umidi.c revision 1.77 1 /* $NetBSD: umidi.c,v 1.77 2019/05/05 03:17:54 mrg Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.77 2019/05/05 03:17:54 mrg Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59
60 #include <dev/auconv.h>
61 #include <dev/usb/usbdevs.h>
62 #include <dev/usb/umidi_quirks.h>
63 #include <dev/midi_if.h>
64
65 /* Jack Descriptor */
66 #define UMIDI_MS_HEADER 0x01
67 #define UMIDI_IN_JACK 0x02
68 #define UMIDI_OUT_JACK 0x03
69
70 /* Jack Type */
71 #define UMIDI_EMBEDDED 0x01
72 #define UMIDI_EXTERNAL 0x02
73
74 /* generic, for iteration */
75 typedef struct {
76 uByte bLength;
77 uByte bDescriptorType;
78 uByte bDescriptorSubtype;
79 } UPACKED umidi_cs_descriptor_t;
80
81 typedef struct {
82 uByte bLength;
83 uByte bDescriptorType;
84 uByte bDescriptorSubtype;
85 uWord bcdMSC;
86 uWord wTotalLength;
87 } UPACKED umidi_cs_interface_descriptor_t;
88 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
89
90 typedef struct {
91 uByte bLength;
92 uByte bDescriptorType;
93 uByte bDescriptorSubtype;
94 uByte bNumEmbMIDIJack;
95 } UPACKED umidi_cs_endpoint_descriptor_t;
96 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
97
98 typedef struct {
99 uByte bLength;
100 uByte bDescriptorType;
101 uByte bDescriptorSubtype;
102 uByte bJackType;
103 uByte bJackID;
104 } UPACKED umidi_jack_descriptor_t;
105 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
106
107
108 #define TO_D(p) ((usb_descriptor_t *)(p))
109 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
110 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
111 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
112 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
113 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
114
115
116 #define UMIDI_PACKET_SIZE 4
117
118 /*
119 * hierarchie
120 *
121 * <-- parent child -->
122 *
123 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
124 * ^ | ^ |
125 * +-----+ +-----+
126 */
127
128 /* midi device */
129 struct umidi_mididev {
130 struct umidi_softc *sc;
131 device_t mdev;
132 /* */
133 struct umidi_jack *in_jack;
134 struct umidi_jack *out_jack;
135 char *label;
136 size_t label_len;
137 /* */
138 int opened;
139 int closing;
140 int flags;
141 };
142
143 /* Jack Information */
144 struct umidi_jack {
145 struct umidi_endpoint *endpoint;
146 /* */
147 int cable_number;
148 void *arg;
149 int bound;
150 int opened;
151 unsigned char *midiman_ppkt;
152 union {
153 struct {
154 void (*intr)(void *);
155 } out;
156 struct {
157 void (*intr)(void *, int);
158 } in;
159 } u;
160 };
161
162 #define UMIDI_MAX_EPJACKS 16
163 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
164 /* endpoint data */
165 struct umidi_endpoint {
166 struct umidi_softc *sc;
167 /* */
168 int addr;
169 struct usbd_pipe *pipe;
170 struct usbd_xfer *xfer;
171 umidi_packet_bufp buffer;
172 umidi_packet_bufp next_slot;
173 uint32_t buffer_size;
174 int num_scheduled;
175 int num_open;
176 int num_jacks;
177 int soliciting;
178 void *solicit_cookie;
179 int armed;
180 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
181 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
182 uint16_t next_schedule;
183 };
184
185 /* software context */
186 struct umidi_softc {
187 device_t sc_dev;
188 struct usbd_device *sc_udev;
189 struct usbd_interface *sc_iface;
190 const struct umidi_quirk *sc_quirk;
191
192 int sc_dying;
193
194 int sc_out_num_jacks;
195 struct umidi_jack *sc_out_jacks;
196 int sc_in_num_jacks;
197 struct umidi_jack *sc_in_jacks;
198 struct umidi_jack *sc_jacks;
199
200 int sc_num_mididevs;
201 struct umidi_mididev *sc_mididevs;
202
203 int sc_out_num_endpoints;
204 struct umidi_endpoint *sc_out_ep;
205 int sc_in_num_endpoints;
206 struct umidi_endpoint *sc_in_ep;
207 struct umidi_endpoint *sc_endpoints;
208 size_t sc_endpoints_len;
209 int cblnums_global;
210
211 kmutex_t sc_lock;
212 kcondvar_t sc_cv;
213 kcondvar_t sc_detach_cv;
214
215 int sc_refcnt;
216 };
217
218 #ifdef UMIDI_DEBUG
219 #define DPRINTF(x) if (umididebug) printf x
220 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
221 #include <sys/time.h>
222 static struct timeval umidi_tv;
223 int umididebug = 0;
224 #else
225 #define DPRINTF(x)
226 #define DPRINTFN(n,x)
227 #endif
228
229 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
230 (sc->sc_out_num_endpoints + \
231 sc->sc_in_num_endpoints))
232
233
234 static int umidi_open(void *, int,
235 void (*)(void *, int), void (*)(void *), void *);
236 static void umidi_close(void *);
237 static int umidi_channelmsg(void *, int, int, u_char *, int);
238 static int umidi_commonmsg(void *, int, u_char *, int);
239 static int umidi_sysex(void *, u_char *, int);
240 static int umidi_rtmsg(void *, int);
241 static void umidi_getinfo(void *, struct midi_info *);
242 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
243
244 static usbd_status alloc_pipe(struct umidi_endpoint *);
245 static void free_pipe(struct umidi_endpoint *);
246
247 static usbd_status alloc_all_endpoints(struct umidi_softc *);
248 static void free_all_endpoints(struct umidi_softc *);
249
250 static usbd_status alloc_all_jacks(struct umidi_softc *);
251 static void free_all_jacks(struct umidi_softc *);
252 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
253 struct umidi_jack *,
254 struct umidi_jack *,
255 struct umidi_mididev *);
256 static void unbind_jacks_from_mididev(struct umidi_mididev *);
257 static void unbind_all_jacks(struct umidi_softc *);
258 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
259 static usbd_status open_out_jack(struct umidi_jack *, void *,
260 void (*)(void *));
261 static usbd_status open_in_jack(struct umidi_jack *, void *,
262 void (*)(void *, int));
263 static void close_out_jack(struct umidi_jack *);
264 static void close_in_jack(struct umidi_jack *);
265
266 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
267 static usbd_status detach_mididev(struct umidi_mididev *, int);
268 static void deactivate_mididev(struct umidi_mididev *);
269 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
270 static void free_all_mididevs(struct umidi_softc *);
271 static usbd_status attach_all_mididevs(struct umidi_softc *);
272 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
273 static void deactivate_all_mididevs(struct umidi_softc *);
274 static void describe_mididev(struct umidi_mididev *);
275
276 #ifdef UMIDI_DEBUG
277 static void dump_sc(struct umidi_softc *);
278 static void dump_ep(struct umidi_endpoint *);
279 static void dump_jack(struct umidi_jack *);
280 #endif
281
282 static usbd_status start_input_transfer(struct umidi_endpoint *);
283 static usbd_status start_output_transfer(struct umidi_endpoint *);
284 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
