self);
343 struct usbif_attach_arg *uiaa = aux;
344 char *devinfop;
345
346 DPRINTFN(1,("umidi_attach\n"));
347
348 sc->sc_dev = self;
349
350 aprint_naive("\n");
351 aprint_normal("\n");
352
353 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
354 aprint_normal_dev(self, "%s\n", devinfop);
355 usbd_devinfo_free(devinfop);
356
357 sc->sc_iface = uiaa->uiaa_iface;
358 sc->sc_udev = uiaa->uiaa_device;
359
360 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
361 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
362
363 aprint_normal_dev(self, "");
364 umidi_print_quirk(sc->sc_quirk);
365
366 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
367 cv_init(&sc->sc_cv, "umidopcl");
368 cv_init(&sc->sc_detach_cv, "umidetcv");
369 sc->sc_refcnt = 0;
370
371 err = alloc_all_endpoints(sc);
372 if (err != USBD_NORMAL_COMPLETION) {
373 aprint_error_dev(self,
374 "alloc_all_endpoints failed. (err=%d)\n", err);
375 goto out;
376 }
377 err = alloc_all_jacks(sc);
378 if (err != USBD_NORMAL_COMPLETION) {
379 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
380 err);
381 goto out_free_endpoints;
382 }
383 aprint_normal_dev(self, "out=%d, in=%d\n",
384 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
385
386 err = assign_all_jacks_automatically(sc);
387 if (err != USBD_NORMAL_COMPLETION) {
388 aprint_error_dev(self,
389 "assign_all_jacks_automatically failed. (err=%d)\n", err);
390 goto out_free_jacks;
391 }
392 err = attach_all_mididevs(sc);
393 if (err != USBD_NORMAL_COMPLETION) {
394 aprint_error_dev(self,
395 "attach_all_mididevs failed. (err=%d)\n", err);
396 goto out_free_jacks;
397 }
398
399 #ifdef UMIDI_DEBUG
400 dump_sc(sc);
401 #endif
402
403 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
404
405 return;
406
407 out_free_jacks:
408 unbind_all_jacks(sc);
409 free_all_jacks(sc);
410
411 out_free_endpoints:
412 free_all_endpoints(sc);
413
414 out:
415 aprint_error_dev(self, "disabled.\n");
416 sc->sc_dying = 1;
417 return;
418 }
419
420 static void
421 umidi_childdet(device_t self, device_t child)
422 {
423 int i;
424 struct umidi_softc *sc = device_private(self);
425
426 KASSERT(sc->sc_mididevs != NULL);
427
428 for (i = 0; i < sc->sc_num_mididevs; i++) {
429 if (sc->sc_mididevs[i].mdev == child)
430 break;
431 }
432 KASSERT(i < sc->sc_num_mididevs);
433 sc->sc_mididevs[i].mdev = NULL;
434 }
435
436 static int
437 umidi_activate(device_t self, enum devact act)
438 {
439 struct umidi_softc *sc = device_private(self);
440
441 switch (act) {
442 case DVACT_DEACTIVATE:
443 DPRINTFN(1,("umidi_activate (deactivate)\n"));
444 sc->sc_dying = 1;
445 deactivate_all_mididevs(sc);
446 return 0;
447 default:
448 DPRINTFN(1,("umidi_activate (%d)\n", act));
449 return EOPNOTSUPP;
450 }
451 }
452
453 static int
454 umidi_detach(device_t self, int flags)
455 {
456 struct umidi_softc *sc = device_private(self);
457
458 DPRINTFN(1,("umidi_detach\n"));
459
460 mutex_enter(&sc->sc_lock);
461 sc->sc_dying = 1;
462 if (--sc->sc_refcnt >= 0)
463 if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
464 aprint_error_dev(self, ": didn't detach\n");
465 mutex_exit(&sc->sc_lock);
466
467 detach_all_mididevs(sc, flags);
468 free_all_mididevs(sc);
469 free_all_jacks(sc);
470 free_all_endpoints(sc);
471
472 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
473
474 mutex_destroy(&sc->sc_lock);
475 cv_destroy(&sc->sc_detach_cv);
476 cv_destroy(&sc->sc_cv);
477
478 return 0;
479 }
480
481
482 /*
483 * midi_if stuffs
484 */
485 int
486 umidi_open(void *addr,
487 int flags,
488 void (*iintr)(void *, int),
489 void (*ointr)(void *),
490 void *arg)
491 {
492 struct umidi_mididev *mididev = addr;
493 struct umidi_softc *sc = mididev->sc;
494 usbd_status err;
495
496 KASSERT(mutex_owned(&sc->sc_lock));
497 DPRINTF(("umidi_open: sc=%p\n", sc));
498
499 if (mididev->opened)
500 return EBUSY;
501 if (sc->sc_dying)
502 return EIO;
503
504 mididev->opened = 1;
505 mididev->flags = flags;
506 if ((mididev->flags & FWRITE) && mididev->out_jack) {
507 err = open_out_jack(mididev->out_jack, arg, ointr);
508 if (err != USBD_NORMAL_COMPLETION)
509 goto bad;
510 }
511 if ((mididev->flags & FREAD) && mididev->in_jack) {
512 err = open_in_jack(mididev->in_jack, arg, iintr);
513 KASSERT(mididev->opened);
514 if (err != USBD_NORMAL_COMPLETION &&
515 err != USBD_IN_PROGRESS) {
516 if (mididev->out_jack)
517 close_out_jack(mididev->out_jack);
518 goto bad;
519 }
520 }
521
522 return 0;
523 bad:
524 mididev->opened = 0;
525 DPRINTF(("umidi_open: usbd_status %d\n", err));
526 KASSERT(mutex_owned(&sc->sc_lock));
527 return USBD_IN_USE == err ? EBUSY : EIO;
528 }
529
530 void
531 umidi_close(void *addr)
532 {
533 struct umidi_mididev *mididev = addr;
534 struct umidi_softc *sc = mididev->sc;
535
536 KASSERT(mutex_owned(&sc->sc_lock));
537
538 if (mididev->closing)
539 return;
540
541 mididev->closing = 1;
542
543 sc->sc_refcnt++;
544
545 if ((mididev->flags & FWRITE) && mididev->out_jack)
546 close_out_jack(mididev->out_jack);
547 if ((mididev->flags & FREAD) && mididev->in_jack)
548 close_in_jack(mididev->in_jack);
549
550 if (--sc->sc_refcnt < 0)
551 cv_broadcast(&sc->sc_detach_cv);
552
553 mididev->opened = 0;
554 mididev->closing = 0;
555 }
556
557 int
558 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
559 int len)
560 {
561 struct umidi_mididev *mididev = addr;
562
563 KASSERT(mutex_owned(&mididev->sc->sc_lock));
564
565 if (!mididev->out_jack || !mididev->opened || mididev->closing)
566 return EIO;
567
568 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
569 }
570
571 int
572 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
573 {
574 struct umidi_mididev *mididev = addr;
575 int cin;
576
577 KASSERT(mutex_owned(&mididev->sc->sc_lock));
578
579 if (!mididev->out_jack || !mididev->opened || mididev->closing)
580 return EIO;
581
582 switch ( len ) {
