umidi.c revision 1.74.4.3 1 /* $NetBSD: umidi.c,v 1.74.4.3 2020/04/13 08:04:50 martin Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.74.4.3 2020/04/13 08:04:50 martin Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59
60 #include <dev/usb/usbdevs.h>
61 #include <dev/usb/umidi_quirks.h>
62 #include <dev/midi_if.h>
63
64 /* Jack Descriptor */
65 #define UMIDI_MS_HEADER 0x01
66 #define UMIDI_IN_JACK 0x02
67 #define UMIDI_OUT_JACK 0x03
68
69 /* Jack Type */
70 #define UMIDI_EMBEDDED 0x01
71 #define UMIDI_EXTERNAL 0x02
72
73 /* generic, for iteration */
74 typedef struct {
75 uByte bLength;
76 uByte bDescriptorType;
77 uByte bDescriptorSubtype;
78 } UPACKED umidi_cs_descriptor_t;
79
80 typedef struct {
81 uByte bLength;
82 uByte bDescriptorType;
83 uByte bDescriptorSubtype;
84 uWord bcdMSC;
85 uWord wTotalLength;
86 } UPACKED umidi_cs_interface_descriptor_t;
87 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
88
89 typedef struct {
90 uByte bLength;
91 uByte bDescriptorType;
92 uByte bDescriptorSubtype;
93 uByte bNumEmbMIDIJack;
94 } UPACKED umidi_cs_endpoint_descriptor_t;
95 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
96
97 typedef struct {
98 uByte bLength;
99 uByte bDescriptorType;
100 uByte bDescriptorSubtype;
101 uByte bJackType;
102 uByte bJackID;
103 } UPACKED umidi_jack_descriptor_t;
104 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
105
106
107 #define TO_D(p) ((usb_descriptor_t *)(p))
108 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
109 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
110 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
111 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
112 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
113
114
115 #define UMIDI_PACKET_SIZE 4
116
117 /*
118 * hierarchie
119 *
120 * <-- parent child -->
121 *
122 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
123 * ^ | ^ |
124 * +-----+ +-----+
125 */
126
127 /* midi device */
128 struct umidi_mididev {
129 struct umidi_softc *sc;
130 device_t mdev;
131 /* */
132 struct umidi_jack *in_jack;
133 struct umidi_jack *out_jack;
134 char *label;
135 size_t label_len;
136 /* */
137 int opened;
138 int closing;
139 int flags;
140 };
141
142 /* Jack Information */
143 struct umidi_jack {
144 struct umidi_endpoint *endpoint;
145 /* */
146 int cable_number;
147 void *arg;
148 int bound;
149 int opened;
150 unsigned char *midiman_ppkt;
151 union {
152 struct {
153 void (*intr)(void *);
154 } out;
155 struct {
156 void (*intr)(void *, int);
157 } in;
158 } u;
159 };
160
161 #define UMIDI_MAX_EPJACKS 16
162 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
163 /* endpoint data */
164 struct umidi_endpoint {
165 struct umidi_softc *sc;
166 /* */
167 int addr;
168 struct usbd_pipe *pipe;
169 struct usbd_xfer *xfer;
170 umidi_packet_bufp buffer;
171 umidi_packet_bufp next_slot;
172 uint32_t buffer_size;
173 int num_scheduled;
174 int num_open;
175 int num_jacks;
176 int soliciting;
177 void *solicit_cookie;
178 int armed;
179 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
180 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
181 uint16_t next_schedule;
182 };
183
184 /* software context */
185 struct umidi_softc {
186 device_t sc_dev;
187 struct usbd_device *sc_udev;
188 struct usbd_interface *sc_iface;
189 const struct umidi_quirk *sc_quirk;
190
191 int sc_dying;
192
193 int sc_out_num_jacks;
194 struct umidi_jack *sc_out_jacks;
195 int sc_in_num_jacks;
196 struct umidi_jack *sc_in_jacks;
197 struct umidi_jack *sc_jacks;
198
199 int sc_num_mididevs;
200 struct umidi_mididev *sc_mididevs;
201
202 int sc_out_num_endpoints;
203 struct umidi_endpoint *sc_out_ep;
204 int sc_in_num_endpoints;
205 struct umidi_endpoint *sc_in_ep;
206 struct umidi_endpoint *sc_endpoints;
207 size_t sc_endpoints_len;
208 int cblnums_global;
209
210 kmutex_t sc_lock;
211 kcondvar_t sc_cv;
212 kcondvar_t sc_detach_cv;
213
214 int sc_refcnt;
215 };
216
217 #ifdef UMIDI_DEBUG
218 #define DPRINTF(x) if (umididebug) printf x
219 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
220 #include <sys/time.h>
221 static struct timeval umidi_tv;
222 int umididebug = 0;
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227
228 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
229 (sc->sc_out_num_endpoints + \
230 sc->sc_in_num_endpoints))
231
232
233 static int umidi_open(void *, int,
234 void (*)(void *, int), void (*)(void *), void *);
235 static void umidi_close(void *);
236 static int umidi_channelmsg(void *, int, int, u_char *, int);
237 static int umidi_commonmsg(void *, int, u_char *, int);
238 static int umidi_sysex(void *, u_char *, int);
239 static int umidi_rtmsg(void *, int);
240 static void umidi_getinfo(void *, struct midi_info *);
241 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
242
243 static usbd_status alloc_pipe(struct umidi_endpoint *);
244 static void free_pipe(struct umidi_endpoint *);
245
246 static usbd_status alloc_all_endpoints(struct umidi_softc *);
247 static void free_all_endpoints(struct umidi_softc *);
248
249 static usbd_status alloc_all_jacks(struct umidi_softc *);
250 static void free_all_jacks(struct umidi_softc *);
251 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
252 struct umidi_jack *,
253 struct umidi_jack *,
254 struct umidi_mididev *);
255 static void unbind_jacks_from_mididev(struct umidi_mididev *);
256 static void unbind_all_jacks(struct umidi_softc *);
257 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
258 static usbd_status open_out_jack(struct umidi_jack *, void *,
259 void (*)(void *));
260 static usbd_status open_in_jack(struct umidi_jack *, void *,
261 void (*)(void *, int));
262 static void close_out_jack(struct umidi_jack *);
263 static void close_in_jack(struct umidi_jack *);
264
265 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
266 static usbd_status detach_mididev(struct umidi_mididev *, int);
267 static void deactivate_mididev(struct umidi_mididev *);
268 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
269 static void free_all_mididevs(struct umidi_softc *);
270 static usbd_status attach_all_mididevs(struct umidi_softc *);
271 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
272 static void deactivate_all_mididevs(struct umidi_softc *);
273 static void describe_mididev(struct umidi_mididev *);
274
275 #ifdef UMIDI_DEBUG
276 static void dump_sc(struct umidi_softc *);
277 static void dump_ep(struct umidi_endpoint *);
278 static void dump_jack(struct umidi_jack *);
279 #endif
280
281 static usbd_status start_input_transfer(struct umidi_endpoint *);
282 static usbd_status start_output_transfer(struct umidi_endpoint *);
283 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
