Home | History | Annotate | Line # | Download | only in usb
umidi.c revision 1.77
      1 /*	$NetBSD: umidi.c,v 1.77 2019/05/05 03:17:54 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
      9  * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
     10  * (mrg (at) eterna.com.au).
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.77 2019/05/05 03:17:54 mrg Exp $");
     36 
     37 #ifdef _KERNEL_OPT
     38 #include "opt_usb.h"
     39 #endif
     40 
     41 #include <sys/types.h>
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/kernel.h>
     45 #include <sys/kmem.h>
     46 #include <sys/device.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/conf.h>
     49 #include <sys/file.h>
     50 #include <sys/select.h>
     51 #include <sys/proc.h>
     52 #include <sys/vnode.h>
     53 #include <sys/poll.h>
     54 #include <sys/intr.h>
     55 
     56 #include <dev/usb/usb.h>
     57 #include <dev/usb/usbdi.h>
     58 #include <dev/usb/usbdi_util.h>
     59 
     60 #include <dev/auconv.h>
     61 #include <dev/usb/usbdevs.h>
     62 #include <dev/usb/umidi_quirks.h>
     63 #include <dev/midi_if.h>
     64 
     65 /* Jack Descriptor */
     66 #define UMIDI_MS_HEADER	0x01
     67 #define UMIDI_IN_JACK	0x02
     68 #define UMIDI_OUT_JACK	0x03
     69 
     70 /* Jack Type */
     71 #define UMIDI_EMBEDDED	0x01
     72 #define UMIDI_EXTERNAL	0x02
     73 
     74 /* generic, for iteration */
     75 typedef struct {
     76 	uByte		bLength;
     77 	uByte		bDescriptorType;
     78 	uByte		bDescriptorSubtype;
     79 } UPACKED umidi_cs_descriptor_t;
     80 
     81 typedef struct {
     82 	uByte		bLength;
     83 	uByte		bDescriptorType;
     84 	uByte		bDescriptorSubtype;
     85 	uWord		bcdMSC;
     86 	uWord		wTotalLength;
     87 } UPACKED umidi_cs_interface_descriptor_t;
     88 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
     89 
     90 typedef struct {
     91 	uByte		bLength;
     92 	uByte		bDescriptorType;
     93 	uByte		bDescriptorSubtype;
     94 	uByte		bNumEmbMIDIJack;
     95 } UPACKED umidi_cs_endpoint_descriptor_t;
     96 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
     97 
     98 typedef struct {
     99 	uByte		bLength;
    100 	uByte		bDescriptorType;
    101 	uByte		bDescriptorSubtype;
    102 	uByte		bJackType;
    103 	uByte		bJackID;
    104 } UPACKED umidi_jack_descriptor_t;
    105 #define	UMIDI_JACK_DESCRIPTOR_SIZE	5
    106 
    107 
    108 #define TO_D(p) ((usb_descriptor_t *)(p))
    109 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
    110 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
    111 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
    112 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
    113 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
    114 
    115 
    116 #define UMIDI_PACKET_SIZE 4
    117 
    118 /*
    119  * hierarchie
    120  *
    121  * <-- parent	       child -->
    122  *
    123  * umidi(sc) -> endpoint -> jack   <- (dynamically assignable) - mididev
    124  *	   ^	 |    ^	    |
    125  *	   +-----+    +-----+
    126  */
    127 
    128 /* midi device */
    129 struct umidi_mididev {
    130 	struct umidi_softc	*sc;
    131 	device_t		mdev;
    132 	/* */
    133 	struct umidi_jack	*in_jack;
    134 	struct umidi_jack	*out_jack;
    135 	char			*label;
    136 	size_t			label_len;
    137 	/* */
    138 	int			opened;
    139 	int			closing;
    140 	int			flags;
    141 };
    142 
    143 /* Jack Information */
    144 struct umidi_jack {
    145 	struct umidi_endpoint	*endpoint;
    146 	/* */
    147 	int			cable_number;
    148 	void			*arg;
    149 	int			bound;
    150 	int			opened;
    151 	unsigned char		*midiman_ppkt;
    152 	union {
    153 		struct {
    154 			void			(*intr)(void *);
    155 		} out;
    156 		struct {
    157 			void			(*intr)(void *, int);
    158 		} in;
    159 	} u;
    160 };
    161 
    162 #define UMIDI_MAX_EPJACKS	16
    163 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
    164 /* endpoint data */
    165 struct umidi_endpoint {
    166 	struct umidi_softc	*sc;
    167 	/* */
    168 	int			addr;
    169 	struct usbd_pipe	*pipe;
    170 	struct usbd_xfer	*xfer;
    171 	umidi_packet_bufp	buffer;
    172 	umidi_packet_bufp	next_slot;
    173 	uint32_t               buffer_size;
    174 	int			num_scheduled;
    175 	int			num_open;
    176 	int			num_jacks;
    177 	int			soliciting;
    178 	void			*solicit_cookie;
    179 	int			armed;
    180 	struct umidi_jack	*jacks[UMIDI_MAX_EPJACKS];
    181 	uint16_t		this_schedule; /* see UMIDI_MAX_EPJACKS */
    182 	uint16_t		next_schedule;
    183 };
    184 
    185 /* software context */
    186 struct umidi_softc {
    187 	device_t		sc_dev;
    188 	struct usbd_device	*sc_udev;
    189 	struct usbd_interface	*sc_iface;
    190 	const struct umidi_quirk	*sc_quirk;
    191 
    192 	int			sc_dying;
    193 
    194 	int			sc_out_num_jacks;
    195 	struct umidi_jack	*sc_out_jacks;
    196 	int			sc_in_num_jacks;
    197 	struct umidi_jack	*sc_in_jacks;
    198 	struct umidi_jack	*sc_jacks;
    199 
    200 	int			sc_num_mididevs;
    201 	struct umidi_mididev	*sc_mididevs;
    202 
    203 	int			sc_out_num_endpoints;
    204 	struct umidi_endpoint	*sc_out_ep;
    205 	int			sc_in_num_endpoints;
    206 	struct umidi_endpoint	*sc_in_ep;
    207 	struct umidi_endpoint	*sc_endpoints;
    208 	size_t			sc_endpoints_len;
    209 	int			cblnums_global;
    210 
    211 	kmutex_t		sc_lock;
    212 	kcondvar_t		sc_cv;
    213 	kcondvar_t		sc_detach_cv;
    214 
    215 	int			sc_refcnt;
    216 };
    217 
    218 #ifdef UMIDI_DEBUG
    219 #define DPRINTF(x)	if (umididebug) printf x
    220 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
    221 #include <sys/time.h>
    222 static struct timeval umidi_tv;
    223 int	umididebug = 0;
    224 #else
    225 #define DPRINTF(x)
    226 #define DPRINTFN(n,x)
    227 #endif
    228 
    229 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
    230 				 (sc->sc_out_num_endpoints + \
    231 				  sc->sc_in_num_endpoints))
    232 
    233 
    234 static int umidi_open(void *, int,
    235 		      void (*)(void *, int), void (*)(void *), void *);
    236 static void umidi_close(void *);
    237 static int umidi_channelmsg(void *, int, int, u_char *, int);
    238 static int umidi_commonmsg(void *, int, u_char *, int);
    239 static int umidi_sysex(void *, u_char *, int);
    240 static int umidi_rtmsg(void *, int);
    241 static void umidi_getinfo(void *, struct midi_info *);
    242 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
    243 
    244 static usbd_status alloc_pipe(struct umidi_endpoint *);
    245 static void free_pipe(struct umidi_endpoint *);
    246 
    247 static usbd_status alloc_all_endpoints(struct umidi_softc *);
    248 static void free_all_endpoints(struct umidi_softc *);
    249 
    250 static usbd_status alloc_all_jacks(struct umidi_softc *);
    251 static void free_all_jacks(struct umidi_softc *);
    252 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
    253 					 struct umidi_jack *,
    254 					 struct umidi_jack *,
    255 					 struct umidi_mididev *);
    256 static void unbind_jacks_from_mididev(struct umidi_mididev *);
    257 static void unbind_all_jacks(struct umidi_softc *);
    258 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
    259 static usbd_status open_out_jack(struct umidi_jack *, void *,
    260 				 void (*)(void *));
    261 static usbd_status open_in_jack(struct umidi_jack *, void *,
    262 				void (*)(void *, int));
    263 static void close_out_jack(struct umidi_jack *);
    264 static void close_in_jack(struct umidi_jack *);
    265 
    266 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
    267 static usbd_status detach_mididev(struct umidi_mididev *, int);
    268 static void deactivate_mididev(struct umidi_mididev *);
    269 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
    270 static void free_all_mididevs(struct umidi_softc *);
    271 static usbd_status attach_all_mididevs(struct umidi_softc *);
    272 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
    273 static void deactivate_all_mididevs(struct umidi_softc *);