583 case 1: cin = 5; break;
584 case 2: cin = 2; break;
585 case 3: cin = 3; break;
586 default: return EIO; /* or gcc warns of cin uninitialized */
587 }
588
589 return out_jack_output(mididev->out_jack, msg, len, cin);
590 }
591
592 int
593 umidi_sysex(void *addr, u_char *msg, int len)
594 {
595 struct umidi_mididev *mididev = addr;
596 int cin;
597
598 KASSERT(mutex_owned(&mididev->sc->sc_lock));
599
600 if (!mididev->out_jack || !mididev->opened || mididev->closing)
601 return EIO;
602
603 switch ( len ) {
604 case 1: cin = 5; break;
605 case 2: cin = 6; break;
606 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
607 default: return EIO; /* or gcc warns of cin uninitialized */
608 }
609
610 return out_jack_output(mididev->out_jack, msg, len, cin);
611 }
612
613 int
614 umidi_rtmsg(void *addr, int d)
615 {
616 struct umidi_mididev *mididev = addr;
617 u_char msg = d;
618
619 KASSERT(mutex_owned(&mididev->sc->sc_lock));
620
621 if (!mididev->out_jack || !mididev->opened || mididev->closing)
622 return EIO;
623
624 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
625 }
626
627 void
628 umidi_getinfo(void *addr, struct midi_info *mi)
629 {
630 struct umidi_mididev *mididev = addr;
631 struct umidi_softc *sc = mididev->sc;
632 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
633
634 KASSERT(mutex_owned(&sc->sc_lock));
635
636 mi->name = mididev->label;
637 mi->props = MIDI_PROP_OUT_INTR;
638 if (mididev->in_jack)
639 mi->props |= MIDI_PROP_CAN_INPUT;
640 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
641 }
642
643 static void
644 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
645 {
646 struct umidi_mididev *mididev = addr;
647 struct umidi_softc *sc = mididev->sc;
648
649 *intr = NULL;
650 *thread = &sc->sc_lock;
651 }
652
653 /*
654 * each endpoint stuffs
655 */
656
657 /* alloc/free pipe */
658 static usbd_status
659 alloc_pipe(struct umidi_endpoint *ep)
660 {
661 struct umidi_softc *sc = ep->sc;
662 usbd_status err;
663 usb_endpoint_descriptor_t *epd;
664
665 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
666 /*
667 * For output, an improvement would be to have a buffer bigger than
668 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
669 * allow out_solicit to fill the buffer to the full packet size in
670 * all cases. But to use usbd_create_xfer to get a slightly larger
671 * buffer would not be a good way to do that, because if the addition
672 * would make the buffer exceed USB_MEM_SMALL then a substantially
673 * larger block may be wastefully allocated. Some flavor of double
674 * buffering could serve the same purpose, but would increase the
675 * code complexity, so for now I will live with the current slight
676 * penalty of reducing max transfer size by (num_open-num_scheduled)
677 * packet slots.
678 */
679 ep->buffer_size = UGETW(epd->wMaxPacketSize);
680 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
681
682 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
683 device_xname(sc->sc_dev), ep, ep->buffer_size));
684 ep->num_scheduled = 0;
685 ep->this_schedule = 0;
686 ep->next_schedule = 0;
687 ep->soliciting = 0;
688 ep->armed = 0;
689 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
690 if (err)
691 goto quit;
692 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
693 0, 0, &ep->xfer);
694 if (error) {
695 usbd_close_pipe(ep->pipe);
696 return USBD_NOMEM;
697 }
698 ep->buffer = usbd_get_buffer(ep->xfer);
699 ep->next_slot = ep->buffer;
700 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
701 out_solicit, ep);
702 quit:
703 return err;
704 }
705
706 static void
707 free_pipe(struct umidi_endpoint *ep)
708 {
709 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
710 usbd_abort_pipe(ep->pipe);
711 usbd_destroy_xfer(ep->xfer);
712 usbd_close_pipe(ep->pipe);
713 softint_disestablish(ep->solicit_cookie);
714 }
715
716
717 /* alloc/free the array of endpoint structures */
718
719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
722
723 static usbd_status
724 alloc_all_endpoints(struct umidi_softc *sc)
725 {
726 usbd_status err;
727 struct umidi_endpoint *ep;
728 int i;
729
730 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
731 err = alloc_all_endpoints_fixed_ep(sc);
732 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
733 err = alloc_all_endpoints_yamaha(sc);
734 } else {
735 err = alloc_all_endpoints_genuine(sc);
736 }
737 if (err != USBD_NORMAL_COMPLETION)
738 return err;
739
740 ep = sc->sc_endpoints;
741 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
742 err = alloc_pipe(ep++);
743 if (err != USBD_NORMAL_COMPLETION) {
744 for (; ep != sc->sc_endpoints; ep--)
745 free_pipe(ep-1);
746 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
747 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
748 break;
749 }
750 }
751 return err;
752 }
753
754 static void
755 free_all_endpoints(struct umidi_softc *sc)
756 {
757 int i;
758
759 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
760 free_pipe(&sc->sc_endpoints[i]);
761 if (sc->sc_endpoints != NULL)
762 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
763 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
764 }
765
766 static usbd_status
767 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
768 {
769 usbd_status err;
770 const struct umq_fixed_ep_desc *fp;
771 struct umidi_endpoint *ep;
772 usb_endpoint_descriptor_t *epd;
773 int i;
774
775 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
776 UMQ_TYPE_FIXED_EP);
777 sc->sc_out_num_jacks = 0;
778 sc->sc_in_num_jacks = 0;
779 sc->sc_out_num_endpoints = fp->num_out_ep;
780 sc->sc_in_num_endpoints = fp->num_in_ep;
781 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
782 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
783 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
784 sc->sc_in_ep =
785 sc->sc_in_num_endpoints ?
