Home | History | Annotate | Line # | Download | only in usb
umidi.c revision 1.74.4.2
      1 /*	$NetBSD: umidi.c,v 1.74.4.2 2020/04/08 14:08:13 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
      9  * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
     10  * (mrg (at) eterna.com.au).
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.74.4.2 2020/04/08 14:08:13 martin Exp $");
     36 
     37 #ifdef _KERNEL_OPT
     38 #include "opt_usb.h"
     39 #endif
     40 
     41 #include <sys/types.h>
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/kmem.h>
     46 #include <sys/device.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/conf.h>
     49 #include <sys/file.h>
     50 #include <sys/select.h>
     51 #include <sys/proc.h>
     52 #include <sys/vnode.h>
     53 #include <sys/poll.h>
     54 #include <sys/intr.h>
     55 
     56 #include <dev/usb/usb.h>
     57 #include <dev/usb/usbdi.h>
     58 #include <dev/usb/usbdi_util.h>
     59 
     60 #include <dev/usb/usbdevs.h>
     61 #include <dev/usb/umidi_quirks.h>
     62 #include <dev/midi_if.h>
     63 
     64 /* Jack Descriptor */
     65 #define UMIDI_MS_HEADER	0x01
     66 #define UMIDI_IN_JACK	0x02
     67 #define UMIDI_OUT_JACK	0x03
     68 
     69 /* Jack Type */
     70 #define UMIDI_EMBEDDED	0x01
     71 #define UMIDI_EXTERNAL	0x02
     72 
     73 /* generic, for iteration */
     74 typedef struct {
     75 	uByte		bLength;
     76 	uByte		bDescriptorType;
     77 	uByte		bDescriptorSubtype;
     78 } UPACKED umidi_cs_descriptor_t;
     79 
     80 typedef struct {
     81 	uByte		bLength;
     82 	uByte		bDescriptorType;
     83 	uByte		bDescriptorSubtype;
     84 	uWord		bcdMSC;
     85 	uWord		wTotalLength;
     86 } UPACKED umidi_cs_interface_descriptor_t;
     87 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
     88 
     89 typedef struct {
     90 	uByte		bLength;
     91 	uByte		bDescriptorType;
     92 	uByte		bDescriptorSubtype;
     93 	uByte		bNumEmbMIDIJack;
     94 } UPACKED umidi_cs_endpoint_descriptor_t;
     95 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
     96 
     97 typedef struct {
     98 	uByte		bLength;
     99 	uByte		bDescriptorType;
    100 	uByte		bDescriptorSubtype;
    101 	uByte		bJackType;
    102 	uByte		bJackID;
    103 } UPACKED umidi_jack_descriptor_t;
    104 #define	UMIDI_JACK_DESCRIPTOR_SIZE	5
    105 
    106 
    107 #define TO_D(p) ((usb_descriptor_t *)(p))
    108 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
    109 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
    110 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
    111 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
    112 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
    113 
    114 
    115 #define UMIDI_PACKET_SIZE 4
    116 
    117 /*
    118  * hierarchie
    119  *
    120  * <-- parent	       child -->
    121  *
    122  * umidi(sc) -> endpoint -> jack   <- (dynamically assignable) - mididev
    123  *	   ^	 |    ^	    |
    124  *	   +-----+    +-----+
    125  */
    126 
    127 /* midi device */
    128 struct umidi_mididev {
    129 	struct umidi_softc	*sc;
    130 	device_t		mdev;
    131 	/* */
    132 	struct umidi_jack	*in_jack;
    133 	struct umidi_jack	*out_jack;
    134 	char			*label;
    135 	size_t			label_len;
    136 	/* */
    137 	int			opened;
    138 	int			closing;
    139 	int			flags;
    140 };
    141 
    142 /* Jack Information */
    143 struct umidi_jack {
    144 	struct umidi_endpoint	*endpoint;
    145 	/* */
    146 	int			cable_number;
    147 	void			*arg;
    148 	int			bound;
    149 	int			opened;
    150 	unsigned char		*midiman_ppkt;
    151 	union {
    152 		struct {
    153 			void			(*intr)(void *);
    154 		} out;
    155 		struct {
    156 			void			(*intr)(void *, int);
    157 		} in;
    158 	} u;
    159 };
    160 
    161 #define UMIDI_MAX_EPJACKS	16
    162 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
    163 /* endpoint data */
    164 struct umidi_endpoint {
    165 	struct umidi_softc	*sc;
    166 	/* */
    167 	int			addr;
    168 	struct usbd_pipe	*pipe;
    169 	struct usbd_xfer	*xfer;
    170 	umidi_packet_bufp	buffer;
    171 	umidi_packet_bufp	next_slot;
    172 	uint32_t               buffer_size;
    173 	int			num_scheduled;
    174 	int			num_open;
    175 	int			num_jacks;
    176 	int			soliciting;
    177 	void			*solicit_cookie;
    178 	int			armed;
    179 	struct umidi_jack	*jacks[UMIDI_MAX_EPJACKS];
    180 	uint16_t		this_schedule; /* see UMIDI_MAX_EPJACKS */
    181 	uint16_t		next_schedule;
    182 };
    183 
    184 /* software context */
    185 struct umidi_softc {
    186 	device_t		sc_dev;
    187 	struct usbd_device	*sc_udev;
    188 	struct usbd_interface	*sc_iface;
    189 	const struct umidi_quirk	*sc_quirk;
    190 
    191 	int			sc_dying;
    192 
    193 	int			sc_out_num_jacks;
    194 	struct umidi_jack	*sc_out_jacks;
    195 	int			sc_in_num_jacks;
    196 	struct umidi_jack	*sc_in_jacks;
    197 	struct umidi_jack	*sc_jacks;
    198 
    199 	int			sc_num_mididevs;
    200 	struct umidi_mididev	*sc_mididevs;
    201 
    202 	int			sc_out_num_endpoints;
    203 	struct umidi_endpoint	*sc_out_ep;
    204 	int			sc_in_num_endpoints;
    205 	struct umidi_endpoint	*sc_in_ep;
    206 	struct umidi_endpoint	*sc_endpoints;
    207 	size_t			sc_endpoints_len;
    208 	int			cblnums_global;
    209 
    210 	kmutex_t		sc_lock;
    211 	kcondvar_t		sc_cv;
    212 	kcondvar_t		sc_detach_cv;
    213 
    214 	int			sc_refcnt;
    215 };
    216 
    217 #ifdef UMIDI_DEBUG
    218 #define DPRINTF(x)	if (umididebug) printf x
    219 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
    220 #include <sys/time.h>
    221 static struct timeval umidi_tv;
    222 int	umididebug = 0;
    223 #else
    224 #define DPRINTF(x)
    225 #define DPRINTFN(n,x)
    226 #endif
    227 
    228 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
    229 				 (sc->sc_out_num_endpoints + \
    230 				  sc->sc_in_num_endpoints))
    231 
    232 
    233 static int umidi_open(void *, int,
    234 		      void (*)(void *, int), void (*)(void *), void *);
    235 static void umidi_close(void *);
    236 static int umidi_channelmsg(void *, int, int, u_char *, int);
    237 static int umidi_commonmsg(void *, int, u_char *, int);
    238 static int umidi_sysex(void *, u_char *, int);
    239 static int umidi_rtmsg(void *, int);
    240 static void umidi_getinfo(void *, struct midi_info *);
    241 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
    242 
    243 static usbd_status alloc_pipe(struct umidi_endpoint *);
    244 static void free_pipe(struct umidi_endpoint *);
    245 
    246 static usbd_status alloc_all_endpoints(struct umidi_softc *);
    247 static void free_all_endpoints(struct umidi_softc *);
    248 
    249 static usbd_status alloc_all_jacks(struct umidi_softc *);
    250 static void free_all_jacks(struct umidi_softc *);
    251 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
    252 					 struct umidi_jack *,
    253 					 struct umidi_jack *,
    254 					 struct umidi_mididev *);
    255 static void unbind_jacks_from_mididev(struct umidi_mididev *);
    256 static void unbind_all_jacks(struct umidi_softc *);
    257 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
    258 static usbd_status open_out_jack(struct umidi_jack *, void *,
    259 				 void (*)(void *));
    260 static usbd_status open_in_jack(struct umidi_jack *, void *,
    261 				void (*)(void *, int));
    262 static void close_out_jack(struct umidi_jack *);
    263 static void close_in_jack(struct umidi_jack *);
    264 
    265 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
    266 static usbd_status detach_mididev(struct umidi_mididev *, int);
    267 static void deactivate_mididev(struct umidi_mididev *);
    268 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
    269 static void free_all_mididevs(struct umidi_softc *);
    270 static usbd_status attach_all_mididevs(struct umidi_softc *);
    271 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
    272 static void deactivate_all_mididevs(struct umidi_softc *);
    273 static void describe_mididev(struct umidi_mididev *);