    274 static void describe_mididev(struct umidi_mididev *);
    275 
    276 #ifdef UMIDI_DEBUG
    277 static void dump_sc(struct umidi_softc *);
    278 static void dump_ep(struct umidi_endpoint *);
    279 static void dump_jack(struct umidi_jack *);
    280 #endif
    281 
    282 static usbd_status start_input_transfer(struct umidi_endpoint *);
    283 static usbd_status start_output_transfer(struct umidi_endpoint *);
    284 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
    285 static void in_intr(struct usbd_xfer *, void *, usbd_status);
    286 static void out_intr(struct usbd_xfer *, void *, usbd_status);
    287 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
    288 static void out_solicit_locked(void *); /* pre-locked version */
    289 
    290 
    291 const struct midi_hw_if umidi_hw_if = {
    292 	.open = umidi_open,
    293 	.close = umidi_close,
    294 	.output = umidi_rtmsg,
    295 	.getinfo = umidi_getinfo,
    296 	.get_locks = umidi_get_locks,
    297 };
    298 
    299 struct midi_hw_if_ext umidi_hw_if_ext = {
    300 	.channel = umidi_channelmsg,
    301 	.common  = umidi_commonmsg,
    302 	.sysex   = umidi_sysex,
    303 };
    304 
    305 struct midi_hw_if_ext umidi_hw_if_mm = {
    306 	.channel = umidi_channelmsg,
    307 	.common  = umidi_commonmsg,
    308 	.sysex   = umidi_sysex,
    309 	.compress = 1,
    310 };
    311 
    312 int umidi_match(device_t, cfdata_t, void *);
    313 void umidi_attach(device_t, device_t, void *);
    314 void umidi_childdet(device_t, device_t);
    315 int umidi_detach(device_t, int);
    316 int umidi_activate(device_t, enum devact);
    317 
    318 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
    319     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
    320 
    321 int
    322 umidi_match(device_t parent, cfdata_t match, void *aux)
    323 {
    324 	struct usbif_attach_arg *uiaa = aux;
    325 
    326 	DPRINTFN(1,("umidi_match\n"));
    327 
    328 	if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
    329 	    uiaa->uiaa_ifaceno))
    330 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    331 
    332 	if (uiaa->uiaa_class == UICLASS_AUDIO &&
    333 	    uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
    334 		return UMATCH_IFACECLASS_IFACESUBCLASS;
    335 
    336 	return UMATCH_NONE;
    337 }
    338 
    339 void
    340 umidi_attach(device_t parent, device_t self, void *aux)
    341 {
    342 	usbd_status     err;
    343 	struct umidi_softc *sc = device_private(self);
    344 	struct usbif_attach_arg *uiaa = aux;
    345 	char *devinfop;
    346 
    347 	DPRINTFN(1,("umidi_attach\n"));
    348 
    349 	sc->sc_dev = self;
    350 
    351 	aprint_naive("\n");
    352 	aprint_normal("\n");
    353 
    354 	devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
    355 	aprint_normal_dev(self, "%s\n", devinfop);
    356 	usbd_devinfo_free(devinfop);
    357 
    358 	sc->sc_iface = uiaa->uiaa_iface;
    359 	sc->sc_udev = uiaa->uiaa_device;
    360 
    361 	sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
    362 	    uiaa->uiaa_product, uiaa->uiaa_ifaceno);
    363 
    364 	aprint_normal_dev(self, "");
    365 	umidi_print_quirk(sc->sc_quirk);
    366 
    367 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
    368 	cv_init(&sc->sc_cv, "umidopcl");
    369 	cv_init(&sc->sc_detach_cv, "umidetcv");
    370 	sc->sc_refcnt = 0;
    371 
    372 	err = alloc_all_endpoints(sc);
    373 	if (err != USBD_NORMAL_COMPLETION) {
    374 		aprint_error_dev(self,
    375 		    "alloc_all_endpoints failed. (err=%d)\n", err);
    376 		goto out;
    377 	}
    378 	err = alloc_all_jacks(sc);
    379 	if (err != USBD_NORMAL_COMPLETION) {
    380 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
    381 		    err);
    382 		goto out_free_endpoints;
    383 	}
    384 	aprint_normal_dev(self, "out=%d, in=%d\n",
    385 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
    386 
    387 	err = assign_all_jacks_automatically(sc);
    388 	if (err != USBD_NORMAL_COMPLETION) {
    389 		aprint_error_dev(self,
    390 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
    391 		goto out_free_jacks;
    392 	}
    393 	err = attach_all_mididevs(sc);
    394 	if (err != USBD_NORMAL_COMPLETION) {
    395 		aprint_error_dev(self,
    396 		    "attach_all_mididevs failed. (err=%d)\n", err);
    397 		goto out_free_jacks;
    398 	}
    399 
    400 #ifdef UMIDI_DEBUG
    401 	dump_sc(sc);
    402 #endif
    403 
    404 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
    405 
    406 	return;
    407 
    408 out_free_jacks:
    409 	unbind_all_jacks(sc);
    410 	free_all_jacks(sc);
    411 
    412 out_free_endpoints:
    413 	free_all_endpoints(sc);
    414 
    415 out:
    416 	aprint_error_dev(self, "disabled.\n");
    417 	sc->sc_dying = 1;
    418 	KERNEL_UNLOCK_ONE(curlwp);
    419 	return;
    420 }
    421 
    422 void
    423 umidi_childdet(device_t self, device_t child)
    424 {
    425 	int i;
    426 	struct umidi_softc *sc = device_private(self);
    427 
    428 	KASSERT(sc->sc_mididevs != NULL);
    429 
    430 	for (i = 0; i < sc->sc_num_mididevs; i++) {
    431 		if (sc->sc_mididevs[i].mdev == child)
    432 			break;
    433 	}
    434 	KASSERT(i < sc->sc_num_mididevs);
    435 	sc->sc_mididevs[i].mdev = NULL;
    436 }
    437 
    438 int
    439 umidi_activate(device_t self, enum devact act)
    440 {
    441 	struct umidi_softc *sc = device_private(self);
    442 
    443 	switch (act) {
    444 	case DVACT_DEACTIVATE:
    445 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
    446 		sc->sc_dying = 1;
    447 		deactivate_all_mididevs(sc);
    448 		return 0;
    449 	default:
    450 		DPRINTFN(1,("umidi_activate (%d)\n", act));
    451 		return EOPNOTSUPP;
    452 	}
    453 }
    454 
    455 int
    456 umidi_detach(device_t self, int flags)
    457 {
    458 	struct umidi_softc *sc = device_private(self);
    459 
    460 	DPRINTFN(1,("umidi_detach\n"));
    461 
    462 	mutex_enter(&sc->sc_lock);
    463 	sc->sc_dying = 1;
    464 	if (--sc->sc_refcnt >= 0)
    465 		if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
    466 			aprint_error_dev(self, ": didn't detach\n");
    467 	mutex_exit(&sc->sc_lock);
    468 
    469 	detach_all_mididevs(sc, flags);
    470 	free_all_mididevs(sc);
    471 	free_all_jacks(sc);
    472 	free_all_endpoints(sc);
    473 
    474 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
    475 
    476 	mutex_destroy(&sc->sc_lock);
    477 	cv_destroy(&sc->sc_detach_cv);
    478 	cv_destroy(&sc->sc_cv);
    479 
    480 	return 0;
    481 }
    482 
    483 
    484 /*
    485  * midi_if stuffs
    486  */
    487 int
    488 umidi_open(void *addr,
    489 	   int flags,
    490 	   void (*iintr)(void *, int),
    491 	   void (*ointr)(void *),
    492 	   void *arg)
    493 {
    494 	struct umidi_mididev *mididev = addr;
    495 	struct umidi_softc *sc = mididev->sc;
    496 	usbd_status err;
    497 
    498 	KASSERT(mutex_owned(&sc->sc_lock));
    499 	DPRINTF(("umidi_open: sc=%p\n", sc));
    500 
    501 	if (mididev->opened)
    502 		return EBUSY;
    503 	if (sc->sc_dying)
    504 		return EIO;
    505 
    506 	mididev->opened = 1;
    507 	mididev->flags = flags;
    508 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
    509 		err = open_out_jack(mididev->out_jack, arg, ointr);
    510 		if (err != USBD_NORMAL_COMPLETION)
    511 			goto bad;
    512 	}
    513 	if ((mididev->flags & FREAD) && mididev->in_jack) {
    514 		err = open_in_jack(mididev->in_jack, arg, iintr);
    515 		KASSERT(mididev->opened);
    516 		if (err != USBD_NORMAL_COMPLETION &&
    517 		    err != USBD_IN_PROGRESS) {
    518 			if (mididev->out_jack)
    519 				close_out_jack(mididev->out_jack);
    520 			goto bad;
    521 		}
    522 	}
    523 
    524 	return 0;
    525 bad:
    526 	mididev->opened = 0;
    527 	DPRINTF(("umidi_open: usbd_status %d\n", err));
    528 	KASSERT(mutex_owned(&sc->sc_lock));
    529 	return USBD_IN_USE == err ? EBUSY : EIO;
    530 }
    531 
    532 void
    533 umidi_close(void *addr)
    534 {
    535 	struct umidi_mididev *mididev = addr;
    536 	struct umidi_softc *sc = mididev->sc;
