umidi.c revision 1.81 1 /* $NetBSD: umidi.c,v 1.81 2019/12/01 08:27:54 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.81 2019/12/01 08:27:54 maxv Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59
60 #include <dev/usb/usbdevs.h>
61 #include <dev/usb/umidi_quirks.h>
62 #include <dev/midi_if.h>
63
64 /* Jack Descriptor */
65 #define UMIDI_MS_HEADER 0x01
66 #define UMIDI_IN_JACK 0x02
67 #define UMIDI_OUT_JACK 0x03
68
69 /* Jack Type */
70 #define UMIDI_EMBEDDED 0x01
71 #define UMIDI_EXTERNAL 0x02
72
73 /* generic, for iteration */
74 typedef struct {
75 uByte bLength;
76 uByte bDescriptorType;
77 uByte bDescriptorSubtype;
78 } UPACKED umidi_cs_descriptor_t;
79
80 typedef struct {
81 uByte bLength;
82 uByte bDescriptorType;
83 uByte bDescriptorSubtype;
84 uWord bcdMSC;
85 uWord wTotalLength;
86 } UPACKED umidi_cs_interface_descriptor_t;
87 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
88
89 typedef struct {
90 uByte bLength;
91 uByte bDescriptorType;
92 uByte bDescriptorSubtype;
93 uByte bNumEmbMIDIJack;
94 } UPACKED umidi_cs_endpoint_descriptor_t;
95 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
96
97 typedef struct {
98 uByte bLength;
99 uByte bDescriptorType;
100 uByte bDescriptorSubtype;
101 uByte bJackType;
102 uByte bJackID;
103 } UPACKED umidi_jack_descriptor_t;
104 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
105
106
107 #define TO_D(p) ((usb_descriptor_t *)(p))
108 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
109 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
110 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
111 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
112 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
113
114
115 #define UMIDI_PACKET_SIZE 4
116
117 /*
118 * hierarchie
119 *
120 * <-- parent child -->
121 *
122 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
123 * ^ | ^ |
124 * +-----+ +-----+
125 */
126
127 /* midi device */
128 struct umidi_mididev {
129 struct umidi_softc *sc;
130 device_t mdev;
131 /* */
132 struct umidi_jack *in_jack;
133 struct umidi_jack *out_jack;
134 char *label;
135 size_t label_len;
136 /* */
137 int opened;
138 int closing;
139 int flags;
140 };
141
142 /* Jack Information */
143 struct umidi_jack {
144 struct umidi_endpoint *endpoint;
145 /* */
146 int cable_number;
147 void *arg;
148 int bound;
149 int opened;
150 unsigned char *midiman_ppkt;
151 union {
152 struct {
153 void (*intr)(void *);
154 } out;
155 struct {
156 void (*intr)(void *, int);
157 } in;
158 } u;
159 };
160
161 #define UMIDI_MAX_EPJACKS 16
162 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
163 /* endpoint data */
164 struct umidi_endpoint {
165 struct umidi_softc *sc;
166 /* */
167 int addr;
168 struct usbd_pipe *pipe;
169 struct usbd_xfer *xfer;
170 umidi_packet_bufp buffer;
171 umidi_packet_bufp next_slot;
172 uint32_t buffer_size;
173 int num_scheduled;
174 int num_open;
175 int num_jacks;
176 int soliciting;
177 void *solicit_cookie;
178 int armed;
179 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
180 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
181 uint16_t next_schedule;
182 };
183
184 /* software context */
185 struct umidi_softc {
186 device_t sc_dev;
187 struct usbd_device *sc_udev;
188 struct usbd_interface *sc_iface;
189 const struct umidi_quirk *sc_quirk;
190
191 int sc_dying;
192
193 int sc_out_num_jacks;
194 struct umidi_jack *sc_out_jacks;
195 int sc_in_num_jacks;
196 struct umidi_jack *sc_in_jacks;
197 struct umidi_jack *sc_jacks;
198
199 int sc_num_mididevs;
200 struct umidi_mididev *sc_mididevs;
201
202 int sc_out_num_endpoints;
203 struct umidi_endpoint *sc_out_ep;
204 int sc_in_num_endpoints;
205 struct umidi_endpoint *sc_in_ep;
206 struct umidi_endpoint *sc_endpoints;
207 size_t sc_endpoints_len;
208 int cblnums_global;
209
210 kmutex_t sc_lock;
211 kcondvar_t sc_cv;
212 kcondvar_t sc_detach_cv;
213
214 int sc_refcnt;
215 };
216
217 #ifdef UMIDI_DEBUG
218 #define DPRINTF(x) if (umididebug) printf x
219 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
220 #include <sys/time.h>
221 static struct timeval umidi_tv;
222 int umididebug = 0;
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227
228 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
229 (sc->sc_out_num_endpoints + \
230 sc->sc_in_num_endpoints))
231
232
233 static int umidi_open(void *, int,
234 void (*)(void *, int), void (*)(void *), void *);
235 static void umidi_close(void *);
236 static int umidi_channelmsg(void *, int, int, u_char *, int);
237 static int umidi_commonmsg(void *, int, u_char *, int);
238 static int umidi_sysex(void *, u_char *, int);
239 static int umidi_rtmsg(void *, int);
240 static void umidi_getinfo(void *, struct midi_info *);
241 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
242
243 static usbd_status alloc_pipe(struct umidi_endpoint *);
244 static void free_pipe(struct umidi_endpoint *);
245
246 static usbd_status alloc_all_endpoints(struct umidi_softc *);
247 static void free_all_endpoints(struct umidi_softc *);
248
249 static usbd_status alloc_all_jacks(struct umidi_softc *);
250 static void free_all_jacks(struct umidi_softc *);
251 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
252 struct umidi_jack *,
253 struct umidi_jack *,
254 struct umidi_mididev *);
255 static void unbind_jacks_from_mididev(struct umidi_mididev *);
256 static void unbind_all_jacks(struct umidi_softc *);
257 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
258 static usbd_status open_out_jack(struct umidi_jack *, void *,
259 void (*)(void *));
260 static usbd_status open_in_jack(struct umidi_jack *, void *,
261 void (*)(void *, int));
262 static void close_out_jack(struct umidi_jack *);
263 static void close_in_jack(struct umidi_jack *);
264
265 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
266 static usbd_status detach_mididev(struct umidi_mididev *, int);
267 static void deactivate_mididev(struct umidi_mididev *);
268 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
269 static void free_all_mididevs(struct umidi_softc *);
270 static usbd_status attach_all_mididevs(struct umidi_softc *);
271 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
272 static void deactivate_all_mididevs(struct umidi_softc *);
273 static void describe_mididev(struct umidi_mididev *);
274
275 #ifdef UMIDI_DEBUG
276 static void dump_sc(struct umidi_softc *);
277 static void dump_ep(struct umidi_endpoint *);
278 static void dump_jack(struct umidi_jack *);
279 #endif
280
281 static usbd_status start_input_transfer(struct umidi_endpoint *);
282 static usbd_status start_output_transfer(struct umidi_endpoint *);
283 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
284 static void in_intr(struct usbd_xfer *, void *, usbd_status);