    274 
    275 #ifdef UMIDI_DEBUG
    276 static void dump_sc(struct umidi_softc *);
    277 static void dump_ep(struct umidi_endpoint *);
    278 static void dump_jack(struct umidi_jack *);
    279 #endif
    280 
    281 static usbd_status start_input_transfer(struct umidi_endpoint *);
    282 static usbd_status start_output_transfer(struct umidi_endpoint *);
    283 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
    284 static void in_intr(struct usbd_xfer *, void *, usbd_status);
    285 static void out_intr(struct usbd_xfer *, void *, usbd_status);
    286 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
    287 static void out_solicit_locked(void *); /* pre-locked version */
    288 
    289 
    290 const struct midi_hw_if umidi_hw_if = {
    291 	.open = umidi_open,
    292 	.close = umidi_close,
    293 	.output = umidi_rtmsg,
    294 	.getinfo = umidi_getinfo,
    295 	.get_locks = umidi_get_locks,
    296 };
    297 
    298 struct midi_hw_if_ext umidi_hw_if_ext = {
    299 	.channel = umidi_channelmsg,
    300 	.common  = umidi_commonmsg,
    301 	.sysex   = umidi_sysex,
    302 };
    303 
    304 struct midi_hw_if_ext umidi_hw_if_mm = {
    305 	.channel = umidi_channelmsg,
    306 	.common  = umidi_commonmsg,
    307 	.sysex   = umidi_sysex,
    308 	.compress = 1,
    309 };
    310 
    311 static int umidi_match(device_t, cfdata_t, void *);
    312 static void umidi_attach(device_t, device_t, void *);
    313 static void umidi_childdet(device_t, device_t);
    314 static int umidi_detach(device_t, int);
    315 static int umidi_activate(device_t, enum devact);
    316 
    317 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
    318     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
    319 
    320 static int
    321 umidi_match(device_t parent, cfdata_t match, void *aux)
    322 {
    323 	struct usbif_attach_arg *uiaa = aux;
    324 
    325 	DPRINTFN(1,("umidi_match\n"));
    326 
    327 	if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
    328 	    uiaa->uiaa_ifaceno))
    329 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    330 
    331 	if (uiaa->uiaa_class == UICLASS_AUDIO &&
    332 	    uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
    333 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    334 
    335 	return UMATCH_NONE;
    336 }
    337 
    338 static void
    339 umidi_attach(device_t parent, device_t self, void *aux)
    340 {
    341 	usbd_status     err;
    342 	struct umidi_softc *sc = device_private(self);
    343 	struct usbif_attach_arg *uiaa = aux;
    344 	char *devinfop;
    345 
    346 	DPRINTFN(1,("umidi_attach\n"));
    347 
    348 	sc->sc_dev = self;
    349 
    350 	aprint_naive("\n");
    351 	aprint_normal("\n");
    352 
    353 	devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
    354 	aprint_normal_dev(self, "%s\n", devinfop);
    355 	usbd_devinfo_free(devinfop);
    356 
    357 	sc->sc_iface = uiaa->uiaa_iface;
    358 	sc->sc_udev = uiaa->uiaa_device;
    359 
    360 	sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
    361 	    uiaa->uiaa_product, uiaa->uiaa_ifaceno);
    362 
    363 	aprint_normal_dev(self, "");
    364 	umidi_print_quirk(sc->sc_quirk);
    365 
    366 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
    367 	cv_init(&sc->sc_cv, "umidopcl");
    368 	cv_init(&sc->sc_detach_cv, "umidetcv");
    369 	sc->sc_refcnt = 0;
    370 
    371 	err = alloc_all_endpoints(sc);
    372 	if (err != USBD_NORMAL_COMPLETION) {
    373 		aprint_error_dev(self,
    374 		    "alloc_all_endpoints failed. (err=%d)\n", err);
    375 		goto out;
    376 	}
    377 	err = alloc_all_jacks(sc);
    378 	if (err != USBD_NORMAL_COMPLETION) {
    379 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
    380 		    err);
    381 		goto out_free_endpoints;
    382 	}
    383 	aprint_normal_dev(self, "out=%d, in=%d\n",
    384 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
    385 
    386 	err = assign_all_jacks_automatically(sc);
    387 	if (err != USBD_NORMAL_COMPLETION) {
    388 		aprint_error_dev(self,
    389 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
    390 		goto out_free_jacks;
    391 	}
    392 	err = attach_all_mididevs(sc);
    393 	if (err != USBD_NORMAL_COMPLETION) {
    394 		aprint_error_dev(self,
    395 		    "attach_all_mididevs failed. (err=%d)\n", err);
    396 		goto out_free_jacks;
    397 	}
    398 
    399 #ifdef UMIDI_DEBUG
    400 	dump_sc(sc);
    401 #endif
    402 
    403 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    404 
    405 	return;
    406 
    407 out_free_jacks:
    408 	unbind_all_jacks(sc);
    409 	free_all_jacks(sc);
    410 
    411 out_free_endpoints:
    412 	free_all_endpoints(sc);
    413 
    414 out:
    415 	aprint_error_dev(self, "disabled.\n");
    416 	sc->sc_dying = 1;
    417 	return;
    418 }
    419 
    420 static void
    421 umidi_childdet(device_t self, device_t child)
    422 {
    423 	int i;
    424 	struct umidi_softc *sc = device_private(self);
    425 
    426 	KASSERT(sc->sc_mididevs != NULL);
    427 
    428 	for (i = 0; i < sc->sc_num_mididevs; i++) {
    429 		if (sc->sc_mididevs[i].mdev == child)
    430 			break;
    431 	}
    432 	KASSERT(i < sc->sc_num_mididevs);
    433 	sc->sc_mididevs[i].mdev = NULL;
    434 }
    435 
    436 static int
    437 umidi_activate(device_t self, enum devact act)
    438 {
    439 	struct umidi_softc *sc = device_private(self);
    440 
    441 	switch (act) {
    442 	case DVACT_DEACTIVATE:
    443 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
    444 		sc->sc_dying = 1;
    445 		deactivate_all_mididevs(sc);
    446 		return 0;
    447 	default:
    448 		DPRINTFN(1,("umidi_activate (%d)\n", act));
    449 		return EOPNOTSUPP;
    450 	}
    451 }
    452 
    453 static int
    454 umidi_detach(device_t self, int flags)
    455 {
    456 	struct umidi_softc *sc = device_private(self);
    457 
    458 	DPRINTFN(1,("umidi_detach\n"));
    459 
    460 	mutex_enter(&sc->sc_lock);
    461 	sc->sc_dying = 1;
    462 	if (--sc->sc_refcnt >= 0)
    463 		if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
    464 			aprint_error_dev(self, ": didn't detach\n");
    465 	mutex_exit(&sc->sc_lock);
    466 
    467 	detach_all_mididevs(sc, flags);
    468 	free_all_mididevs(sc);
    469 	free_all_jacks(sc);
    470 	free_all_endpoints(sc);
    471 
    472 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    473 
    474 	mutex_destroy(&sc->sc_lock);
    475 	cv_destroy(&sc->sc_detach_cv);
    476 	cv_destroy(&sc->sc_cv);
    477 
    478 	return 0;
    479 }
    480 
    481 
    482 /*
    483  * midi_if stuffs
    484  */
    485 int
    486 umidi_open(void *addr,
    487 	   int flags,
    488 	   void (*iintr)(void *, int),
    489 	   void (*ointr)(void *),
    490 	   void *arg)
    491 {
    492 	struct umidi_mididev *mididev = addr;
    493 	struct umidi_softc *sc = mididev->sc;
    494 	usbd_status err;
    495 
    496 	KASSERT(mutex_owned(&sc->sc_lock));
    497 	DPRINTF(("umidi_open: sc=%p\n", sc));
    498 
    499 	if (mididev->opened)
    500 		return EBUSY;
    501 	if (sc->sc_dying)
    502 		return EIO;
    503 
    504 	mididev->opened = 1;
    505 	mididev->flags = flags;
    506 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
    507 		err = open_out_jack(mididev->out_jack, arg, ointr);
    508 		if (err != USBD_NORMAL_COMPLETION)
    509 			goto bad;
    510 	}
    511 	if ((mididev->flags & FREAD) && mididev->in_jack) {
    512 		err = open_in_jack(mididev->in_jack, arg, iintr);
    513 		KASSERT(mididev->opened);
    514 		if (err != USBD_NORMAL_COMPLETION &&
    515 		    err != USBD_IN_PROGRESS) {
    516 			if (mididev->out_jack)
    517 				close_out_jack(mididev->out_jack);
    518 			goto bad;
    519 		}
    520 	}
    521 
    522 	return 0;
    523 bad:
    524 	mididev->opened = 0;
    525 	DPRINTF(("umidi_open: usbd_status %d\n", err));
    526 	KASSERT(mutex_owned(&sc->sc_lock));
    527 	return USBD_IN_USE == err ? EBUSY : EIO;
    528 }
    529 
    530 void
    531 umidi_close(void *addr)
    532 {
    533 	struct umidi_mididev *mididev = addr;
    534 	struct umidi_softc *sc = mididev->sc;