    537 
    538 	KASSERT(mutex_owned(&sc->sc_lock));
    539 
    540 	if (mididev->closing)
    541 		return;
    542 
    543 	mididev->closing = 1;
    544 
    545 	sc->sc_refcnt++;
    546 
    547 	if ((mididev->flags & FWRITE) && mididev->out_jack)
    548 		close_out_jack(mididev->out_jack);
    549 	if ((mididev->flags & FREAD) && mididev->in_jack)
    550 		close_in_jack(mididev->in_jack);
    551 
    552 	if (--sc->sc_refcnt < 0)
    553 		cv_broadcast(&sc->sc_detach_cv);
    554 
    555 	mididev->opened = 0;
    556 	mididev->closing = 0;
    557 }
    558 
    559 int
    560 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
    561     int len)
    562 {
    563 	struct umidi_mididev *mididev = addr;
    564 
    565 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    566 
    567 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    568 		return EIO;
    569 
    570 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
    571 }
    572 
    573 int
    574 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
    575 {
    576 	struct umidi_mididev *mididev = addr;
    577 	int cin;
    578 
    579 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    580 
    581 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    582 		return EIO;
    583 
    584 	switch ( len ) {
    585 	case 1: cin = 5; break;
    586 	case 2: cin = 2; break;
    587 	case 3: cin = 3; break;
    588 	default: return EIO; /* or gcc warns of cin uninitialized */
    589 	}
    590 
    591 	return out_jack_output(mididev->out_jack, msg, len, cin);
    592 }
    593 
    594 int
    595 umidi_sysex(void *addr, u_char *msg, int len)
    596 {
    597 	struct umidi_mididev *mididev = addr;
    598 	int cin;
    599 
    600 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    601 
    602 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    603 		return EIO;
    604 
    605 	switch ( len ) {
    606 	case 1: cin = 5; break;
    607 	case 2: cin = 6; break;
    608 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
    609 	default: return EIO; /* or gcc warns of cin uninitialized */
    610 	}
    611 
    612 	return out_jack_output(mididev->out_jack, msg, len, cin);
    613 }
    614 
    615 int
    616 umidi_rtmsg(void *addr, int d)
    617 {
    618 	struct umidi_mididev *mididev = addr;
    619 	u_char msg = d;
    620 
    621 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
    622 
    623 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
    624 		return EIO;
    625 
    626 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
    627 }
    628 
    629 void
    630 umidi_getinfo(void *addr, struct midi_info *mi)
    631 {
    632 	struct umidi_mididev *mididev = addr;
    633 	struct umidi_softc *sc = mididev->sc;
    634 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
    635 
    636 	KASSERT(mutex_owned(&sc->sc_lock));
    637 
    638 	mi->name = mididev->label;
    639 	mi->props = MIDI_PROP_OUT_INTR;
    640 	if (mididev->in_jack)
    641 		mi->props |= MIDI_PROP_CAN_INPUT;
    642 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
    643 }
    644 
    645 static void
    646 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
    647 {
    648 	struct umidi_mididev *mididev = addr;
    649 	struct umidi_softc *sc = mididev->sc;
    650 
    651 	*intr = NULL;
    652 	*thread = &sc->sc_lock;
    653 }
    654 
    655 /*
    656  * each endpoint stuffs
    657  */
    658 
    659 /* alloc/free pipe */
    660 static usbd_status
    661 alloc_pipe(struct umidi_endpoint *ep)
    662 {
    663 	struct umidi_softc *sc = ep->sc;
    664 	usbd_status err;
    665 	usb_endpoint_descriptor_t *epd;
    666 
    667 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
    668 	/*
    669 	 * For output, an improvement would be to have a buffer bigger than
    670 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
    671 	 * allow out_solicit to fill the buffer to the full packet size in
    672 	 * all cases. But to use usbd_create_xfer to get a slightly larger
    673 	 * buffer would not be a good way to do that, because if the addition
    674 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
    675 	 * larger block may be wastefully allocated. Some flavor of double
    676 	 * buffering could serve the same purpose, but would increase the
    677 	 * code complexity, so for now I will live with the current slight
    678 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
    679 	 * packet slots.
    680 	 */
    681 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
    682 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
    683 
    684 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
    685 		device_xname(sc->sc_dev), ep, ep->buffer_size));
    686 	ep->num_scheduled = 0;
    687 	ep->this_schedule = 0;
    688 	ep->next_schedule = 0;
    689 	ep->soliciting = 0;
    690 	ep->armed = 0;
    691 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
    692 	if (err)
    693 		goto quit;
    694 	int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
    695 	    0, 0, &ep->xfer);
    696 	if (error) {
    697 		usbd_close_pipe(ep->pipe);
    698 		return USBD_NOMEM;
    699 	}
    700 	ep->buffer = usbd_get_buffer(ep->xfer);
    701 	ep->next_slot = ep->buffer;
    702 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    703 	    out_solicit, ep);
    704 quit:
    705 	return err;
    706 }
    707 
    708 static void
    709 free_pipe(struct umidi_endpoint *ep)
    710 {
    711 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
    712 	usbd_abort_pipe(ep->pipe);
    713 	usbd_destroy_xfer(ep->xfer);
    714 	usbd_close_pipe(ep->pipe);
    715 	softint_disestablish(ep->solicit_cookie);
    716 }
    717 
    718 
    719 /* alloc/free the array of endpoint structures */
    720 
    721 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
    722 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
    723 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
    724 
    725 static usbd_status
    726 alloc_all_endpoints(struct umidi_softc *sc)
    727 {
    728 	usbd_status err;
    729 	struct umidi_endpoint *ep;
    730 	int i;
    731 
    732 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
    733 		err = alloc_all_endpoints_fixed_ep(sc);
    734 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
    735 		err = alloc_all_endpoints_yamaha(sc);
    736 	} else {
    737 		err = alloc_all_endpoints_genuine(sc);
    738 	}
    739 	if (err != USBD_NORMAL_COMPLETION)
    740 		return err;
    741 
    742 	ep = sc->sc_endpoints;
    743 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
    744 		err = alloc_pipe(ep++);
    745 		if (err != USBD_NORMAL_COMPLETION) {
    746 			for (; ep != sc->sc_endpoints; ep--)
    747 				free_pipe(ep-1);
    748 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    749 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    750 			break;
    751 		}
    752 	}
    753 	return err;
    754 }
    755 
    756 static void
    757 free_all_endpoints(struct umidi_softc *sc)
    758 {
    759 	int i;
    760 
    761 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
    762 		free_pipe(&sc->sc_endpoints[i]);
    763 	if (sc->sc_endpoints != NULL)
    764 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
    765 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
    766 }
    767 
    768 static usbd_status
    769 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
    770 {
    771 	usbd_status err;
    772 	const struct umq_fixed_ep_desc *fp;
    773 	struct umidi_endpoint *ep;
    774 	usb_endpoint_descriptor_t *epd;
    775 	int i;
    776 
    777 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
    778 					    UMQ_TYPE_FIXED_EP);
    779 	sc->sc_out_num_jacks = 0;
    780 	sc->sc_in_num_jacks = 0;
    781 	sc->sc_out_num_endpoints = fp->num_out_ep;
    782 	sc->sc_in_num_endpoints = fp->num_in_ep;
    783 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    784 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    785 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
    786 	sc->sc_in_ep =
    787 	    sc->sc_in_num_endpoints ?