285 static void in_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_intr(struct usbd_xfer *, void *, usbd_status);
287 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
288 static void out_solicit_locked(void *); /* pre-locked version */
289
290
291 const struct midi_hw_if umidi_hw_if = {
292 .open = umidi_open,
293 .close = umidi_close,
294 .output = umidi_rtmsg,
295 .getinfo = umidi_getinfo,
296 .get_locks = umidi_get_locks,
297 };
298
299 struct midi_hw_if_ext umidi_hw_if_ext = {
300 .channel = umidi_channelmsg,
301 .common = umidi_commonmsg,
302 .sysex = umidi_sysex,
303 };
304
305 struct midi_hw_if_ext umidi_hw_if_mm = {
306 .channel = umidi_channelmsg,
307 .common = umidi_commonmsg,
308 .sysex = umidi_sysex,
309 .compress = 1,
310 };
311
312 int umidi_match(device_t, cfdata_t, void *);
313 void umidi_attach(device_t, device_t, void *);
314 void umidi_childdet(device_t, device_t);
315 int umidi_detach(device_t, int);
316 int umidi_activate(device_t, enum devact);
317
318 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
319 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
320
321 int
322 umidi_match(device_t parent, cfdata_t match, void *aux)
323 {
324 struct usbif_attach_arg *uiaa = aux;
325
326 DPRINTFN(1,("umidi_match\n"));
327
328 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
329 uiaa->uiaa_ifaceno))
330 return UMATCH_IFACECLASS_IFACESUBCLASS;
331
332 if (uiaa->uiaa_class == UICLASS_AUDIO &&
333 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
334 return UMATCH_IFACECLASS_IFACESUBCLASS;
335
336 return UMATCH_NONE;
337 }
338
339 void
340 umidi_attach(device_t parent, device_t self, void *aux)
341 {
342 usbd_status err;
343 struct umidi_softc *sc = device_private(self);
344 struct usbif_attach_arg *uiaa = aux;
345 char *devinfop;
346
347 DPRINTFN(1,("umidi_attach\n"));
348
349 sc->sc_dev = self;
350
351 aprint_naive("\n");
352 aprint_normal("\n");
353
354 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
355 aprint_normal_dev(self, "%s\n", devinfop);
356 usbd_devinfo_free(devinfop);
357
358 sc->sc_iface = uiaa->uiaa_iface;
359 sc->sc_udev = uiaa->uiaa_device;
360
361 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
362 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
363
364 aprint_normal_dev(self, "");
365 umidi_print_quirk(sc->sc_quirk);
366
367 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
368 cv_init(&sc->sc_cv, "umidopcl");
369 cv_init(&sc->sc_detach_cv, "umidetcv");
370 sc->sc_refcnt = 0;
371
372 err = alloc_all_endpoints(sc);
373 if (err != USBD_NORMAL_COMPLETION) {
374 aprint_error_dev(self,
375 "alloc_all_endpoints failed. (err=%d)\n", err);
376 goto out;
377 }
378 err = alloc_all_jacks(sc);
379 if (err != USBD_NORMAL_COMPLETION) {
380 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
381 err);
382 goto out_free_endpoints;
383 }
384 aprint_normal_dev(self, "out=%d, in=%d\n",
385 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
386
387 err = assign_all_jacks_automatically(sc);
388 if (err != USBD_NORMAL_COMPLETION) {
389 aprint_error_dev(self,
390 "assign_all_jacks_automatically failed. (err=%d)\n", err);
391 goto out_free_jacks;
392 }
393 err = attach_all_mididevs(sc);
394 if (err != USBD_NORMAL_COMPLETION) {
395 aprint_error_dev(self,
396 "attach_all_mididevs failed. (err=%d)\n", err);
397 goto out_free_jacks;
398 }
399
400 #ifdef UMIDI_DEBUG
401 dump_sc(sc);
402 #endif
403
404 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
405
406 return;
407
408 out_free_jacks:
409 unbind_all_jacks(sc);
410 free_all_jacks(sc);
411
412 out_free_endpoints:
413 free_all_endpoints(sc);
414
415 out:
416 aprint_error_dev(self, "disabled.\n");
417 sc->sc_dying = 1;
418 KERNEL_UNLOCK_ONE(curlwp);
419 return;
420 }
421
422 void
423 umidi_childdet(device_t self, device_t child)
424 {
425 int i;
426 struct umidi_softc *sc = device_private(self);
427
428 KASSERT(sc->sc_mididevs != NULL);
429
430 for (i = 0; i < sc->sc_num_mididevs; i++) {
431 if (sc->sc_mididevs[i].mdev == child)
432 break;
433 }
434 KASSERT(i < sc->sc_num_mididevs);
435 sc->sc_mididevs[i].mdev = NULL;
436 }
437
438 int
439 umidi_activate(device_t self, enum devact act)
440 {
441 struct umidi_softc *sc = device_private(self);
442
443 switch (act) {
444 case DVACT_DEACTIVATE:
445 DPRINTFN(1,("umidi_activate (deactivate)\n"));
446 sc->sc_dying = 1;
447 deactivate_all_mididevs(sc);
448 return 0;
449 default:
450 DPRINTFN(1,("umidi_activate (%d)\n", act));
451 return EOPNOTSUPP;
452 }
453 }
454
455 int
456 umidi_detach(device_t self, int flags)
457 {
458 struct umidi_softc *sc = device_private(self);
459
460 DPRINTFN(1,("umidi_detach\n"));
461
462 mutex_enter(&sc->sc_lock);
463 sc->sc_dying = 1;
464 if (--sc->sc_refcnt >= 0)
465 if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
466 aprint_error_dev(self, ": didn't detach\n");
467 mutex_exit(&sc->sc_lock);
468
469 detach_all_mididevs(sc, flags);
470 free_all_mididevs(sc);
471 free_all_jacks(sc);
472 free_all_endpoints(sc);
473
474 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
475
476 mutex_destroy(&sc->sc_lock);
477 cv_destroy(&sc->sc_detach_cv);
478 cv_destroy(&sc->sc_cv);
479
480 return 0;
481 }
482
483
484 /*
485 * midi_if stuffs
486 */
487 int
488 umidi_open(void *addr,
489 int flags,
490 void (*iintr)(void *, int),
491 void (*ointr)(void *),
492 void *arg)
493 {
494 struct umidi_mididev *mididev = addr;
495 struct umidi_softc *sc = mididev->sc;
496 usbd_status err;
497
498 KASSERT(mutex_owned(&sc->sc_lock));
499 DPRINTF(("umidi_open: sc=%p\n", sc));
500
501 if (mididev->opened)
502 return EBUSY;
503 if (sc->sc_dying)
504 return EIO;
505
506 mididev->opened = 1;
507 mididev->flags = flags;
508 if ((mididev->flags & FWRITE) && mididev->out_jack) {
509 err = open_out_jack(mididev->out_jack, arg, ointr);
510 if (err != USBD_NORMAL_COMPLETION)
511 goto bad;
512 }
513 if ((mididev->flags & FREAD) && mididev->in_jack) {
514 err = open_in_jack(mididev->in_jack, arg, iintr);
515 KASSERT(mididev->opened);
516 if (err != USBD_NORMAL_COMPLETION &&
517 err != USBD_IN_PROGRESS) {
518 if (mididev->out_jack)
519 close_out_jack(mididev->out_jack);
520 goto bad;
521 }
522 }
523
524 return 0;
525 bad:
526 mididev->opened = 0;
527 DPRINTF(("umidi_open: usbd_status %d\n", err));
528 KASSERT(mutex_owned(&sc->sc_lock));
529 return USBD_IN_USE == err ? EBUSY : EIO;
530 }
531
532 void
533 umidi_close(void *addr)
534 {
535 struct umidi_mididev *mididev = addr;
536 struct umidi_softc *sc = mididev->sc;
537
538 KASSERT(mutex_owned(&sc->sc_lock));
539
540 if (mididev->closing)
541 return;
542
543 mididev->closing = 1;
544
545 sc->sc_refcnt++;
546
547 if ((mididev->flags & FWRITE) && mididev->out_jack)
548 close_out_jack(mididev->out_jack);
549 if ((mididev->flags & FREAD) && mididev->in_jack)