786 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
787
788 ep = &sc->sc_out_ep[0];
789 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
790 epd = usbd_interface2endpoint_descriptor(
791 sc->sc_iface,
792 fp->out_ep[i].ep);
793 if (!epd) {
794 aprint_error_dev(sc->sc_dev,
795 "cannot get endpoint descriptor(out:%d)\n",
796 fp->out_ep[i].ep);
797 err = USBD_INVAL;
798 goto error;
799 }
800 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
801 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
802 aprint_error_dev(sc->sc_dev,
803 "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
804 err = USBD_INVAL;
805 goto error;
806 }
807 ep->sc = sc;
808 ep->addr = epd->bEndpointAddress;
809 ep->num_jacks = fp->out_ep[i].num_jacks;
810 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
811 ep->num_open = 0;
812 ep++;
813 }
814 ep = &sc->sc_in_ep[0];
815 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
816 epd = usbd_interface2endpoint_descriptor(
817 sc->sc_iface,
818 fp->in_ep[i].ep);
819 if (!epd) {
820 aprint_error_dev(sc->sc_dev,
821 "cannot get endpoint descriptor(in:%d)\n",
822 fp->in_ep[i].ep);
823 err = USBD_INVAL;
824 goto error;
825 }
826 /*
827 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
828 * endpoint. The existing input logic in this driver seems
829 * to work successfully if we just stop treating an interrupt
830 * endpoint as illegal (or the in_progress status we get on
831 * the initial transfer). It does not seem necessary to
832 * actually use the interrupt flavor of alloc_pipe or make
833 * other serious rearrangements of logic. I like that.
834 */
835 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
836 case UE_BULK:
837 case UE_INTERRUPT:
838 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
839 break;
840 /*FALLTHROUGH*/
841 default:
842 aprint_error_dev(sc->sc_dev,
843 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
844 err = USBD_INVAL;
845 goto error;
846 }
847
848 ep->sc = sc;
849 ep->addr = epd->bEndpointAddress;
850 ep->num_jacks = fp->in_ep[i].num_jacks;
851 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
852 ep->num_open = 0;
853 ep++;
854 }
855
856 return USBD_NORMAL_COMPLETION;
857 error:
858 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
859 sc->sc_endpoints = NULL;
860 return err;
861 }
862
863 static usbd_status
864 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
865 {
866 /* This driver currently supports max 1in/1out bulk endpoints */
867 usb_descriptor_t *desc;
868 umidi_cs_descriptor_t *udesc;
869 usb_endpoint_descriptor_t *epd;
870 int out_addr, in_addr, i;
871 int dir;
872 size_t remain, descsize;
873
874 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
875 out_addr = in_addr = 0;
876
877 /* detect endpoints */
878 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
879 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
880 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
881 KASSERT(epd != NULL);
882 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
883 dir = UE_GET_DIR(epd->bEndpointAddress);
884 if (dir==UE_DIR_OUT && !out_addr)
885 out_addr = epd->bEndpointAddress;
886 else if (dir==UE_DIR_IN && !in_addr)
887 in_addr = epd->bEndpointAddress;
888 }
889 }
890 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
891
892 /* count jacks */
893 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
894 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
895 return USBD_INVAL;
896 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
897 (size_t)udesc->bLength;
898 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
899
900 while (remain >= sizeof(usb_descriptor_t)) {
901 descsize = udesc->bLength;
902 if (descsize>remain || descsize==0)
903 break;
904 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
905 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
906 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
907 sc->sc_out_num_jacks++;
908 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
909 sc->sc_in_num_jacks++;
910 }
911 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
912 remain -= descsize;
913 }
914
915 /* validate some parameters */
916 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
917 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
918 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
919 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
920 if (sc->sc_out_num_jacks && out_addr) {
921 sc->sc_out_num_endpoints = 1;
922 } else {
923 sc->sc_out_num_endpoints = 0;
924 sc->sc_out_num_jacks = 0;
925 }
926 if (sc->sc_in_num_jacks && in_addr) {
927 sc->sc_in_num_endpoints = 1;
928 } else {
929 sc->sc_in_num_endpoints = 0;
930 sc->sc_in_num_jacks = 0;
931 }
932 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
933 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
934 if (sc->sc_out_num_endpoints) {
935 sc->sc_out_ep = sc->sc_endpoints;
936 sc->sc_out_ep->sc = sc;
937 sc->sc_out_ep->addr = out_addr;
938 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
939 sc->sc_out_ep->num_open = 0;
940 } else
941 sc->sc_out_ep = NULL;
942
943 if (sc->sc_in_num_endpoints) {
944 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
945 sc->sc_in_ep->sc = sc;
946 sc->sc_in_ep->addr = in_addr;
947 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
948 sc->sc_in_ep->num_open = 0;
949 } else
950 sc->sc_in_ep = NULL;
951
952 return USBD_NORMAL_COMPLETION;
953 }
954
955 static usbd_status
956 alloc_all_endpoints_genuine(struct umidi_softc *sc)
957 {
958 usb_interface_descriptor_t *interface_desc;
959 usb_config_descriptor_t *config_desc;
960 usb_descriptor_t *desc;
961 int num_ep;
962 size_t remain, descsize;
963 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
964 int epaddr;
965
966 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
967 num_ep = interface_desc->bNumEndpoints;
968 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
969 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
970 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
971 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
972 epaddr = -1;
973
974 /* get the list of endpoints for midi stream */
975 config_desc = usbd_get_config_descriptor(sc->sc_udev);
976 desc = (usb_descriptor_t *) config_desc;
977 remain = (size_t)UGETW(config_desc->wTotalLength);
978 while (remain>=sizeof(usb_descriptor_t)) {
979 descsize = desc->bLength;
980 if (descsize>remain || descsize==0)
981 break;
982 if (desc->bDescriptorType==UDESC_ENDPOINT &&
983 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
984 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
985 epaddr = TO_EPD(desc)->bEndpointAddress;
986 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
987 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
988 epaddr!=-1) {
989 if (num_ep>0) {
990 num_ep--;
991 p->sc = sc;
992 p->addr = epaddr;
993 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
994 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
995 sc->sc_out_num_endpoints++;
996 sc->sc_out_num_jacks += p->num_jacks;
997 } else {
998 sc->sc_in_num_endpoints++;
999 sc->sc_in_num_jacks += p->num_jacks;
1000 }
1001 p++;
1002 }
1003 } else
1004 epaddr = -1;
1005 desc = NEXT_D(desc);
1006 remain-=descsize;
1007 }
1008
1009 /* sort endpoints */
1010 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1011 p = sc->sc_endpoints;
1012 endep = p + num_ep;
1013 while (p<endep) {
1014 lowest = p;
1015 for (q=p+1; q<endep; q++) {
1016 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1017 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1018 ((UE_GET_DIR(lowest->addr)==
1019 UE_GET_DIR(q->addr)) &&
1020 (UE_GET_ADDR(lowest->addr)>
1021 UE_GET_ADDR(q->addr))))
1022 lowest = q;
1023 }
1024 if (lowest != p) {
1025 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1026 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1027 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1028 }
1029 p->num_open = 0;
1030 p++;
1031 }
1032
1033 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1034 sc->sc_in_ep =
1035 sc->sc_in_num_endpoints ?