    788 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
    789 
    790 	ep = &sc->sc_out_ep[0];
    791 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
    792 		epd = usbd_interface2endpoint_descriptor(
    793 			sc->sc_iface,
    794 			fp->out_ep[i].ep);
    795 		if (!epd) {
    796 			aprint_error_dev(sc->sc_dev,
    797 			    "cannot get endpoint descriptor(out:%d)\n",
    798 			     fp->out_ep[i].ep);
    799 			err = USBD_INVAL;
    800 			goto error;
    801 		}
    802 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
    803 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
    804 			aprint_error_dev(sc->sc_dev,
    805 			    "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
    806 			err = USBD_INVAL;
    807 			goto error;
    808 		}
    809 		ep->sc = sc;
    810 		ep->addr = epd->bEndpointAddress;
    811 		ep->num_jacks = fp->out_ep[i].num_jacks;
    812 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
    813 		ep->num_open = 0;
    814 		ep++;
    815 	}
    816 	ep = &sc->sc_in_ep[0];
    817 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
    818 		epd = usbd_interface2endpoint_descriptor(
    819 			sc->sc_iface,
    820 			fp->in_ep[i].ep);
    821 		if (!epd) {
    822 			aprint_error_dev(sc->sc_dev,
    823 			    "cannot get endpoint descriptor(in:%d)\n",
    824 			     fp->in_ep[i].ep);
    825 			err = USBD_INVAL;
    826 			goto error;
    827 		}
    828 		/*
    829 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
    830 		 * endpoint.  The existing input logic in this driver seems
    831 		 * to work successfully if we just stop treating an interrupt
    832 		 * endpoint as illegal (or the in_progress status we get on
    833 		 * the initial transfer).  It does not seem necessary to
    834 		 * actually use the interrupt flavor of alloc_pipe or make
    835 		 * other serious rearrangements of logic.  I like that.
    836 		 */
    837 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
    838 		case UE_BULK:
    839 		case UE_INTERRUPT:
    840 			if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
    841 				break;
    842 			/*FALLTHROUGH*/
    843 		default:
    844 			aprint_error_dev(sc->sc_dev,
    845 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
    846 			err = USBD_INVAL;
    847 			goto error;
    848 		}
    849 
    850 		ep->sc = sc;
    851 		ep->addr = epd->bEndpointAddress;
    852 		ep->num_jacks = fp->in_ep[i].num_jacks;
    853 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
    854 		ep->num_open = 0;
    855 		ep++;
    856 	}
    857 
    858 	return USBD_NORMAL_COMPLETION;
    859 error:
    860 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
    861 	sc->sc_endpoints = NULL;
    862 	return err;
    863 }
    864 
    865 static usbd_status
    866 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
    867 {
    868 	/* This driver currently supports max 1in/1out bulk endpoints */
    869 	usb_descriptor_t *desc;
    870 	umidi_cs_descriptor_t *udesc;
    871 	usb_endpoint_descriptor_t *epd;
    872 	int out_addr, in_addr, i;
    873 	int dir;
    874 	size_t remain, descsize;
    875 
    876 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    877 	out_addr = in_addr = 0;
    878 
    879 	/* detect endpoints */
    880 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
    881 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
    882 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
    883 		KASSERT(epd != NULL);
    884 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
    885 			dir = UE_GET_DIR(epd->bEndpointAddress);
    886 			if (dir==UE_DIR_OUT && !out_addr)
    887 				out_addr = epd->bEndpointAddress;
    888 			else if (dir==UE_DIR_IN && !in_addr)
    889 				in_addr = epd->bEndpointAddress;
    890 		}
    891 	}
    892 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
    893 
    894 	/* count jacks */
    895 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
    896 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
    897 		return USBD_INVAL;
    898 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
    899 		(size_t)udesc->bLength;
    900 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    901 
    902 	while (remain >= sizeof(usb_descriptor_t)) {
    903 		descsize = udesc->bLength;
    904 		if (descsize>remain || descsize==0)
    905 			break;
    906 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
    907 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
    908 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
    909 				sc->sc_out_num_jacks++;
    910 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
    911 				sc->sc_in_num_jacks++;
    912 		}
    913 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
    914 		remain -= descsize;
    915 	}
    916 
    917 	/* validate some parameters */
    918 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
    919 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
    920 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
    921 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
    922 	if (sc->sc_out_num_jacks && out_addr) {
    923 		sc->sc_out_num_endpoints = 1;
    924 	} else {
    925 		sc->sc_out_num_endpoints = 0;
    926 		sc->sc_out_num_jacks = 0;
    927 	}
    928 	if (sc->sc_in_num_jacks && in_addr) {
    929 		sc->sc_in_num_endpoints = 1;
    930 	} else {
    931 		sc->sc_in_num_endpoints = 0;
    932 		sc->sc_in_num_jacks = 0;
    933 	}
    934 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
    935 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    936 	if (sc->sc_out_num_endpoints) {
    937 		sc->sc_out_ep = sc->sc_endpoints;
    938 		sc->sc_out_ep->sc = sc;
    939 		sc->sc_out_ep->addr = out_addr;
    940 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
    941 		sc->sc_out_ep->num_open = 0;
    942 	} else
    943 		sc->sc_out_ep = NULL;
    944 
    945 	if (sc->sc_in_num_endpoints) {
    946 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
    947 		sc->sc_in_ep->sc = sc;
    948 		sc->sc_in_ep->addr = in_addr;
    949 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
    950 		sc->sc_in_ep->num_open = 0;
    951 	} else
    952 		sc->sc_in_ep = NULL;
    953 
    954 	return USBD_NORMAL_COMPLETION;
    955 }
    956 
    957 static usbd_status
    958 alloc_all_endpoints_genuine(struct umidi_softc *sc)
    959 {
    960 	usb_interface_descriptor_t *interface_desc;
    961 	usb_config_descriptor_t *config_desc;
    962 	usb_descriptor_t *desc;
    963 	int num_ep;
    964 	size_t remain, descsize;
    965 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
    966 	int epaddr;
    967 
    968 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
    969 	num_ep = interface_desc->bNumEndpoints;
    970 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
    971 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
    972 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
    973 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
    974 	epaddr = -1;
    975 
    976 	/* get the list of endpoints for midi stream */
    977 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
    978 	desc = (usb_descriptor_t *) config_desc;
    979 	remain = (size_t)UGETW(config_desc->wTotalLength);
    980 	while (remain>=sizeof(usb_descriptor_t)) {
    981 		descsize = desc->bLength;
    982 		if (descsize>remain || descsize==0)
    983 			break;
    984 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
    985 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
    986 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
    987 			epaddr = TO_EPD(desc)->bEndpointAddress;
    988 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
    989 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
    990 			   epaddr!=-1) {
    991 			if (num_ep>0) {
    992 				num_ep--;
    993 				p->sc = sc;
    994 				p->addr = epaddr;
    995 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
    996 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
    997 					sc->sc_out_num_endpoints++;
    998 					sc->sc_out_num_jacks += p->num_jacks;
    999 				} else {
   1000 					sc->sc_in_num_endpoints++;
   1001 					sc->sc_in_num_jacks += p->num_jacks;
   1002 				}
   1003 				p++;
   1004 			}
   1005 		} else
   1006 			epaddr = -1;
   1007 		desc = NEXT_D(desc);
   1008 		remain-=descsize;
   1009 	}
   1010 
   1011 	/* sort endpoints */
   1012 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
   1013 	p = sc->sc_endpoints;
   1014 	endep = p + num_ep;
   1015 	while (p<endep) {
   1016 		lowest = p;
   1017 		for (q=p+1; q<endep; q++) {
   1018 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
   1019 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
   1020 			    ((UE_GET_DIR(lowest->addr)==
   1021 			      UE_GET_DIR(q->addr)) &&
   1022 			     (UE_GET_ADDR(lowest->addr)>
   1023 			      UE_GET_ADDR(q->addr))))
   1024 				lowest = q;
   1025 		}
   1026 		if (lowest != p) {
   1027 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
   1028 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
   1029 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
   1030 		}
   1031 		p->num_open = 0;
   1032 		p++;
   1033 	}
   1034 
   1035 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
   1036 	sc->sc_in_ep =
   1037 	    sc->sc_in_num_endpoints ?