550 close_in_jack(mididev->in_jack);
551
552 if (--sc->sc_refcnt < 0)
553 cv_broadcast(&sc->sc_detach_cv);
554
555 mididev->opened = 0;
556 mididev->closing = 0;
557 }
558
559 int
560 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
561 int len)
562 {
563 struct umidi_mididev *mididev = addr;
564
565 KASSERT(mutex_owned(&mididev->sc->sc_lock));
566
567 if (!mididev->out_jack || !mididev->opened || mididev->closing)
568 return EIO;
569
570 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
571 }
572
573 int
574 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
575 {
576 struct umidi_mididev *mididev = addr;
577 int cin;
578
579 KASSERT(mutex_owned(&mididev->sc->sc_lock));
580
581 if (!mididev->out_jack || !mididev->opened || mididev->closing)
582 return EIO;
583
584 switch ( len ) {
585 case 1: cin = 5; break;
586 case 2: cin = 2; break;
587 case 3: cin = 3; break;
588 default: return EIO; /* or gcc warns of cin uninitialized */
589 }
590
591 return out_jack_output(mididev->out_jack, msg, len, cin);
592 }
593
594 int
595 umidi_sysex(void *addr, u_char *msg, int len)
596 {
597 struct umidi_mididev *mididev = addr;
598 int cin;
599
600 KASSERT(mutex_owned(&mididev->sc->sc_lock));
601
602 if (!mididev->out_jack || !mididev->opened || mididev->closing)
603 return EIO;
604
605 switch ( len ) {
606 case 1: cin = 5; break;
607 case 2: cin = 6; break;
608 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
609 default: return EIO; /* or gcc warns of cin uninitialized */
610 }
611
612 return out_jack_output(mididev->out_jack, msg, len, cin);
613 }
614
615 int
616 umidi_rtmsg(void *addr, int d)
617 {
618 struct umidi_mididev *mididev = addr;
619 u_char msg = d;
620
621 KASSERT(mutex_owned(&mididev->sc->sc_lock));
622
623 if (!mididev->out_jack || !mididev->opened || mididev->closing)
624 return EIO;
625
626 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
627 }
628
629 void
630 umidi_getinfo(void *addr, struct midi_info *mi)
631 {
632 struct umidi_mididev *mididev = addr;
633 struct umidi_softc *sc = mididev->sc;
634 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
635
636 KASSERT(mutex_owned(&sc->sc_lock));
637
638 mi->name = mididev->label;
639 mi->props = MIDI_PROP_OUT_INTR;
640 if (mididev->in_jack)
641 mi->props |= MIDI_PROP_CAN_INPUT;
642 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
643 }
644
645 static void
646 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
647 {
648 struct umidi_mididev *mididev = addr;
649 struct umidi_softc *sc = mididev->sc;
650
651 *intr = NULL;
652 *thread = &sc->sc_lock;
653 }
654
655 /*
656 * each endpoint stuffs
657 */
658
659 /* alloc/free pipe */
660 static usbd_status
661 alloc_pipe(struct umidi_endpoint *ep)
662 {
663 struct umidi_softc *sc = ep->sc;
664 usbd_status err;
665 usb_endpoint_descriptor_t *epd;
666
667 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
668 /*
669 * For output, an improvement would be to have a buffer bigger than
670 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
671 * allow out_solicit to fill the buffer to the full packet size in
672 * all cases. But to use usbd_create_xfer to get a slightly larger
673 * buffer would not be a good way to do that, because if the addition
674 * would make the buffer exceed USB_MEM_SMALL then a substantially
675 * larger block may be wastefully allocated. Some flavor of double
676 * buffering could serve the same purpose, but would increase the
677 * code complexity, so for now I will live with the current slight
678 * penalty of reducing max transfer size by (num_open-num_scheduled)
679 * packet slots.
680 */
681 ep->buffer_size = UGETW(epd->wMaxPacketSize);
682 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
683
684 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
685 device_xname(sc->sc_dev), ep, ep->buffer_size));
686 ep->num_scheduled = 0;
687 ep->this_schedule = 0;
688 ep->next_schedule = 0;
689 ep->soliciting = 0;
690 ep->armed = 0;
691 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
692 if (err)
693 goto quit;
694 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
695 0, 0, &ep->xfer);
696 if (error) {
697 usbd_close_pipe(ep->pipe);
698 return USBD_NOMEM;
699 }
700 ep->buffer = usbd_get_buffer(ep->xfer);
701 ep->next_slot = ep->buffer;
702 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
703 out_solicit, ep);
704 quit:
705 return err;
706 }
707
708 static void
709 free_pipe(struct umidi_endpoint *ep)
710 {
711 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
712 usbd_abort_pipe(ep->pipe);
713 usbd_destroy_xfer(ep->xfer);
714 usbd_close_pipe(ep->pipe);
715 softint_disestablish(ep->solicit_cookie);
716 }
717
718
719 /* alloc/free the array of endpoint structures */
720
721 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
722 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
723 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
724
725 static usbd_status
726 alloc_all_endpoints(struct umidi_softc *sc)
727 {
728 usbd_status err;
729 struct umidi_endpoint *ep;
730 int i;
731
732 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
733 err = alloc_all_endpoints_fixed_ep(sc);
734 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
735 err = alloc_all_endpoints_yamaha(sc);
736 } else {
737 err = alloc_all_endpoints_genuine(sc);
738 }
739 if (err != USBD_NORMAL_COMPLETION)
740 return err;
741
742 ep = sc->sc_endpoints;
743 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
744 err = alloc_pipe(ep++);
745 if (err != USBD_NORMAL_COMPLETION) {
746 for (; ep != sc->sc_endpoints; ep--)
747 free_pipe(ep-1);
748 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
749 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
750 break;
751 }
752 }
753 return err;
754 }
755
756 static void
757 free_all_endpoints(struct umidi_softc *sc)
758 {
759 int i;
760
761 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
762 free_pipe(&sc->sc_endpoints[i]);
763 if (sc->sc_endpoints != NULL)
764 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
765 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
766 }
767
768 static usbd_status
769 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
770 {
771 usbd_status err;
772 const struct umq_fixed_ep_desc *fp;
773 struct umidi_endpoint *ep;
774 usb_endpoint_descriptor_t *epd;
775 int i;
776
777 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
778 UMQ_TYPE_FIXED_EP);
779 sc->sc_out_num_jacks = 0;
780 sc->sc_in_num_jacks = 0;
781 sc->sc_out_num_endpoints = fp->num_out_ep;
782 sc->sc_in_num_endpoints = fp->num_in_ep;
783 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
784 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
785 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
786 sc->sc_in_ep =
787 sc->sc_in_num_endpoints ?