285 static void out_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
287 static void out_solicit_locked(void *); /* pre-locked version */
288
289
290 const struct midi_hw_if umidi_hw_if = {
291 .open = umidi_open,
292 .close = umidi_close,
293 .output = umidi_rtmsg,
294 .getinfo = umidi_getinfo,
295 .get_locks = umidi_get_locks,
296 };
297
298 struct midi_hw_if_ext umidi_hw_if_ext = {
299 .channel = umidi_channelmsg,
300 .common = umidi_commonmsg,
301 .sysex = umidi_sysex,
302 };
303
304 struct midi_hw_if_ext umidi_hw_if_mm = {
305 .channel = umidi_channelmsg,
306 .common = umidi_commonmsg,
307 .sysex = umidi_sysex,
308 .compress = 1,
309 };
310
311 static int umidi_match(device_t, cfdata_t, void *);
312 static void umidi_attach(device_t, device_t, void *);
313 static void umidi_childdet(device_t, device_t);
314 static int umidi_detach(device_t, int);
315 static int umidi_activate(device_t, enum devact);
316
317 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
318 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
319
320 static int
321 umidi_match(device_t parent, cfdata_t match, void *aux)
322 {
323 struct usbif_attach_arg *uiaa = aux;
324
325 DPRINTFN(1,("umidi_match\n"));
326
327 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
328 uiaa->uiaa_ifaceno))
329 return UMATCH_IFACECLASS_IFACESUBCLASS;
330
331 if (uiaa->uiaa_class == UICLASS_AUDIO &&
332 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
333 return UMATCH_IFACECLASS_IFACESUBCLASS;
334
335 return UMATCH_NONE;
336 }
337
338 static void
339 umidi_attach(device_t parent, device_t self, void *aux)
340 {
341 usbd_status err;
342 struct umidi_softc *sc = device_private(self);
343 struct usbif_attach_arg *uiaa = aux;
344 char *devinfop;
345
346 DPRINTFN(1,("umidi_attach\n"));
347
348 sc->sc_dev = self;
349
350 aprint_naive("\n");
351 aprint_normal("\n");
352
353 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
354 aprint_normal_dev(self, "%s\n", devinfop);
355 usbd_devinfo_free(devinfop);
356
357 sc->sc_iface = uiaa->uiaa_iface;
358 sc->sc_udev = uiaa->uiaa_device;
359
360 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
361 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
362
363 aprint_normal_dev(self, "");
364 umidi_print_quirk(sc->sc_quirk);
365
366 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
367 cv_init(&sc->sc_cv, "umidopcl");
368 cv_init(&sc->sc_detach_cv, "umidetcv");
369 sc->sc_refcnt = 0;
370
371 err = alloc_all_endpoints(sc);
372 if (err != USBD_NORMAL_COMPLETION) {
373 aprint_error_dev(self,
374 "alloc_all_endpoints failed. (err=%d)\n", err);
375 goto out;
376 }
377 err = alloc_all_jacks(sc);
378 if (err != USBD_NORMAL_COMPLETION) {
379 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
380 err);
381 goto out_free_endpoints;
382 }
383 aprint_normal_dev(self, "out=%d, in=%d\n",
384 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
385
386 err = assign_all_jacks_automatically(sc);
387 if (err != USBD_NORMAL_COMPLETION) {
388 aprint_error_dev(self,
389 "assign_all_jacks_automatically failed. (err=%d)\n", err);
390 goto out_free_jacks;
391 }
392 err = attach_all_mididevs(sc);
393 if (err != USBD_NORMAL_COMPLETION) {
394 aprint_error_dev(self,
395 "attach_all_mididevs failed. (err=%d)\n", err);
396 goto out_free_jacks;
397 }
398
399 #ifdef UMIDI_DEBUG
400 dump_sc(sc);
401 #endif
402
403 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
404
405 return;
406
407 out_free_jacks:
408 unbind_all_jacks(sc);
409 free_all_jacks(sc);
410
411 out_free_endpoints:
412 free_all_endpoints(sc);
413
414 out:
415 aprint_error_dev(self, "disabled.\n");
416 sc->sc_dying = 1;
417 KERNEL_UNLOCK_ONE(curlwp);
418 return;
419 }
420
421 static void
422 umidi_childdet(device_t self, device_t child)
423 {
424 int i;
425 struct umidi_softc *sc = device_private(self);
426
427 KASSERT(sc->sc_mididevs != NULL);
428
429 for (i = 0; i < sc->sc_num_mididevs; i++) {
430 if (sc->sc_mididevs[i].mdev == child)
431 break;
432 }
433 KASSERT(i < sc->sc_num_mididevs);
434 sc->sc_mididevs[i].mdev = NULL;
435 }
436
437 static int
438 umidi_activate(device_t self, enum devact act)
439 {
440 struct umidi_softc *sc = device_private(self);
441
442 switch (act) {
443 case DVACT_DEACTIVATE:
444 DPRINTFN(1,("umidi_activate (deactivate)\n"));
445 sc->sc_dying = 1;
446 deactivate_all_mididevs(sc);
447 return 0;
448 default:
449 DPRINTFN(1,("umidi_activate (%d)\n", act));
450 return EOPNOTSUPP;
451 }
452 }
453
454 static int
455 umidi_detach(device_t self, int flags)
456 {
457 struct umidi_softc *sc = device_private(self);
458
459 DPRINTFN(1,("umidi_detach\n"));
460
461 mutex_enter(&sc->sc_lock);
462 sc->sc_dying = 1;
463 if (--sc->sc_refcnt >= 0)
464 if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
465 aprint_error_dev(self, ": didn't detach\n");
466 mutex_exit(&sc->sc_lock);
467
468 detach_all_mididevs(sc, flags);
469 free_all_mididevs(sc);
470 free_all_jacks(sc);
471 free_all_endpoints(sc);
472
473 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
474
475 mutex_destroy(&sc->sc_lock);
476 cv_destroy(&sc->sc_detach_cv);
477 cv_destroy(&sc->sc_cv);
478
479 return 0;
480 }
481
482
483 /*
484 * midi_if stuffs
485 */
486 int
487 umidi_open(void *addr,
488 int flags,
489 void (*iintr)(void *, int),
490 void (*ointr)(void *),
491 void *arg)
492 {
493 struct umidi_mididev *mididev = addr;
494 struct umidi_softc *sc = mididev->sc;
495 usbd_status err;
496
497 KASSERT(mutex_owned(&sc->sc_lock));
498 DPRINTF(("umidi_open: sc=%p\n", sc));
499
500 if (mididev->opened)
501 return EBUSY;
502 if (sc->sc_dying)
503 return EIO;
504
505 mididev->opened = 1;
506 mididev->flags = flags;
507 if ((mididev->flags & FWRITE) && mididev->out_jack) {
508 err = open_out_jack(mididev->out_jack, arg, ointr);
509 if (err != USBD_NORMAL_COMPLETION)
510 goto bad;
511 }
512 if ((mididev->flags & FREAD) && mididev->in_jack) {
513 err = open_in_jack(mididev->in_jack, arg, iintr);
514 KASSERT(mididev->opened);
515 if (err != USBD_NORMAL_COMPLETION &&
516 err != USBD_IN_PROGRESS) {
517 if (mididev->out_jack)
518 close_out_jack(mididev->out_jack);
519 goto bad;
520 }
521 }
522
523 return 0;
524 bad:
525 mididev->opened = 0;
526 DPRINTF(("umidi_open: usbd_status %d\n", err));
527 KASSERT(mutex_owned(&sc->sc_lock));
528 return USBD_IN_USE == err ? EBUSY : EIO;
529 }
530
531 void
532 umidi_close(void *addr)
533 {
534 struct umidi_mididev *mididev = addr;
535 struct umidi_softc *sc = mididev->sc;
536
537 KASSERT(mutex_owned(&sc->sc_lock));
538
539 if (mididev->closing)
540 return;
541
542 mididev->closing = 1;
543
544 sc->sc_refcnt++;
545
546 if ((mididev->flags & FWRITE) && mididev->out_jack)
547 close_out_jack(mididev->out_jack);
548 if ((mididev->flags & FREAD) && mididev->in_jack)