    535 
    536 	KASSERT(mutex_owned(&sc->sc_lock));
    537 
    538 	if (mididev->closing)
    539 		return;
    540 
    541 	mididev->closing = 1;
    542 
    543 	sc->sc_refcnt++;
    544 
    545 	if ((mididev->flags & FWRITE) && mididev->out_jack)
    546 		close_out_jack(mididev->out_jack);
    547 	if ((mididev->flags & FREAD) && mididev->in_jack)
    548 		close_in_jack(mididev->in_jack);
    549 
    550 	if (--sc->sc_refcnt < 0)
    551 		cv_broadcast(&sc->sc_detach_cv);
    552 
    553 	mididev->opened = 0;
    554 	mididev->closing = 0;
    555 }
    556 
    557 int
    558 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
    559     int len)
    560 {
    561 	struct umidi_mididev *mididev = addr;
    562 
    563 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    564 
    565 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    566 		return EIO;
    567 
    568 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
    569 }
    570 
    571 int
    572 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
    573 {
    574 	struct umidi_mididev *mididev = addr;
    575 	int cin;
    576 
    577 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    578 
    579 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    580 		return EIO;
    581 
    582 	switch ( len ) {
    583 	case 1: cin = 5; break;
    584 	case 2: cin = 2; break;
    585 	case 3: cin = 3; break;
    586 	default: return EIO; /* or gcc warns of cin uninitialized */
    587 	}
    588 
    589 	return out_jack_output(mididev->out_jack, msg, len, cin);
    590 }
    591 
    592 int
    593 umidi_sysex(void *addr, u_char *msg, int len)
    594 {
    595 	struct umidi_mididev *mididev = addr;
    596 	int cin;
    597 
    598 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    599 
    600 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    601 		return EIO;
    602 
    603 	switch ( len ) {
    604 	case 1: cin = 5; break;
    605 	case 2: cin = 6; break;
    606 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
    607 	default: return EIO; /* or gcc warns of cin uninitialized */
    608 	}
    609 
    610 	return out_jack_output(mididev->out_jack, msg, len, cin);
    611 }
    612 
    613 int
    614 umidi_rtmsg(void *addr, int d)
    615 {
    616 	struct umidi_mididev *mididev = addr;
    617 	u_char msg = d;
    618 
    619 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    620 
    621 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    622 		return EIO;
    623 
    624 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
    625 }
    626 
    627 void
    628 umidi_getinfo(void *addr, struct midi_info *mi)
    629 {
    630 	struct umidi_mididev *mididev = addr;
    631 	struct umidi_softc *sc = mididev->sc;
    632 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
    633 
    634 	KASSERT(mutex_owned(&sc->sc_lock));
    635 
    636 	mi->name = mididev->label;
    637 	mi->props = MIDI_PROP_OUT_INTR;
    638 	if (mididev->in_jack)
    639 		mi->props |= MIDI_PROP_CAN_INPUT;
    640 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
    641 }
    642 
    643 static void
    644 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
    645 {
    646 	struct umidi_mididev *mididev = addr;
    647 	struct umidi_softc *sc = mididev->sc;
    648 
    649 	*intr = NULL;
    650 	*thread = &sc->sc_lock;
    651 }
    652 
    653 /*
    654  * each endpoint stuffs
    655  */
    656 
    657 /* alloc/free pipe */
    658 static usbd_status
    659 alloc_pipe(struct umidi_endpoint *ep)
    660 {
    661 	struct umidi_softc *sc = ep->sc;
    662 	usbd_status err;
    663 	usb_endpoint_descriptor_t *epd;
    664 
    665 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
    666 	/*
    667 	 * For output, an improvement would be to have a buffer bigger than
    668 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
    669 	 * allow out_solicit to fill the buffer to the full packet size in
    670 	 * all cases. But to use usbd_create_xfer to get a slightly larger
    671 	 * buffer would not be a good way to do that, because if the addition
    672 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
    673 	 * larger block may be wastefully allocated. Some flavor of double
    674 	 * buffering could serve the same purpose, but would increase the
    675 	 * code complexity, so for now I will live with the current slight
    676 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
    677 	 * packet slots.
    678 	 */
    679 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
    680 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
    681 
    682 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
    683 		device_xname(sc->sc_dev), ep, ep->buffer_size));
    684 	ep->num_scheduled = 0;
    685 	ep->this_schedule = 0;
    686 	ep->next_schedule = 0;
    687 	ep->soliciting = 0;
    688 	ep->armed = 0;
    689 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
    690 	if (err)
    691 		goto quit;
    692 	int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
    693 	    0, 0, &ep->xfer);
    694 	if (error) {
    695 		usbd_close_pipe(ep->pipe);
    696 		return USBD_NOMEM;
    697 	}
    698 	ep->buffer = usbd_get_buffer(ep->xfer);
    699 	ep->next_slot = ep->buffer;
    700 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    701 	    out_solicit, ep);
    702 quit:
    703 	return err;
    704 }
    705 
    706 static void
    707 free_pipe(struct umidi_endpoint *ep)
    708 {
    709 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
    710 	usbd_abort_pipe(ep->pipe);
    711 	usbd_destroy_xfer(ep->xfer);
    712 	usbd_close_pipe(ep->pipe);
    713 	softint_disestablish(ep->solicit_cookie);
    714 }
    715 
    716 
    717 /* alloc/free the array of endpoint structures */
    718 
    719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
    720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
    721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
    722 
    723 static usbd_status
    724 alloc_all_endpoints(struct umidi_softc *sc)
    725 {
    726 	usbd_status err;
    727 	struct umidi_endpoint *ep;
    728 	int i;
    729 
    730 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
    731 		err = alloc_all_endpoints_fixed_ep(sc);
    732 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
    733 		err = alloc_all_endpoints_yamaha(sc);
    734 	} else {
    735 		err = alloc_all_endpoints_genuine(sc);
    736 	}
    737 	if (err != USBD_NORMAL_COMPLETION)
    738 		return err;
    739 
    740 	ep = sc->sc_endpoints;
    741 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
    742 		err = alloc_pipe(ep++);
    743 		if (err != USBD_NORMAL_COMPLETION) {
    744 			for (; ep != sc->sc_endpoints; ep--)
    745 				free_pipe(ep-1);
    746 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    747 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    748 			break;
    749 		}
    750 	}
    751 	return err;
    752 }
    753 
    754 static void
    755 free_all_endpoints(struct umidi_softc *sc)
    756 {
    757 	int i;
    758 
    759 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
    760 		free_pipe(&sc->sc_endpoints[i]);
    761 	if (sc->sc_endpoints != NULL)
    762 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    763 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    764 }
    765 
    766 static usbd_status
    767 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
    768 {
    769 	usbd_status err;
    770 	const struct umq_fixed_ep_desc *fp;
    771 	struct umidi_endpoint *ep;
    772 	usb_endpoint_descriptor_t *epd;
    773 	int i;
    774 
    775 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
    776 					    UMQ_TYPE_FIXED_EP);
    777 	sc->sc_out_num_jacks = 0;
    778 	sc->sc_in_num_jacks = 0;
    779 	sc->sc_out_num_endpoints = fp->num_out_ep;
    780 	sc->sc_in_num_endpoints = fp->num_in_ep;
    781 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    782 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    783 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
    784 	sc->sc_in_ep =
    785 	    sc->sc_in_num_endpoints ?