788 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
789
790 ep = &sc->sc_out_ep[0];
791 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
792 epd = usbd_interface2endpoint_descriptor(
793 sc->sc_iface,
794 fp->out_ep[i].ep);
795 if (!epd) {
796 aprint_error_dev(sc->sc_dev,
797 "cannot get endpoint descriptor(out:%d)\n",
798 fp->out_ep[i].ep);
799 err = USBD_INVAL;
800 goto error;
801 }
802 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
803 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
804 aprint_error_dev(sc->sc_dev,
805 "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
806 err = USBD_INVAL;
807 goto error;
808 }
809 ep->sc = sc;
810 ep->addr = epd->bEndpointAddress;
811 ep->num_jacks = fp->out_ep[i].num_jacks;
812 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
813 ep->num_open = 0;
814 ep++;
815 }
816 ep = &sc->sc_in_ep[0];
817 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
818 epd = usbd_interface2endpoint_descriptor(
819 sc->sc_iface,
820 fp->in_ep[i].ep);
821 if (!epd) {
822 aprint_error_dev(sc->sc_dev,
823 "cannot get endpoint descriptor(in:%d)\n",
824 fp->in_ep[i].ep);
825 err = USBD_INVAL;
826 goto error;
827 }
828 /*
829 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
830 * endpoint. The existing input logic in this driver seems
831 * to work successfully if we just stop treating an interrupt
832 * endpoint as illegal (or the in_progress status we get on
833 * the initial transfer). It does not seem necessary to
834 * actually use the interrupt flavor of alloc_pipe or make
835 * other serious rearrangements of logic. I like that.
836 */
837 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
838 case UE_BULK:
839 case UE_INTERRUPT:
840 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
841 break;
842 /*FALLTHROUGH*/
843 default:
844 aprint_error_dev(sc->sc_dev,
845 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
846 err = USBD_INVAL;
847 goto error;
848 }
849
850 ep->sc = sc;
851 ep->addr = epd->bEndpointAddress;
852 ep->num_jacks = fp->in_ep[i].num_jacks;
853 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
854 ep->num_open = 0;
855 ep++;
856 }
857
858 return USBD_NORMAL_COMPLETION;
859 error:
860 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
861 sc->sc_endpoints = NULL;
862 return err;
863 }
864
865 static usbd_status
866 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
867 {
868 /* This driver currently supports max 1in/1out bulk endpoints */
869 usb_descriptor_t *desc;
870 umidi_cs_descriptor_t *udesc;
871 usb_endpoint_descriptor_t *epd;
872 int out_addr, in_addr, i;
873 int dir;
874 size_t remain, descsize;
875
876 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
877 out_addr = in_addr = 0;
878
879 /* detect endpoints */
880 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
881 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
882 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
883 KASSERT(epd != NULL);
884 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
885 dir = UE_GET_DIR(epd->bEndpointAddress);
886 if (dir==UE_DIR_OUT && !out_addr)
887 out_addr = epd->bEndpointAddress;
888 else if (dir==UE_DIR_IN && !in_addr)
889 in_addr = epd->bEndpointAddress;
890 }
891 }
892 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
893
894 /* count jacks */
895 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
896 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
897 return USBD_INVAL;
898 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
899 (size_t)udesc->bLength;
900 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
901
902 while (remain >= sizeof(usb_descriptor_t)) {
903 descsize = udesc->bLength;
904 if (descsize>remain || descsize==0)
905 break;
906 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
907 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
908 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
909 sc->sc_out_num_jacks++;
910 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
911 sc->sc_in_num_jacks++;
912 }
913 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
914 remain -= descsize;
915 }
916
917 /* validate some parameters */
918 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
919 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
920 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
921 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
922 if (sc->sc_out_num_jacks && out_addr) {
923 sc->sc_out_num_endpoints = 1;
924 } else {
925 sc->sc_out_num_endpoints = 0;
926 sc->sc_out_num_jacks = 0;
927 }
928 if (sc->sc_in_num_jacks && in_addr) {
929 sc->sc_in_num_endpoints = 1;
930 } else {
931 sc->sc_in_num_endpoints = 0;
932 sc->sc_in_num_jacks = 0;
933 }
934 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
935 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
936 if (sc->sc_out_num_endpoints) {
937 sc->sc_out_ep = sc->sc_endpoints;
938 sc->sc_out_ep->sc = sc;
939 sc->sc_out_ep->addr = out_addr;
940 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
941 sc->sc_out_ep->num_open = 0;
942 } else
943 sc->sc_out_ep = NULL;
944
945 if (sc->sc_in_num_endpoints) {
946 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
947 sc->sc_in_ep->sc = sc;
948 sc->sc_in_ep->addr = in_addr;
949 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
950 sc->sc_in_ep->num_open = 0;
951 } else
952 sc->sc_in_ep = NULL;
953
954 return USBD_NORMAL_COMPLETION;
955 }
956
957 static usbd_status
958 alloc_all_endpoints_genuine(struct umidi_softc *sc)
959 {
960 usb_interface_descriptor_t *interface_desc;
961 usb_config_descriptor_t *config_desc;
962 usb_descriptor_t *desc;
963 int num_ep;
964 size_t remain, descsize;
965 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
966 int epaddr;
967
968 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
969 num_ep = interface_desc->bNumEndpoints;
970 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
971 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
972 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
973 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
974 epaddr = -1;
975
976 /* get the list of endpoints for midi stream */
977 config_desc = usbd_get_config_descriptor(sc->sc_udev);
978 desc = (usb_descriptor_t *) config_desc;
979 remain = (size_t)UGETW(config_desc->wTotalLength);
980 while (remain>=sizeof(usb_descriptor_t)) {
981 descsize = desc->bLength;
982 if (descsize>remain || descsize==0)
983 break;
984 if (desc->bDescriptorType==UDESC_ENDPOINT &&
985 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
986 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
987 epaddr = TO_EPD(desc)->bEndpointAddress;
988 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
989 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
990 epaddr!=-1) {
991 if (num_ep>0) {
992 num_ep--;
993 p->sc = sc;
994 p->addr = epaddr;
995 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
996 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
997 sc->sc_out_num_endpoints++;
998 sc->sc_out_num_jacks += p->num_jacks;
999 } else {
1000 sc->sc_in_num_endpoints++;
1001 sc->sc_in_num_jacks += p->num_jacks;
1002 }
1003 p++;
1004 }
1005 } else
1006 epaddr = -1;
1007 desc = NEXT_D(desc);
1008 remain-=descsize;
1009 }
1010
1011 /* sort endpoints */
1012 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1013 p = sc->sc_endpoints;
1014 endep = p + num_ep;
1015 while (p<endep) {
1016 lowest = p;
1017 for (q=p+1; q<endep; q++) {
1018 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1019 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1020 ((UE_GET_DIR(lowest->addr)==
1021 UE_GET_DIR(q->addr)) &&
1022 (UE_GET_ADDR(lowest->addr)>
1023 UE_GET_ADDR(q->addr))))
1024 lowest = q;
1025 }
1026 if (lowest != p) {
1027 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1028 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1029 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1030 }
1031 p->num_open = 0;
1032 p++;
1033 }
1034
1035 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1036 sc->sc_in_ep =
1037 sc->sc_in_num_endpoints ?