284 static void in_intr(struct usbd_xfer *, void *, usbd_status);
285 static void out_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
287 static void out_solicit_locked(void *); /* pre-locked version */
288
289
290 const struct midi_hw_if umidi_hw_if = {
291 .open = umidi_open,
292 .close = umidi_close,
293 .output = umidi_rtmsg,
294 .getinfo = umidi_getinfo,
295 .get_locks = umidi_get_locks,
296 };
297
298 struct midi_hw_if_ext umidi_hw_if_ext = {
299 .channel = umidi_channelmsg,
300 .common = umidi_commonmsg,
301 .sysex = umidi_sysex,
302 };
303
304 struct midi_hw_if_ext umidi_hw_if_mm = {
305 .channel = umidi_channelmsg,
306 .common = umidi_commonmsg,
307 .sysex = umidi_sysex,
308 .compress = 1,
309 };
310
311 static int umidi_match(device_t, cfdata_t, void *);
312 static void umidi_attach(device_t, device_t, void *);
313 static void umidi_childdet(device_t, device_t);
314 static int umidi_detach(device_t, int);
315 static int umidi_activate(device_t, enum devact);
316
317 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
318 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
319
320 static int
321 umidi_match(device_t parent, cfdata_t match, void *aux)
322 {
323 struct usbif_attach_arg *uiaa = aux;
324
325 DPRINTFN(1,("umidi_match\n"));
326
327 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
328 uiaa->uiaa_ifaceno))
329 return UMATCH_IFACECLASS_IFACESUBCLASS;
330
331 if (uiaa->uiaa_class == UICLASS_AUDIO &&
332 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
333 return UMATCH_IFACECLASS_IFACESUBCLASS;
334
335 return UMATCH_NONE;
336 }
337
338 static void
339 umidi_attach(device_t parent, device_t self, void *aux)
340 {
341 usbd_status err;
342 struct umidi_softc *sc = device_private(self);
343 struct usbif_attach_arg *uiaa = aux;
344 char *devinfop;
345
346 DPRINTFN(1,("umidi_attach\n"));
347
348 sc->sc_dev = self;
349
350 aprint_naive("\n");
351 aprint_normal("\n");
352
353 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
354 aprint_normal_dev(self, "%s\n", devinfop);
355 usbd_devinfo_free(devinfop);
356
357 sc->sc_iface = uiaa->uiaa_iface;
358 sc->sc_udev = uiaa->uiaa_device;
359
360 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
361 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
362
363 aprint_normal_dev(self, "");
364 umidi_print_quirk(sc->sc_quirk);
365
366 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
367 cv_init(&sc->sc_cv, "umidopcl");
368 cv_init(&sc->sc_detach_cv, "umidetcv");
369 sc->sc_refcnt = 0;
370
371 err = alloc_all_endpoints(sc);
372 if (err != USBD_NORMAL_COMPLETION) {
373 aprint_error_dev(self,
374 "alloc_all_endpoints failed. (err=%d)\n", err);
375 goto out;
376 }
377 err = alloc_all_jacks(sc);
378 if (err != USBD_NORMAL_COMPLETION) {
379 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
380 err);
381 goto out_free_endpoints;
382 }
383 aprint_normal_dev(self, "out=%d, in=%d\n",
384 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
385
386 err = assign_all_jacks_automatically(sc);
387 if (err != USBD_NORMAL_COMPLETION) {
388 aprint_error_dev(self,
389 "assign_all_jacks_automatically failed. (err=%d)\n", err);
390 goto out_free_jacks;
391 }
392 err = attach_all_mididevs(sc);
393 if (err != USBD_NORMAL_COMPLETION) {
394 aprint_error_dev(self,
395 "attach_all_mididevs failed. (err=%d)\n", err);
396 goto out_free_jacks;
397 }
398
399 #ifdef UMIDI_DEBUG
400 dump_sc(sc);
401 #endif
402
403 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
404
405 return;
406
407 out_free_jacks:
408 unbind_all_jacks(sc);
409 free_all_jacks(sc);
410
411 out_free_endpoints:
412 free_all_endpoints(sc);
413
414 out:
415 aprint_error_dev(self, "disabled.\n");
416 sc->sc_dying = 1;
417 return;
418 }
419
420 static void
421 umidi_childdet(device_t self, device_t child)
422 {
423 int i;
424 struct umidi_softc *sc = device_private(self);
425
426 KASSERT(sc->sc_mididevs != NULL);
427
428 for (i = 0; i < sc->sc_num_mididevs; i++) {
429 if (sc->sc_mididevs[i].mdev == child)
430 break;
431 }
432 KASSERT(i < sc->sc_num_mididevs);
433 sc->sc_mididevs[i].mdev = NULL;
434 }
435
436 static int
437 umidi_activate(device_t self, enum devact act)
438 {
439 struct umidi_softc *sc = device_private(self);
440
441 switch (act) {
442 case DVACT_DEACTIVATE:
443 DPRINTFN(1,("umidi_activate (deactivate)\n"));
444 sc->sc_dying = 1;
445 deactivate_all_mididevs(sc);
446 return 0;
447 default:
448 DPRINTFN(1,("umidi_activate (%d)\n", act));
449 return EOPNOTSUPP;
450 }
451 }
452
453 static int
454 umidi_detach(device_t self, int flags)
455 {
456 struct umidi_softc *sc = device_private(self);
457
458 DPRINTFN(1,("umidi_detach\n"));
459
460 mutex_enter(&sc->sc_lock);
461 sc->sc_dying = 1;
462 if (--sc->sc_refcnt >= 0)
463 if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
464 aprint_error_dev(self, ": didn't detach\n");
465 mutex_exit(&sc->sc_lock);
466
467 detach_all_mididevs(sc, flags);
468 free_all_mididevs(sc);
469 free_all_jacks(sc);
470 free_all_endpoints(sc);
471
472 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
473
474 mutex_destroy(&sc->sc_lock);
475 cv_destroy(&sc->sc_detach_cv);
476 cv_destroy(&sc->sc_cv);
477
478 return 0;
479 }
480
481
482 /*
483 * midi_if stuffs
484 */
485 int
486 umidi_open(void *addr,
487 int flags,
488 void (*iintr)(void *, int),
489 void (*ointr)(void *),
490 void *arg)
491 {
492 struct umidi_mididev *mididev = addr;
493 struct umidi_softc *sc = mididev->sc;
494 usbd_status err;
495
496 KASSERT(mutex_owned(&sc->sc_lock));
497 DPRINTF(("umidi_open: sc=%p\n", sc));
498
499 if (mididev->opened)
500 return EBUSY;
501 if (sc->sc_dying)
502 return EIO;
503
504 mididev->opened = 1;
505 mididev->flags = flags;
506 if ((mididev->flags & FWRITE) && mididev->out_jack) {
507 err = open_out_jack(mididev->out_jack, arg, ointr);
508 if (err != USBD_NORMAL_COMPLETION)
509 goto bad;
510 }
511 if ((mididev->flags & FREAD) && mididev->in_jack) {
512 err = open_in_jack(mididev->in_jack, arg, iintr);
513 KASSERT(mididev->opened);
514 if (err != USBD_NORMAL_COMPLETION &&
515 err != USBD_IN_PROGRESS) {
516 if (mididev->out_jack)
517 close_out_jack(mididev->out_jack);
518 goto bad;
519 }
520 }
521
522 return 0;
523 bad:
524 mididev->opened = 0;
525 DPRINTF(("umidi_open: usbd_status %d\n", err));
526 KASSERT(mutex_owned(&sc->sc_lock));
527 return USBD_IN_USE == err ? EBUSY : EIO;
528 }
529
530 void
531 umidi_close(void *addr)
532 {
533 struct umidi_mididev *mididev = addr;
534 struct umidi_softc *sc = mididev->sc;
535
536 KASSERT(mutex_owned(&sc->sc_lock));
537
538 if (mididev->closing)
539 return;
540
541 mididev->closing = 1;
542
543 sc->sc_refcnt++;
544
545 if ((mididev->flags & FWRITE) && mididev->out_jack)
546 close_out_jack(mididev->out_jack);