    786 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
    787 
    788 	ep = &sc->sc_out_ep[0];
    789 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
    790 		epd = usbd_interface2endpoint_descriptor(
    791 			sc->sc_iface,
    792 			fp->out_ep[i].ep);
    793 		if (!epd) {
    794 			aprint_error_dev(sc->sc_dev,
    795 			    "cannot get endpoint descriptor(out:%d)\n",
    796 			     fp->out_ep[i].ep);
    797 			err = USBD_INVAL;
    798 			goto error;
    799 		}
    800 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
    801 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
    802 			aprint_error_dev(sc->sc_dev,
    803 			    "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
    804 			err = USBD_INVAL;
    805 			goto error;
    806 		}
    807 		ep->sc = sc;
    808 		ep->addr = epd->bEndpointAddress;
    809 		ep->num_jacks = fp->out_ep[i].num_jacks;
    810 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
    811 		ep->num_open = 0;
    812 		ep++;
    813 	}
    814 	ep = &sc->sc_in_ep[0];
    815 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
    816 		epd = usbd_interface2endpoint_descriptor(
    817 			sc->sc_iface,
    818 			fp->in_ep[i].ep);
    819 		if (!epd) {
    820 			aprint_error_dev(sc->sc_dev,
    821 			    "cannot get endpoint descriptor(in:%d)\n",
    822 			     fp->in_ep[i].ep);
    823 			err = USBD_INVAL;
    824 			goto error;
    825 		}
    826 		/*
    827 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
    828 		 * endpoint.  The existing input logic in this driver seems
    829 		 * to work successfully if we just stop treating an interrupt
    830 		 * endpoint as illegal (or the in_progress status we get on
    831 		 * the initial transfer).  It does not seem necessary to
    832 		 * actually use the interrupt flavor of alloc_pipe or make
    833 		 * other serious rearrangements of logic.  I like that.
    834 		 */
    835 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
    836 		case UE_BULK:
    837 		case UE_INTERRUPT:
    838 			if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
    839 				break;
    840 			/*FALLTHROUGH*/
    841 		default:
    842 			aprint_error_dev(sc->sc_dev,
    843 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
    844 			err = USBD_INVAL;
    845 			goto error;
    846 		}
    847 
    848 		ep->sc = sc;
    849 		ep->addr = epd->bEndpointAddress;
    850 		ep->num_jacks = fp->in_ep[i].num_jacks;
    851 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
    852 		ep->num_open = 0;
    853 		ep++;
    854 	}
    855 
    856 	return USBD_NORMAL_COMPLETION;
    857 error:
    858 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
    859 	sc->sc_endpoints = NULL;
    860 	return err;
    861 }
    862 
    863 static usbd_status
    864 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
    865 {
    866 	/* This driver currently supports max 1in/1out bulk endpoints */
    867 	usb_descriptor_t *desc;
    868 	umidi_cs_descriptor_t *udesc;
    869 	usb_endpoint_descriptor_t *epd;
    870 	int out_addr, in_addr, i;
    871 	int dir;
    872 	size_t remain, descsize;
    873 
    874 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    875 	out_addr = in_addr = 0;
    876 
    877 	/* detect endpoints */
    878 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
    879 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
    880 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    881 		KASSERT(epd != NULL);
    882 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
    883 			dir = UE_GET_DIR(epd->bEndpointAddress);
    884 			if (dir==UE_DIR_OUT && !out_addr)
    885 				out_addr = epd->bEndpointAddress;
    886 			else if (dir==UE_DIR_IN && !in_addr)
    887 				in_addr = epd->bEndpointAddress;
    888 		}
    889 	}
    890 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
    891 
    892 	/* count jacks */
    893 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
    894 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
    895 		return USBD_INVAL;
    896 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
    897 		(size_t)udesc->bLength;
    898 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    899 
    900 	while (remain >= sizeof(usb_descriptor_t)) {
    901 		descsize = udesc->bLength;
    902 		if (descsize>remain || descsize==0)
    903 			break;
    904 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
    905 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
    906 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
    907 				sc->sc_out_num_jacks++;
    908 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
    909 				sc->sc_in_num_jacks++;
    910 		}
    911 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    912 		remain -= descsize;
    913 	}
    914 
    915 	/* validate some parameters */
    916 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
    917 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
    918 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
    919 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
    920 	if (sc->sc_out_num_jacks && out_addr) {
    921 		sc->sc_out_num_endpoints = 1;
    922 	} else {
    923 		sc->sc_out_num_endpoints = 0;
    924 		sc->sc_out_num_jacks = 0;
    925 	}
    926 	if (sc->sc_in_num_jacks && in_addr) {
    927 		sc->sc_in_num_endpoints = 1;
    928 	} else {
    929 		sc->sc_in_num_endpoints = 0;
    930 		sc->sc_in_num_jacks = 0;
    931 	}
    932 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    933 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    934 	if (sc->sc_out_num_endpoints) {
    935 		sc->sc_out_ep = sc->sc_endpoints;
    936 		sc->sc_out_ep->sc = sc;
    937 		sc->sc_out_ep->addr = out_addr;
    938 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
    939 		sc->sc_out_ep->num_open = 0;
    940 	} else
    941 		sc->sc_out_ep = NULL;
    942 
    943 	if (sc->sc_in_num_endpoints) {
    944 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
    945 		sc->sc_in_ep->sc = sc;
    946 		sc->sc_in_ep->addr = in_addr;
    947 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
    948 		sc->sc_in_ep->num_open = 0;
    949 	} else
    950 		sc->sc_in_ep = NULL;
    951 
    952 	return USBD_NORMAL_COMPLETION;
    953 }
    954 
    955 static usbd_status
    956 alloc_all_endpoints_genuine(struct umidi_softc *sc)
    957 {
    958 	usb_interface_descriptor_t *interface_desc;
    959 	usb_config_descriptor_t *config_desc;
    960 	usb_descriptor_t *desc;
    961 	int num_ep;
    962 	size_t remain, descsize;
    963 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
    964 	int epaddr;
    965 
    966 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
    967 	num_ep = interface_desc->bNumEndpoints;
    968 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
    969 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    970 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    971 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
    972 	epaddr = -1;
    973 
    974 	/* get the list of endpoints for midi stream */
    975 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
    976 	desc = (usb_descriptor_t *) config_desc;
    977 	remain = (size_t)UGETW(config_desc->wTotalLength);
    978 	while (remain>=sizeof(usb_descriptor_t)) {
    979 		descsize = desc->bLength;
    980 		if (descsize>remain || descsize==0)
    981 			break;
    982 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
    983 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
    984 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
    985 			epaddr = TO_EPD(desc)->bEndpointAddress;
    986 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
    987 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
    988 			   epaddr!=-1) {
    989 			if (num_ep>0) {
    990 				num_ep--;
    991 				p->sc = sc;
    992 				p->addr = epaddr;
    993 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
    994 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
    995 					sc->sc_out_num_endpoints++;
    996 					sc->sc_out_num_jacks += p->num_jacks;
    997 				} else {
    998 					sc->sc_in_num_endpoints++;
    999 					sc->sc_in_num_jacks += p->num_jacks;
   1000 				}
   1001 				p++;
   1002 			}
   1003 		} else
   1004 			epaddr = -1;
   1005 		desc = NEXT_D(desc);
   1006 		remain-=descsize;
   1007 	}
   1008 
   1009 	/* sort endpoints */
   1010 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
   1011 	p = sc->sc_endpoints;
   1012 	endep = p + num_ep;
   1013 	while (p<endep) {
   1014 		lowest = p;
   1015 		for (q=p+1; q<endep; q++) {
   1016 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
   1017 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
   1018 			    ((UE_GET_DIR(lowest->addr)==
   1019 			      UE_GET_DIR(q->addr)) &&
   1020 			     (UE_GET_ADDR(lowest->addr)>
   1021 			      UE_GET_ADDR(q->addr))))
   1022 				lowest = q;
   1023 		}
   1024 		if (lowest != p) {
   1025 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
   1026 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
   1027 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
   1028 		}
   1029 		p->num_open = 0;
   1030 		p++;
   1031 	}
   1032 
   1033 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
   1034 	sc->sc_in_ep =
   1035 	    sc->sc_in_num_endpoints ?