1036 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1037
1038 return USBD_NORMAL_COMPLETION;
1039 }
1040
1041
1042 /*
1043 * jack stuffs
1044 */
1045
1046 static usbd_status
1047 alloc_all_jacks(struct umidi_softc *sc)
1048 {
1049 int i, j;
1050 struct umidi_endpoint *ep;
1051 struct umidi_jack *jack;
1052 const unsigned char *cn_spec;
1053
1054 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1055 sc->cblnums_global = 0;
1056 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1057 sc->cblnums_global = 1;
1058 else {
1059 /*
1060 * I don't think this default is correct, but it preserves
1061 * the prior behavior of the code. That's why I defined two
1062 * complementary quirks. Any device for which the default
1063 * behavior is wrong can be made to work by giving it an
1064 * explicit quirk, and if a pattern ever develops (as I suspect
1065 * it will) that a lot of otherwise standard USB MIDI devices
1066 * need the CN_SEQ_PER_EP "quirk," then this default can be
1067 * changed to 0, and the only devices that will break are those
1068 * listing neither quirk, and they'll easily be fixed by giving
1069 * them the CN_SEQ_GLOBAL quirk.
1070 */
1071 sc->cblnums_global = 1;
1072 }
1073
1074 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1075 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1076 UMQ_TYPE_CN_FIXED);
1077 else
1078 cn_spec = NULL;
1079
1080 /* allocate/initialize structures */
1081 sc->sc_jacks =
1082 kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
1083 + sc->sc_out_num_jacks), KM_SLEEP);
1084 if (!sc->sc_jacks)
1085 return USBD_NOMEM;
1086 sc->sc_out_jacks =
1087 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1088 sc->sc_in_jacks =
1089 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1090
1091 jack = &sc->sc_out_jacks[0];
1092 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1093 jack->opened = 0;
1094 jack->bound = 0;
1095 jack->arg = NULL;
1096 jack->u.out.intr = NULL;
1097 jack->midiman_ppkt = NULL;
1098 if (sc->cblnums_global)
1099 jack->cable_number = i;
1100 jack++;
1101 }
1102 jack = &sc->sc_in_jacks[0];
1103 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1104 jack->opened = 0;
1105 jack->bound = 0;
1106 jack->arg = NULL;
1107 jack->u.in.intr = NULL;
1108 if (sc->cblnums_global)
1109 jack->cable_number = i;
1110 jack++;
1111 }
1112
1113 /* assign each jacks to each endpoints */
1114 jack = &sc->sc_out_jacks[0];
1115 ep = &sc->sc_out_ep[0];
1116 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1117 for (j = 0; j < ep->num_jacks; j++) {
1118 jack->endpoint = ep;
1119 if (cn_spec != NULL)
1120 jack->cable_number = *cn_spec++;
1121 else if (!sc->cblnums_global)
1122 jack->cable_number = j;
1123 ep->jacks[jack->cable_number] = jack;
1124 jack++;
1125 }
1126 ep++;
1127 }
1128 jack = &sc->sc_in_jacks[0];
1129 ep = &sc->sc_in_ep[0];
1130 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1131 for (j = 0; j < ep->num_jacks; j++) {
1132 jack->endpoint = ep;
1133 if (cn_spec != NULL)
1134 jack->cable_number = *cn_spec++;
1135 else if (!sc->cblnums_global)
1136 jack->cable_number = j;
1137 ep->jacks[jack->cable_number] = jack;
1138 jack++;
1139 }
1140 ep++;
1141 }
1142
1143 return USBD_NORMAL_COMPLETION;
1144 }
1145
1146 static void
1147 free_all_jacks(struct umidi_softc *sc)
1148 {
1149 struct umidi_jack *jacks;
1150 size_t len;
1151
1152 mutex_enter(&sc->sc_lock);
1153 jacks = sc->sc_jacks;
1154 len = sizeof(*sc->sc_out_jacks)
1155 * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1156 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1157 mutex_exit(&sc->sc_lock);
1158
1159 if (jacks)
1160 kmem_free(jacks, len);
1161 }
1162
1163 static usbd_status
1164 bind_jacks_to_mididev(struct umidi_softc *sc,
1165 struct umidi_jack *out_jack,
1166 struct umidi_jack *in_jack,
1167 struct umidi_mididev *mididev)
1168 {
1169 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1170 return USBD_IN_USE;
1171 if (mididev->out_jack || mididev->in_jack)
1172 return USBD_IN_USE;
1173
1174 if (out_jack)
1175 out_jack->bound = 1;
1176 if (in_jack)
1177 in_jack->bound = 1;
1178 mididev->in_jack = in_jack;
1179 mididev->out_jack = out_jack;
1180
1181 mididev->closing = 0;
1182
1183 return USBD_NORMAL_COMPLETION;
1184 }
1185
1186 static void
1187 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1188 {
1189 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1190
1191 mididev->closing = 1;
1192
1193 if ((mididev->flags & FWRITE) && mididev->out_jack)
1194 close_out_jack(mididev->out_jack);
1195 if ((mididev->flags & FREAD) && mididev->in_jack)
1196 close_in_jack(mididev->in_jack);
1197
1198 if (mididev->out_jack) {
1199 mididev->out_jack->bound = 0;
1200 mididev->out_jack = NULL;
1201 }
1202 if (mididev->in_jack) {