549 close_in_jack(mididev->in_jack);
550
551 if (--sc->sc_refcnt < 0)
552 cv_broadcast(&sc->sc_detach_cv);
553
554 mididev->opened = 0;
555 mididev->closing = 0;
556 }
557
558 int
559 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
560 int len)
561 {
562 struct umidi_mididev *mididev = addr;
563
564 KASSERT(mutex_owned(&mididev->sc->sc_lock));
565
566 if (!mididev->out_jack || !mididev->opened || mididev->closing)
567 return EIO;
568
569 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
570 }
571
572 int
573 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
574 {
575 struct umidi_mididev *mididev = addr;
576 int cin;
577
578 KASSERT(mutex_owned(&mididev->sc->sc_lock));
579
580 if (!mididev->out_jack || !mididev->opened || mididev->closing)
581 return EIO;
582
583 switch ( len ) {
584 case 1: cin = 5; break;
585 case 2: cin = 2; break;
586 case 3: cin = 3; break;
587 default: return EIO; /* or gcc warns of cin uninitialized */
588 }
589
590 return out_jack_output(mididev->out_jack, msg, len, cin);
591 }
592
593 int
594 umidi_sysex(void *addr, u_char *msg, int len)
595 {
596 struct umidi_mididev *mididev = addr;
597 int cin;
598
599 KASSERT(mutex_owned(&mididev->sc->sc_lock));
600
601 if (!mididev->out_jack || !mididev->opened || mididev->closing)
602 return EIO;
603
604 switch ( len ) {
605 case 1: cin = 5; break;
606 case 2: cin = 6; break;
607 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
608 default: return EIO; /* or gcc warns of cin uninitialized */
609 }
610
611 return out_jack_output(mididev->out_jack, msg, len, cin);
612 }
613
614 int
615 umidi_rtmsg(void *addr, int d)
616 {
617 struct umidi_mididev *mididev = addr;
618 u_char msg = d;
619
620 KASSERT(mutex_owned(&mididev->sc->sc_lock));
621
622 if (!mididev->out_jack || !mididev->opened || mididev->closing)
623 return EIO;
624
625 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
626 }
627
628 void
629 umidi_getinfo(void *addr, struct midi_info *mi)
630 {
631 struct umidi_mididev *mididev = addr;
632 struct umidi_softc *sc = mididev->sc;
633 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
634
635 KASSERT(mutex_owned(&sc->sc_lock));
636
637 mi->name = mididev->label;
638 mi->props = MIDI_PROP_OUT_INTR;
639 if (mididev->in_jack)
640 mi->props |= MIDI_PROP_CAN_INPUT;
641 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
642 }
643
644 static void
645 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
646 {
647 struct umidi_mididev *mididev = addr;
648 struct umidi_softc *sc = mididev->sc;
649
650 *intr = NULL;
651 *thread = &sc->sc_lock;
652 }
653
654 /*
655 * each endpoint stuffs
656 */
657
658 /* alloc/free pipe */
659 static usbd_status
660 alloc_pipe(struct umidi_endpoint *ep)
661 {
662 struct umidi_softc *sc = ep->sc;
663 usbd_status err;
664 usb_endpoint_descriptor_t *epd;
665
666 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
667 /*
668 * For output, an improvement would be to have a buffer bigger than
669 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
670 * allow out_solicit to fill the buffer to the full packet size in
671 * all cases. But to use usbd_create_xfer to get a slightly larger
672 * buffer would not be a good way to do that, because if the addition
673 * would make the buffer exceed USB_MEM_SMALL then a substantially
674 * larger block may be wastefully allocated. Some flavor of double
675 * buffering could serve the same purpose, but would increase the
676 * code complexity, so for now I will live with the current slight
677 * penalty of reducing max transfer size by (num_open-num_scheduled)
678 * packet slots.
679 */
680 ep->buffer_size = UGETW(epd->wMaxPacketSize);
681 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
682
683 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
684 device_xname(sc->sc_dev), ep, ep->buffer_size));
685 ep->num_scheduled = 0;
686 ep->this_schedule = 0;
687 ep->next_schedule = 0;
688 ep->soliciting = 0;
689 ep->armed = 0;
690 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
691 if (err)
692 goto quit;
693 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
694 0, 0, &ep->xfer);
695 if (error) {
696 usbd_close_pipe(ep->pipe);
697 return USBD_NOMEM;
698 }
699 ep->buffer = usbd_get_buffer(ep->xfer);
700 ep->next_slot = ep->buffer;
701 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
702 out_solicit, ep);
703 quit:
704 return err;
705 }
706
707 static void
708 free_pipe(struct umidi_endpoint *ep)
709 {
710 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
711 usbd_abort_pipe(ep->pipe);
712 usbd_destroy_xfer(ep->xfer);
713 usbd_close_pipe(ep->pipe);
714 softint_disestablish(ep->solicit_cookie);
715 }
716
717
718 /* alloc/free the array of endpoint structures */
719
720 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
722 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
723
724 static usbd_status
725 alloc_all_endpoints(struct umidi_softc *sc)
726 {
727 usbd_status err;
728 struct umidi_endpoint *ep;
729 int i;
730
731 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
732 err = alloc_all_endpoints_fixed_ep(sc);
733 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
734 err = alloc_all_endpoints_yamaha(sc);
735 } else {
736 err = alloc_all_endpoints_genuine(sc);
737 }
738 if (err != USBD_NORMAL_COMPLETION)
739 return err;
740
741 ep = sc->sc_endpoints;
742 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
743 err = alloc_pipe(ep++);
744 if (err != USBD_NORMAL_COMPLETION) {
745 for (; ep != sc->sc_endpoints; ep--)
746 free_pipe(ep-1);
747 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
748 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
749 break;
750 }
751 }
752 return err;
753 }
754
755 static void
756 free_all_endpoints(struct umidi_softc *sc)
757 {
758 int i;
759
760 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
761 free_pipe(&sc->sc_endpoints[i]);
762 if (sc->sc_endpoints != NULL)
763 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
764 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
765 }
766
767 static usbd_status
768 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
769 {
770 usbd_status err;
771 const struct umq_fixed_ep_desc *fp;
772 struct umidi_endpoint *ep;
773 usb_endpoint_descriptor_t *epd;
774 int i;
775
776 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
777 UMQ_TYPE_FIXED_EP);
778 sc->sc_out_num_jacks = 0;
779 sc->sc_in_num_jacks = 0;
780 sc->sc_out_num_endpoints = fp->num_out_ep;
781 sc->sc_in_num_endpoints = fp->num_in_ep;
782 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
783 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
784 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
785 sc->sc_in_ep =
786 sc->sc_in_num_endpoints ?