   1038 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
   1039 
   1040 	return USBD_NORMAL_COMPLETION;
   1041 }
   1042 
   1043 
   1044 /*
   1045  * jack stuffs
   1046  */
   1047 
   1048 static usbd_status
   1049 alloc_all_jacks(struct umidi_softc *sc)
   1050 {
   1051 	int i, j;
   1052 	struct umidi_endpoint *ep;
   1053 	struct umidi_jack *jack;
   1054 	const unsigned char *cn_spec;
   1055 
   1056 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
   1057 		sc->cblnums_global = 0;
   1058 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
   1059 		sc->cblnums_global = 1;
   1060 	else {
   1061 		/*
   1062 		 * I don't think this default is correct, but it preserves
   1063 		 * the prior behavior of the code. That's why I defined two
   1064 		 * complementary quirks. Any device for which the default
   1065 		 * behavior is wrong can be made to work by giving it an
   1066 		 * explicit quirk, and if a pattern ever develops (as I suspect
   1067 		 * it will) that a lot of otherwise standard USB MIDI devices
   1068 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
   1069 		 * changed to 0, and the only devices that will break are those
   1070 		 * listing neither quirk, and they'll easily be fixed by giving
   1071 		 * them the CN_SEQ_GLOBAL quirk.
   1072 		 */
   1073 		sc->cblnums_global = 1;
   1074 	}
   1075 
   1076 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
   1077 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
   1078 					    		 UMQ_TYPE_CN_FIXED);
   1079 	else
   1080 		cn_spec = NULL;
   1081 
   1082 	/* allocate/initialize structures */
   1083 	sc->sc_jacks =
   1084 	    kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
   1085 		    + sc->sc_out_num_jacks), KM_SLEEP);
   1086 	if (!sc->sc_jacks)
   1087 		return USBD_NOMEM;
   1088 	sc->sc_out_jacks =
   1089 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
   1090 	sc->sc_in_jacks =
   1091 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
   1092 
   1093 	jack = &sc->sc_out_jacks[0];
   1094 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
   1095 		jack->opened = 0;
   1096 		jack->bound = 0;
   1097 		jack->arg = NULL;
   1098 		jack->u.out.intr = NULL;
   1099 		jack->midiman_ppkt = NULL;
   1100 		if (sc->cblnums_global)
   1101 			jack->cable_number = i;
   1102 		jack++;
   1103 	}
   1104 	jack = &sc->sc_in_jacks[0];
   1105 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
   1106 		jack->opened = 0;
   1107 		jack->bound = 0;
   1108 		jack->arg = NULL;
   1109 		jack->u.in.intr = NULL;
   1110 		if (sc->cblnums_global)
   1111 			jack->cable_number = i;
   1112 		jack++;
   1113 	}
   1114 
   1115 	/* assign each jacks to each endpoints */
   1116 	jack = &sc->sc_out_jacks[0];
   1117 	ep = &sc->sc_out_ep[0];
   1118 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
   1119 		for (j = 0; j < ep->num_jacks; j++) {
   1120 			jack->endpoint = ep;
   1121 			if (cn_spec != NULL)
   1122 				jack->cable_number = *cn_spec++;
   1123 			else if (!sc->cblnums_global)
   1124 				jack->cable_number = j;
   1125 			ep->jacks[jack->cable_number] = jack;
   1126 			jack++;
   1127 		}
   1128 		ep++;
   1129 	}
   1130 	jack = &sc->sc_in_jacks[0];
   1131 	ep = &sc->sc_in_ep[0];
   1132 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
   1133 		for (j = 0; j < ep->num_jacks; j++) {
   1134 			jack->endpoint = ep;
   1135 			if (cn_spec != NULL)
   1136 				jack->cable_number = *cn_spec++;
   1137 			else if (!sc->cblnums_global)
   1138 				jack->cable_number = j;
   1139 			ep->jacks[jack->cable_number] = jack;
   1140 			jack++;
   1141 		}
   1142 		ep++;
   1143 	}
   1144 
   1145 	return USBD_NORMAL_COMPLETION;
   1146 }
   1147 
   1148 static void
   1149 free_all_jacks(struct umidi_softc *sc)
   1150 {
   1151 	struct umidi_jack *jacks;
   1152 	size_t len;
   1153 
   1154 	mutex_enter(&sc->sc_lock);
   1155 	jacks = sc->sc_jacks;
   1156 	len = sizeof(*sc->sc_out_jacks)
   1157 	    * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
   1158 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
   1159 	mutex_exit(&sc->sc_lock);
   1160 
   1161 	if (jacks)
   1162 		kmem_free(jacks, len);
   1163 }
   1164 
   1165 static usbd_status
   1166 bind_jacks_to_mididev(struct umidi_softc *sc,
   1167 		      struct umidi_jack *out_jack,
   1168 		      struct umidi_jack *in_jack,
   1169 		      struct umidi_mididev *mididev)
   1170 {
   1171 	if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
   1172 		return USBD_IN_USE;
   1173 	if (mididev->out_jack || mididev->in_jack)
   1174 		return USBD_IN_USE;
   1175 
   1176 	if (out_jack)
   1177 		out_jack->bound = 1;
   1178 	if (in_jack)
   1179 		in_jack->bound = 1;
   1180 	mididev->in_jack = in_jack;
   1181 	mididev->out_jack = out_jack;
   1182 
   1183 	mididev->closing = 0;
   1184 
   1185 	return USBD_NORMAL_COMPLETION;
   1186 }
   1187 
   1188 static void
   1189 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
   1190 {
   1191 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
   1192 
   1193 	mididev->closing = 1;
   1194 
   1195 	if ((mididev->flags & FWRITE) && mididev->out_jack)
   1196 		close_out_jack(mididev->out_jack);
   1197 	if ((mididev->flags & FREAD) && mididev->in_jack)
   1198 		close_in_jack(mididev->in_jack);
   1199 
   1200 	if (mididev->out_jack) {
   1201 		mididev->out_jack->bound = 0;
   1202 		mididev->out_jack = NULL;
   1203 	}
   1204 	if (mididev->in_jack) {
   1205 		mididev->in_jack->bound = 0;
   1206 		mididev->in_jack = NULL;
   1207 	}
   1208 }
   1209 
   1210 static void
   1211 unbind_all_jacks(struct umidi_softc *sc)
   1212 {
   1213 	int i;
   1214 
   1215 	mutex_enter(&sc->sc_lock);
   1216 	if (sc->sc_mididevs)
   1217 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1218 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
   1219 	mutex_exit(&sc->sc_lock);
   1220 }
   1221 
   1222 static usbd_status
   1223 assign_all_jacks_automatically(struct umidi_softc *sc)
   1224 {
   1225 	usbd_status err;
   1226 	int i;
   1227 	struct umidi_jack *out, *in;
   1228 	const signed char *asg_spec;
   1229 
   1230 	err =
   1231 	    alloc_all_mididevs(sc,
   1232 			       uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
   1233 	if (err!=USBD_NORMAL_COMPLETION)
   1234 		return err;
   1235 
   1236 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
   1237 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
   1238 					    		  UMQ_TYPE_MD_FIXED);
   1239 	else
   1240 		asg_spec = NULL;
   1241 
   1242 	for (i = 0; i < sc->sc_num_mididevs; i++) {
   1243 		if (asg_spec != NULL) {
   1244 			if (*asg_spec == -1)
   1245 				out = NULL;
   1246 			else
   1247 				out = &sc->sc_out_jacks[*asg_spec];
   1248 			++ asg_spec;
   1249 			if (*asg_spec == -1)
   1250 				in = NULL;
   1251 			else
   1252 				in = &sc->sc_in_jacks[*asg_spec];
   1253 			++ asg_spec;
   1254 		} else {
   1255 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
   1256 						       : NULL;
   1257 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
   1258 						     : NULL;
   1259 		}
   1260 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
   1261 		if (err != USBD_NORMAL_COMPLETION) {
   1262 			free_all_mididevs(sc);
   1263 			return err;
   1264 		}
   1265 	}
   1266 
   1267 	return USBD_NORMAL_COMPLETION;
   1268 }
   1269 
   1270 static usbd_status
   1271 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
   1272 {
   1273 	struct umidi_endpoint *ep = jack->endpoint;
   1274 	struct umidi_softc *sc = ep->sc;
   1275 	umidi_packet_bufp end;
   1276 	int err;
   1277 
   1278 	KASSERT(mutex_owned(&sc->sc_lock));
   1279 
   1280 	if (jack->opened)
   1281 		return USBD_IN_USE;
   1282 
   1283 	jack->arg = arg;
   1284 	jack->u.out.intr = intr;
   1285 	jack->midiman_ppkt = NULL;
   1286 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
   1287 	jack->opened = 1;
   1288 	ep->num_open++;
   1289 	/*
   1290 	 * out_solicit maintains an invariant that there will always be
   1291 	 * (num_open - num_scheduled) slots free in the buffer. as we have
   1292 	 * just incremented num_open, the buffer may be too full to satisfy
   1293 	 * the invariant until a transfer completes, for which we must wait.