1038 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1039
1040 return USBD_NORMAL_COMPLETION;
1041 }
1042
1043
1044 /*
1045 * jack stuffs
1046 */
1047
1048 static usbd_status
1049 alloc_all_jacks(struct umidi_softc *sc)
1050 {
1051 int i, j;
1052 struct umidi_endpoint *ep;
1053 struct umidi_jack *jack;
1054 const unsigned char *cn_spec;
1055
1056 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1057 sc->cblnums_global = 0;
1058 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1059 sc->cblnums_global = 1;
1060 else {
1061 /*
1062 * I don't think this default is correct, but it preserves
1063 * the prior behavior of the code. That's why I defined two
1064 * complementary quirks. Any device for which the default
1065 * behavior is wrong can be made to work by giving it an
1066 * explicit quirk, and if a pattern ever develops (as I suspect
1067 * it will) that a lot of otherwise standard USB MIDI devices
1068 * need the CN_SEQ_PER_EP "quirk," then this default can be
1069 * changed to 0, and the only devices that will break are those
1070 * listing neither quirk, and they'll easily be fixed by giving
1071 * them the CN_SEQ_GLOBAL quirk.
1072 */
1073 sc->cblnums_global = 1;
1074 }
1075
1076 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1077 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1078 UMQ_TYPE_CN_FIXED);
1079 else
1080 cn_spec = NULL;
1081
1082 /* allocate/initialize structures */
1083 sc->sc_jacks =
1084 kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks
1085 + sc->sc_out_num_jacks), KM_SLEEP);
1086 if (!sc->sc_jacks)
1087 return USBD_NOMEM;
1088 sc->sc_out_jacks =
1089 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1090 sc->sc_in_jacks =
1091 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1092
1093 jack = &sc->sc_out_jacks[0];
1094 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1095 jack->opened = 0;
1096 jack->bound = 0;
1097 jack->arg = NULL;
1098 jack->u.out.intr = NULL;
1099 jack->midiman_ppkt = NULL;
1100 if (sc->cblnums_global)
1101 jack->cable_number = i;
1102 jack++;
1103 }
1104 jack = &sc->sc_in_jacks[0];
1105 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1106 jack->opened = 0;
1107 jack->bound = 0;
1108 jack->arg = NULL;
1109 jack->u.in.intr = NULL;
1110 if (sc->cblnums_global)
1111 jack->cable_number = i;
1112 jack++;
1113 }
1114
1115 /* assign each jacks to each endpoints */
1116 jack = &sc->sc_out_jacks[0];
1117 ep = &sc->sc_out_ep[0];
1118 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1119 for (j = 0; j < ep->num_jacks; j++) {
1120 jack->endpoint = ep;
1121 if (cn_spec != NULL)
1122 jack->cable_number = *cn_spec++;
1123 else if (!sc->cblnums_global)
1124 jack->cable_number = j;
1125 ep->jacks[jack->cable_number] = jack;
1126 jack++;
1127 }
1128 ep++;
1129 }
1130 jack = &sc->sc_in_jacks[0];
1131 ep = &sc->sc_in_ep[0];
1132 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1133 for (j = 0; j < ep->num_jacks; j++) {
1134 jack->endpoint = ep;
1135 if (cn_spec != NULL)
1136 jack->cable_number = *cn_spec++;
1137 else if (!sc->cblnums_global)
1138 jack->cable_number = j;
1139 ep->jacks[jack->cable_number] = jack;
1140 jack++;
1141 }
1142 ep++;
1143 }
1144
1145 return USBD_NORMAL_COMPLETION;
1146 }
1147
1148 static void
1149 free_all_jacks(struct umidi_softc *sc)
1150 {
1151 struct umidi_jack *jacks;
1152 size_t len;
1153
1154 mutex_enter(&sc->sc_lock);
1155 jacks = sc->sc_jacks;
1156 len = sizeof(*sc->sc_out_jacks)
1157 * (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1158 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1159 mutex_exit(&sc->sc_lock);
1160
1161 if (jacks)
1162 kmem_free(jacks, len);
1163 }
1164
1165 static usbd_status
1166 bind_jacks_to_mididev(struct umidi_softc *sc,
1167 struct umidi_jack *out_jack,
1168 struct umidi_jack *in_jack,
1169 struct umidi_mididev *mididev)
1170 {
1171 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1172 return USBD_IN_USE;
1173 if (mididev->out_jack || mididev->in_jack)
1174 return USBD_IN_USE;
1175
1176 if (out_jack)
1177 out_jack->bound = 1;
1178 if (in_jack)
1179 in_jack->bound = 1;
1180 mididev->in_jack = in_jack;
1181 mididev->out_jack = out_jack;
1182
1183 mididev->closing = 0;
1184
1185 return USBD_NORMAL_COMPLETION;
1186 }
1187
1188 static void
1189 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1190 {
1191 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1192
1193 mididev->closing = 1;
1194
1195 if ((mididev->flags & FWRITE) && mididev->out_jack)
1196 close_out_jack(mididev->out_jack);
1197 if ((mididev->flags & FREAD) && mididev->in_jack)
1198 close_in_jack(mididev->in_jack);
1199
1200 if (mididev->out_jack) {
1201 mididev->out_jack->bound = 0;
1202 mididev->out_jack = NULL;
1203 }
1204 if (mididev->in_jack) {
1205 mididev->in_jack->bound = 0;
1206 mididev->in_jack = NULL;
1207 }
1208 }
1209
1210 static void
1211 unbind_all_jacks(struct umidi_softc *sc)
1212 {
1213 int i;
1214
1215 mutex_enter(&sc->sc_lock);
1216 if (sc->sc_mididevs)
1217 for (i = 0; i < sc->sc_num_mididevs; i++)
1218 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1219 mutex_exit(&sc->sc_lock);
1220 }
1221
1222 static usbd_status
1223 assign_all_jacks_automatically(struct umidi_softc *sc)
1224 {
1225 usbd_status err;
1226 int i;
1227 struct umidi_jack *out, *in;
1228 const signed char *asg_spec;
1229
1230 err =
1231 alloc_all_mididevs(sc,
1232 uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1233 if (err!=USBD_NORMAL_COMPLETION)
1234 return err;
1235
1236 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1237 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1238 UMQ_TYPE_MD_FIXED);
1239 else
1240 asg_spec = NULL;
1241
1242 for (i = 0; i < sc->sc_num_mididevs; i++) {
1243 if (asg_spec != NULL) {
1244 if (*asg_spec == -1)
1245 out = NULL;
1246 else
1247 out = &sc->sc_out_jacks[*asg_spec];
1248 ++ asg_spec;
1249 if (*asg_spec == -1)
1250 in = NULL;
1251 else
1252 in = &sc->sc_in_jacks[*asg_spec];
1253 ++ asg_spec;
1254 } else {
1255 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1256 : NULL;
1257 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1258 : NULL;
1259 }
1260 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1261 if (err != USBD_NORMAL_COMPLETION) {
1262 free_all_mididevs(sc);
1263 return err;
1264 }
1265 }
1266
1267 return USBD_NORMAL_COMPLETION;
1268 }
1269
1270 static usbd_status
1271 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1272 {
1273 struct umidi_endpoint *ep = jack->endpoint;
1274 struct umidi_softc *sc = ep->sc;
1275 umidi_packet_bufp end;
1276 int err;
1277
1278 KASSERT(mutex_owned(&sc->sc_lock));
1279
1280 if (jack->opened)
1281 return USBD_IN_USE;
1282
1283 jack->arg = arg;
1284 jack->u.out.intr = intr;
1285 jack->midiman_ppkt = NULL;
1286 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1287 jack->opened = 1;
1288 ep->num_open++;
1289 /*
1290 * out_solicit maintains an invariant that there will always be
1291 * (num_open - num_scheduled) slots free in the buffer. as we have
1292 * just incremented num_open, the buffer may be too full to satisfy
1293 * the invariant until a transfer completes, for which we must wait.