   1036 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
   1037 
   1038 	return USBD_NORMAL_COMPLETION;
   1039 }
   1040 
   1041 
   1042 /*
   1043  * jack stuffs
   1044  */
   1045 
   1046 static usbd_status
   1047 alloc_all_jacks(struct umidi_softc *sc)
   1048 {
   1049 	int i, j;
   1050 	struct umidi_endpoint *ep;
   1051 	struct umidi_jack *jack;
   1052 	const unsigned char *cn_spec;
   1053 
   1054 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
   1055 		sc->cblnums_global = 0;
   1056 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
   1057 		sc->cblnums_global = 1;
   1058 	else {
   1059 		/*
   1060 		 * I don't think this default is correct, but it preserves
   1061 		 * the prior behavior of the code. That's why I defined two
   1062 		 * complementary quirks. Any device for which the default
   1063 		 * behavior is wrong can be made to work by giving it an
   1064 		 * explicit quirk, and if a pattern ever develops (as I suspect
   1065 		 * it will) that a lot of otherwise standard USB MIDI devices
   1066 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
   1067 		 * changed to 0, and the only devices that will break are those
   1068 		 * listing neither quirk, and they'll easily be fixed by giving
   1069 		 * them the CN_SEQ_GLOBAL quirk.
   1070 		 */
   1071 		sc->cblnums_global = 1;
   1072 	}
   1073 
   1074 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
   1075 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
   1076 					    		 UMQ_TYPE_CN_FIXED);
   1077 	else
   1078 		cn_spec = NULL;
   1079 
   1080 	/* allocate/initialize structures */
   1081 	sc->sc_jacks =
   1082 	    kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
   1083 		    + sc->sc_out_num_jacks), KM_SLEEP);
   1084 	if (!sc->sc_jacks)
   1085 		return USBD_NOMEM;
   1086 	sc->sc_out_jacks =
   1087 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
   1088 	sc->sc_in_jacks =
   1089 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
   1090 
   1091 	jack = &sc->sc_out_jacks[0];
   1092 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
   1093 		jack->opened = 0;
   1094 		jack->bound = 0;
   1095 		jack->arg = NULL;
   1096 		jack->u.out.intr = NULL;
   1097 		jack->midiman_ppkt = NULL;
   1098 		if (sc->cblnums_global)
   1099 			jack->cable_number = i;
   1100 		jack++;
   1101 	}
   1102 	jack = &sc->sc_in_jacks[0];
   1103 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
   1104 		jack->opened = 0;
   1105 		jack->bound = 0;
   1106 		jack->arg = NULL;
   1107 		jack->u.in.intr = NULL;
   1108 		if (sc->cblnums_global)
   1109 			jack->cable_number = i;
   1110 		jack++;
   1111 	}
   1112 
   1113 	/* assign each jacks to each endpoints */
   1114 	jack = &sc->sc_out_jacks[0];
   1115 	ep = &sc->sc_out_ep[0];
   1116 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
   1117 		for (j = 0; j < ep->num_jacks; j++) {
   1118 			jack->endpoint = ep;
   1119 			if (cn_spec != NULL)
   1120 				jack->cable_number = *cn_spec++;
   1121 			else if (!sc->cblnums_global)
   1122 				jack->cable_number = j;
   1123 			ep->jacks[jack->cable_number] = jack;
   1124 			jack++;
   1125 		}
   1126 		ep++;
   1127 	}
   1128 	jack = &sc->sc_in_jacks[0];
   1129 	ep = &sc->sc_in_ep[0];
   1130 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
   1131 		for (j = 0; j < ep->num_jacks; j++) {
   1132 			jack->endpoint = ep;
   1133 			if (cn_spec != NULL)
   1134 				jack->cable_number = *cn_spec++;
   1135 			else if (!sc->cblnums_global)
   1136 				jack->cable_number = j;
   1137 			ep->jacks[jack->cable_number] = jack;
   1138 			jack++;
   1139 		}
   1140 		ep++;
   1141 	}
   1142 
   1143 	return USBD_NORMAL_COMPLETION;
   1144 }
   1145 
   1146 static void
   1147 free_all_jacks(struct umidi_softc *sc)
   1148 {
   1149 	struct umidi_jack *jacks;
   1150 	size_t len;
   1151 
   1152 	mutex_enter(&sc->sc_lock);
   1153 	jacks = sc->sc_jacks;
   1154 	len = sizeof(*sc->sc_out_jacks)
   1155 	    * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
   1156 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
   1157 	mutex_exit(&sc->sc_lock);
   1158 
   1159 	if (jacks)
   1160 		kmem_free(jacks, len);
   1161 }
   1162 
   1163 static usbd_status
   1164 bind_jacks_to_mididev(struct umidi_softc *sc,
   1165 		      struct umidi_jack *out_jack,
   1166 		      struct umidi_jack *in_jack,
   1167 		      struct umidi_mididev *mididev)
   1168 {
   1169 	if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
   1170 		return USBD_IN_USE;
   1171 	if (mididev->out_jack || mididev->in_jack)
   1172 		return USBD_IN_USE;
   1173 
   1174 	if (out_jack)
   1175 		out_jack->bound = 1;
   1176 	if (in_jack)
   1177 		in_jack->bound = 1;
   1178 	mididev->in_jack = in_jack;
   1179 	mididev->out_jack = out_jack;
   1180 
   1181 	mididev->closing = 0;
   1182 
   1183 	return USBD_NORMAL_COMPLETION;
   1184 }
   1185 
   1186 static void
   1187 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
   1188 {
   1189 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
   1190 
   1191 	mididev->closing = 1;
   1192 
   1193 	if ((mididev->flags & FWRITE) && mididev->out_jack)
   1194 		close_out_jack(mididev->out_jack);
   1195 	if ((mididev->flags & FREAD) && mididev->in_jack)
   1196 		close_in_jack(mididev->in_jack);
   1197 
   1198 	if (mididev->out_jack) {
   1199 		mididev->out_jack->bound = 0;
   1200 		mididev->out_jack = NULL;
   1201 	}
   1202 	if (mididev->in_jack) {
   1203 		mididev->in_jack->bound = 0;
   1204 		mididev->in_jack = NULL;
   1205 	}
   1206 }
   1207 
   1208 static void
   1209 unbind_all_jacks(struct umidi_softc *sc)
   1210 {
   1211 	int i;
   1212 
   1213 	mutex_enter(&sc->sc_lock);
   1214 	if (sc->sc_mididevs)
   1215 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1216 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
   1217 	mutex_exit(&sc->sc_lock);
   1218 }
   1219 
   1220 static usbd_status
   1221 assign_all_jacks_automatically(struct umidi_softc *sc)
   1222 {
   1223 	usbd_status err;
   1224 	int i;
   1225 	struct umidi_jack *out, *in;
   1226 	const signed char *asg_spec;
   1227 
   1228 	err =
   1229 	    alloc_all_mididevs(sc,
   1230 			       uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
   1231 	if (err!=USBD_NORMAL_COMPLETION)
   1232 		return err;
   1233 
   1234 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
   1235 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
   1236 					    		  UMQ_TYPE_MD_FIXED);
   1237 	else
   1238 		asg_spec = NULL;
   1239 
   1240 	for (i = 0; i < sc->sc_num_mididevs; i++) {
   1241 		if (asg_spec != NULL) {
   1242 			if (*asg_spec == -1)
   1243 				out = NULL;
   1244 			else
   1245 				out = &sc->sc_out_jacks[*asg_spec];
   1246 			++ asg_spec;
   1247 			if (*asg_spec == -1)
   1248 				in = NULL;
   1249 			else
   1250 				in = &sc->sc_in_jacks[*asg_spec];
   1251 			++ asg_spec;
   1252 		} else {
   1253 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
   1254 						       : NULL;
   1255 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
   1256 						     : NULL;
   1257 		}
   1258 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
   1259 		if (err != USBD_NORMAL_COMPLETION) {
   1260 			free_all_mididevs(sc);
   1261 			return err;
   1262 		}
   1263 	}
   1264 
   1265 	return USBD_NORMAL_COMPLETION;
   1266 }
   1267 
   1268 static usbd_status
   1269 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
   1270 {
   1271 	struct umidi_endpoint *ep = jack->endpoint;
   1272 	struct umidi_softc *sc = ep->sc;
   1273 	umidi_packet_bufp end;
   1274 	int err;
   1275 
   1276 	KASSERT(mutex_owned(&sc->sc_lock));
   1277 
   1278 	if (jack->opened)
   1279 		return USBD_IN_USE;
   1280 
   1281 	jack->arg = arg;
   1282 	jack->u.out.intr = intr;
   1283 	jack->midiman_ppkt = NULL;
   1284 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
   1285 	jack->opened = 1;
   1286 	ep->num_open++;
   1287 	/*
   1288 	 * out_solicit maintains an invariant that there will always be
   1289 	 * (num_open - num_scheduled) slots free in the buffer. as we have
   1290 	 * just incremented num_open, the buffer may be too full to satisfy
   1291 	 * the invariant until a transfer completes, for which we must wait.