547 if ((mididev->flags & FREAD) && mididev->in_jack)
548 close_in_jack(mididev->in_jack);
549
550 if (--sc->sc_refcnt < 0)
551 cv_broadcast(&sc->sc_detach_cv);
552
553 mididev->opened = 0;
554 mididev->closing = 0;
555 }
556
557 int
558 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
559 int len)
560 {
561 struct umidi_mididev *mididev = addr;
562
563 KASSERT(mutex_owned(&mididev->sc->sc_lock));
564
565 if (!mididev->out_jack || !mididev->opened || mididev->closing)
566 return EIO;
567
568 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
569 }
570
571 int
572 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
573 {
574 struct umidi_mididev *mididev = addr;
575 int cin;
576
577 KASSERT(mutex_owned(&mididev->sc->sc_lock));
578
579 if (!mididev->out_jack || !mididev->opened || mididev->closing)
580 return EIO;
581
582 switch ( len ) {
583 case 1: cin = 5; break;
584 case 2: cin = 2; break;
585 case 3: cin = 3; break;
586 default: return EIO; /* or gcc warns of cin uninitialized */
587 }
588
589 return out_jack_output(mididev->out_jack, msg, len, cin);
590 }
591
592 int
593 umidi_sysex(void *addr, u_char *msg, int len)
594 {
595 struct umidi_mididev *mididev = addr;
596 int cin;
597
598 KASSERT(mutex_owned(&mididev->sc->sc_lock));
599
600 if (!mididev->out_jack || !mididev->opened || mididev->closing)
601 return EIO;
602
603 switch ( len ) {
604 case 1: cin = 5; break;
605 case 2: cin = 6; break;
606 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
607 default: return EIO; /* or gcc warns of cin uninitialized */
608 }
609
610 return out_jack_output(mididev->out_jack, msg, len, cin);
611 }
612
613 int
614 umidi_rtmsg(void *addr, int d)
615 {
616 struct umidi_mididev *mididev = addr;
617 u_char msg = d;
618
619 KASSERT(mutex_owned(&mididev->sc->sc_lock));
620
621 if (!mididev->out_jack || !mididev->opened || mididev->closing)
622 return EIO;
623
624 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
625 }
626
627 void
628 umidi_getinfo(void *addr, struct midi_info *mi)
629 {
630 struct umidi_mididev *mididev = addr;
631 struct umidi_softc *sc = mididev->sc;
632 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
633
634 KASSERT(mutex_owned(&sc->sc_lock));
635
636 mi->name = mididev->label;
637 mi->props = MIDI_PROP_OUT_INTR;
638 if (mididev->in_jack)
639 mi->props |= MIDI_PROP_CAN_INPUT;
640 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
641 }
642
643 static void
644 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
645 {
646 struct umidi_mididev *mididev = addr;
647 struct umidi_softc *sc = mididev->sc;
648
649 *intr = NULL;
650 *thread = &sc->sc_lock;
651 }
652
653 /*
654 * each endpoint stuffs
655 */
656
657 /* alloc/free pipe */
658 static usbd_status
659 alloc_pipe(struct umidi_endpoint *ep)
660 {
661 struct umidi_softc *sc = ep->sc;
662 usbd_status err;
663 usb_endpoint_descriptor_t *epd;
664
665 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
666 /*
667 * For output, an improvement would be to have a buffer bigger than
668 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
669 * allow out_solicit to fill the buffer to the full packet size in
670 * all cases. But to use usbd_create_xfer to get a slightly larger
671 * buffer would not be a good way to do that, because if the addition
672 * would make the buffer exceed USB_MEM_SMALL then a substantially
673 * larger block may be wastefully allocated. Some flavor of double
674 * buffering could serve the same purpose, but would increase the
675 * code complexity, so for now I will live with the current slight
676 * penalty of reducing max transfer size by (num_open-num_scheduled)
677 * packet slots.
678 */
679 ep->buffer_size = UGETW(epd->wMaxPacketSize);
680 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
681
682 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
683 device_xname(sc->sc_dev), ep, ep->buffer_size));
684 ep->num_scheduled = 0;
685 ep->this_schedule = 0;
686 ep->next_schedule = 0;
687 ep->soliciting = 0;
688 ep->armed = 0;
689 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
690 if (err)
691 goto quit;
692 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
693 0, 0, &ep->xfer);
694 if (error) {
695 usbd_close_pipe(ep->pipe);
696 return USBD_NOMEM;
697 }
698 ep->buffer = usbd_get_buffer(ep->xfer);
699 ep->next_slot = ep->buffer;
700 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
701 out_solicit, ep);
702 quit:
703 return err;
704 }
705
706 static void
707 free_pipe(struct umidi_endpoint *ep)
708 {
709 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
710 usbd_abort_pipe(ep->pipe);
711 usbd_destroy_xfer(ep->xfer);
712 usbd_close_pipe(ep->pipe);
713 softint_disestablish(ep->solicit_cookie);
714 }
715
716
717 /* alloc/free the array of endpoint structures */
718
719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
722
723 static usbd_status
724 alloc_all_endpoints(struct umidi_softc *sc)
725 {
726 usbd_status err;
727 struct umidi_endpoint *ep;
728 int i;
729
730 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
731 err = alloc_all_endpoints_fixed_ep(sc);
732 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
733 err = alloc_all_endpoints_yamaha(sc);
734 } else {
735 err = alloc_all_endpoints_genuine(sc);
736 }
737 if (err != USBD_NORMAL_COMPLETION)
738 return err;
739
740 ep = sc->sc_endpoints;
741 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
742 err = alloc_pipe(ep++);
743 if (err != USBD_NORMAL_COMPLETION) {
744 for (; ep != sc->sc_endpoints; ep--)
745 free_pipe(ep-1);
746 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
747 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
748 break;
749 }
750 }
751 return err;
752 }
753
754 static void
755 free_all_endpoints(struct umidi_softc *sc)
756 {
757 int i;
758
759 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
760 free_pipe(&sc->sc_endpoints[i]);
761 if (sc->sc_endpoints != NULL)
762 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
763 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
764 }
765
766 static usbd_status
767 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
768 {
769 usbd_status err;
770 const struct umq_fixed_ep_desc *fp;
771 struct umidi_endpoint *ep;
772 usb_endpoint_descriptor_t *epd;
773 int i;
774
775 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
776 UMQ_TYPE_FIXED_EP);
777 sc->sc_out_num_jacks = 0;
778 sc->sc_in_num_jacks = 0;
779 sc->sc_out_num_endpoints = fp->num_out_ep;
780 sc->sc_in_num_endpoints = fp->num_in_ep;
781 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
782 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
783 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
784 sc->sc_in_ep =
785 sc->sc_in_num_endpoints ?