   1294 	 */
   1295 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
   1296 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1297 		     mstohz(10));
   1298 		if (err) {
   1299 			ep->num_open--;
   1300 			jack->opened = 0;
   1301 			return USBD_IOERROR;
   1302 		}
   1303 	}
   1304 
   1305 	return USBD_NORMAL_COMPLETION;
   1306 }
   1307 
   1308 static usbd_status
   1309 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
   1310 {
   1311 	usbd_status err = USBD_NORMAL_COMPLETION;
   1312 	struct umidi_endpoint *ep = jack->endpoint;
   1313 
   1314 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1315 
   1316 	if (jack->opened)
   1317 		return USBD_IN_USE;
   1318 
   1319 	jack->arg = arg;
   1320 	jack->u.in.intr = intr;
   1321 	jack->opened = 1;
   1322 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
   1323 		/*
   1324 		 * Can't hold the interrupt lock while calling into USB,
   1325 		 * but we can safely drop it here.
   1326 		 */
   1327 		mutex_exit(&ep->sc->sc_lock);
   1328 		err = start_input_transfer(ep);
   1329 		if (err != USBD_NORMAL_COMPLETION &&
   1330 		    err != USBD_IN_PROGRESS) {
   1331 			ep->num_open--;
   1332 		}
   1333 		mutex_enter(&ep->sc->sc_lock);
   1334 	}
   1335 
   1336 	return err;
   1337 }
   1338 
   1339 static void
   1340 close_out_jack(struct umidi_jack *jack)
   1341 {
   1342 	struct umidi_endpoint *ep;
   1343 	struct umidi_softc *sc;
   1344 	uint16_t mask;
   1345 	int err;
   1346 
   1347 	if (jack->opened) {
   1348 		ep = jack->endpoint;
   1349 		sc = ep->sc;
   1350 
   1351 		KASSERT(mutex_owned(&sc->sc_lock));
   1352 		mask = 1 << (jack->cable_number);
   1353 		while (mask & (ep->this_schedule | ep->next_schedule)) {
   1354 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
   1355 			     mstohz(10));
   1356 			if (err)
   1357 				break;
   1358 		}
   1359 		/*
   1360 		 * We can re-enter this function from both close() and
   1361 		 * detach().  Make sure only one of them does this part.
   1362 		 */
   1363 		if (jack->opened) {
   1364 			jack->opened = 0;
   1365 			jack->endpoint->num_open--;
   1366 			ep->this_schedule &= ~mask;
   1367 			ep->next_schedule &= ~mask;
   1368 		}
   1369 	}
   1370 }
   1371 
   1372 static void
   1373 close_in_jack(struct umidi_jack *jack)
   1374 {
   1375 	if (jack->opened) {
   1376 		struct umidi_softc *sc = jack->endpoint->sc;
   1377 
   1378 		KASSERT(mutex_owned(&sc->sc_lock));
   1379 
   1380 		jack->opened = 0;
   1381 		if (--jack->endpoint->num_open == 0) {
   1382 			/*
   1383 			 * We have to drop the (interrupt) lock so that
   1384 			 * the USB thread lock can be safely taken by
   1385 			 * the abort operation.  This is safe as this
   1386 			 * either closing or dying will be set proerly.
   1387 			 */
   1388 			mutex_exit(&sc->sc_lock);
   1389 			usbd_abort_pipe(jack->endpoint->pipe);
   1390 			mutex_enter(&sc->sc_lock);
   1391 		}
   1392 	}
   1393 }
   1394 
   1395 static usbd_status
   1396 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
   1397 {
   1398 	if (mididev->sc)
   1399 		return USBD_IN_USE;
   1400 
   1401 	mididev->sc = sc;
   1402 
   1403 	describe_mididev(mididev);
   1404 
   1405 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
   1406 
   1407 	return USBD_NORMAL_COMPLETION;
   1408 }
   1409 
   1410 static usbd_status
   1411 detach_mididev(struct umidi_mididev *mididev, int flags)
   1412 {
   1413 	struct umidi_softc *sc = mididev->sc;
   1414 
   1415 	if (!sc)
   1416 		return USBD_NO_ADDR;
   1417 
   1418 	mutex_enter(&sc->sc_lock);
   1419 	if (mididev->opened) {
   1420 		umidi_close(mididev);
   1421 	}
   1422 	unbind_jacks_from_mididev(mididev);
   1423 	mutex_exit(&sc->sc_lock);
   1424 
   1425 	if (mididev->mdev != NULL)
   1426 		config_detach(mididev->mdev, flags);
   1427 
   1428 	if (NULL != mididev->label) {
   1429 		kmem_free(mididev->label, mididev->label_len);
   1430 		mididev->label = NULL;
   1431 	}
   1432 
   1433 	mididev->sc = NULL;
   1434 
   1435 	return USBD_NORMAL_COMPLETION;
   1436 }
   1437 
   1438 static void
   1439 deactivate_mididev(struct umidi_mididev *mididev)
   1440 {
   1441 	if (mididev->out_jack)
   1442 		mididev->out_jack->bound = 0;
   1443 	if (mididev->in_jack)
   1444 		mididev->in_jack->bound = 0;
   1445 }
   1446 
   1447 static usbd_status
   1448 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
   1449 {
   1450 	sc->sc_num_mididevs = nmidi;
   1451 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
   1452 	return USBD_NORMAL_COMPLETION;
   1453 }
   1454 
   1455 static void
   1456 free_all_mididevs(struct umidi_softc *sc)
   1457 {
   1458 	struct umidi_mididev *mididevs;
   1459 	size_t len;
   1460 
   1461 	mutex_enter(&sc->sc_lock);
   1462 	mididevs = sc->sc_mididevs;
   1463 	if (mididevs)
   1464 		  len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
   1465 	sc->sc_mididevs = NULL;
   1466 	sc->sc_num_mididevs = 0;
   1467 	mutex_exit(&sc->sc_lock);
   1468 
   1469 	if (mididevs)
   1470 		kmem_free(mididevs, len);
   1471 }
   1472 
   1473 static usbd_status
   1474 attach_all_mididevs(struct umidi_softc *sc)
   1475 {
   1476 	usbd_status err;
   1477 	int i;
   1478 
   1479 	if (sc->sc_mididevs)
   1480 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1481 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
   1482 			if (err != USBD_NORMAL_COMPLETION)
   1483 				return err;
   1484 		}
   1485 
   1486 	return USBD_NORMAL_COMPLETION;
   1487 }
   1488 
   1489 static usbd_status
   1490 detach_all_mididevs(struct umidi_softc *sc, int flags)
   1491 {
   1492 	usbd_status err;
   1493 	int i;
   1494 
   1495 	if (sc->sc_mididevs)
   1496 		for (i = 0; i < sc->sc_num_mididevs; i++) {
   1497 			err = detach_mididev(&sc->sc_mididevs[i], flags);
   1498 			if (err != USBD_NORMAL_COMPLETION)
   1499 				return err;
   1500 		}
   1501 
   1502 	return USBD_NORMAL_COMPLETION;
   1503 }
   1504 
   1505 static void
   1506 deactivate_all_mididevs(struct umidi_softc *sc)
   1507 {
   1508 	int i;
   1509 
   1510 	if (sc->sc_mididevs) {
   1511 		for (i = 0; i < sc->sc_num_mididevs; i++)
   1512 			deactivate_mididev(&sc->sc_mididevs[i]);
   1513 	}
   1514 }
   1515 
   1516 /*
   1517  * TODO: the 0-based cable numbers will often not match the labeling of the
   1518  * equipment. Ideally:
   1519  *  For class-compliant devices: get the iJack string from the jack descriptor.
   1520  *  Otherwise:
   1521  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
   1522  *    number for display)
   1523  *  - support an array quirk explictly giving a char * for each jack.
   1524  * For now, you get 0-based cable numbers. If there are multiple endpoints and
   1525  * the CNs are not globally unique, each is shown with its associated endpoint
   1526  * address in hex also. That should not be necessary when using iJack values
   1527  * or a quirk array.