   1292 	 */
   1293 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
   1294 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1295 		     mstohz(10));
   1296 		if (err) {
   1297 			ep->num_open--;
   1298 			jack->opened = 0;
   1299 			return USBD_IOERROR;
   1300 		}
   1301 	}
   1302 
   1303 	return USBD_NORMAL_COMPLETION;
   1304 }
   1305 
   1306 static usbd_status
   1307 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
   1308 {
   1309 	usbd_status err = USBD_NORMAL_COMPLETION;
   1310 	struct umidi_endpoint *ep = jack->endpoint;
   1311 
   1312 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1313 
   1314 	if (jack->opened)
   1315 		return USBD_IN_USE;
   1316 
   1317 	jack->arg = arg;
   1318 	jack->u.in.intr = intr;
   1319 	jack->opened = 1;
   1320 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
   1321 		/*
   1322 		 * Can't hold the interrupt lock while calling into USB,
   1323 		 * but we can safely drop it here.
   1324 		 */
   1325 		mutex_exit(&ep->sc->sc_lock);
   1326 		err = start_input_transfer(ep);
   1327 		if (err != USBD_NORMAL_COMPLETION &&
   1328 		    err != USBD_IN_PROGRESS) {
   1329 			ep->num_open--;
   1330 		}
   1331 		mutex_enter(&ep->sc->sc_lock);
   1332 	}
   1333 
   1334 	return err;
   1335 }
   1336 
   1337 static void
   1338 close_out_jack(struct umidi_jack *jack)
   1339 {
   1340 	struct umidi_endpoint *ep;
   1341 	struct umidi_softc *sc;
   1342 	uint16_t mask;
   1343 	int err;
   1344 
   1345 	if (jack->opened) {
   1346 		ep = jack->endpoint;
   1347 		sc = ep->sc;
   1348 
   1349 		KASSERT(mutex_owned(&sc->sc_lock));
   1350 		mask = 1 << (jack->cable_number);
   1351 		while (mask & (ep->this_schedule | ep->next_schedule)) {
   1352 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1353 			     mstohz(10));
   1354 			if (err)
   1355 				break;
   1356 		}
   1357 		/*
   1358 		 * We can re-enter this function from both close() and
   1359 		 * detach().  Make sure only one of them does this part.
   1360 		 */
   1361 		if (jack->opened) {
   1362 			jack->opened = 0;
   1363 			jack->endpoint->num_open--;
   1364 			ep->this_schedule &= ~mask;
   1365 			ep->next_schedule &= ~mask;
   1366 		}
   1367 	}
   1368 }
   1369 
   1370 static void
   1371 close_in_jack(struct umidi_jack *jack)
   1372 {
   1373 	if (jack->opened) {
   1374 		struct umidi_softc *sc = jack->endpoint->sc;
   1375 
   1376 		KASSERT(mutex_owned(&sc->sc_lock));
   1377 
   1378 		jack->opened = 0;
   1379 		if (--jack->endpoint->num_open == 0) {
   1380 			/*
   1381 			 * We have to drop the (interrupt) lock so that
   1382 			 * the USB thread lock can be safely taken by
   1383 			 * the abort operation.  This is safe as this
   1384 			 * either closing or dying will be set proerly.
   1385 			 */
   1386 			mutex_exit(&sc->sc_lock);
   1387 			usbd_abort_pipe(jack->endpoint->pipe);
   1388 			mutex_enter(&sc->sc_lock);
   1389 		}
   1390 	}
   1391 }
   1392 
   1393 static usbd_status
   1394 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
   1395 {
   1396 	if (mididev->sc)
   1397 		return USBD_IN_USE;
   1398 
   1399 	mididev->sc = sc;
   1400 
   1401 	describe_mididev(mididev);
   1402 
   1403 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
   1404 
   1405 	return USBD_NORMAL_COMPLETION;
   1406 }
   1407 
   1408 static usbd_status
   1409 detach_mididev(struct umidi_mididev *mididev, int flags)
   1410 {
   1411 	struct umidi_softc *sc = mididev->sc;
   1412 
   1413 	if (!sc)
   1414 		return USBD_NO_ADDR;
   1415 
   1416 	mutex_enter(&sc->sc_lock);
   1417 	if (mididev->opened) {
   1418 		umidi_close(mididev);
   1419 	}
   1420 	unbind_jacks_from_mididev(mididev);
   1421 	mutex_exit(&sc->sc_lock);
   1422 
   1423 	if (mididev->mdev != NULL)
   1424 		config_detach(mididev->mdev, flags);
   1425 
   1426 	if (NULL != mididev->label) {
   1427 		kmem_free(mididev->label, mididev->label_len);
   1428 		mididev->label = NULL;
   1429 	}
   1430 
   1431 	mididev->sc = NULL;
   1432 
   1433 	return USBD_NORMAL_COMPLETION;
   1434 }
   1435 
   1436 static void
   1437 deactivate_mididev(struct umidi_mididev *mididev)
   1438 {
   1439 	if (mididev->out_jack)
   1440 		mididev->out_jack->bound = 0;
   1441 	if (mididev->in_jack)
   1442 		mididev->in_jack->bound = 0;
   1443 }
   1444 
   1445 static usbd_status
   1446 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
   1447 {
   1448 	sc->sc_num_mididevs = nmidi;
   1449 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
   1450 	return USBD_NORMAL_COMPLETION;
   1451 }
   1452 
   1453 static void
   1454 free_all_mididevs(struct umidi_softc *sc)
   1455 {
   1456 	struct umidi_mididev *mididevs;
   1457 	size_t len;
   1458 
   1459 	mutex_enter(&sc->sc_lock);
   1460 	mididevs = sc->sc_mididevs;
   1461 	if (mididevs)
   1462 		  len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
   1463 	sc->sc_mididevs = NULL;
   1464 	sc->sc_num_mididevs = 0;
   1465 	mutex_exit(&sc->sc_lock);
   1466 
   1467 	if (mididevs)
   1468 		kmem_free(mididevs, len);
   1469 }
   1470 
   1471 static usbd_status
   1472 attach_all_mididevs(struct umidi_softc *sc)
   1473 {
   1474 	usbd_status err;
   1475 	int i;
   1476 
   1477 	if (sc->sc_mididevs)
   1478 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1479 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
   1480 			if (err != USBD_NORMAL_COMPLETION)
   1481 				return err;
   1482 		}
   1483 
   1484 	return USBD_NORMAL_COMPLETION;
   1485 }
   1486 
   1487 static usbd_status
   1488 detach_all_mididevs(struct umidi_softc *sc, int flags)
   1489 {
   1490 	usbd_status err;
   1491 	int i;
   1492 
   1493 	if (sc->sc_mididevs)
   1494 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1495 			err = detach_mididev(&sc->sc_mididevs[i], flags);
   1496 			if (err != USBD_NORMAL_COMPLETION)
   1497 				return err;
   1498 		}
   1499 
   1500 	return USBD_NORMAL_COMPLETION;
   1501 }
   1502 
   1503 static void
   1504 deactivate_all_mididevs(struct umidi_softc *sc)
   1505 {
   1506 	int i;
   1507 
   1508 	if (sc->sc_mididevs) {
   1509 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1510 			deactivate_mididev(&sc->sc_mididevs[i]);
   1511 	}
   1512 }
   1513 
   1514 /*
   1515  * TODO: the 0-based cable numbers will often not match the labeling of the
   1516  * equipment. Ideally:
   1517  *  For class-compliant devices: get the iJack string from the jack descriptor.
   1518  *  Otherwise:
   1519  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
   1520  *    number for display)
   1521  *  - support an array quirk explictly giving a char * for each jack.
   1522  * For now, you get 0-based cable numbers. If there are multiple endpoints and
   1523  * the CNs are not globally unique, each is shown with its associated endpoint
   1524  * address in hex also. That should not be necessary when using iJack values
   1525  * or a quirk array.