1294 */
1295 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1296 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1297 mstohz(10));
1298 if (err) {
1299 ep->num_open--;
1300 jack->opened = 0;
1301 return USBD_IOERROR;
1302 }
1303 }
1304
1305 return USBD_NORMAL_COMPLETION;
1306 }
1307
1308 static usbd_status
1309 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1310 {
1311 usbd_status err = USBD_NORMAL_COMPLETION;
1312 struct umidi_endpoint *ep = jack->endpoint;
1313
1314 KASSERT(mutex_owned(&ep->sc->sc_lock));
1315
1316 if (jack->opened)
1317 return USBD_IN_USE;
1318
1319 jack->arg = arg;
1320 jack->u.in.intr = intr;
1321 jack->opened = 1;
1322 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1323 /*
1324 * Can't hold the interrupt lock while calling into USB,
1325 * but we can safely drop it here.
1326 */
1327 mutex_exit(&ep->sc->sc_lock);
1328 err = start_input_transfer(ep);
1329 if (err != USBD_NORMAL_COMPLETION &&
1330 err != USBD_IN_PROGRESS) {
1331 ep->num_open--;
1332 }
1333 mutex_enter(&ep->sc->sc_lock);
1334 }
1335
1336 return err;
1337 }
1338
1339 static void
1340 close_out_jack(struct umidi_jack *jack)
1341 {
1342 struct umidi_endpoint *ep;
1343 struct umidi_softc *sc;
1344 uint16_t mask;
1345 int err;
1346
1347 if (jack->opened) {
1348 ep = jack->endpoint;
1349 sc = ep->sc;
1350
1351 KASSERT(mutex_owned(&sc->sc_lock));
1352 mask = 1 << (jack->cable_number);
1353 while (mask & (ep->this_schedule | ep->next_schedule)) {
1354 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1355 mstohz(10));
1356 if (err)
1357 break;
1358 }
1359 /*
1360 * We can re-enter this function from both close() and
1361 * detach(). Make sure only one of them does this part.
1362 */
1363 if (jack->opened) {
1364 jack->opened = 0;
1365 jack->endpoint->num_open--;
1366 ep->this_schedule &= ~mask;
1367 ep->next_schedule &= ~mask;
1368 }
1369 }
1370 }
1371
1372 static void
1373 close_in_jack(struct umidi_jack *jack)
1374 {
1375 if (jack->opened) {
1376 struct umidi_softc *sc = jack->endpoint->sc;
1377
1378 KASSERT(mutex_owned(&sc->sc_lock));
1379
1380 jack->opened = 0;
1381 if (--jack->endpoint->num_open == 0) {
1382 /*
1383 * We have to drop the (interrupt) lock so that
1384 * the USB thread lock can be safely taken by
1385 * the abort operation. This is safe as this
1386 * either closing or dying will be set proerly.
1387 */
1388 mutex_exit(&sc->sc_lock);
1389 usbd_abort_pipe(jack->endpoint->pipe);
1390 mutex_enter(&sc->sc_lock);
1391 }
1392 }
1393 }
1394
1395 static usbd_status
1396 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1397 {
1398 if (mididev->sc)
1399 return USBD_IN_USE;
1400
1401 mididev->sc = sc;
1402
1403 describe_mididev(mididev);
1404
1405 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1406
1407 return USBD_NORMAL_COMPLETION;
1408 }
1409
1410 static usbd_status
1411 detach_mididev(struct umidi_mididev *mididev, int flags)
1412 {
1413 struct umidi_softc *sc = mididev->sc;
1414
1415 if (!sc)
1416 return USBD_NO_ADDR;
1417
1418 mutex_enter(&sc->sc_lock);
1419 if (mididev->opened) {
1420 umidi_close(mididev);
1421 }
1422 unbind_jacks_from_mididev(mididev);
1423 mutex_exit(&sc->sc_lock);
1424
1425 if (mididev->mdev != NULL)
1426 config_detach(mididev->mdev, flags);
1427
1428 if (NULL != mididev->label) {
1429 kmem_free(mididev->label, mididev->label_len);
1430 mididev->label = NULL;
1431 }
1432
1433 mididev->sc = NULL;
1434
1435 return USBD_NORMAL_COMPLETION;
1436 }
1437
1438 static void
1439 deactivate_mididev(struct umidi_mididev *mididev)
1440 {
1441 if (mididev->out_jack)
1442 mididev->out_jack->bound = 0;
1443 if (mididev->in_jack)
1444 mididev->in_jack->bound = 0;
1445 }
1446
1447 static usbd_status
1448 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1449 {
1450 sc->sc_num_mididevs = nmidi;
1451 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1452 return USBD_NORMAL_COMPLETION;
1453 }
1454
1455 static void
1456 free_all_mididevs(struct umidi_softc *sc)
1457 {
1458 struct umidi_mididev *mididevs;
1459 size_t len;
1460
1461 mutex_enter(&sc->sc_lock);
1462 mididevs = sc->sc_mididevs;
1463 if (mididevs)
1464 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1465 sc->sc_mididevs = NULL;
1466 sc->sc_num_mididevs = 0;
1467 mutex_exit(&sc->sc_lock);
1468
1469 if (mididevs)
1470 kmem_free(mididevs, len);
1471 }
1472
1473 static usbd_status
1474 attach_all_mididevs(struct umidi_softc *sc)
1475 {
1476 usbd_status err;
1477 int i;
1478
1479 if (sc->sc_mididevs)
1480 for (i = 0; i < sc->sc_num_mididevs; i++) {
1481 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1482 if (err != USBD_NORMAL_COMPLETION)
1483 return err;
1484 }
1485
1486 return USBD_NORMAL_COMPLETION;
1487 }
1488
1489 static usbd_status
1490 detach_all_mididevs(struct umidi_softc *sc, int flags)
1491 {
1492 usbd_status err;
1493 int i;
1494
1495 if (sc->sc_mididevs)
1496 for (i = 0; i < sc->sc_num_mididevs; i++) {
1497 err = detach_mididev(&sc->sc_mididevs[i], flags);
1498 if (err != USBD_NORMAL_COMPLETION)
1499 return err;
1500 }
1501
1502 return USBD_NORMAL_COMPLETION;
1503 }
1504
1505 static void
1506 deactivate_all_mididevs(struct umidi_softc *sc)
1507 {
1508 int i;
1509
1510 if (sc->sc_mididevs) {
1511 for (i = 0; i < sc->sc_num_mididevs; i++)
1512 deactivate_mididev(&sc->sc_mididevs[i]);
1513 }
1514 }
1515
1516 /*
1517 * TODO: the 0-based cable numbers will often not match the labeling of the
1518 * equipment. Ideally:
1519 * For class-compliant devices: get the iJack string from the jack descriptor.
1520 * Otherwise:
1521 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1522 * number for display)
1523 * - support an array quirk explictly giving a char * for each jack.
1524 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1525 * the CNs are not globally unique, each is shown with its associated endpoint
1526 * address in hex also. That should not be necessary when using iJack values
1527 * or a quirk array.