1203 mididev->in_jack->bound = 0;
1204 mididev->in_jack = NULL;
1205 }
1206 }
1207
1208 static void
1209 unbind_all_jacks(struct umidi_softc *sc)
1210 {
1211 int i;
1212
1213 mutex_enter(&sc->sc_lock);
1214 if (sc->sc_mididevs)
1215 for (i = 0; i < sc->sc_num_mididevs; i++)
1216 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1217 mutex_exit(&sc->sc_lock);
1218 }
1219
1220 static usbd_status
1221 assign_all_jacks_automatically(struct umidi_softc *sc)
1222 {
1223 usbd_status err;
1224 int i;
1225 struct umidi_jack *out, *in;
1226 const signed char *asg_spec;
1227
1228 err =
1229 alloc_all_mididevs(sc,
1230 uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1231 if (err!=USBD_NORMAL_COMPLETION)
1232 return err;
1233
1234 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1235 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1236 UMQ_TYPE_MD_FIXED);
1237 else
1238 asg_spec = NULL;
1239
1240 for (i = 0; i < sc->sc_num_mididevs; i++) {
1241 if (asg_spec != NULL) {
1242 if (*asg_spec == -1)
1243 out = NULL;
1244 else
1245 out = &sc->sc_out_jacks[*asg_spec];
1246 ++ asg_spec;
1247 if (*asg_spec == -1)
1248 in = NULL;
1249 else
1250 in = &sc->sc_in_jacks[*asg_spec];
1251 ++ asg_spec;
1252 } else {
1253 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1254 : NULL;
1255 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1256 : NULL;
1257 }
1258 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1259 if (err != USBD_NORMAL_COMPLETION) {
1260 free_all_mididevs(sc);
1261 return err;
1262 }
1263 }
1264
1265 return USBD_NORMAL_COMPLETION;
1266 }
1267
1268 static usbd_status
1269 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1270 {
1271 struct umidi_endpoint *ep = jack->endpoint;
1272 struct umidi_softc *sc = ep->sc;
1273 umidi_packet_bufp end;
1274 int err;
1275
1276 KASSERT(mutex_owned(&sc->sc_lock));
1277
1278 if (jack->opened)
1279 return USBD_IN_USE;
1280
1281 jack->arg = arg;
1282 jack->u.out.intr = intr;
1283 jack->midiman_ppkt = NULL;
1284 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1285 jack->opened = 1;
1286 ep->num_open++;
1287 /*
1288 * out_solicit maintains an invariant that there will always be
1289 * (num_open - num_scheduled) slots free in the buffer. as we have
1290 * just incremented num_open, the buffer may be too full to satisfy
1291 * the invariant until a transfer completes, for which we must wait.
1292 */
1293 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1294 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1295 mstohz(10));
1296 if (err) {
1297 ep->num_open--;
1298 jack->opened = 0;
1299 return USBD_IOERROR;
1300 }
1301 }
1302
1303 return USBD_NORMAL_COMPLETION;
1304 }
1305
1306 static usbd_status
1307 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1308 {
1309 usbd_status err = USBD_NORMAL_COMPLETION;
1310 struct umidi_endpoint *ep = jack->endpoint;
1311
1312 KASSERT(mutex_owned(&ep->sc->sc_lock));
1313
1314 if (jack->opened)
1315 return USBD_IN_USE;
1316
1317 jack->arg = arg;
1318 jack->u.in.intr = intr;
1319 jack->opened = 1;
1320 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1321 /*
1322 * Can't hold the interrupt lock while calling into USB,
1323 * but we can safely drop it here.
1324 */
1325 mutex_exit(&ep->sc->sc_lock);
1326 err = start_input_transfer(ep);
1327 if (err != USBD_NORMAL_COMPLETION &&
1328 err != USBD_IN_PROGRESS) {
1329 ep->num_open--;
1330 }
1331 mutex_enter(&ep->sc->sc_lock);
1332 }
1333
1334 return err;
1335 }
1336
1337 static void
1338 close_out_jack(struct umidi_jack *jack)
1339 {
1340 struct umidi_endpoint *ep;
1341 struct umidi_softc *sc;
1342 uint16_t mask;
1343 int err;
1344
1345 if (jack->opened) {
1346 ep = jack->endpoint;
1347 sc = ep->sc;
1348
1349 KASSERT(mutex_owned(&sc->sc_lock));
1350 mask = 1 << (jack->cable_number);
1351 while (mask & (ep->this_schedule | ep->next_schedule)) {
1352 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1353 mstohz(10));
1354 if (err)
1355 break;
1356 }
1357 /*
1358 * We can re-enter this function from both close() and
1359 * detach(). Make sure only one of them does this part.
1360 */
1361 if (jack->opened) {
1362 jack->opened = 0;
1363 jack->endpoint->num_open--;
1364 ep->this_schedule &= ~mask;
1365 ep->next_schedule &= ~mask;
1366 }
1367 }
1368 }
1369
1370 static void
1371 close_in_jack(struct umidi_jack *jack)
1372 {
1373 if (jack->opened) {
1374 struct umidi_softc *sc = jack->endpoint->sc;
1375
1376 KASSERT(mutex_owned(&sc->sc_lock));
1377
1378 jack->opened = 0;
1379 if (--jack->endpoint->num_open == 0) {
1380 /*
1381 * We have to drop the (interrupt) lock so that
1382 * the USB thread lock can be safely taken by
1383 * the abort operation. This is safe as this
1384 * either closing or dying will be set proerly.