   1526  */
   1527 void
   1528 describe_mididev(struct umidi_mididev *md)
   1529 {
   1530 	char in_label[16];
   1531 	char out_label[16];
   1532 	const char *unit_label;
   1533 	char *final_label;
   1534 	struct umidi_softc *sc;
   1535 	int show_ep_in;
   1536 	int show_ep_out;
   1537 	size_t len;
   1538 
   1539 	sc = md->sc;
   1540 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
   1541 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
   1542 
   1543 	if (NULL == md->in_jack)
   1544 		in_label[0] = '\0';
   1545 	else if (show_ep_in)
   1546 		snprintf(in_label, sizeof(in_label), "<%d(%x) ",
   1547 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
   1548 	else
   1549 		snprintf(in_label, sizeof(in_label), "<%d ",
   1550 		    md->in_jack->cable_number);
   1551 
   1552 	if (NULL == md->out_jack)
   1553 		out_label[0] = '\0';
   1554 	else if (show_ep_out)
   1555 		snprintf(out_label, sizeof(out_label), ">%d(%x) ",
   1556 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
   1557 	else
   1558 		snprintf(out_label, sizeof(out_label), ">%d ",
   1559 		    md->out_jack->cable_number);
   1560 
   1561 	unit_label = device_xname(sc->sc_dev);
   1562 
   1563 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
   1564 
   1565 	final_label = kmem_alloc(len, KM_SLEEP);
   1566 
   1567 	snprintf(final_label, len, "%s%son %s",
   1568 	    in_label, out_label, unit_label);
   1569 
   1570 	md->label = final_label;
   1571 	md->label_len = len;
   1572 }
   1573 
   1574 #ifdef UMIDI_DEBUG
   1575 static void
   1576 dump_sc(struct umidi_softc *sc)
   1577 {
   1578 	int i;
   1579 
   1580 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
   1581 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
   1582 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
   1583 		dump_ep(&sc->sc_out_ep[i]);
   1584 	}
   1585 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
   1586 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
   1587 		dump_ep(&sc->sc_in_ep[i]);
   1588 	}
   1589 }
   1590 
   1591 static void
   1592 dump_ep(struct umidi_endpoint *ep)
   1593 {
   1594 	int i;
   1595 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
   1596 		if (NULL==ep->jacks[i])
   1597 			continue;
   1598 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
   1599 		dump_jack(ep->jacks[i]);
   1600 	}
   1601 }
   1602 static void
   1603 dump_jack(struct umidi_jack *jack)
   1604 {
   1605 	DPRINTFN(10, ("\t\t\tep=%p\n",
   1606 		      jack->endpoint));
   1607 }
   1608 
   1609 #endif /* UMIDI_DEBUG */
   1610 
   1611 
   1612 
   1613 /*
   1614  * MUX MIDI PACKET
   1615  */
   1616 
   1617 static const int packet_length[16] = {
   1618 	/*0*/	-1,
   1619 	/*1*/	-1,
   1620 	/*2*/	2,
   1621 	/*3*/	3,
   1622 	/*4*/	3,
   1623 	/*5*/	1,
   1624 	/*6*/	2,
   1625 	/*7*/	3,
   1626 	/*8*/	3,
   1627 	/*9*/	3,
   1628 	/*A*/	3,
   1629 	/*B*/	3,
   1630 	/*C*/	2,
   1631 	/*D*/	2,
   1632 	/*E*/	3,
   1633 	/*F*/	1,
   1634 };
   1635 
   1636 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
   1637 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
   1638 #define MIX_CN_CIN(cn, cin) \
   1639 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
   1640 			  ((unsigned char)(cin)&0x0F)))
   1641 
   1642 static usbd_status
   1643 start_input_transfer(struct umidi_endpoint *ep)
   1644 {
   1645 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
   1646 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
   1647 	return usbd_transfer(ep->xfer);
   1648 }
   1649 
   1650 static usbd_status
   1651 start_output_transfer(struct umidi_endpoint *ep)
   1652 {
   1653 	usbd_status rv;
   1654 	uint32_t length;
   1655 	int i;
   1656 
   1657 	length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
   1658 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
   1659 	    ep->buffer, ep->next_slot, length));
   1660 
   1661 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
   1662 	    USBD_NO_TIMEOUT, out_intr);
   1663 	rv = usbd_transfer(ep->xfer);
   1664 
   1665 	/*
   1666 	 * Once the transfer is scheduled, no more adding to partial
   1667 	 * packets within it.
   1668 	 */
   1669 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1670 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
   1671 			if (NULL != ep->jacks[i])
   1672 				ep->jacks[i]->midiman_ppkt = NULL;
   1673 	}
   1674 
   1675 	return rv;
   1676 }
   1677 
   1678 #ifdef UMIDI_DEBUG
   1679 #define DPR_PACKET(dir, sc, p)						\
   1680 if ((unsigned char)(p)[1]!=0xFE)				\
   1681 	DPRINTFN(500,							\
   1682 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
   1683 		  device_xname(sc->sc_dev),				\
   1684 		  (unsigned char)(p)[0],			\
   1685 		  (unsigned char)(p)[1],			\
   1686 		  (unsigned char)(p)[2],			\
   1687 		  (unsigned char)(p)[3]));
   1688 #else
   1689 #define DPR_PACKET(dir, sc, p)
   1690 #endif
   1691 
   1692 /*
   1693  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
   1694  * with the cable number and length in the last byte instead of the first,
   1695  * but there the resemblance ends. Where a USB MIDI packet is a semantic
   1696  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
   1697  * with a cable nybble and a length nybble (which, unlike the CIN of a
   1698  * real USB MIDI packet, has no semantics at all besides the length).
   1699  * A packet received from a Midiman may contain part of a MIDI message,
   1700  * more than one MIDI message, or parts of more than one MIDI message. A
   1701  * three-byte MIDI message may arrive in three packets of data length 1, and
   1702  * running status may be used. Happily, the midi(4) driver above us will put
   1703  * it all back together, so the only cost is in USB bandwidth. The device
   1704  * has an easier time with what it receives from us: we'll pack messages in
   1705  * and across packets, but filling the packets whenever possible and,
   1706  * as midi(4) hands us a complete message at a time, we'll never send one
   1707  * in a dribble of short packets.
   1708  */
   1709 
   1710 static int
   1711 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
   1712 {
   1713 	struct umidi_endpoint *ep = out_jack->endpoint;
   1714 	struct umidi_softc *sc = ep->sc;
   1715 	unsigned char *packet;
   1716 	int plen;
   1717 	int poff;
   1718 
   1719 	KASSERT(mutex_owned(&sc->sc_lock));
   1720 
   1721 	if (sc->sc_dying)
   1722 		return EIO;
   1723 
   1724 	if (!out_jack->opened)
   1725 		return ENODEV; /* XXX as it was, is this the right errno? */
   1726 
   1727 	sc->sc_refcnt++;
   1728 
   1729 #ifdef UMIDI_DEBUG
   1730 	if (umididebug >= 100)
   1731 		microtime(&umidi_tv);
   1732 #endif
   1733 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
   1734 	    "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
   1735 	    (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
   1736 
   1737 	packet = *ep->next_slot++;
   1738 	KASSERT(ep->buffer_size >=
   1739 	    (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
   1740 	memset(packet, 0, UMIDI_PACKET_SIZE);
   1741 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1742 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
   1743 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
   1744 			plen = 3 - poff;
   1745 			if (plen > len)
   1746 				plen = len;
   1747 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
   1748 			src += plen;
   1749 			len -= plen;
   1750 			plen += poff;
   1751 			out_jack->midiman_ppkt[3] =
   1752 			    MIX_CN_CIN(out_jack->cable_number, plen);
   1753 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
   1754 			if (3 == plen)
   1755 				out_jack->midiman_ppkt = NULL; /* no more */
   1756 		}
   1757 		if (0 == len)
   1758 			ep->next_slot--; /* won't be needed, nevermind */
   1759 		else {
   1760 			memcpy(packet, src, len);
   1761 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
   1762 			DPR_PACKET(out, sc, packet);
   1763 			if (len < 3)
   1764 				out_jack->midiman_ppkt = packet;
   1765 		}
   1766 	} else { /* the nice simple USB class-compliant case */
   1767 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
   1768 		memcpy(packet+1, src, len);
   1769 		DPR_PACKET(out, sc, packet);
   1770 	}
   1771 	ep->next_schedule |= 1<<(out_jack->cable_number);
   1772 	++ ep->num_scheduled;
   1773 	if (!ep->armed && !ep->soliciting) {
   1774 		/*
   1775 		 * It would be bad to call out_solicit directly here (the
   1776 		 * caller need not be reentrant) but a soft interrupt allows
   1777 		 * solicit to run immediately the caller exits its critical
   1778 		 * section, and if the caller has more to write we can get it
   1779 		 * before starting the USB transfer, and send a longer one.