   1528  */
   1529 void
   1530 describe_mididev(struct umidi_mididev *md)
   1531 {
   1532 	char in_label[16];
   1533 	char out_label[16];
   1534 	const char *unit_label;
   1535 	char *final_label;
   1536 	struct umidi_softc *sc;
   1537 	int show_ep_in;
   1538 	int show_ep_out;
   1539 	size_t len;
   1540 
   1541 	sc = md->sc;
   1542 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
   1543 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
   1544 
   1545 	if (NULL == md->in_jack)
   1546 		in_label[0] = '\0';
   1547 	else if (show_ep_in)
   1548 		snprintf(in_label, sizeof(in_label), "<%d(%x) ",
   1549 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
   1550 	else
   1551 		snprintf(in_label, sizeof(in_label), "<%d ",
   1552 		    md->in_jack->cable_number);
   1553 
   1554 	if (NULL == md->out_jack)
   1555 		out_label[0] = '\0';
   1556 	else if (show_ep_out)
   1557 		snprintf(out_label, sizeof(out_label), ">%d(%x) ",
   1558 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
   1559 	else
   1560 		snprintf(out_label, sizeof(out_label), ">%d ",
   1561 		    md->out_jack->cable_number);
   1562 
   1563 	unit_label = device_xname(sc->sc_dev);
   1564 
   1565 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
   1566 
   1567 	final_label = kmem_alloc(len, KM_SLEEP);
   1568 
   1569 	snprintf(final_label, len, "%s%son %s",
   1570 	    in_label, out_label, unit_label);
   1571 
   1572 	md->label = final_label;
   1573 	md->label_len = len;
   1574 }
   1575 
   1576 #ifdef UMIDI_DEBUG
   1577 static void
   1578 dump_sc(struct umidi_softc *sc)
   1579 {
   1580 	int i;
   1581 
   1582 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
   1583 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
   1584 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
   1585 		dump_ep(&sc->sc_out_ep[i]);
   1586 	}
   1587 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
   1588 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
   1589 		dump_ep(&sc->sc_in_ep[i]);
   1590 	}
   1591 }
   1592 
   1593 static void
   1594 dump_ep(struct umidi_endpoint *ep)
   1595 {
   1596 	int i;
   1597 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
   1598 		if (NULL==ep->jacks[i])
   1599 			continue;
   1600 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
   1601 		dump_jack(ep->jacks[i]);
   1602 	}
   1603 }
   1604 static void
   1605 dump_jack(struct umidi_jack *jack)
   1606 {
   1607 	DPRINTFN(10, ("\t\t\tep=%p\n",
   1608 		      jack->endpoint));
   1609 }
   1610 
   1611 #endif /* UMIDI_DEBUG */
   1612 
   1613 
   1614 
   1615 /*
   1616  * MUX MIDI PACKET
   1617  */
   1618 
   1619 static const int packet_length[16] = {
   1620 	/*0*/	-1,
   1621 	/*1*/	-1,
   1622 	/*2*/	2,
   1623 	/*3*/	3,
   1624 	/*4*/	3,
   1625 	/*5*/	1,
   1626 	/*6*/	2,
   1627 	/*7*/	3,
   1628 	/*8*/	3,
   1629 	/*9*/	3,
   1630 	/*A*/	3,
   1631 	/*B*/	3,
   1632 	/*C*/	2,
   1633 	/*D*/	2,
   1634 	/*E*/	3,
   1635 	/*F*/	1,
   1636 };
   1637 
   1638 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
   1639 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
   1640 #define MIX_CN_CIN(cn, cin) \
   1641 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
   1642 			  ((unsigned char)(cin)&0x0F)))
   1643 
   1644 static usbd_status
   1645 start_input_transfer(struct umidi_endpoint *ep)
   1646 {
   1647 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
   1648 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
   1649 	return usbd_transfer(ep->xfer);
   1650 }
   1651 
   1652 static usbd_status
   1653 start_output_transfer(struct umidi_endpoint *ep)
   1654 {
   1655 	usbd_status rv;
   1656 	uint32_t length;
   1657 	int i;
   1658 
   1659 	length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
   1660 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
   1661 	    ep->buffer, ep->next_slot, length));
   1662 
   1663 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
   1664 	    USBD_NO_TIMEOUT, out_intr);
   1665 	rv = usbd_transfer(ep->xfer);
   1666 
   1667 	/*
   1668 	 * Once the transfer is scheduled, no more adding to partial
   1669 	 * packets within it.
   1670 	 */
   1671 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1672 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
   1673 			if (NULL != ep->jacks[i])
   1674 				ep->jacks[i]->midiman_ppkt = NULL;
   1675 	}
   1676 
   1677 	return rv;
   1678 }
   1679 
   1680 #ifdef UMIDI_DEBUG
   1681 #define DPR_PACKET(dir, sc, p)						\
   1682 if ((unsigned char)(p)[1]!=0xFE)				\
   1683 	DPRINTFN(500,							\
   1684 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
   1685 		  device_xname(sc->sc_dev),				\
   1686 		  (unsigned char)(p)[0],			\
   1687 		  (unsigned char)(p)[1],			\
   1688 		  (unsigned char)(p)[2],			\
   1689 		  (unsigned char)(p)[3]));
   1690 #else
   1691 #define DPR_PACKET(dir, sc, p)
   1692 #endif
   1693 
   1694 /*
   1695  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
   1696  * with the cable number and length in the last byte instead of the first,
   1697  * but there the resemblance ends. Where a USB MIDI packet is a semantic
   1698  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
   1699  * with a cable nybble and a length nybble (which, unlike the CIN of a
   1700  * real USB MIDI packet, has no semantics at all besides the length).
   1701  * A packet received from a Midiman may contain part of a MIDI message,
   1702  * more than one MIDI message, or parts of more than one MIDI message. A
   1703  * three-byte MIDI message may arrive in three packets of data length 1, and
   1704  * running status may be used. Happily, the midi(4) driver above us will put
   1705  * it all back together, so the only cost is in USB bandwidth. The device
   1706  * has an easier time with what it receives from us: we'll pack messages in
   1707  * and across packets, but filling the packets whenever possible and,
   1708  * as midi(4) hands us a complete message at a time, we'll never send one
   1709  * in a dribble of short packets.
   1710  */
   1711 
   1712 static int
   1713 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
   1714 {
   1715 	struct umidi_endpoint *ep = out_jack->endpoint;
   1716 	struct umidi_softc *sc = ep->sc;
   1717 	unsigned char *packet;
   1718 	int plen;
   1719 	int poff;
   1720 
   1721 	KASSERT(mutex_owned(&sc->sc_lock));
   1722 
   1723 	if (sc->sc_dying)
   1724 		return EIO;
   1725 
   1726 	if (!out_jack->opened)
   1727 		return ENODEV; /* XXX as it was, is this the right errno? */
   1728 
   1729 	sc->sc_refcnt++;
   1730 
   1731 #ifdef UMIDI_DEBUG
   1732 	if (umididebug >= 100)
   1733 		microtime(&umidi_tv);
   1734 #endif
   1735 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
   1736 	    "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
   1737 	    (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
   1738 
   1739 	packet = *ep->next_slot++;
   1740 	KASSERT(ep->buffer_size >=
   1741 	    (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
   1742 	memset(packet, 0, UMIDI_PACKET_SIZE);
   1743 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1744 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
   1745 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
   1746 			plen = 3 - poff;
   1747 			if (plen > len)
   1748 				plen = len;
   1749 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
   1750 			src += plen;
   1751 			len -= plen;
   1752 			plen += poff;
   1753 			out_jack->midiman_ppkt[3] =
   1754 			    MIX_CN_CIN(out_jack->cable_number, plen);
   1755 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
   1756 			if (3 == plen)
   1757 				out_jack->midiman_ppkt = NULL; /* no more */
   1758 		}
   1759 		if (0 == len)
   1760 			ep->next_slot--; /* won't be needed, nevermind */
   1761 		else {
   1762 			memcpy(packet, src, len);
   1763 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
   1764 			DPR_PACKET(out, sc, packet);
   1765 			if (len < 3)
   1766 				out_jack->midiman_ppkt = packet;
   1767 		}
   1768 	} else { /* the nice simple USB class-compliant case */
   1769 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
   1770 		memcpy(packet+1, src, len);
   1771 		DPR_PACKET(out, sc, packet);
   1772 	}
   1773 	ep->next_schedule |= 1<<(out_jack->cable_number);
   1774 	++ ep->num_scheduled;
   1775 	if (!ep->armed && !ep->soliciting) {
   1776 		/*
   1777 		 * It would be bad to call out_solicit directly here (the
   1778 		 * caller need not be reentrant) but a soft interrupt allows
   1779 		 * solicit to run immediately the caller exits its critical
   1780 		 * section, and if the caller has more to write we can get it
   1781 		 * before starting the USB transfer, and send a longer one.