787 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
788
789 ep = &sc->sc_out_ep[0];
790 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
791 epd = usbd_interface2endpoint_descriptor(
792 sc->sc_iface,
793 fp->out_ep[i].ep);
794 if (!epd) {
795 aprint_error_dev(sc->sc_dev,
796 "cannot get endpoint descriptor(out:%d)\n",
797 fp->out_ep[i].ep);
798 err = USBD_INVAL;
799 goto error;
800 }
801 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
802 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
803 aprint_error_dev(sc->sc_dev,
804 "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
805 err = USBD_INVAL;
806 goto error;
807 }
808 ep->sc = sc;
809 ep->addr = epd->bEndpointAddress;
810 ep->num_jacks = fp->out_ep[i].num_jacks;
811 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
812 ep->num_open = 0;
813 ep++;
814 }
815 ep = &sc->sc_in_ep[0];
816 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
817 epd = usbd_interface2endpoint_descriptor(
818 sc->sc_iface,
819 fp->in_ep[i].ep);
820 if (!epd) {
821 aprint_error_dev(sc->sc_dev,
822 "cannot get endpoint descriptor(in:%d)\n",
823 fp->in_ep[i].ep);
824 err = USBD_INVAL;
825 goto error;
826 }
827 /*
828 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
829 * endpoint. The existing input logic in this driver seems
830 * to work successfully if we just stop treating an interrupt
831 * endpoint as illegal (or the in_progress status we get on
832 * the initial transfer). It does not seem necessary to
833 * actually use the interrupt flavor of alloc_pipe or make
834 * other serious rearrangements of logic. I like that.
835 */
836 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
837 case UE_BULK:
838 case UE_INTERRUPT:
839 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
840 break;
841 /*FALLTHROUGH*/
842 default:
843 aprint_error_dev(sc->sc_dev,
844 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
845 err = USBD_INVAL;
846 goto error;
847 }
848
849 ep->sc = sc;
850 ep->addr = epd->bEndpointAddress;
851 ep->num_jacks = fp->in_ep[i].num_jacks;
852 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
853 ep->num_open = 0;
854 ep++;
855 }
856
857 return USBD_NORMAL_COMPLETION;
858 error:
859 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
860 sc->sc_endpoints = NULL;
861 return err;
862 }
863
864 static usbd_status
865 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
866 {
867 /* This driver currently supports max 1in/1out bulk endpoints */
868 usb_descriptor_t *desc;
869 umidi_cs_descriptor_t *udesc;
870 usb_endpoint_descriptor_t *epd;
871 int out_addr, in_addr, i;
872 int dir;
873 size_t remain, descsize;
874
875 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
876 out_addr = in_addr = 0;
877
878 /* detect endpoints */
879 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
880 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
881 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
882 KASSERT(epd != NULL);
883 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
884 dir = UE_GET_DIR(epd->bEndpointAddress);
885 if (dir==UE_DIR_OUT && !out_addr)
886 out_addr = epd->bEndpointAddress;
887 else if (dir==UE_DIR_IN && !in_addr)
888 in_addr = epd->bEndpointAddress;
889 }
890 }
891 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
892
893 /* count jacks */
894 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
895 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
896 return USBD_INVAL;
897 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
898 (size_t)udesc->bLength;
899 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
900
901 while (remain >= sizeof(usb_descriptor_t)) {
902 descsize = udesc->bLength;
903 if (descsize>remain || descsize==0)
904 break;
905 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
906 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
907 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
908 sc->sc_out_num_jacks++;
909 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
910 sc->sc_in_num_jacks++;
911 }
912 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
913 remain -= descsize;
914 }
915
916 /* validate some parameters */
917 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
918 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
919 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
920 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
921 if (sc->sc_out_num_jacks && out_addr) {
922 sc->sc_out_num_endpoints = 1;
923 } else {
924 sc->sc_out_num_endpoints = 0;
925 sc->sc_out_num_jacks = 0;
926 }
927 if (sc->sc_in_num_jacks && in_addr) {
928 sc->sc_in_num_endpoints = 1;
929 } else {
930 sc->sc_in_num_endpoints = 0;
931 sc->sc_in_num_jacks = 0;
932 }
933 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
934 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
935 if (sc->sc_out_num_endpoints) {
936 sc->sc_out_ep = sc->sc_endpoints;
937 sc->sc_out_ep->sc = sc;
938 sc->sc_out_ep->addr = out_addr;
939 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
940 sc->sc_out_ep->num_open = 0;
941 } else
942 sc->sc_out_ep = NULL;
943
944 if (sc->sc_in_num_endpoints) {
945 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
946 sc->sc_in_ep->sc = sc;
947 sc->sc_in_ep->addr = in_addr;
948 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
949 sc->sc_in_ep->num_open = 0;
950 } else
951 sc->sc_in_ep = NULL;
952
953 return USBD_NORMAL_COMPLETION;
954 }
955
956 static usbd_status
957 alloc_all_endpoints_genuine(struct umidi_softc *sc)
958 {
959 usb_interface_descriptor_t *interface_desc;
960 usb_config_descriptor_t *config_desc;
961 usb_descriptor_t *desc;
962 int num_ep;
963 size_t remain, descsize;
964 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
965 int epaddr;
966
967 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
968 num_ep = interface_desc->bNumEndpoints;
969 if (num_ep == 0)
970 return USBD_INVAL;
971 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
972 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
973 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
974 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
975 epaddr = -1;
976
977 /* get the list of endpoints for midi stream */
978 config_desc = usbd_get_config_descriptor(sc->sc_udev);
979 desc = (usb_descriptor_t *) config_desc;
980 remain = (size_t)UGETW(config_desc->wTotalLength);
981 while (remain>=sizeof(usb_descriptor_t)) {
982 descsize = desc->bLength;
983 if (descsize>remain || descsize==0)
984 break;
985 if (desc->bDescriptorType==UDESC_ENDPOINT &&
986 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
987 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
988 epaddr = TO_EPD(desc)->bEndpointAddress;
989 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
990 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
991 epaddr!=-1) {
992 if (num_ep>0) {
993 num_ep--;
994 p->sc = sc;
995 p->addr = epaddr;
996 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
997 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
998 sc->sc_out_num_endpoints++;
999 sc->sc_out_num_jacks += p->num_jacks;
1000 } else {
1001 sc->sc_in_num_endpoints++;
1002 sc->sc_in_num_jacks += p->num_jacks;
1003 }
1004 p++;
1005 }
1006 } else
1007 epaddr = -1;
1008 desc = NEXT_D(desc);
1009 remain-=descsize;
1010 }
1011
1012 /* sort endpoints */
1013 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1014 p = sc->sc_endpoints;
1015 endep = p + num_ep;
1016 while (p<endep) {
1017 lowest = p;
1018 for (q=p+1; q<endep; q++) {
1019 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1020 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1021 ((UE_GET_DIR(lowest->addr)==
1022 UE_GET_DIR(q->addr)) &&
1023 (UE_GET_ADDR(lowest->addr)>
1024 UE_GET_ADDR(q->addr))))
1025 lowest = q;
1026 }
1027 if (lowest != p) {
1028 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1029 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1030 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1031 }
1032 p->num_open = 0;
1033 p++;
1034 }
1035
1036 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1037 sc->sc_in_ep =
1038 sc->sc_in_num_endpoints ?