786 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
787
788 ep = &sc->sc_out_ep[0];
789 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
790 epd = usbd_interface2endpoint_descriptor(
791 sc->sc_iface,
792 fp->out_ep[i].ep);
793 if (!epd) {
794 aprint_error_dev(sc->sc_dev,
795 "cannot get endpoint descriptor(out:%d)\n",
796 fp->out_ep[i].ep);
797 err = USBD_INVAL;
798 goto error;
799 }
800 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
801 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
802 aprint_error_dev(sc->sc_dev,
803 "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
804 err = USBD_INVAL;
805 goto error;
806 }
807 ep->sc = sc;
808 ep->addr = epd->bEndpointAddress;
809 ep->num_jacks = fp->out_ep[i].num_jacks;
810 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
811 ep->num_open = 0;
812 ep++;
813 }
814 ep = &sc->sc_in_ep[0];
815 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
816 epd = usbd_interface2endpoint_descriptor(
817 sc->sc_iface,
818 fp->in_ep[i].ep);
819 if (!epd) {
820 aprint_error_dev(sc->sc_dev,
821 "cannot get endpoint descriptor(in:%d)\n",
822 fp->in_ep[i].ep);
823 err = USBD_INVAL;
824 goto error;
825 }
826 /*
827 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
828 * endpoint. The existing input logic in this driver seems
829 * to work successfully if we just stop treating an interrupt
830 * endpoint as illegal (or the in_progress status we get on
831 * the initial transfer). It does not seem necessary to
832 * actually use the interrupt flavor of alloc_pipe or make
833 * other serious rearrangements of logic. I like that.
834 */
835 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
836 case UE_BULK:
837 case UE_INTERRUPT:
838 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
839 break;
840 /*FALLTHROUGH*/
841 default:
842 aprint_error_dev(sc->sc_dev,
843 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
844 err = USBD_INVAL;
845 goto error;
846 }
847
848 ep->sc = sc;
849 ep->addr = epd->bEndpointAddress;
850 ep->num_jacks = fp->in_ep[i].num_jacks;
851 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
852 ep->num_open = 0;
853 ep++;
854 }
855
856 return USBD_NORMAL_COMPLETION;
857 error:
858 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
859 sc->sc_endpoints = NULL;
860 return err;
861 }
862
863 static usbd_status
864 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
865 {
866 /* This driver currently supports max 1in/1out bulk endpoints */
867 usb_descriptor_t *desc;
868 umidi_cs_descriptor_t *udesc;
869 usb_endpoint_descriptor_t *epd;
870 int out_addr, in_addr, i;
871 int dir;
872 size_t remain, descsize;
873
874 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
875 out_addr = in_addr = 0;
876
877 /* detect endpoints */
878 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
879 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
880 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
881 KASSERT(epd != NULL);
882 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
883 dir = UE_GET_DIR(epd->bEndpointAddress);
884 if (dir==UE_DIR_OUT && !out_addr)
885 out_addr = epd->bEndpointAddress;
886 else if (dir==UE_DIR_IN && !in_addr)
887 in_addr = epd->bEndpointAddress;
888 }
889 }
890 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
891
892 /* count jacks */
893 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
894 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
895 return USBD_INVAL;
896 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
897 (size_t)udesc->bLength;
898 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
899
900 while (remain >= sizeof(usb_descriptor_t)) {
901 descsize = udesc->bLength;
902 if (descsize>remain || descsize==0)
903 break;
904 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
905 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
906 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
907 sc->sc_out_num_jacks++;
908 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
909 sc->sc_in_num_jacks++;
910 }
911 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
912 remain -= descsize;
913 }
914
915 /* validate some parameters */
916 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
917 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
918 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
919 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
920 if (sc->sc_out_num_jacks && out_addr) {
921 sc->sc_out_num_endpoints = 1;
922 } else {
923 sc->sc_out_num_endpoints = 0;
924 sc->sc_out_num_jacks = 0;
925 }
926 if (sc->sc_in_num_jacks && in_addr) {
927 sc->sc_in_num_endpoints = 1;
928 } else {
929 sc->sc_in_num_endpoints = 0;
930 sc->sc_in_num_jacks = 0;
931 }
932 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
933 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
934 if (sc->sc_out_num_endpoints) {
935 sc->sc_out_ep = sc->sc_endpoints;
936 sc->sc_out_ep->sc = sc;
937 sc->sc_out_ep->addr = out_addr;
938 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
939 sc->sc_out_ep->num_open = 0;
940 } else
941 sc->sc_out_ep = NULL;
942
943 if (sc->sc_in_num_endpoints) {
944 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
945 sc->sc_in_ep->sc = sc;
946 sc->sc_in_ep->addr = in_addr;
947 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
948 sc->sc_in_ep->num_open = 0;
949 } else
950 sc->sc_in_ep = NULL;
951
952 return USBD_NORMAL_COMPLETION;
953 }
954
955 static usbd_status
956 alloc_all_endpoints_genuine(struct umidi_softc *sc)
957 {
958 usb_interface_descriptor_t *interface_desc;
959 usb_config_descriptor_t *config_desc;
960 usb_descriptor_t *desc;
961 int num_ep;
962 size_t remain, descsize;
963 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
964 int epaddr;
965
966 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
967 num_ep = interface_desc->bNumEndpoints;
968 if (num_ep == 0)
969 return USBD_INVAL;
970 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
971 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
972 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
973 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
974 epaddr = -1;
975
976 /* get the list of endpoints for midi stream */
977 config_desc = usbd_get_config_descriptor(sc->sc_udev);
978 desc = (usb_descriptor_t *) config_desc;
979 remain = (size_t)UGETW(config_desc->wTotalLength);
980 while (remain>=sizeof(usb_descriptor_t)) {
981 descsize = desc->bLength;
982 if (descsize>remain || descsize==0)
983 break;
984 if (desc->bDescriptorType==UDESC_ENDPOINT &&
985 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
986 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
987 epaddr = TO_EPD(desc)->bEndpointAddress;
988 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
989 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
990 epaddr!=-1) {
991 if (num_ep>0) {
992 num_ep--;
993 p->sc = sc;
994 p->addr = epaddr;
995 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
996 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
997 sc->sc_out_num_endpoints++;
998 sc->sc_out_num_jacks += p->num_jacks;
999 } else {
1000 sc->sc_in_num_endpoints++;
1001 sc->sc_in_num_jacks += p->num_jacks;
1002 }
1003 p++;
1004 }
1005 } else
1006 epaddr = -1;
1007 desc = NEXT_D(desc);
1008 remain-=descsize;
1009 }
1010
1011 /* sort endpoints */
1012 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1013 p = sc->sc_endpoints;
1014 endep = p + num_ep;
1015 while (p<endep) {
1016 lowest = p;
1017 for (q=p+1; q<endep; q++) {
1018 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1019 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1020 ((UE_GET_DIR(lowest->addr)==
1021 UE_GET_DIR(q->addr)) &&
1022 (UE_GET_ADDR(lowest->addr)>
1023 UE_GET_ADDR(q->addr))))
1024 lowest = q;
1025 }
1026 if (lowest != p) {
1027 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1028 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1029 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1030 }
1031 p->num_open = 0;
1032 p++;
1033 }
1034
1035 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1036 sc->sc_in_ep =
1037 sc->sc_in_num_endpoints ?