   1782 		 */
   1783 		ep->soliciting = 1;
   1784 		kpreempt_disable();
   1785 		softint_schedule(ep->solicit_cookie);
   1786 		kpreempt_enable();
   1787 	}
   1788 
   1789 	if (--sc->sc_refcnt < 0)
   1790 		cv_broadcast(&sc->sc_detach_cv);
   1791 
   1792 	return 0;
   1793 }
   1794 
   1795 static void
   1796 in_intr(struct usbd_xfer *xfer, void *priv,
   1797     usbd_status status)
   1798 {
   1799 	int cn, len, i;
   1800 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1801 	struct umidi_softc *sc = ep->sc;
   1802 	struct umidi_jack *jack;
   1803 	unsigned char *packet;
   1804 	umidi_packet_bufp slot;
   1805 	umidi_packet_bufp end;
   1806 	unsigned char *data;
   1807 	uint32_t count;
   1808 
   1809 	if (ep->sc->sc_dying || !ep->num_open)
   1810 		return;
   1811 
   1812 	mutex_enter(&sc->sc_lock);
   1813 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1814 	if (0 == count % UMIDI_PACKET_SIZE) {
   1815 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
   1816 			     device_xname(ep->sc->sc_dev), ep, count));
   1817 	} else {
   1818 		DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
   1819 			device_xname(ep->sc->sc_dev), ep, count));
   1820 	}
   1821 
   1822 	slot = ep->buffer;
   1823 	end = slot + count / sizeof(*slot);
   1824 
   1825 	for (packet = *slot; slot < end; packet = *++slot) {
   1826 
   1827 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
   1828 			cn = (0xf0&(packet[3]))>>4;
   1829 			len = 0x0f&(packet[3]);
   1830 			data = packet;
   1831 		} else {
   1832 			cn = GET_CN(packet[0]);
   1833 			len = packet_length[GET_CIN(packet[0])];
   1834 			data = packet + 1;
   1835 		}
   1836 		/* 0 <= cn <= 15 by inspection of above code */
   1837 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
   1838 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
   1839 				 "%02X %02X %02X (try CN_SEQ quirk?)\n",
   1840 				 device_xname(ep->sc->sc_dev), ep, cn, len,
   1841 				 (unsigned)data[0],
   1842 				 (unsigned)data[1],
   1843 				 (unsigned)data[2]));
   1844 			mutex_exit(&sc->sc_lock);
   1845 			return;
   1846 		}
   1847 
   1848 		if (!jack->bound || !jack->opened)
   1849 			continue;
   1850 
   1851 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
   1852 			     "%02X %02X %02X\n",
   1853 			     device_xname(ep->sc->sc_dev), ep, cn, len,
   1854 			     (unsigned)data[0],
   1855 			     (unsigned)data[1],
   1856 			     (unsigned)data[2]));
   1857 
   1858 		if (jack->u.in.intr) {
   1859 			for (i = 0; i < len; i++) {
   1860 				(*jack->u.in.intr)(jack->arg, data[i]);
   1861 			}
   1862 		}
   1863 
   1864 	}
   1865 
   1866 	(void)start_input_transfer(ep);
   1867 	mutex_exit(&sc->sc_lock);
   1868 }
   1869 
   1870 static void
   1871 out_intr(struct usbd_xfer *xfer, void *priv,
   1872     usbd_status status)
   1873 {
   1874 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
   1875 	struct umidi_softc *sc = ep->sc;
   1876 	uint32_t count;
   1877 
   1878 	if (sc->sc_dying)
   1879 		return;
   1880 
   1881 	mutex_enter(&sc->sc_lock);
   1882 #ifdef UMIDI_DEBUG
   1883 	if (umididebug >= 200)
   1884 		microtime(&umidi_tv);
   1885 #endif
   1886 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
   1887 	if (0 == count % UMIDI_PACKET_SIZE) {
   1888 		DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
   1889 		    "length %u\n", device_xname(ep->sc->sc_dev),
   1890 		    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
   1891 		    count));
   1892 	} else {
   1893 		DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
   1894 			device_xname(ep->sc->sc_dev), ep, count));
   1895 	}
   1896 	count /= UMIDI_PACKET_SIZE;
   1897 
   1898 	/*
   1899 	 * If while the transfer was pending we buffered any new messages,
   1900 	 * move them to the start of the buffer.
   1901 	 */
   1902 	ep->next_slot -= count;
   1903 	if (ep->buffer < ep->next_slot) {
   1904 		memcpy(ep->buffer, ep->buffer + count,
   1905 		       (char *)ep->next_slot - (char *)ep->buffer);
   1906 	}
   1907 	cv_broadcast(&sc->sc_cv);
   1908 	/*
   1909 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
   1910 	 * Running at IPL_USB so the following should happen to be safe.
   1911 	 */
   1912 	ep->armed = 0;
   1913 	if (!ep->soliciting) {
   1914 		ep->soliciting = 1;
   1915 		out_solicit_locked(ep);
   1916 	}
   1917 	mutex_exit(&sc->sc_lock);
   1918 }
   1919 
   1920 /*
   1921  * A jack on which we have received a packet must be called back on its
   1922  * out.intr handler before it will send us another; it is considered
   1923  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
   1924  * we need no extra buffer space for it.
   1925  *
   1926  * In contrast, a jack that is open but not scheduled may supply us a packet
   1927  * at any time, driven by the top half, and we must be able to accept it, no
   1928  * excuses. So we must ensure that at any point in time there are at least
   1929  * (num_open - num_scheduled) slots free.
   1930  *
   1931  * As long as there are more slots free than that minimum, we can loop calling
   1932  * scheduled jacks back on their "interrupt" handlers, soliciting more
   1933  * packets, starting the USB transfer only when the buffer space is down to
   1934  * the minimum or no jack has any more to send.
   1935  */
   1936 
   1937 static void
   1938 out_solicit_locked(void *arg)
   1939 {
   1940 	struct umidi_endpoint *ep = arg;
   1941 	umidi_packet_bufp end;
   1942 	uint16_t which;
   1943 	struct umidi_jack *jack;
   1944 
   1945 	KASSERT(mutex_owned(&ep->sc->sc_lock));
   1946 
   1947 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
   1948 
   1949 	for ( ;; ) {
   1950 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
   1951 			break; /* at IPL_USB */
   1952 		if (ep->this_schedule == 0) {
   1953 			if (ep->next_schedule == 0)
   1954 				break; /* at IPL_USB */
   1955 			ep->this_schedule = ep->next_schedule;
   1956 			ep->next_schedule = 0;
   1957 		}
   1958 		/*
   1959 		 * At least one jack is scheduled. Find and mask off the least
   1960 		 * set bit in this_schedule and decrement num_scheduled.
   1961 		 * Convert mask to bit index to find the corresponding jack,
   1962 		 * and call its intr handler. If it has a message, it will call
   1963 		 * back one of the output methods, which will set its bit in
   1964 		 * next_schedule (not copied into this_schedule until the
   1965 		 * latter is empty). In this way we round-robin the jacks that
   1966 		 * have messages to send, until the buffer is as full as we
   1967 		 * dare, and then start a transfer.
   1968 		 */
   1969 		which = ep->this_schedule;
   1970 		which &= (~which)+1; /* now mask of least set bit */
   1971 		ep->this_schedule &= ~which;
   1972 		--ep->num_scheduled;
   1973 
   1974 		--which; /* now 1s below mask - count 1s to get index */
   1975 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
   1976 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
   1977 		which = (((which >> 4) + which) & 0x0f0f);
   1978 		which +=  (which >> 8);
   1979 		which &= 0x1f; /* the bit index a/k/a jack number */
   1980 
   1981 		jack = ep->jacks[which];
   1982 		if (jack->u.out.intr)
   1983 			(*jack->u.out.intr)(jack->arg);
   1984 	}
   1985 	/* intr lock held at loop exit */
   1986 	if (!ep->armed && ep->next_slot > ep->buffer) {
   1987 		/*
   1988 		 * Can't hold the interrupt lock while calling into USB,
   1989 		 * but we can safely drop it here.
   1990 		 */
   1991 		mutex_exit(&ep->sc->sc_lock);
   1992 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
   1993 		mutex_enter(&ep->sc->sc_lock);
   1994 	}
   1995 	ep->soliciting = 0;
   1996 }
   1997 
   1998 /* Entry point for the softintr.  */
   1999 static void
   2000 out_solicit(void *arg)
   2001 {
   2002 	struct umidi_endpoint *ep = arg;
   2003 	struct umidi_softc *sc = ep->sc;
   2004 
   2005 	mutex_enter(&sc->sc_lock);
   2006 	out_solicit_locked(arg);
   2007 	mutex_exit(&sc->sc_lock);
   2008 }
   2009