1039 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1040
1041 return USBD_NORMAL_COMPLETION;
1042 }
1043
1044
1045 /*
1046 * jack stuffs
1047 */
1048
1049 static usbd_status
1050 alloc_all_jacks(struct umidi_softc *sc)
1051 {
1052 int i, j;
1053 struct umidi_endpoint *ep;
1054 struct umidi_jack *jack;
1055 const unsigned char *cn_spec;
1056
1057 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1058 sc->cblnums_global = 0;
1059 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1060 sc->cblnums_global = 1;
1061 else {
1062 /*
1063 * I don't think this default is correct, but it preserves
1064 * the prior behavior of the code. That's why I defined two
1065 * complementary quirks. Any device for which the default
1066 * behavior is wrong can be made to work by giving it an
1067 * explicit quirk, and if a pattern ever develops (as I suspect
1068 * it will) that a lot of otherwise standard USB MIDI devices
1069 * need the CN_SEQ_PER_EP "quirk," then this default can be
1070 * changed to 0, and the only devices that will break are those
1071 * listing neither quirk, and they'll easily be fixed by giving
1072 * them the CN_SEQ_GLOBAL quirk.
1073 */
1074 sc->cblnums_global = 1;
1075 }
1076
1077 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1078 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1079 UMQ_TYPE_CN_FIXED);
1080 else
1081 cn_spec = NULL;
1082
1083 /* allocate/initialize structures */
1084 if (sc->sc_in_num_jacks == 0 && sc->sc_out_num_jacks == 0)
1085 return USBD_INVAL;
1086 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks) *
1087 (sc->sc_in_num_jacks + sc->sc_out_num_jacks), KM_SLEEP);
1088 if (!sc->sc_jacks)
1089 return USBD_NOMEM;
1090 sc->sc_out_jacks =
1091 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1092 sc->sc_in_jacks =
1093 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1094
1095 jack = &sc->sc_out_jacks[0];
1096 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1097 jack->opened = 0;
1098 jack->bound = 0;
1099 jack->arg = NULL;
1100 jack->u.out.intr = NULL;
1101 jack->midiman_ppkt = NULL;
1102 if (sc->cblnums_global)
1103 jack->cable_number = i;
1104 jack++;
1105 }
1106 jack = &sc->sc_in_jacks[0];
1107 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1108 jack->opened = 0;
1109 jack->bound = 0;
1110 jack->arg = NULL;
1111 jack->u.in.intr = NULL;
1112 if (sc->cblnums_global)
1113 jack->cable_number = i;
1114 jack++;
1115 }
1116
1117 /* assign each jacks to each endpoints */
1118 jack = &sc->sc_out_jacks[0];
1119 ep = &sc->sc_out_ep[0];
1120 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1121 for (j = 0; j < ep->num_jacks; j++) {
1122 jack->endpoint = ep;
1123 if (cn_spec != NULL)
1124 jack->cable_number = *cn_spec++;
1125 else if (!sc->cblnums_global)
1126 jack->cable_number = j;
1127 ep->jacks[jack->cable_number] = jack;
1128 jack++;
1129 }
1130 ep++;
1131 }
1132 jack = &sc->sc_in_jacks[0];
1133 ep = &sc->sc_in_ep[0];
1134 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1135 for (j = 0; j < ep->num_jacks; j++) {
1136 jack->endpoint = ep;
1137 if (cn_spec != NULL)
1138 jack->cable_number = *cn_spec++;
1139 else if (!sc->cblnums_global)
1140 jack->cable_number = j;
1141 ep->jacks[jack->cable_number] = jack;
1142 jack++;
1143 }
1144 ep++;
1145 }
1146
1147 return USBD_NORMAL_COMPLETION;
1148 }
1149
1150 static void
1151 free_all_jacks(struct umidi_softc *sc)
1152 {
1153 struct umidi_jack *jacks;
1154 size_t len;
1155
1156 mutex_enter(&sc->sc_lock);
1157 jacks = sc->sc_jacks;
1158 len = sizeof(*sc->sc_out_jacks) *
1159 (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1160 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1161 mutex_exit(&sc->sc_lock);
1162
1163 if (jacks)
1164 kmem_free(jacks, len);
1165 }
1166
1167 static usbd_status
1168 bind_jacks_to_mididev(struct umidi_softc *sc,
1169 struct umidi_jack *out_jack,
1170 struct umidi_jack *in_jack,
1171 struct umidi_mididev *mididev)
1172 {
1173 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1174 return USBD_IN_USE;
1175 if (mididev->out_jack || mididev->in_jack)
1176 return USBD_IN_USE;
1177
1178 if (out_jack)
1179 out_jack->bound = 1;
1180 if (in_jack)
1181 in_jack->bound = 1;
1182 mididev->in_jack = in_jack;
1183 mididev->out_jack = out_jack;
1184
1185 mididev->closing = 0;
1186
1187 return USBD_NORMAL_COMPLETION;
1188 }
1189
1190 static void
1191 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1192 {
1193 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1194
1195 mididev->closing = 1;
1196
1197 if ((mididev->flags & FWRITE) && mididev->out_jack)
1198 close_out_jack(mididev->out_jack);
1199 if ((mididev->flags & FREAD) && mididev->in_jack)
1200 close_in_jack(mididev->in_jack);
1201
1202 if (mididev->out_jack) {
1203 mididev->out_jack->bound = 0;
1204 mididev->out_jack = NULL;
1205 }
1206 if (mididev->in_jack) {
1207 mididev->in_jack->bound = 0;
1208 mididev->in_jack = NULL;
1209 }
1210 }
1211
1212 static void
1213 unbind_all_jacks(struct umidi_softc *sc)
1214 {
1215 int i;
1216
1217 mutex_enter(&sc->sc_lock);
1218 if (sc->sc_mididevs)
1219 for (i = 0; i < sc->sc_num_mididevs; i++)
1220 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1221 mutex_exit(&sc->sc_lock);
1222 }
1223
1224 static usbd_status
1225 assign_all_jacks_automatically(struct umidi_softc *sc)
1226 {
1227 usbd_status err;
1228 int i;
1229 struct umidi_jack *out, *in;
1230 const signed char *asg_spec;
1231
1232 err =
1233 alloc_all_mididevs(sc,
1234 uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1235 if (err!=USBD_NORMAL_COMPLETION)
1236 return err;
1237
1238 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1239 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1240 UMQ_TYPE_MD_FIXED);
1241 else
1242 asg_spec = NULL;
1243
1244 for (i = 0; i < sc->sc_num_mididevs; i++) {
1245 if (asg_spec != NULL) {
1246 if (*asg_spec == -1)
1247 out = NULL;
1248 else
1249 out = &sc->sc_out_jacks[*asg_spec];
1250 ++ asg_spec;
1251 if (*asg_spec == -1)
1252 in = NULL;
1253 else
1254 in = &sc->sc_in_jacks[*asg_spec];
1255 ++ asg_spec;
1256 } else {
1257 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1258 : NULL;
1259 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1260 : NULL;
1261 }
1262 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1263 if (err != USBD_NORMAL_COMPLETION) {
1264 free_all_mididevs(sc);
1265 return err;
1266 }
1267 }
1268
1269 return USBD_NORMAL_COMPLETION;
1270 }
1271
1272 static usbd_status
1273 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1274 {
1275 struct umidi_endpoint *ep = jack->endpoint;
1276 struct umidi_softc *sc = ep->sc;
1277 umidi_packet_bufp end;
1278 int err;
1279
1280 KASSERT(mutex_owned(&sc->sc_lock));
1281
1282 if (jack->opened)
1283 return USBD_IN_USE;
1284
1285 jack->arg = arg;
1286 jack->u.out.intr = intr;
1287 jack->midiman_ppkt = NULL;
1288 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1289 jack->opened = 1;
1290 ep->num_open++;
1291 /*
1292 * out_solicit maintains an invariant that there will always be
1293 * (num_open - num_scheduled) slots free in the buffer. as we have
1294 * just incremented num_open, the buffer may be too full to satisfy
1295 * the invariant until a transfer completes, for which we must wait.