1385 */
1386 mutex_exit(&sc->sc_lock);
1387 usbd_abort_pipe(jack->endpoint->pipe);
1388 mutex_enter(&sc->sc_lock);
1389 }
1390 }
1391 }
1392
1393 static usbd_status
1394 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1395 {
1396 if (mididev->sc)
1397 return USBD_IN_USE;
1398
1399 mididev->sc = sc;
1400
1401 describe_mididev(mididev);
1402
1403 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1404
1405 return USBD_NORMAL_COMPLETION;
1406 }
1407
1408 static usbd_status
1409 detach_mididev(struct umidi_mididev *mididev, int flags)
1410 {
1411 struct umidi_softc *sc = mididev->sc;
1412
1413 if (!sc)
1414 return USBD_NO_ADDR;
1415
1416 mutex_enter(&sc->sc_lock);
1417 if (mididev->opened) {
1418 umidi_close(mididev);
1419 }
1420 unbind_jacks_from_mididev(mididev);
1421 mutex_exit(&sc->sc_lock);
1422
1423 if (mididev->mdev != NULL)
1424 config_detach(mididev->mdev, flags);
1425
1426 if (NULL != mididev->label) {
1427 kmem_free(mididev->label, mididev->label_len);
1428 mididev->label = NULL;
1429 }
1430
1431 mididev->sc = NULL;
1432
1433 return USBD_NORMAL_COMPLETION;
1434 }
1435
1436 static void
1437 deactivate_mididev(struct umidi_mididev *mididev)
1438 {
1439 if (mididev->out_jack)
1440 mididev->out_jack->bound = 0;
1441 if (mididev->in_jack)
1442 mididev->in_jack->bound = 0;
1443 }
1444
1445 static usbd_status
1446 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1447 {
1448 sc->sc_num_mididevs = nmidi;
1449 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1450 return USBD_NORMAL_COMPLETION;
1451 }
1452
1453 static void
1454 free_all_mididevs(struct umidi_softc *sc)
1455 {
1456 struct umidi_mididev *mididevs;
1457 size_t len;
1458
1459 mutex_enter(&sc->sc_lock);
1460 mididevs = sc->sc_mididevs;
1461 if (mididevs)
1462 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1463 sc->sc_mididevs = NULL;
1464 sc->sc_num_mididevs = 0;
1465 mutex_exit(&sc->sc_lock);
1466
1467 if (mididevs)
1468 kmem_free(mididevs, len);
1469 }
1470
1471 static usbd_status
1472 attach_all_mididevs(struct umidi_softc *sc)
1473 {
1474 usbd_status err;
1475 int i;
1476
1477 if (sc->sc_mididevs)
1478 for (i = 0; i < sc->sc_num_mididevs; i++) {
1479 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1480 if (err != USBD_NORMAL_COMPLETION)
1481 return err;
1482 }
1483
1484 return USBD_NORMAL_COMPLETION;
1485 }
1486
1487 static usbd_status
1488 detach_all_mididevs(struct umidi_softc *sc, int flags)
1489 {
1490 usbd_status err;
1491 int i;
1492
1493 if (sc->sc_mididevs)
1494 for (i = 0; i < sc->sc_num_mididevs; i++) {
1495 err = detach_mididev(&sc->sc_mididevs[i], flags);
1496 if (err != USBD_NORMAL_COMPLETION)
1497 return err;
1498 }
1499
1500 return USBD_NORMAL_COMPLETION;
1501 }
1502
1503 static void
1504 deactivate_all_mididevs(struct umidi_softc *sc)
1505 {
1506 int i;
1507
1508 if (sc->sc_mididevs) {
1509 for (i = 0; i < sc->sc_num_mididevs; i++)
1510 deactivate_mididev(&sc->sc_mididevs[i]);
1511 }
1512 }
1513
1514 /*
1515 * TODO: the 0-based cable numbers will often not match the labeling of the
1516 * equipment. Ideally:
1517 * For class-compliant devices: get the iJack string from the jack descriptor.
1518 * Otherwise:
1519 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1520 * number for display)
1521 * - support an array quirk explictly giving a char * for each jack.
1522 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1523 * the CNs are not globally unique, each is shown with its associated endpoint
1524 * address in hex also. That should not be necessary when using iJack values
1525 * or a quirk array.
1526 */
1527 void
1528 describe_mididev(struct umidi_mididev *md)
1529 {
1530 char in_label[16];
1531 char out_label[16];
1532 const char *unit_label;
1533 char *final_label;
1534 struct umidi_softc *sc;
1535 int show_ep_in;
1536 int show_ep_out;
1537 size_t len;
1538
1539 sc = md->sc;
1540 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1541 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1542
1543 if (NULL == md->in_jack)
1544 in_label[0] = '\0';
1545 else if (show_ep_in)
1546 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1547 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1548 else
1549 snprintf(in_label, sizeof(in_label), "<%d ",
1550 md->in_jack->cable_number);
1551
1552 if (NULL == md->out_jack)
1553 out_label[0] = '\0';
1554 else if (show_ep_out)
1555 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1556 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1557 else
1558 snprintf(out_label, sizeof(out_label), ">%d ",
1559 md->out_jack->cable_number);
1560
1561 unit_label = device_xname(sc->sc_dev);
1562
1563 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1564
1565 final_label = kmem_alloc(len, KM_SLEEP);
1566
1567 snprintf(final_label, len, "%s%son %s",
1568 in_label, out_label, unit_label);
1569
1570 md->label = final_label;
1571 md->label_len = len;
1572 }
1573
1574 #ifdef UMIDI_DEBUG
1575 static void
1576 dump_sc(struct umidi_softc *sc)
1577 {
1578 int i;
1579
1580 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1581 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1582 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1583 dump_ep(&sc->sc_out_ep[i]);
1584 }
1585 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1586 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1587 dump_ep(&sc->sc_in_ep[i]);
1588 }
1589 }
1590
1591 static void
1592 dump_ep(struct umidi_endpoint *ep)
1593 {
1594 int i;
1595 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1596 if (NULL==ep->jacks[i])
1597 continue;
1598 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1599 dump_jack(ep->jacks[i]);
1600 }
1601 }
1602 static void
1603 dump_jack(struct umidi_jack *jack)
1604 {
1605 DPRINTFN(10, ("\t\t\tep=%p\n",
1606 jack->endpoint));
1607 }
1608
1609 #endif /* UMIDI_DEBUG */
1610
1611
1612
1613 /*
1614 * MUX MIDI PACKET
1615 */
1616
1617 static const int packet_length[16] = {
1618 /*0*/ -1,
1619 /*1*/ -1,
1620 /*2*/ 2,
1621 /*3*/ 3,
1622 /*4*/ 3,
1623 /*5*/ 1,
1624 /*6*/ 2,
1625 /*7*/ 3,
1626 /*8*/ 3,
1627 /*9*/ 3,
1628 /*A*/ 3,
1629 /*B*/ 3,
1630 /*C*/ 2,
1631 /*D*/ 2,
1632 /*E*/ 3,
1633 /*F*/ 1,
1634 };
1635
1636 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1637 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1638 #define MIX_CN_CIN(cn, cin) \
1639 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1640 ((unsigned char)(cin)&0x0F)))
1641
1642 static usbd_status
1643 start_input_transfer(struct umidi_endpoint *ep)
1644 {
1645 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1646 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1647 return usbd_transfer(ep->xfer);
1648 }
1649
1650 static usbd_status
1651 start_output_transfer(struct umidi_endpoint *ep)
1652 {
1653 usbd_status rv;
1654 uint32_t length;
1655 int i;
1656
1657 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1658 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1659 ep->buffer, ep->next_slot, length));
1660
1661 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1662 USBD_NO_TIMEOUT, out_intr);
1663 rv = usbd_transfer(ep->xfer);
1664
1665 /*
1666 * Once the transfer is scheduled, no more adding to partial
1667 * packets within it.