1528 */
1529 void
1530 describe_mididev(struct umidi_mididev *md)
1531 {
1532 char in_label[16];
1533 char out_label[16];
1534 const char *unit_label;
1535 char *final_label;
1536 struct umidi_softc *sc;
1537 int show_ep_in;
1538 int show_ep_out;
1539 size_t len;
1540
1541 sc = md->sc;
1542 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1543 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1544
1545 if (NULL == md->in_jack)
1546 in_label[0] = '\0';
1547 else if (show_ep_in)
1548 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1549 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1550 else
1551 snprintf(in_label, sizeof(in_label), "<%d ",
1552 md->in_jack->cable_number);
1553
1554 if (NULL == md->out_jack)
1555 out_label[0] = '\0';
1556 else if (show_ep_out)
1557 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1558 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1559 else
1560 snprintf(out_label, sizeof(out_label), ">%d ",
1561 md->out_jack->cable_number);
1562
1563 unit_label = device_xname(sc->sc_dev);
1564
1565 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1566
1567 final_label = kmem_alloc(len, KM_SLEEP);
1568
1569 snprintf(final_label, len, "%s%son %s",
1570 in_label, out_label, unit_label);
1571
1572 md->label = final_label;
1573 md->label_len = len;
1574 }
1575
1576 #ifdef UMIDI_DEBUG
1577 static void
1578 dump_sc(struct umidi_softc *sc)
1579 {
1580 int i;
1581
1582 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1583 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1584 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1585 dump_ep(&sc->sc_out_ep[i]);
1586 }
1587 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1588 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1589 dump_ep(&sc->sc_in_ep[i]);
1590 }
1591 }
1592
1593 static void
1594 dump_ep(struct umidi_endpoint *ep)
1595 {
1596 int i;
1597 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1598 if (NULL==ep->jacks[i])
1599 continue;
1600 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1601 dump_jack(ep->jacks[i]);
1602 }
1603 }
1604 static void
1605 dump_jack(struct umidi_jack *jack)
1606 {
1607 DPRINTFN(10, ("\t\t\tep=%p\n",
1608 jack->endpoint));
1609 }
1610
1611 #endif /* UMIDI_DEBUG */
1612
1613
1614
1615 /*
1616 * MUX MIDI PACKET
1617 */
1618
1619 static const int packet_length[16] = {
1620 /*0*/ -1,
1621 /*1*/ -1,
1622 /*2*/ 2,
1623 /*3*/ 3,
1624 /*4*/ 3,
1625 /*5*/ 1,
1626 /*6*/ 2,
1627 /*7*/ 3,
1628 /*8*/ 3,
1629 /*9*/ 3,
1630 /*A*/ 3,
1631 /*B*/ 3,
1632 /*C*/ 2,
1633 /*D*/ 2,
1634 /*E*/ 3,
1635 /*F*/ 1,
1636 };
1637
1638 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1639 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1640 #define MIX_CN_CIN(cn, cin) \
1641 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1642 ((unsigned char)(cin)&0x0F)))
1643
1644 static usbd_status
1645 start_input_transfer(struct umidi_endpoint *ep)
1646 {
1647 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1648 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1649 return usbd_transfer(ep->xfer);
1650 }
1651
1652 static usbd_status
1653 start_output_transfer(struct umidi_endpoint *ep)
1654 {
1655 usbd_status rv;
1656 uint32_t length;
1657 int i;
1658
1659 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1660 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1661 ep->buffer, ep->next_slot, length));
1662
1663 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1664 USBD_NO_TIMEOUT, out_intr);
1665 rv = usbd_transfer(ep->xfer);
1666
1667 /*
1668 * Once the transfer is scheduled, no more adding to partial
1669 * packets within it.
1670 */
1671 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1672 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1673 if (NULL != ep->jacks[i])
1674 ep->jacks[i]->midiman_ppkt = NULL;
1675 }
1676
1677 return rv;
1678 }
1679
1680 #ifdef UMIDI_DEBUG
1681 #define DPR_PACKET(dir, sc, p) \
1682 if ((unsigned char)(p)[1]!=0xFE) \
1683 DPRINTFN(500, \
1684 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1685 device_xname(sc->sc_dev), \
1686 (unsigned char)(p)[0], \
1687 (unsigned char)(p)[1], \
1688 (unsigned char)(p)[2], \
1689 (unsigned char)(p)[3]));
1690 #else
1691 #define DPR_PACKET(dir, sc, p)
1692 #endif
1693
1694 /*
1695 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1696 * with the cable number and length in the last byte instead of the first,
1697 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1698 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1699 * with a cable nybble and a length nybble (which, unlike the CIN of a
1700 * real USB MIDI packet, has no semantics at all besides the length).
1701 * A packet received from a Midiman may contain part of a MIDI message,
1702 * more than one MIDI message, or parts of more than one MIDI message. A
1703 * three-byte MIDI message may arrive in three packets of data length 1, and
1704 * running status may be used. Happily, the midi(4) driver above us will put
1705 * it all back together, so the only cost is in USB bandwidth. The device
1706 * has an easier time with what it receives from us: we'll pack messages in
1707 * and across packets, but filling the packets whenever possible and,
1708 * as midi(4) hands us a complete message at a time, we'll never send one
1709 * in a dribble of short packets.
1710 */
1711
1712 static int
1713 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1714 {
1715 struct umidi_endpoint *ep = out_jack->endpoint;
1716 struct umidi_softc *sc = ep->sc;
1717 unsigned char *packet;
1718 int plen;
1719 int poff;
1720
1721 KASSERT(mutex_owned(&sc->sc_lock));
1722
1723 if (sc->sc_dying)
1724 return EIO;
1725
1726 if (!out_jack->opened)
1727 return ENODEV; /* XXX as it was, is this the right errno? */
1728
1729 sc->sc_refcnt++;
1730
1731 #ifdef UMIDI_DEBUG
1732 if (umididebug >= 100)
1733 microtime(&umidi_tv);
1734 #endif
1735 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1736 "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1737 (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1738
1739 packet = *ep->next_slot++;
1740 KASSERT(ep->buffer_size >=
1741 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1742 memset(packet, 0, UMIDI_PACKET_SIZE);
1743 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1744 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1745 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1746 plen = 3 - poff;
1747 if (plen > len)
1748 plen = len;
1749 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1750 src += plen;
1751 len -= plen;
1752 plen += poff;
1753 out_jack->midiman_ppkt[3] =
1754 MIX_CN_CIN(out_jack->cable_number, plen);
1755 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1756 if (3 == plen)
1757 out_jack->midiman_ppkt = NULL; /* no more */
1758 }
1759 if (0 == len)
1760 ep->next_slot--; /* won't be needed, nevermind */
1761 else {
1762 memcpy(packet, src, len);
1763 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1764 DPR_PACKET(out, sc, packet);
1765 if (len < 3)
1766 out_jack->midiman_ppkt = packet;
1767 }
1768 } else { /* the nice simple USB class-compliant case */
1769 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1770 memcpy(packet+1, src, len);
1771 DPR_PACKET(out, sc, packet);
1772 }
1773 ep->next_schedule |= 1<<(out_jack->cable_number);
1774 ++ ep->num_scheduled;
1775 if (!ep->armed && !ep->soliciting) {
1776 /*
1777 * It would be bad to call out_solicit directly here (the
1778 * caller need not be reentrant) but a soft interrupt allows
1779 * solicit to run immediately the caller exits its critical
1780 * section, and if the caller has more to write we can get it
1781 * before starting the USB transfer, and send a longer one.