1296 */
1297 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1298 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1299 mstohz(10));
1300 if (err) {
1301 ep->num_open--;
1302 jack->opened = 0;
1303 return USBD_IOERROR;
1304 }
1305 }
1306
1307 return USBD_NORMAL_COMPLETION;
1308 }
1309
1310 static usbd_status
1311 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1312 {
1313 usbd_status err = USBD_NORMAL_COMPLETION;
1314 struct umidi_endpoint *ep = jack->endpoint;
1315
1316 KASSERT(mutex_owned(&ep->sc->sc_lock));
1317
1318 if (jack->opened)
1319 return USBD_IN_USE;
1320
1321 jack->arg = arg;
1322 jack->u.in.intr = intr;
1323 jack->opened = 1;
1324 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1325 /*
1326 * Can't hold the interrupt lock while calling into USB,
1327 * but we can safely drop it here.
1328 */
1329 mutex_exit(&ep->sc->sc_lock);
1330 err = start_input_transfer(ep);
1331 if (err != USBD_NORMAL_COMPLETION &&
1332 err != USBD_IN_PROGRESS) {
1333 ep->num_open--;
1334 }
1335 mutex_enter(&ep->sc->sc_lock);
1336 }
1337
1338 return err;
1339 }
1340
1341 static void
1342 close_out_jack(struct umidi_jack *jack)
1343 {
1344 struct umidi_endpoint *ep;
1345 struct umidi_softc *sc;
1346 uint16_t mask;
1347 int err;
1348
1349 if (jack->opened) {
1350 ep = jack->endpoint;
1351 sc = ep->sc;
1352
1353 KASSERT(mutex_owned(&sc->sc_lock));
1354 mask = 1 << (jack->cable_number);
1355 while (mask & (ep->this_schedule | ep->next_schedule)) {
1356 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1357 mstohz(10));
1358 if (err)
1359 break;
1360 }
1361 /*
1362 * We can re-enter this function from both close() and
1363 * detach(). Make sure only one of them does this part.
1364 */
1365 if (jack->opened) {
1366 jack->opened = 0;
1367 jack->endpoint->num_open--;
1368 ep->this_schedule &= ~mask;
1369 ep->next_schedule &= ~mask;
1370 }
1371 }
1372 }
1373
1374 static void
1375 close_in_jack(struct umidi_jack *jack)
1376 {
1377 if (jack->opened) {
1378 struct umidi_softc *sc = jack->endpoint->sc;
1379
1380 KASSERT(mutex_owned(&sc->sc_lock));
1381
1382 jack->opened = 0;
1383 if (--jack->endpoint->num_open == 0) {
1384 /*
1385 * We have to drop the (interrupt) lock so that
1386 * the USB thread lock can be safely taken by
1387 * the abort operation. This is safe as this
1388 * either closing or dying will be set proerly.
1389 */
1390 mutex_exit(&sc->sc_lock);
1391 usbd_abort_pipe(jack->endpoint->pipe);
1392 mutex_enter(&sc->sc_lock);
1393 }
1394 }
1395 }
1396
1397 static usbd_status
1398 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1399 {
1400 if (mididev->sc)
1401 return USBD_IN_USE;
1402
1403 mididev->sc = sc;
1404
1405 describe_mididev(mididev);
1406
1407 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1408
1409 return USBD_NORMAL_COMPLETION;
1410 }
1411
1412 static usbd_status
1413 detach_mididev(struct umidi_mididev *mididev, int flags)
1414 {
1415 struct umidi_softc *sc = mididev->sc;
1416
1417 if (!sc)
1418 return USBD_NO_ADDR;
1419
1420 mutex_enter(&sc->sc_lock);
1421 if (mididev->opened) {
1422 umidi_close(mididev);
1423 }
1424 unbind_jacks_from_mididev(mididev);
1425 mutex_exit(&sc->sc_lock);
1426
1427 if (mididev->mdev != NULL)
1428 config_detach(mididev->mdev, flags);
1429
1430 if (NULL != mididev->label) {
1431 kmem_free(mididev->label, mididev->label_len);
1432 mididev->label = NULL;
1433 }
1434
1435 mididev->sc = NULL;
1436
1437 return USBD_NORMAL_COMPLETION;
1438 }
1439
1440 static void
1441 deactivate_mididev(struct umidi_mididev *mididev)
1442 {
1443 if (mididev->out_jack)
1444 mididev->out_jack->bound = 0;
1445 if (mididev->in_jack)
1446 mididev->in_jack->bound = 0;
1447 }
1448
1449 static usbd_status
1450 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1451 {
1452 sc->sc_num_mididevs = nmidi;
1453 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1454 return USBD_NORMAL_COMPLETION;
1455 }
1456
1457 static void
1458 free_all_mididevs(struct umidi_softc *sc)
1459 {
1460 struct umidi_mididev *mididevs;
1461 size_t len;
1462
1463 mutex_enter(&sc->sc_lock);
1464 mididevs = sc->sc_mididevs;
1465 if (mididevs)
1466 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1467 sc->sc_mididevs = NULL;
1468 sc->sc_num_mididevs = 0;
1469 mutex_exit(&sc->sc_lock);
1470
1471 if (mididevs)
1472 kmem_free(mididevs, len);
1473 }
1474
1475 static usbd_status
1476 attach_all_mididevs(struct umidi_softc *sc)
1477 {
1478 usbd_status err;
1479 int i;
1480
1481 if (sc->sc_mididevs)
1482 for (i = 0; i < sc->sc_num_mididevs; i++) {
1483 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1484 if (err != USBD_NORMAL_COMPLETION)
1485 return err;
1486 }
1487
1488 return USBD_NORMAL_COMPLETION;
1489 }
1490
1491 static usbd_status
1492 detach_all_mididevs(struct umidi_softc *sc, int flags)
1493 {
1494 usbd_status err;
1495 int i;
1496
1497 if (sc->sc_mididevs)
1498 for (i = 0; i < sc->sc_num_mididevs; i++) {
1499 err = detach_mididev(&sc->sc_mididevs[i], flags);
1500 if (err != USBD_NORMAL_COMPLETION)
1501 return err;
1502 }
1503
1504 return USBD_NORMAL_COMPLETION;
1505 }
1506
1507 static void
1508 deactivate_all_mididevs(struct umidi_softc *sc)
1509 {
1510 int i;
1511
1512 if (sc->sc_mididevs) {
1513 for (i = 0; i < sc->sc_num_mididevs; i++)
1514 deactivate_mididev(&sc->sc_mididevs[i]);
1515 }
1516 }
1517
1518 /*
1519 * TODO: the 0-based cable numbers will often not match the labeling of the
1520 * equipment. Ideally:
1521 * For class-compliant devices: get the iJack string from the jack descriptor.
1522 * Otherwise:
1523 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1524 * number for display)
1525 * - support an array quirk explictly giving a char * for each jack.
1526 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1527 * the CNs are not globally unique, each is shown with its associated endpoint
1528 * address in hex also. That should not be necessary when using iJack values
1529 * or a quirk array.