   1780 		 */
   1781 		ep->soliciting = 1;
   1782 		kpreempt_disable();
   1783 		softint_schedule(ep->solicit_cookie);
   1784 		kpreempt_enable();
   1785 	}
   1786 
   1787 	if (--sc->sc_refcnt < 0)
   1788 		cv_broadcast(&sc->sc_detach_cv);
   1789 
   1790 	return 0;
   1791 }
   1792 
   1793 static void
   1794 in_intr(struct usbd_xfer *xfer, void *priv,
   1795     usbd_status status)
   1796 {
   1797 	int cn, len, i;
   1798 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1799 	struct umidi_softc *sc = ep->sc;
   1800 	struct umidi_jack *jack;
   1801 	unsigned char *packet;
   1802 	umidi_packet_bufp slot;
   1803 	umidi_packet_bufp end;
   1804 	unsigned char *data;
   1805 	uint32_t count;
   1806 
   1807 	if (ep->sc->sc_dying || !ep->num_open)
   1808 		return;
   1809 
   1810 	mutex_enter(&sc->sc_lock);
   1811 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1812 	if (0 == count % UMIDI_PACKET_SIZE) {
   1813 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
   1814 			     device_xname(ep->sc->sc_dev), ep, count));
   1815 	} else {
   1816 		DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
   1817 			device_xname(ep->sc->sc_dev), ep, count));
   1818 	}
   1819 
   1820 	slot = ep->buffer;
   1821 	end = slot + count / sizeof(*slot);
   1822 
   1823 	for (packet = *slot; slot < end; packet = *++slot) {
   1824 
   1825 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1826 			cn = (0xf0&(packet[3]))>>4;
   1827 			len = 0x0f&(packet[3]);
   1828 			data = packet;
   1829 		} else {
   1830 			cn = GET_CN(packet[0]);
   1831 			len = packet_length[GET_CIN(packet[0])];
   1832 			data = packet + 1;
   1833 		}
   1834 		/* 0 <= cn <= 15 by inspection of above code */
   1835 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
   1836 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
   1837 				 "%02X %02X %02X (try CN_SEQ quirk?)\n",
   1838 				 device_xname(ep->sc->sc_dev), ep, cn, len,
   1839 				 (unsigned)data[0],
   1840 				 (unsigned)data[1],
   1841 				 (unsigned)data[2]));
   1842 			mutex_exit(&sc->sc_lock);
   1843 			return;
   1844 		}
   1845 
   1846 		if (!jack->bound || !jack->opened)
   1847 			continue;
   1848 
   1849 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
   1850 			     "%02X %02X %02X\n",
   1851 			     device_xname(ep->sc->sc_dev), ep, cn, len,
   1852 			     (unsigned)data[0],
   1853 			     (unsigned)data[1],
   1854 			     (unsigned)data[2]));
   1855 
   1856 		if (jack->u.in.intr) {
   1857 			for (i = 0; i < len; i++) {
   1858 				(*jack->u.in.intr)(jack->arg, data[i]);
   1859 			}
   1860 		}
   1861 
   1862 	}
   1863 
   1864 	(void)start_input_transfer(ep);
   1865 	mutex_exit(&sc->sc_lock);
   1866 }
   1867 
   1868 static void
   1869 out_intr(struct usbd_xfer *xfer, void *priv,
   1870     usbd_status status)
   1871 {
   1872 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1873 	struct umidi_softc *sc = ep->sc;
   1874 	uint32_t count;
   1875 
   1876 	if (sc->sc_dying)
   1877 		return;
   1878 
   1879 	mutex_enter(&sc->sc_lock);
   1880 #ifdef UMIDI_DEBUG
   1881 	if (umididebug >= 200)
   1882 		microtime(&umidi_tv);
   1883 #endif
   1884 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1885 	if (0 == count % UMIDI_PACKET_SIZE) {
   1886 		DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
   1887 		    "length %u\n", device_xname(ep->sc->sc_dev),
   1888 		    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
   1889 		    count));
   1890 	} else {
   1891 		DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
   1892 			device_xname(ep->sc->sc_dev), ep, count));
   1893 	}
   1894 	count /= UMIDI_PACKET_SIZE;
   1895 
   1896 	/*
   1897 	 * If while the transfer was pending we buffered any new messages,
   1898 	 * move them to the start of the buffer.
   1899 	 */
   1900 	ep->next_slot -= count;
   1901 	if (ep->buffer < ep->next_slot) {
   1902 		memcpy(ep->buffer, ep->buffer + count,
   1903 		       (char *)ep->next_slot - (char *)ep->buffer);
   1904 	}
   1905 	cv_broadcast(&sc->sc_cv);
   1906 	/*
   1907 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
   1908 	 * Running at IPL_USB so the following should happen to be safe.
   1909 	 */
   1910 	ep->armed = 0;
   1911 	if (!ep->soliciting) {
   1912 		ep->soliciting = 1;
   1913 		out_solicit_locked(ep);
   1914 	}
   1915 	mutex_exit(&sc->sc_lock);
   1916 }
   1917 
   1918 /*
   1919  * A jack on which we have received a packet must be called back on its
   1920  * out.intr handler before it will send us another; it is considered
   1921  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
   1922  * we need no extra buffer space for it.
   1923  *
   1924  * In contrast, a jack that is open but not scheduled may supply us a packet
   1925  * at any time, driven by the top half, and we must be able to accept it, no
   1926  * excuses. So we must ensure that at any point in time there are at least
   1927  * (num_open - num_scheduled) slots free.
   1928  *
   1929  * As long as there are more slots free than that minimum, we can loop calling
   1930  * scheduled jacks back on their "interrupt" handlers, soliciting more
   1931  * packets, starting the USB transfer only when the buffer space is down to
   1932  * the minimum or no jack has any more to send.
   1933  */
   1934 
   1935 static void
   1936 out_solicit_locked(void *arg)
   1937 {
   1938 	struct umidi_endpoint *ep = arg;
   1939 	umidi_packet_bufp end;
   1940 	uint16_t which;
   1941 	struct umidi_jack *jack;
   1942 
   1943 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1944 
   1945 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
   1946 
   1947 	for ( ;; ) {
   1948 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
   1949 			break; /* at IPL_USB */
   1950 		if (ep->this_schedule == 0) {
   1951 			if (ep->next_schedule == 0)
   1952 				break; /* at IPL_USB */
   1953 			ep->this_schedule = ep->next_schedule;
   1954 			ep->next_schedule = 0;
   1955 		}
   1956 		/*
   1957 		 * At least one jack is scheduled. Find and mask off the least
   1958 		 * set bit in this_schedule and decrement num_scheduled.
   1959 		 * Convert mask to bit index to find the corresponding jack,
   1960 		 * and call its intr handler. If it has a message, it will call
   1961 		 * back one of the output methods, which will set its bit in
   1962 		 * next_schedule (not copied into this_schedule until the
   1963 		 * latter is empty). In this way we round-robin the jacks that
   1964 		 * have messages to send, until the buffer is as full as we
   1965 		 * dare, and then start a transfer.
   1966 		 */
   1967 		which = ep->this_schedule;
   1968 		which &= (~which)+1; /* now mask of least set bit */
   1969 		ep->this_schedule &= ~which;
   1970 		--ep->num_scheduled;
   1971 
   1972 		--which; /* now 1s below mask - count 1s to get index */
   1973 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
   1974 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
   1975 		which = (((which >> 4) + which) & 0x0f0f);
   1976 		which +=  (which >> 8);
   1977 		which &= 0x1f; /* the bit index a/k/a jack number */
   1978 
   1979 		jack = ep->jacks[which];
   1980 		if (jack->u.out.intr)
   1981 			(*jack->u.out.intr)(jack->arg);
   1982 	}
   1983 	/* intr lock held at loop exit */
   1984 	if (!ep->armed && ep->next_slot > ep->buffer) {
   1985 		/*
   1986 		 * Can't hold the interrupt lock while calling into USB,
   1987 		 * but we can safely drop it here.
   1988 		 */
   1989 		mutex_exit(&ep->sc->sc_lock);
   1990 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
   1991 		mutex_enter(&ep->sc->sc_lock);
   1992 	}
   1993 	ep->soliciting = 0;
   1994 }
   1995 
   1996 /* Entry point for the softintr.  */
   1997 static void
   1998 out_solicit(void *arg)
   1999 {
   2000 	struct umidi_endpoint *ep = arg;
   2001 	struct umidi_softc *sc = ep->sc;
   2002 
   2003 	mutex_enter(&sc->sc_lock);
   2004 	out_solicit_locked(arg);
   2005 	mutex_exit(&sc->sc_lock);
   2006 }
   2007