1038 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1039
1040 return USBD_NORMAL_COMPLETION;
1041 }
1042
1043
1044 /*
1045 * jack stuffs
1046 */
1047
1048 static usbd_status
1049 alloc_all_jacks(struct umidi_softc *sc)
1050 {
1051 int i, j;
1052 struct umidi_endpoint *ep;
1053 struct umidi_jack *jack;
1054 const unsigned char *cn_spec;
1055
1056 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1057 sc->cblnums_global = 0;
1058 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1059 sc->cblnums_global = 1;
1060 else {
1061 /*
1062 * I don't think this default is correct, but it preserves
1063 * the prior behavior of the code. That's why I defined two
1064 * complementary quirks. Any device for which the default
1065 * behavior is wrong can be made to work by giving it an
1066 * explicit quirk, and if a pattern ever develops (as I suspect
1067 * it will) that a lot of otherwise standard USB MIDI devices
1068 * need the CN_SEQ_PER_EP "quirk," then this default can be
1069 * changed to 0, and the only devices that will break are those
1070 * listing neither quirk, and they'll easily be fixed by giving
1071 * them the CN_SEQ_GLOBAL quirk.
1072 */
1073 sc->cblnums_global = 1;
1074 }
1075
1076 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1077 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1078 UMQ_TYPE_CN_FIXED);
1079 else
1080 cn_spec = NULL;
1081
1082 /* allocate/initialize structures */
1083 if (sc->sc_in_num_jacks == 0 && sc->sc_out_num_jacks == 0)
1084 return USBD_INVAL;
1085 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks) *
1086 (sc->sc_in_num_jacks + sc->sc_out_num_jacks), KM_SLEEP);
1087 if (!sc->sc_jacks)
1088 return USBD_NOMEM;
1089 sc->sc_out_jacks =
1090 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1091 sc->sc_in_jacks =
1092 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1093
1094 jack = &sc->sc_out_jacks[0];
1095 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1096 jack->opened = 0;
1097 jack->bound = 0;
1098 jack->arg = NULL;
1099 jack->u.out.intr = NULL;
1100 jack->midiman_ppkt = NULL;
1101 if (sc->cblnums_global)
1102 jack->cable_number = i;
1103 jack++;
1104 }
1105 jack = &sc->sc_in_jacks[0];
1106 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1107 jack->opened = 0;
1108 jack->bound = 0;
1109 jack->arg = NULL;
1110 jack->u.in.intr = NULL;
1111 if (sc->cblnums_global)
1112 jack->cable_number = i;
1113 jack++;
1114 }
1115
1116 /* assign each jacks to each endpoints */
1117 jack = &sc->sc_out_jacks[0];
1118 ep = &sc->sc_out_ep[0];
1119 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1120 for (j = 0; j < ep->num_jacks; j++) {
1121 jack->endpoint = ep;
1122 if (cn_spec != NULL)
1123 jack->cable_number = *cn_spec++;
1124 else if (!sc->cblnums_global)
1125 jack->cable_number = j;
1126 ep->jacks[jack->cable_number] = jack;
1127 jack++;
1128 }
1129 ep++;
1130 }
1131 jack = &sc->sc_in_jacks[0];
1132 ep = &sc->sc_in_ep[0];
1133 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1134 for (j = 0; j < ep->num_jacks; j++) {
1135 jack->endpoint = ep;
1136 if (cn_spec != NULL)
1137 jack->cable_number = *cn_spec++;
1138 else if (!sc->cblnums_global)
1139 jack->cable_number = j;
1140 ep->jacks[jack->cable_number] = jack;
1141 jack++;
1142 }
1143 ep++;
1144 }
1145
1146 return USBD_NORMAL_COMPLETION;
1147 }
1148
1149 static void
1150 free_all_jacks(struct umidi_softc *sc)
1151 {
1152 struct umidi_jack *jacks;
1153 size_t len;
1154
1155 mutex_enter(&sc->sc_lock);
1156 jacks = sc->sc_jacks;
1157 len = sizeof(*sc->sc_out_jacks) *
1158 (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1159 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1160 mutex_exit(&sc->sc_lock);
1161
1162 if (jacks)
1163 kmem_free(jacks, len);
1164 }
1165
1166 static usbd_status
1167 bind_jacks_to_mididev(struct umidi_softc *sc,
1168 struct umidi_jack *out_jack,
1169 struct umidi_jack *in_jack,
1170 struct umidi_mididev *mididev)
1171 {
1172 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1173 return USBD_IN_USE;
1174 if (mididev->out_jack || mididev->in_jack)
1175 return USBD_IN_USE;
1176
1177 if (out_jack)
1178 out_jack->bound = 1;
1179 if (in_jack)
1180 in_jack->bound = 1;
1181 mididev->in_jack = in_jack;
1182 mididev->out_jack = out_jack;
1183
1184 mididev->closing = 0;
1185
1186 return USBD_NORMAL_COMPLETION;
1187 }
1188
1189 static void
1190 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1191 {
1192 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1193
1194 mididev->closing = 1;
1195
1196 if ((mididev->flags & FWRITE) && mididev->out_jack)
1197 close_out_jack(mididev->out_jack);
1198 if ((mididev->flags & FREAD) && mididev->in_jack)
1199 close_in_jack(mididev->in_jack);
1200
1201 if (mididev->out_jack) {
1202 mididev->out_jack->bound = 0;
1203 mididev->out_jack = NULL;
1204 }
1205 if (mididev->in_jack) {
1206 mididev->in_jack->bound = 0;
1207 mididev->in_jack = NULL;
1208 }
1209 }
1210
1211 static void
1212 unbind_all_jacks(struct umidi_softc *sc)
1213 {
1214 int i;
1215
1216 mutex_enter(&sc->sc_lock);
1217 if (sc->sc_mididevs)
1218 for (i = 0; i < sc->sc_num_mididevs; i++)
1219 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1220 mutex_exit(&sc->sc_lock);
1221 }
1222
1223 static usbd_status
1224 assign_all_jacks_automatically(struct umidi_softc *sc)
1225 {
1226 usbd_status err;
1227 int i;
1228 struct umidi_jack *out, *in;
1229 const signed char *asg_spec;
1230
1231 err =
1232 alloc_all_mididevs(sc,
1233 uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1234 if (err!=USBD_NORMAL_COMPLETION)
1235 return err;
1236
1237 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1238 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1239 UMQ_TYPE_MD_FIXED);
1240 else
1241 asg_spec = NULL;
1242
1243 for (i = 0; i < sc->sc_num_mididevs; i++) {
1244 if (asg_spec != NULL) {
1245 if (*asg_spec == -1)
1246 out = NULL;
1247 else
1248 out = &sc->sc_out_jacks[*asg_spec];
1249 ++ asg_spec;
1250 if (*asg_spec == -1)
1251 in = NULL;
1252 else
1253 in = &sc->sc_in_jacks[*asg_spec];
1254 ++ asg_spec;
1255 } else {
1256 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1257 : NULL;
1258 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1259 : NULL;
1260 }
1261 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1262 if (err != USBD_NORMAL_COMPLETION) {
1263 free_all_mididevs(sc);
1264 return err;
1265 }
1266 }
1267
1268 return USBD_NORMAL_COMPLETION;
1269 }
1270
1271 static usbd_status
1272 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1273 {
1274 struct umidi_endpoint *ep = jack->endpoint;
1275 struct umidi_softc *sc = ep->sc;
1276 umidi_packet_bufp end;
1277 int err;
1278
1279 KASSERT(mutex_owned(&sc->sc_lock));
1280
1281 if (jack->opened)
1282 return USBD_IN_USE;
1283
1284 jack->arg = arg;
1285 jack->u.out.intr = intr;
1286 jack->midiman_ppkt = NULL;
1287 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1288 jack->opened = 1;
1289 ep->num_open++;
1290 /*
1291 * out_solicit maintains an invariant that there will always be
1292 * (num_open - num_scheduled) slots free in the buffer. as we have
1293 * just incremented num_open, the buffer may be too full to satisfy
1294 * the invariant until a transfer completes, for which we must wait.