1668 */
1669 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1670 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1671 if (NULL != ep->jacks[i])
1672 ep->jacks[i]->midiman_ppkt = NULL;
1673 }
1674
1675 return rv;
1676 }
1677
1678 #ifdef UMIDI_DEBUG
1679 #define DPR_PACKET(dir, sc, p) \
1680 if ((unsigned char)(p)[1]!=0xFE) \
1681 DPRINTFN(500, \
1682 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1683 device_xname(sc->sc_dev), \
1684 (unsigned char)(p)[0], \
1685 (unsigned char)(p)[1], \
1686 (unsigned char)(p)[2], \
1687 (unsigned char)(p)[3]));
1688 #else
1689 #define DPR_PACKET(dir, sc, p)
1690 #endif
1691
1692 /*
1693 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1694 * with the cable number and length in the last byte instead of the first,
1695 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1696 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1697 * with a cable nybble and a length nybble (which, unlike the CIN of a
1698 * real USB MIDI packet, has no semantics at all besides the length).
1699 * A packet received from a Midiman may contain part of a MIDI message,
1700 * more than one MIDI message, or parts of more than one MIDI message. A
1701 * three-byte MIDI message may arrive in three packets of data length 1, and
1702 * running status may be used. Happily, the midi(4) driver above us will put
1703 * it all back together, so the only cost is in USB bandwidth. The device
1704 * has an easier time with what it receives from us: we'll pack messages in
1705 * and across packets, but filling the packets whenever possible and,
1706 * as midi(4) hands us a complete message at a time, we'll never send one
1707 * in a dribble of short packets.
1708 */
1709
1710 static int
1711 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1712 {
1713 struct umidi_endpoint *ep = out_jack->endpoint;
1714 struct umidi_softc *sc = ep->sc;
1715 unsigned char *packet;
1716 int plen;
1717 int poff;
1718
1719 KASSERT(mutex_owned(&sc->sc_lock));
1720
1721 if (sc->sc_dying)
1722 return EIO;
1723
1724 if (!out_jack->opened)
1725 return ENODEV; /* XXX as it was, is this the right errno? */
1726
1727 sc->sc_refcnt++;
1728
1729 #ifdef UMIDI_DEBUG
1730 if (umididebug >= 100)
1731 microtime(&umidi_tv);
1732 #endif
1733 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1734 "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1735 (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1736
1737 packet = *ep->next_slot++;
1738 KASSERT(ep->buffer_size >=
1739 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1740 memset(packet, 0, UMIDI_PACKET_SIZE);
1741 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1742 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1743 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1744 plen = 3 - poff;
1745 if (plen > len)
1746 plen = len;
1747 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1748 src += plen;
1749 len -= plen;
1750 plen += poff;
1751 out_jack->midiman_ppkt[3] =
1752 MIX_CN_CIN(out_jack->cable_number, plen);
1753 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1754 if (3 == plen)
1755 out_jack->midiman_ppkt = NULL; /* no more */
1756 }
1757 if (0 == len)
1758 ep->next_slot--; /* won't be needed, nevermind */
1759 else {
1760 memcpy(packet, src, len);
1761 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1762 DPR_PACKET(out, sc, packet);
1763 if (len < 3)
1764 out_jack->midiman_ppkt = packet;
1765 }
1766 } else { /* the nice simple USB class-compliant case */
1767 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1768 memcpy(packet+1, src, len);
1769 DPR_PACKET(out, sc, packet);
1770 }
1771 ep->next_schedule |= 1<<(out_jack->cable_number);
1772 ++ ep->num_scheduled;
1773 if (!ep->armed && !ep->soliciting) {
1774 /*
1775 * It would be bad to call out_solicit directly here (the
1776 * caller need not be reentrant) but a soft interrupt allows
1777 * solicit to run immediately the caller exits its critical
1778 * section, and if the caller has more to write we can get it
1779 * before starting the USB transfer, and send a longer one.