1782 */
1783 ep->soliciting = 1;
1784 kpreempt_disable();
1785 softint_schedule(ep->solicit_cookie);
1786 kpreempt_enable();
1787 }
1788
1789 if (--sc->sc_refcnt < 0)
1790 cv_broadcast(&sc->sc_detach_cv);
1791
1792 return 0;
1793 }
1794
1795 static void
1796 in_intr(struct usbd_xfer *xfer, void *priv,
1797 usbd_status status)
1798 {
1799 int cn, len, i;
1800 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1801 struct umidi_softc *sc = ep->sc;
1802 struct umidi_jack *jack;
1803 unsigned char *packet;
1804 umidi_packet_bufp slot;
1805 umidi_packet_bufp end;
1806 unsigned char *data;
1807 uint32_t count;
1808
1809 if (ep->sc->sc_dying || !ep->num_open)
1810 return;
1811
1812 mutex_enter(&sc->sc_lock);
1813 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1814 if (0 == count % UMIDI_PACKET_SIZE) {
1815 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1816 device_xname(ep->sc->sc_dev), ep, count));
1817 } else {
1818 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1819 device_xname(ep->sc->sc_dev), ep, count));
1820 }
1821
1822 slot = ep->buffer;
1823 end = slot + count / sizeof(*slot);
1824
1825 for (packet = *slot; slot < end; packet = *++slot) {
1826
1827 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1828 cn = (0xf0&(packet[3]))>>4;
1829 len = 0x0f&(packet[3]);
1830 data = packet;
1831 } else {
1832 cn = GET_CN(packet[0]);
1833 len = packet_length[GET_CIN(packet[0])];
1834 data = packet + 1;
1835 }
1836 /* 0 <= cn <= 15 by inspection of above code */
1837 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1838 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1839 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1840 device_xname(ep->sc->sc_dev), ep, cn, len,
1841 (unsigned)data[0],
1842 (unsigned)data[1],
1843 (unsigned)data[2]));
1844 mutex_exit(&sc->sc_lock);
1845 return;
1846 }
1847
1848 if (!jack->bound || !jack->opened)
1849 continue;
1850
1851 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1852 "%02X %02X %02X\n",
1853 device_xname(ep->sc->sc_dev), ep, cn, len,
1854 (unsigned)data[0],
1855 (unsigned)data[1],
1856 (unsigned)data[2]));
1857
1858 if (jack->u.in.intr) {
1859 for (i = 0; i < len; i++) {
1860 (*jack->u.in.intr)(jack->arg, data[i]);
1861 }
1862 }
1863
1864 }
1865
1866 (void)start_input_transfer(ep);
1867 mutex_exit(&sc->sc_lock);
1868 }
1869
1870 static void
1871 out_intr(struct usbd_xfer *xfer, void *priv,
1872 usbd_status status)
1873 {
1874 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1875 struct umidi_softc *sc = ep->sc;
1876 uint32_t count;
1877
1878 if (sc->sc_dying)
1879 return;
1880
1881 mutex_enter(&sc->sc_lock);
1882 #ifdef UMIDI_DEBUG
1883 if (umididebug >= 200)
1884 microtime(&umidi_tv);
1885 #endif
1886 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1887 if (0 == count % UMIDI_PACKET_SIZE) {
1888 DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1889 "length %u\n", device_xname(ep->sc->sc_dev),
1890 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1891 count));
1892 } else {
1893 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1894 device_xname(ep->sc->sc_dev), ep, count));
1895 }
1896 count /= UMIDI_PACKET_SIZE;
1897
1898 /*
1899 * If while the transfer was pending we buffered any new messages,
1900 * move them to the start of the buffer.
1901 */
1902 ep->next_slot -= count;
1903 if (ep->buffer < ep->next_slot) {
1904 memcpy(ep->buffer, ep->buffer + count,
1905 (char *)ep->next_slot - (char *)ep->buffer);
1906 }
1907 cv_broadcast(&sc->sc_cv);
1908 /*
1909 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1910 * Running at IPL_USB so the following should happen to be safe.
1911 */
1912 ep->armed = 0;
1913 if (!ep->soliciting) {
1914 ep->soliciting = 1;
1915 out_solicit_locked(ep);
1916 }
1917 mutex_exit(&sc->sc_lock);
1918 }
1919
1920 /*
1921 * A jack on which we have received a packet must be called back on its
1922 * out.intr handler before it will send us another; it is considered
1923 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1924 * we need no extra buffer space for it.
1925 *
1926 * In contrast, a jack that is open but not scheduled may supply us a packet
1927 * at any time, driven by the top half, and we must be able to accept it, no
1928 * excuses. So we must ensure that at any point in time there are at least
1929 * (num_open - num_scheduled) slots free.
1930 *
1931 * As long as there are more slots free than that minimum, we can loop calling
1932 * scheduled jacks back on their "interrupt" handlers, soliciting more
1933 * packets, starting the USB transfer only when the buffer space is down to
1934 * the minimum or no jack has any more to send.
1935 */
1936
1937 static void
1938 out_solicit_locked(void *arg)
1939 {
1940 struct umidi_endpoint *ep = arg;
1941 umidi_packet_bufp end;
1942 uint16_t which;
1943 struct umidi_jack *jack;
1944
1945 KASSERT(mutex_owned(&ep->sc->sc_lock));
1946
1947 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1948
1949 for ( ;; ) {
1950 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1951 break; /* at IPL_USB */
1952 if (ep->this_schedule == 0) {
1953 if (ep->next_schedule == 0)
1954 break; /* at IPL_USB */
1955 ep->this_schedule = ep->next_schedule;
1956 ep->next_schedule = 0;
1957 }
1958 /*
1959 * At least one jack is scheduled. Find and mask off the least
1960 * set bit in this_schedule and decrement num_scheduled.
1961 * Convert mask to bit index to find the corresponding jack,
1962 * and call its intr handler. If it has a message, it will call
1963 * back one of the output methods, which will set its bit in
1964 * next_schedule (not copied into this_schedule until the
1965 * latter is empty). In this way we round-robin the jacks that
1966 * have messages to send, until the buffer is as full as we
1967 * dare, and then start a transfer.
1968 */
1969 which = ep->this_schedule;
1970 which &= (~which)+1; /* now mask of least set bit */
1971 ep->this_schedule &= ~which;
1972 --ep->num_scheduled;
1973
1974 --which; /* now 1s below mask - count 1s to get index */
1975 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1976 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1977 which = (((which >> 4) + which) & 0x0f0f);
1978 which += (which >> 8);
1979 which &= 0x1f; /* the bit index a/k/a jack number */
1980
1981 jack = ep->jacks[which];
1982 if (jack->u.out.intr)
1983 (*jack->u.out.intr)(jack->arg);
1984 }
1985 /* intr lock held at loop exit */
1986 if (!ep->armed && ep->next_slot > ep->buffer) {
1987 /*
1988 * Can't hold the interrupt lock while calling into USB,
1989 * but we can safely drop it here.
1990 */
1991 mutex_exit(&ep->sc->sc_lock);
1992 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1993 mutex_enter(&ep->sc->sc_lock);
1994 }
1995 ep->soliciting = 0;
1996 }
1997
1998 /* Entry point for the softintr. */
1999 static void
2000 out_solicit(void *arg)
2001 {
2002 struct umidi_endpoint *ep = arg;
2003 struct umidi_softc *sc = ep->sc;
2004
2005 mutex_enter(&sc->sc_lock);
2006 out_solicit_locked(arg);
2007 mutex_exit(&sc->sc_lock);
2008 }
2009