1295 */
1296 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1297 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1298 mstohz(10));
1299 if (err) {
1300 ep->num_open--;
1301 jack->opened = 0;
1302 return USBD_IOERROR;
1303 }
1304 }
1305
1306 return USBD_NORMAL_COMPLETION;
1307 }
1308
1309 static usbd_status
1310 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1311 {
1312 usbd_status err = USBD_NORMAL_COMPLETION;
1313 struct umidi_endpoint *ep = jack->endpoint;
1314
1315 KASSERT(mutex_owned(&ep->sc->sc_lock));
1316
1317 if (jack->opened)
1318 return USBD_IN_USE;
1319
1320 jack->arg = arg;
1321 jack->u.in.intr = intr;
1322 jack->opened = 1;
1323 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1324 /*
1325 * Can't hold the interrupt lock while calling into USB,
1326 * but we can safely drop it here.
1327 */
1328 mutex_exit(&ep->sc->sc_lock);
1329 err = start_input_transfer(ep);
1330 if (err != USBD_NORMAL_COMPLETION &&
1331 err != USBD_IN_PROGRESS) {
1332 ep->num_open--;
1333 }
1334 mutex_enter(&ep->sc->sc_lock);
1335 }
1336
1337 return err;
1338 }
1339
1340 static void
1341 close_out_jack(struct umidi_jack *jack)
1342 {
1343 struct umidi_endpoint *ep;
1344 struct umidi_softc *sc;
1345 uint16_t mask;
1346 int err;
1347
1348 if (jack->opened) {
1349 ep = jack->endpoint;
1350 sc = ep->sc;
1351
1352 KASSERT(mutex_owned(&sc->sc_lock));
1353 mask = 1 << (jack->cable_number);
1354 while (mask & (ep->this_schedule | ep->next_schedule)) {
1355 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1356 mstohz(10));
1357 if (err)
1358 break;
1359 }
1360 /*
1361 * We can re-enter this function from both close() and
1362 * detach(). Make sure only one of them does this part.
1363 */
1364 if (jack->opened) {
1365 jack->opened = 0;
1366 jack->endpoint->num_open--;
1367 ep->this_schedule &= ~mask;
1368 ep->next_schedule &= ~mask;
1369 }
1370 }
1371 }
1372
1373 static void
1374 close_in_jack(struct umidi_jack *jack)
1375 {
1376 if (jack->opened) {
1377 struct umidi_softc *sc = jack->endpoint->sc;
1378
1379 KASSERT(mutex_owned(&sc->sc_lock));
1380
1381 jack->opened = 0;
1382 if (--jack->endpoint->num_open == 0) {
1383 /*
1384 * We have to drop the (interrupt) lock so that
1385 * the USB thread lock can be safely taken by
1386 * the abort operation. This is safe as this
1387 * either closing or dying will be set proerly.
1388 */
1389 mutex_exit(&sc->sc_lock);
1390 usbd_abort_pipe(jack->endpoint->pipe);
1391 mutex_enter(&sc->sc_lock);
1392 }
1393 }
1394 }
1395
1396 static usbd_status
1397 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1398 {
1399 if (mididev->sc)
1400 return USBD_IN_USE;
1401
1402 mididev->sc = sc;
1403
1404 describe_mididev(mididev);
1405
1406 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1407
1408 return USBD_NORMAL_COMPLETION;
1409 }
1410
1411 static usbd_status
1412 detach_mididev(struct umidi_mididev *mididev, int flags)
1413 {
1414 struct umidi_softc *sc = mididev->sc;
1415
1416 if (!sc)
1417 return USBD_NO_ADDR;
1418
1419 mutex_enter(&sc->sc_lock);
1420 if (mididev->opened) {
1421 umidi_close(mididev);
1422 }
1423 unbind_jacks_from_mididev(mididev);
1424 mutex_exit(&sc->sc_lock);
1425
1426 if (mididev->mdev != NULL)
1427 config_detach(mididev->mdev, flags);
1428
1429 if (NULL != mididev->label) {
1430 kmem_free(mididev->label, mididev->label_len);
1431 mididev->label = NULL;
1432 }
1433
1434 mididev->sc = NULL;
1435
1436 return USBD_NORMAL_COMPLETION;
1437 }
1438
1439 static void
1440 deactivate_mididev(struct umidi_mididev *mididev)
1441 {
1442 if (mididev->out_jack)
1443 mididev->out_jack->bound = 0;
1444 if (mididev->in_jack)
1445 mididev->in_jack->bound = 0;
1446 }
1447
1448 static usbd_status
1449 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1450 {
1451 sc->sc_num_mididevs = nmidi;
1452 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1453 return USBD_NORMAL_COMPLETION;
1454 }
1455
1456 static void
1457 free_all_mididevs(struct umidi_softc *sc)
1458 {
1459 struct umidi_mididev *mididevs;
1460 size_t len;
1461
1462 mutex_enter(&sc->sc_lock);
1463 mididevs = sc->sc_mididevs;
1464 if (mididevs)
1465 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1466 sc->sc_mididevs = NULL;
1467 sc->sc_num_mididevs = 0;
1468 mutex_exit(&sc->sc_lock);
1469
1470 if (mididevs)
1471 kmem_free(mididevs, len);
1472 }
1473
1474 static usbd_status
1475 attach_all_mididevs(struct umidi_softc *sc)
1476 {
1477 usbd_status err;
1478 int i;
1479
1480 if (sc->sc_mididevs)
1481 for (i = 0; i < sc->sc_num_mididevs; i++) {
1482 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1483 if (err != USBD_NORMAL_COMPLETION)
1484 return err;
1485 }
1486
1487 return USBD_NORMAL_COMPLETION;
1488 }
1489
1490 static usbd_status
1491 detach_all_mididevs(struct umidi_softc *sc, int flags)
1492 {
1493 usbd_status err;
1494 int i;
1495
1496 if (sc->sc_mididevs)
1497 for (i = 0; i < sc->sc_num_mididevs; i++) {
1498 err = detach_mididev(&sc->sc_mididevs[i], flags);
1499 if (err != USBD_NORMAL_COMPLETION)
1500 return err;
1501 }
1502
1503 return USBD_NORMAL_COMPLETION;
1504 }
1505
1506 static void
1507 deactivate_all_mididevs(struct umidi_softc *sc)
1508 {
1509 int i;
1510
1511 if (sc->sc_mididevs) {
1512 for (i = 0; i < sc->sc_num_mididevs; i++)
1513 deactivate_mididev(&sc->sc_mididevs[i]);
1514 }
1515 }
1516
1517 /*
1518 * TODO: the 0-based cable numbers will often not match the labeling of the
1519 * equipment. Ideally:
1520 * For class-compliant devices: get the iJack string from the jack descriptor.
1521 * Otherwise:
1522 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1523 * number for display)
1524 * - support an array quirk explictly giving a char * for each jack.
1525 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1526 * the CNs are not globally unique, each is shown with its associated endpoint
1527 * address in hex also. That should not be necessary when using iJack values
1528 * or a quirk array.