1530 */
1531 void
1532 describe_mididev(struct umidi_mididev *md)
1533 {
1534 char in_label[16];
1535 char out_label[16];
1536 const char *unit_label;
1537 char *final_label;
1538 struct umidi_softc *sc;
1539 int show_ep_in;
1540 int show_ep_out;
1541 size_t len;
1542
1543 sc = md->sc;
1544 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1545 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1546
1547 if (NULL == md->in_jack)
1548 in_label[0] = '\0';
1549 else if (show_ep_in)
1550 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1551 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1552 else
1553 snprintf(in_label, sizeof(in_label), "<%d ",
1554 md->in_jack->cable_number);
1555
1556 if (NULL == md->out_jack)
1557 out_label[0] = '\0';
1558 else if (show_ep_out)
1559 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1560 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1561 else
1562 snprintf(out_label, sizeof(out_label), ">%d ",
1563 md->out_jack->cable_number);
1564
1565 unit_label = device_xname(sc->sc_dev);
1566
1567 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1568
1569 final_label = kmem_alloc(len, KM_SLEEP);
1570
1571 snprintf(final_label, len, "%s%son %s",
1572 in_label, out_label, unit_label);
1573
1574 md->label = final_label;
1575 md->label_len = len;
1576 }
1577
1578 #ifdef UMIDI_DEBUG
1579 static void
1580 dump_sc(struct umidi_softc *sc)
1581 {
1582 int i;
1583
1584 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1585 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1586 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1587 dump_ep(&sc->sc_out_ep[i]);
1588 }
1589 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1590 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1591 dump_ep(&sc->sc_in_ep[i]);
1592 }
1593 }
1594
1595 static void
1596 dump_ep(struct umidi_endpoint *ep)
1597 {
1598 int i;
1599 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1600 if (NULL==ep->jacks[i])
1601 continue;
1602 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1603 dump_jack(ep->jacks[i]);
1604 }
1605 }
1606 static void
1607 dump_jack(struct umidi_jack *jack)
1608 {
1609 DPRINTFN(10, ("\t\t\tep=%p\n",
1610 jack->endpoint));
1611 }
1612
1613 #endif /* UMIDI_DEBUG */
1614
1615
1616
1617 /*
1618 * MUX MIDI PACKET
1619 */
1620
1621 static const int packet_length[16] = {
1622 /*0*/ -1,
1623 /*1*/ -1,
1624 /*2*/ 2,
1625 /*3*/ 3,
1626 /*4*/ 3,
1627 /*5*/ 1,
1628 /*6*/ 2,
1629 /*7*/ 3,
1630 /*8*/ 3,
1631 /*9*/ 3,
1632 /*A*/ 3,
1633 /*B*/ 3,
1634 /*C*/ 2,
1635 /*D*/ 2,
1636 /*E*/ 3,
1637 /*F*/ 1,
1638 };
1639
1640 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1641 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1642 #define MIX_CN_CIN(cn, cin) \
1643 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1644 ((unsigned char)(cin)&0x0F)))
1645
1646 static usbd_status
1647 start_input_transfer(struct umidi_endpoint *ep)
1648 {
1649 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1650 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1651 return usbd_transfer(ep->xfer);
1652 }
1653
1654 static usbd_status
1655 start_output_transfer(struct umidi_endpoint *ep)
1656 {
1657 usbd_status rv;
1658 uint32_t length;
1659 int i;
1660
1661 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1662 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1663 ep->buffer, ep->next_slot, length));
1664
1665 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1666 USBD_NO_TIMEOUT, out_intr);
1667 rv = usbd_transfer(ep->xfer);
1668
1669 /*
1670 * Once the transfer is scheduled, no more adding to partial
1671 * packets within it.
1672 */
1673 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1674 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1675 if (NULL != ep->jacks[i])
1676 ep->jacks[i]->midiman_ppkt = NULL;
1677 }
1678
1679 return rv;
1680 }
1681
1682 #ifdef UMIDI_DEBUG
1683 #define DPR_PACKET(dir, sc, p) \
1684 if ((unsigned char)(p)[1]!=0xFE) \
1685 DPRINTFN(500, \
1686 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1687 device_xname(sc->sc_dev), \
1688 (unsigned char)(p)[0], \
1689 (unsigned char)(p)[1], \
1690 (unsigned char)(p)[2], \
1691 (unsigned char)(p)[3]));
1692 #else
1693 #define DPR_PACKET(dir, sc, p)
1694 #endif
1695
1696 /*
1697 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1698 * with the cable number and length in the last byte instead of the first,
1699 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1700 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1701 * with a cable nybble and a length nybble (which, unlike the CIN of a
1702 * real USB MIDI packet, has no semantics at all besides the length).
1703 * A packet received from a Midiman may contain part of a MIDI message,
1704 * more than one MIDI message, or parts of more than one MIDI message. A
1705 * three-byte MIDI message may arrive in three packets of data length 1, and
1706 * running status may be used. Happily, the midi(4) driver above us will put
1707 * it all back together, so the only cost is in USB bandwidth. The device
1708 * has an easier time with what it receives from us: we'll pack messages in
1709 * and across packets, but filling the packets whenever possible and,
1710 * as midi(4) hands us a complete message at a time, we'll never send one
1711 * in a dribble of short packets.
1712 */
1713
1714 static int
1715 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1716 {
1717 struct umidi_endpoint *ep = out_jack->endpoint;
1718 struct umidi_softc *sc = ep->sc;
1719 unsigned char *packet;
1720 int plen;
1721 int poff;
1722
1723 KASSERT(mutex_owned(&sc->sc_lock));
1724
1725 if (sc->sc_dying)
1726 return EIO;
1727
1728 if (!out_jack->opened)
1729 return ENODEV; /* XXX as it was, is this the right errno? */
1730
1731 sc->sc_refcnt++;
1732
1733 #ifdef UMIDI_DEBUG
1734 if (umididebug >= 100)
1735 microtime(&umidi_tv);
1736 #endif
1737 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1738 "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1739 (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1740
1741 packet = *ep->next_slot++;
1742 KASSERT(ep->buffer_size >=
1743 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1744 memset(packet, 0, UMIDI_PACKET_SIZE);
1745 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1746 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1747 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1748 plen = 3 - poff;
1749 if (plen > len)
1750 plen = len;
1751 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1752 src += plen;
1753 len -= plen;
1754 plen += poff;
1755 out_jack->midiman_ppkt[3] =
1756 MIX_CN_CIN(out_jack->cable_number, plen);
1757 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1758 if (3 == plen)
1759 out_jack->midiman_ppkt = NULL; /* no more */
1760 }
1761 if (0 == len)
1762 ep->next_slot--; /* won't be needed, nevermind */
1763 else {
1764 memcpy(packet, src, len);
1765 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1766 DPR_PACKET(out, sc, packet);
1767 if (len < 3)
1768 out_jack->midiman_ppkt = packet;
1769 }
1770 } else { /* the nice simple USB class-compliant case */
1771 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1772 memcpy(packet+1, src, len);
1773 DPR_PACKET(out, sc, packet);
1774 }
1775 ep->next_schedule |= 1<<(out_jack->cable_number);
1776 ++ ep->num_scheduled;
1777 if (!ep->armed && !ep->soliciting) {
1778 /*
1779 * It would be bad to call out_solicit directly here (the
1780 * caller need not be reentrant) but a soft interrupt allows
1781 * solicit to run immediately the caller exits its critical
1782 * section, and if the caller has more to write we can get it
1783 * before starting the USB transfer, and send a longer one.