1780 */
1781 ep->soliciting = 1;
1782 kpreempt_disable();
1783 softint_schedule(ep->solicit_cookie);
1784 kpreempt_enable();
1785 }
1786
1787 if (--sc->sc_refcnt < 0)
1788 cv_broadcast(&sc->sc_detach_cv);
1789
1790 return 0;
1791 }
1792
1793 static void
1794 in_intr(struct usbd_xfer *xfer, void *priv,
1795 usbd_status status)
1796 {
1797 int cn, len, i;
1798 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1799 struct umidi_softc *sc = ep->sc;
1800 struct umidi_jack *jack;
1801 unsigned char *packet;
1802 umidi_packet_bufp slot;
1803 umidi_packet_bufp end;
1804 unsigned char *data;
1805 uint32_t count;
1806
1807 if (ep->sc->sc_dying || !ep->num_open)
1808 return;
1809
1810 mutex_enter(&sc->sc_lock);
1811 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1812 if (0 == count % UMIDI_PACKET_SIZE) {
1813 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1814 device_xname(ep->sc->sc_dev), ep, count));
1815 } else {
1816 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1817 device_xname(ep->sc->sc_dev), ep, count));
1818 }
1819
1820 slot = ep->buffer;
1821 end = slot + count / sizeof(*slot);
1822
1823 for (packet = *slot; slot < end; packet = *++slot) {
1824
1825 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1826 cn = (0xf0&(packet[3]))>>4;
1827 len = 0x0f&(packet[3]);
1828 data = packet;
1829 } else {
1830 cn = GET_CN(packet[0]);
1831 len = packet_length[GET_CIN(packet[0])];
1832 data = packet + 1;
1833 }
1834 /* 0 <= cn <= 15 by inspection of above code */
1835 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1836 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1837 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1838 device_xname(ep->sc->sc_dev), ep, cn, len,
1839 (unsigned)data[0],
1840 (unsigned)data[1],
1841 (unsigned)data[2]));
1842 mutex_exit(&sc->sc_lock);
1843 return;
1844 }
1845
1846 if (!jack->bound || !jack->opened)
1847 continue;
1848
1849 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1850 "%02X %02X %02X\n",
1851 device_xname(ep->sc->sc_dev), ep, cn, len,
1852 (unsigned)data[0],
1853 (unsigned)data[1],
1854 (unsigned)data[2]));
1855
1856 if (jack->u.in.intr) {
1857 for (i = 0; i < len; i++) {
1858 (*jack->u.in.intr)(jack->arg, data[i]);
1859 }
1860 }
1861
1862 }
1863
1864 (void)start_input_transfer(ep);
1865 mutex_exit(&sc->sc_lock);
1866 }
1867
1868 static void
1869 out_intr(struct usbd_xfer *xfer, void *priv,
1870 usbd_status status)
1871 {
1872 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1873 struct umidi_softc *sc = ep->sc;
1874 uint32_t count;
1875
1876 if (sc->sc_dying)
1877 return;
1878
1879 mutex_enter(&sc->sc_lock);
1880 #ifdef UMIDI_DEBUG
1881 if (umididebug >= 200)
1882 microtime(&umidi_tv);
1883 #endif
1884 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1885 if (0 == count % UMIDI_PACKET_SIZE) {
1886 DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1887 "length %u\n", device_xname(ep->sc->sc_dev),
1888 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1889 count));
1890 } else {
1891 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1892 device_xname(ep->sc->sc_dev), ep, count));
1893 }
1894 count /= UMIDI_PACKET_SIZE;
1895
1896 /*
1897 * If while the transfer was pending we buffered any new messages,
1898 * move them to the start of the buffer.
1899 */
1900 ep->next_slot -= count;
1901 if (ep->buffer < ep->next_slot) {
1902 memcpy(ep->buffer, ep->buffer + count,
1903 (char *)ep->next_slot - (char *)ep->buffer);
1904 }
1905 cv_broadcast(&sc->sc_cv);
1906 /*
1907 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1908 * Running at IPL_USB so the following should happen to be safe.
1909 */
1910 ep->armed = 0;
1911 if (!ep->soliciting) {
1912 ep->soliciting = 1;
1913 out_solicit_locked(ep);
1914 }
1915 mutex_exit(&sc->sc_lock);
1916 }
1917
1918 /*
1919 * A jack on which we have received a packet must be called back on its
1920 * out.intr handler before it will send us another; it is considered
1921 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1922 * we need no extra buffer space for it.
1923 *
1924 * In contrast, a jack that is open but not scheduled may supply us a packet
1925 * at any time, driven by the top half, and we must be able to accept it, no
1926 * excuses. So we must ensure that at any point in time there are at least
1927 * (num_open - num_scheduled) slots free.
1928 *
1929 * As long as there are more slots free than that minimum, we can loop calling
1930 * scheduled jacks back on their "interrupt" handlers, soliciting more
1931 * packets, starting the USB transfer only when the buffer space is down to
1932 * the minimum or no jack has any more to send.
1933 */
1934
1935 static void
1936 out_solicit_locked(void *arg)
1937 {
1938 struct umidi_endpoint *ep = arg;
1939 umidi_packet_bufp end;
1940 uint16_t which;
1941 struct umidi_jack *jack;
1942
1943 KASSERT(mutex_owned(&ep->sc->sc_lock));
1944
1945 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1946
1947 for ( ;; ) {
1948 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1949 break; /* at IPL_USB */
1950 if (ep->this_schedule == 0) {
1951 if (ep->next_schedule == 0)
1952 break; /* at IPL_USB */
1953 ep->this_schedule = ep->next_schedule;
1954 ep->next_schedule = 0;
1955 }
1956 /*
1957 * At least one jack is scheduled. Find and mask off the least
1958 * set bit in this_schedule and decrement num_scheduled.
1959 * Convert mask to bit index to find the corresponding jack,
1960 * and call its intr handler. If it has a message, it will call
1961 * back one of the output methods, which will set its bit in
1962 * next_schedule (not copied into this_schedule until the
1963 * latter is empty). In this way we round-robin the jacks that
1964 * have messages to send, until the buffer is as full as we
1965 * dare, and then start a transfer.
1966 */
1967 which = ep->this_schedule;
1968 which &= (~which)+1; /* now mask of least set bit */
1969 ep->this_schedule &= ~which;
1970 --ep->num_scheduled;
1971
1972 --which; /* now 1s below mask - count 1s to get index */
1973 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1974 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1975 which = (((which >> 4) + which) & 0x0f0f);
1976 which += (which >> 8);
1977 which &= 0x1f; /* the bit index a/k/a jack number */
1978
1979 jack = ep->jacks[which];
1980 if (jack->u.out.intr)
1981 (*jack->u.out.intr)(jack->arg);
1982 }
1983 /* intr lock held at loop exit */
1984 if (!ep->armed && ep->next_slot > ep->buffer) {
1985 /*
1986 * Can't hold the interrupt lock while calling into USB,
1987 * but we can safely drop it here.
1988 */
1989 mutex_exit(&ep->sc->sc_lock);
1990 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1991 mutex_enter(&ep->sc->sc_lock);
1992 }
1993 ep->soliciting = 0;
1994 }
1995
1996 /* Entry point for the softintr. */
1997 static void
1998 out_solicit(void *arg)
1999 {
2000 struct umidi_endpoint *ep = arg;
2001 struct umidi_softc *sc = ep->sc;
2002
2003 mutex_enter(&sc->sc_lock);
2004 out_solicit_locked(arg);
2005 mutex_exit(&sc->sc_lock);
2006 }
2007