1529 */
1530 void
1531 describe_mididev(struct umidi_mididev *md)
1532 {
1533 char in_label[16];
1534 char out_label[16];
1535 const char *unit_label;
1536 char *final_label;
1537 struct umidi_softc *sc;
1538 int show_ep_in;
1539 int show_ep_out;
1540 size_t len;
1541
1542 sc = md->sc;
1543 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1544 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1545
1546 if (NULL == md->in_jack)
1547 in_label[0] = '\0';
1548 else if (show_ep_in)
1549 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1550 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1551 else
1552 snprintf(in_label, sizeof(in_label), "<%d ",
1553 md->in_jack->cable_number);
1554
1555 if (NULL == md->out_jack)
1556 out_label[0] = '\0';
1557 else if (show_ep_out)
1558 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1559 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1560 else
1561 snprintf(out_label, sizeof(out_label), ">%d ",
1562 md->out_jack->cable_number);
1563
1564 unit_label = device_xname(sc->sc_dev);
1565
1566 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1567
1568 final_label = kmem_alloc(len, KM_SLEEP);
1569
1570 snprintf(final_label, len, "%s%son %s",
1571 in_label, out_label, unit_label);
1572
1573 md->label = final_label;
1574 md->label_len = len;
1575 }
1576
1577 #ifdef UMIDI_DEBUG
1578 static void
1579 dump_sc(struct umidi_softc *sc)
1580 {
1581 int i;
1582
1583 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1584 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1585 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1586 dump_ep(&sc->sc_out_ep[i]);
1587 }
1588 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1589 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1590 dump_ep(&sc->sc_in_ep[i]);
1591 }
1592 }
1593
1594 static void
1595 dump_ep(struct umidi_endpoint *ep)
1596 {
1597 int i;
1598 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1599 if (NULL==ep->jacks[i])
1600 continue;
1601 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1602 dump_jack(ep->jacks[i]);
1603 }
1604 }
1605 static void
1606 dump_jack(struct umidi_jack *jack)
1607 {
1608 DPRINTFN(10, ("\t\t\tep=%p\n",
1609 jack->endpoint));
1610 }
1611
1612 #endif /* UMIDI_DEBUG */
1613
1614
1615
1616 /*
1617 * MUX MIDI PACKET
1618 */
1619
1620 static const int packet_length[16] = {
1621 /*0*/ -1,
1622 /*1*/ -1,
1623 /*2*/ 2,
1624 /*3*/ 3,
1625 /*4*/ 3,
1626 /*5*/ 1,
1627 /*6*/ 2,
1628 /*7*/ 3,
1629 /*8*/ 3,
1630 /*9*/ 3,
1631 /*A*/ 3,
1632 /*B*/ 3,
1633 /*C*/ 2,
1634 /*D*/ 2,
1635 /*E*/ 3,
1636 /*F*/ 1,
1637 };
1638
1639 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1640 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1641 #define MIX_CN_CIN(cn, cin) \
1642 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1643 ((unsigned char)(cin)&0x0F)))
1644
1645 static usbd_status
1646 start_input_transfer(struct umidi_endpoint *ep)
1647 {
1648 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1649 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1650 return usbd_transfer(ep->xfer);
1651 }
1652
1653 static usbd_status
1654 start_output_transfer(struct umidi_endpoint *ep)
1655 {
1656 usbd_status rv;
1657 uint32_t length;
1658 int i;
1659
1660 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1661 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1662 ep->buffer, ep->next_slot, length));
1663
1664 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1665 USBD_NO_TIMEOUT, out_intr);
1666 rv = usbd_transfer(ep->xfer);
1667
1668 /*
1669 * Once the transfer is scheduled, no more adding to partial
1670 * packets within it.
1671 */
1672 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1673 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1674 if (NULL != ep->jacks[i])
1675 ep->jacks[i]->midiman_ppkt = NULL;
1676 }
1677
1678 return rv;
1679 }
1680
1681 #ifdef UMIDI_DEBUG
1682 #define DPR_PACKET(dir, sc, p) \
1683 if ((unsigned char)(p)[1]!=0xFE) \
1684 DPRINTFN(500, \
1685 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1686 device_xname(sc->sc_dev), \
1687 (unsigned char)(p)[0], \
1688 (unsigned char)(p)[1], \
1689 (unsigned char)(p)[2], \
1690 (unsigned char)(p)[3]));
1691 #else
1692 #define DPR_PACKET(dir, sc, p)
1693 #endif
1694
1695 /*
1696 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1697 * with the cable number and length in the last byte instead of the first,
1698 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1699 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1700 * with a cable nybble and a length nybble (which, unlike the CIN of a
1701 * real USB MIDI packet, has no semantics at all besides the length).
1702 * A packet received from a Midiman may contain part of a MIDI message,
1703 * more than one MIDI message, or parts of more than one MIDI message. A
1704 * three-byte MIDI message may arrive in three packets of data length 1, and
1705 * running status may be used. Happily, the midi(4) driver above us will put
1706 * it all back together, so the only cost is in USB bandwidth. The device
1707 * has an easier time with what it receives from us: we'll pack messages in
1708 * and across packets, but filling the packets whenever possible and,
1709 * as midi(4) hands us a complete message at a time, we'll never send one
1710 * in a dribble of short packets.
1711 */
1712
1713 static int
1714 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1715 {
1716 struct umidi_endpoint *ep = out_jack->endpoint;
1717 struct umidi_softc *sc = ep->sc;
1718 unsigned char *packet;
1719 int plen;
1720 int poff;
1721
1722 KASSERT(mutex_owned(&sc->sc_lock));
1723
1724 if (sc->sc_dying)
1725 return EIO;
1726
1727 if (!out_jack->opened)
1728 return ENODEV; /* XXX as it was, is this the right errno? */
1729
1730 sc->sc_refcnt++;
1731
1732 #ifdef UMIDI_DEBUG
1733 if (umididebug >= 100)
1734 microtime(&umidi_tv);
1735 #endif
1736 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1737 "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1738 (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1739
1740 packet = *ep->next_slot++;
1741 KASSERT(ep->buffer_size >=
1742 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1743 memset(packet, 0, UMIDI_PACKET_SIZE);
1744 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1745 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1746 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1747 plen = 3 - poff;
1748 if (plen > len)
1749 plen = len;
1750 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1751 src += plen;
1752 len -= plen;
1753 plen += poff;
1754 out_jack->midiman_ppkt[3] =
1755 MIX_CN_CIN(out_jack->cable_number, plen);
1756 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1757 if (3 == plen)
1758 out_jack->midiman_ppkt = NULL; /* no more */
1759 }
1760 if (0 == len)
1761 ep->next_slot--; /* won't be needed, nevermind */
1762 else {
1763 memcpy(packet, src, len);
1764 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1765 DPR_PACKET(out, sc, packet);
1766 if (len < 3)
1767 out_jack->midiman_ppkt = packet;
1768 }
1769 } else { /* the nice simple USB class-compliant case */
1770 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1771 memcpy(packet+1, src, len);
1772 DPR_PACKET(out, sc, packet);
1773 }
1774 ep->next_schedule |= 1<<(out_jack->cable_number);
1775 ++ ep->num_scheduled;
1776 if (!ep->armed && !ep->soliciting) {
1777 /*
1778 * It would be bad to call out_solicit directly here (the
1779 * caller need not be reentrant) but a soft interrupt allows
1780 * solicit to run immediately the caller exits its critical
1781 * section, and if the caller has more to write we can get it
1782 * before starting the USB transfer, and send a longer one.