1784 */
1785 ep->soliciting = 1;
1786 kpreempt_disable();
1787 softint_schedule(ep->solicit_cookie);
1788 kpreempt_enable();
1789 }
1790
1791 if (--sc->sc_refcnt < 0)
1792 cv_broadcast(&sc->sc_detach_cv);
1793
1794 return 0;
1795 }
1796
1797 static void
1798 in_intr(struct usbd_xfer *xfer, void *priv,
1799 usbd_status status)
1800 {
1801 int cn, len, i;
1802 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1803 struct umidi_softc *sc = ep->sc;
1804 struct umidi_jack *jack;
1805 unsigned char *packet;
1806 umidi_packet_bufp slot;
1807 umidi_packet_bufp end;
1808 unsigned char *data;
1809 uint32_t count;
1810
1811 if (ep->sc->sc_dying || !ep->num_open)
1812 return;
1813
1814 mutex_enter(&sc->sc_lock);
1815 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1816 if (0 == count % UMIDI_PACKET_SIZE) {
1817 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1818 device_xname(ep->sc->sc_dev), ep, count));
1819 } else {
1820 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1821 device_xname(ep->sc->sc_dev), ep, count));
1822 }
1823
1824 slot = ep->buffer;
1825 end = slot + count / sizeof(*slot);
1826
1827 for (packet = *slot; slot < end; packet = *++slot) {
1828
1829 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1830 cn = (0xf0&(packet[3]))>>4;
1831 len = 0x0f&(packet[3]);
1832 data = packet;
1833 } else {
1834 cn = GET_CN(packet[0]);
1835 len = packet_length[GET_CIN(packet[0])];
1836 data = packet + 1;
1837 }
1838 /* 0 <= cn <= 15 by inspection of above code */
1839 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1840 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1841 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1842 device_xname(ep->sc->sc_dev), ep, cn, len,
1843 (unsigned)data[0],
1844 (unsigned)data[1],
1845 (unsigned)data[2]));
1846 mutex_exit(&sc->sc_lock);
1847 return;
1848 }
1849
1850 if (!jack->bound || !jack->opened)
1851 continue;
1852
1853 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1854 "%02X %02X %02X\n",
1855 device_xname(ep->sc->sc_dev), ep, cn, len,
1856 (unsigned)data[0],
1857 (unsigned)data[1],
1858 (unsigned)data[2]));
1859
1860 if (jack->u.in.intr) {
1861 for (i = 0; i < len; i++) {
1862 (*jack->u.in.intr)(jack->arg, data[i]);
1863 }
1864 }
1865
1866 }
1867
1868 (void)start_input_transfer(ep);
1869 mutex_exit(&sc->sc_lock);
1870 }
1871
1872 static void
1873 out_intr(struct usbd_xfer *xfer, void *priv,
1874 usbd_status status)
1875 {
1876 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1877 struct umidi_softc *sc = ep->sc;
1878 uint32_t count;
1879
1880 if (sc->sc_dying)
1881 return;
1882
1883 mutex_enter(&sc->sc_lock);
1884 #ifdef UMIDI_DEBUG
1885 if (umididebug >= 200)
1886 microtime(&umidi_tv);
1887 #endif
1888 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1889 if (0 == count % UMIDI_PACKET_SIZE) {
1890 DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1891 "length %u\n", device_xname(ep->sc->sc_dev),
1892 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1893 count));
1894 } else {
1895 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1896 device_xname(ep->sc->sc_dev), ep, count));
1897 }
1898 count /= UMIDI_PACKET_SIZE;
1899
1900 /*
1901 * If while the transfer was pending we buffered any new messages,
1902 * move them to the start of the buffer.
1903 */
1904 ep->next_slot -= count;
1905 if (ep->buffer < ep->next_slot) {
1906 memcpy(ep->buffer, ep->buffer + count,
1907 (char *)ep->next_slot - (char *)ep->buffer);
1908 }
1909 cv_broadcast(&sc->sc_cv);
1910 /*
1911 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1912 * Running at IPL_USB so the following should happen to be safe.
1913 */
1914 ep->armed = 0;
1915 if (!ep->soliciting) {
1916 ep->soliciting = 1;
1917 out_solicit_locked(ep);
1918 }
1919 mutex_exit(&sc->sc_lock);
1920 }
1921
1922 /*
1923 * A jack on which we have received a packet must be called back on its
1924 * out.intr handler before it will send us another; it is considered
1925 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1926 * we need no extra buffer space for it.
1927 *
1928 * In contrast, a jack that is open but not scheduled may supply us a packet
1929 * at any time, driven by the top half, and we must be able to accept it, no
1930 * excuses. So we must ensure that at any point in time there are at least
1931 * (num_open - num_scheduled) slots free.
1932 *
1933 * As long as there are more slots free than that minimum, we can loop calling
1934 * scheduled jacks back on their "interrupt" handlers, soliciting more
1935 * packets, starting the USB transfer only when the buffer space is down to
1936 * the minimum or no jack has any more to send.
1937 */
1938
1939 static void
1940 out_solicit_locked(void *arg)
1941 {
1942 struct umidi_endpoint *ep = arg;
1943 umidi_packet_bufp end;
1944 uint16_t which;
1945 struct umidi_jack *jack;
1946
1947 KASSERT(mutex_owned(&ep->sc->sc_lock));
1948
1949 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1950
1951 for ( ;; ) {
1952 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1953 break; /* at IPL_USB */
1954 if (ep->this_schedule == 0) {
1955 if (ep->next_schedule == 0)
1956 break; /* at IPL_USB */
1957 ep->this_schedule = ep->next_schedule;
1958 ep->next_schedule = 0;
1959 }
1960 /*
1961 * At least one jack is scheduled. Find and mask off the least
1962 * set bit in this_schedule and decrement num_scheduled.
1963 * Convert mask to bit index to find the corresponding jack,
1964 * and call its intr handler. If it has a message, it will call
1965 * back one of the output methods, which will set its bit in
1966 * next_schedule (not copied into this_schedule until the
1967 * latter is empty). In this way we round-robin the jacks that
1968 * have messages to send, until the buffer is as full as we
1969 * dare, and then start a transfer.
1970 */
1971 which = ep->this_schedule;
1972 which &= (~which)+1; /* now mask of least set bit */
1973 ep->this_schedule &= ~which;
1974 --ep->num_scheduled;
1975
1976 --which; /* now 1s below mask - count 1s to get index */
1977 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1978 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1979 which = (((which >> 4) + which) & 0x0f0f);
1980 which += (which >> 8);
1981 which &= 0x1f; /* the bit index a/k/a jack number */
1982
1983 jack = ep->jacks[which];
1984 if (jack->u.out.intr)
1985 (*jack->u.out.intr)(jack->arg);
1986 }
1987 /* intr lock held at loop exit */
1988 if (!ep->armed && ep->next_slot > ep->buffer) {
1989 /*
1990 * Can't hold the interrupt lock while calling into USB,
1991 * but we can safely drop it here.
1992 */
1993 mutex_exit(&ep->sc->sc_lock);
1994 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1995 mutex_enter(&ep->sc->sc_lock);
1996 }
1997 ep->soliciting = 0;
1998 }
1999
2000 /* Entry point for the softintr. */
2001 static void
2002 out_solicit(void *arg)
2003 {
2004 struct umidi_endpoint *ep = arg;
2005 struct umidi_softc *sc = ep->sc;
2006
2007 mutex_enter(&sc->sc_lock);
2008 out_solicit_locked(arg);
2009 mutex_exit(&sc->sc_lock);
2010 }
2011