1783 */
1784 ep->soliciting = 1;
1785 kpreempt_disable();
1786 softint_schedule(ep->solicit_cookie);
1787 kpreempt_enable();
1788 }
1789
1790 if (--sc->sc_refcnt < 0)
1791 cv_broadcast(&sc->sc_detach_cv);
1792
1793 return 0;
1794 }
1795
1796 static void
1797 in_intr(struct usbd_xfer *xfer, void *priv,
1798 usbd_status status)
1799 {
1800 int cn, len, i;
1801 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1802 struct umidi_softc *sc = ep->sc;
1803 struct umidi_jack *jack;
1804 unsigned char *packet;
1805 umidi_packet_bufp slot;
1806 umidi_packet_bufp end;
1807 unsigned char *data;
1808 uint32_t count;
1809
1810 if (ep->sc->sc_dying || !ep->num_open)
1811 return;
1812
1813 mutex_enter(&sc->sc_lock);
1814 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1815 if (0 == count % UMIDI_PACKET_SIZE) {
1816 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1817 device_xname(ep->sc->sc_dev), ep, count));
1818 } else {
1819 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1820 device_xname(ep->sc->sc_dev), ep, count));
1821 }
1822
1823 slot = ep->buffer;
1824 end = slot + count / sizeof(*slot);
1825
1826 for (packet = *slot; slot < end; packet = *++slot) {
1827
1828 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1829 cn = (0xf0&(packet[3]))>>4;
1830 len = 0x0f&(packet[3]);
1831 data = packet;
1832 } else {
1833 cn = GET_CN(packet[0]);
1834 len = packet_length[GET_CIN(packet[0])];
1835 data = packet + 1;
1836 }
1837 /* 0 <= cn <= 15 by inspection of above code */
1838 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1839 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1840 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1841 device_xname(ep->sc->sc_dev), ep, cn, len,
1842 (unsigned)data[0],
1843 (unsigned)data[1],
1844 (unsigned)data[2]));
1845 mutex_exit(&sc->sc_lock);
1846 return;
1847 }
1848
1849 if (!jack->bound || !jack->opened)
1850 continue;
1851
1852 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1853 "%02X %02X %02X\n",
1854 device_xname(ep->sc->sc_dev), ep, cn, len,
1855 (unsigned)data[0],
1856 (unsigned)data[1],
1857 (unsigned)data[2]));
1858
1859 if (jack->u.in.intr) {
1860 for (i = 0; i < len; i++) {
1861 (*jack->u.in.intr)(jack->arg, data[i]);
1862 }
1863 }
1864
1865 }
1866
1867 (void)start_input_transfer(ep);
1868 mutex_exit(&sc->sc_lock);
1869 }
1870
1871 static void
1872 out_intr(struct usbd_xfer *xfer, void *priv,
1873 usbd_status status)
1874 {
1875 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1876 struct umidi_softc *sc = ep->sc;
1877 uint32_t count;
1878
1879 if (sc->sc_dying)
1880 return;
1881
1882 mutex_enter(&sc->sc_lock);
1883 #ifdef UMIDI_DEBUG
1884 if (umididebug >= 200)
1885 microtime(&umidi_tv);
1886 #endif
1887 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1888 if (0 == count % UMIDI_PACKET_SIZE) {
1889 DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1890 "length %u\n", device_xname(ep->sc->sc_dev),
1891 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1892 count));
1893 } else {
1894 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1895 device_xname(ep->sc->sc_dev), ep, count));
1896 }
1897 count /= UMIDI_PACKET_SIZE;
1898
1899 /*
1900 * If while the transfer was pending we buffered any new messages,
1901 * move them to the start of the buffer.
1902 */
1903 ep->next_slot -= count;
1904 if (ep->buffer < ep->next_slot) {
1905 memcpy(ep->buffer, ep->buffer + count,
1906 (char *)ep->next_slot - (char *)ep->buffer);
1907 }
1908 cv_broadcast(&sc->sc_cv);
1909 /*
1910 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1911 * Running at IPL_USB so the following should happen to be safe.
1912 */
1913 ep->armed = 0;
1914 if (!ep->soliciting) {
1915 ep->soliciting = 1;
1916 out_solicit_locked(ep);
1917 }
1918 mutex_exit(&sc->sc_lock);
1919 }
1920
1921 /*
1922 * A jack on which we have received a packet must be called back on its
1923 * out.intr handler before it will send us another; it is considered
1924 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1925 * we need no extra buffer space for it.
1926 *
1927 * In contrast, a jack that is open but not scheduled may supply us a packet
1928 * at any time, driven by the top half, and we must be able to accept it, no
1929 * excuses. So we must ensure that at any point in time there are at least
1930 * (num_open - num_scheduled) slots free.
1931 *
1932 * As long as there are more slots free than that minimum, we can loop calling
1933 * scheduled jacks back on their "interrupt" handlers, soliciting more
1934 * packets, starting the USB transfer only when the buffer space is down to
1935 * the minimum or no jack has any more to send.
1936 */
1937
1938 static void
1939 out_solicit_locked(void *arg)
1940 {
1941 struct umidi_endpoint *ep = arg;
1942 umidi_packet_bufp end;
1943 uint16_t which;
1944 struct umidi_jack *jack;
1945
1946 KASSERT(mutex_owned(&ep->sc->sc_lock));
1947
1948 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1949
1950 for ( ;; ) {
1951 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1952 break; /* at IPL_USB */
1953 if (ep->this_schedule == 0) {
1954 if (ep->next_schedule == 0)
1955 break; /* at IPL_USB */
1956 ep->this_schedule = ep->next_schedule;
1957 ep->next_schedule = 0;
1958 }
1959 /*
1960 * At least one jack is scheduled. Find and mask off the least
1961 * set bit in this_schedule and decrement num_scheduled.
1962 * Convert mask to bit index to find the corresponding jack,
1963 * and call its intr handler. If it has a message, it will call
1964 * back one of the output methods, which will set its bit in
1965 * next_schedule (not copied into this_schedule until the
1966 * latter is empty). In this way we round-robin the jacks that
1967 * have messages to send, until the buffer is as full as we
1968 * dare, and then start a transfer.
1969 */
1970 which = ep->this_schedule;
1971 which &= (~which)+1; /* now mask of least set bit */
1972 ep->this_schedule &= ~which;
1973 --ep->num_scheduled;
1974
1975 --which; /* now 1s below mask - count 1s to get index */
1976 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1977 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1978 which = (((which >> 4) + which) & 0x0f0f);
1979 which += (which >> 8);
1980 which &= 0x1f; /* the bit index a/k/a jack number */
1981
1982 jack = ep->jacks[which];
1983 if (jack->u.out.intr)
1984 (*jack->u.out.intr)(jack->arg);
1985 }
1986 /* intr lock held at loop exit */
1987 if (!ep->armed && ep->next_slot > ep->buffer) {
1988 /*
1989 * Can't hold the interrupt lock while calling into USB,
1990 * but we can safely drop it here.
1991 */
1992 mutex_exit(&ep->sc->sc_lock);
1993 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1994 mutex_enter(&ep->sc->sc_lock);
1995 }
1996 ep->soliciting = 0;
1997 }
1998
1999 /* Entry point for the softintr. */
2000 static void
2001 out_solicit(void *arg)
2002 {
2003 struct umidi_endpoint *ep = arg;
2004 struct umidi_softc *sc = ep->sc;
2005
2006 mutex_enter(&sc->sc_lock);
2007 out_solicit_locked(arg);
2008 mutex_exit(&sc->sc_lock);
2009 }
2010