umidi.c revision 1.83 1 /* $NetBSD: umidi.c,v 1.83 2021/01/20 22:46:33 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.83 2021/01/20 22:46:33 jdolecek Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59
60 #include <dev/usb/usbdevs.h>
61 #include <dev/usb/umidi_quirks.h>
62 #include <dev/midi_if.h>
63
64 /* Jack Descriptor */
65 #define UMIDI_MS_HEADER 0x01
66 #define UMIDI_IN_JACK 0x02
67 #define UMIDI_OUT_JACK 0x03
68
69 /* Jack Type */
70 #define UMIDI_EMBEDDED 0x01
71 #define UMIDI_EXTERNAL 0x02
72
73 /* generic, for iteration */
74 typedef struct {
75 uByte bLength;
76 uByte bDescriptorType;
77 uByte bDescriptorSubtype;
78 } UPACKED umidi_cs_descriptor_t;
79
80 typedef struct {
81 uByte bLength;
82 uByte bDescriptorType;
83 uByte bDescriptorSubtype;
84 uWord bcdMSC;
85 uWord wTotalLength;
86 } UPACKED umidi_cs_interface_descriptor_t;
87 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
88
89 typedef struct {
90 uByte bLength;
91 uByte bDescriptorType;
92 uByte bDescriptorSubtype;
93 uByte bNumEmbMIDIJack;
94 } UPACKED umidi_cs_endpoint_descriptor_t;
95 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
96
97 typedef struct {
98 uByte bLength;
99 uByte bDescriptorType;
100 uByte bDescriptorSubtype;
101 uByte bJackType;
102 uByte bJackID;
103 } UPACKED umidi_jack_descriptor_t;
104 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
105
106
107 #define TO_D(p) ((usb_descriptor_t *)(p))
108 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
109 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
110 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
111 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
112 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
113
114
115 #define UMIDI_PACKET_SIZE 4
116
117 /*
118 * hierarchie
119 *
120 * <-- parent child -->
121 *
122 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
123 * ^ | ^ |
124 * +-----+ +-----+
125 */
126
127 /* midi device */
128 struct umidi_mididev {
129 struct umidi_softc *sc;
130 device_t mdev;
131 /* */
132 struct umidi_jack *in_jack;
133 struct umidi_jack *out_jack;
134 char *label;
135 size_t label_len;
136 /* */
137 int opened;
138 int closing;
139 int flags;
140 };
141
142 /* Jack Information */
143 struct umidi_jack {
144 struct umidi_endpoint *endpoint;
145 /* */
146 int cable_number;
147 void *arg;
148 int bound;
149 int opened;
150 unsigned char *midiman_ppkt;
151 union {
152 struct {
153 void (*intr)(void *);
154 } out;
155 struct {
156 void (*intr)(void *, int);
157 } in;
158 } u;
159 };
160
161 #define UMIDI_MAX_EPJACKS 16
162 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
163 /* endpoint data */
164 struct umidi_endpoint {
165 struct umidi_softc *sc;
166 /* */
167 int addr;
168 struct usbd_pipe *pipe;
169 struct usbd_xfer *xfer;
170 umidi_packet_bufp buffer;
171 umidi_packet_bufp next_slot;
172 uint32_t buffer_size;
173 int num_scheduled;
174 int num_open;
175 int num_jacks;
176 int soliciting;
177 void *solicit_cookie;
178 int armed;
179 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
180 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
181 uint16_t next_schedule;
182 };
183
184 /* software context */
185 struct umidi_softc {
186 device_t sc_dev;
187 struct usbd_device *sc_udev;
188 struct usbd_interface *sc_iface;
189 const struct umidi_quirk *sc_quirk;
190
191 int sc_dying;
192
193 int sc_out_num_jacks;
194 struct umidi_jack *sc_out_jacks;
195 int sc_in_num_jacks;
196 struct umidi_jack *sc_in_jacks;
197 struct umidi_jack *sc_jacks;
198
199 int sc_num_mididevs;
200 struct umidi_mididev *sc_mididevs;
201
202 int sc_out_num_endpoints;
203 struct umidi_endpoint *sc_out_ep;
204 int sc_in_num_endpoints;
205 struct umidi_endpoint *sc_in_ep;
206 struct umidi_endpoint *sc_endpoints;
207 size_t sc_endpoints_len;
208 int cblnums_global;
209
210 kmutex_t sc_lock;
211 kcondvar_t sc_cv;
212 kcondvar_t sc_detach_cv;
213
214 int sc_refcnt;
215 };
216
217 #ifdef UMIDI_DEBUG
218 #define DPRINTF(x) if (umididebug) printf x
219 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
220 #include <sys/time.h>
221 static struct timeval umidi_tv;
222 int umididebug = 0;
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227
228 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
229 (sc->sc_out_num_endpoints + \
230 sc->sc_in_num_endpoints))
231
232
233 static int umidi_open(void *, int,
234 void (*)(void *, int), void (*)(void *), void *);
235 static void umidi_close(void *);
236 static int umidi_channelmsg(void *, int, int, u_char *, int);
237 static int umidi_commonmsg(void *, int, u_char *, int);
238 static int umidi_sysex(void *, u_char *, int);
239 static int umidi_rtmsg(void *, int);
240 static void umidi_getinfo(void *, struct midi_info *);
241 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
242
243 static usbd_status alloc_pipe(struct umidi_endpoint *);
244 static void free_pipe(struct umidi_endpoint *);
245
246 static usbd_status alloc_all_endpoints(struct umidi_softc *);
247 static void free_all_endpoints(struct umidi_softc *);
248
249 static usbd_status alloc_all_jacks(struct umidi_softc *);
250 static void free_all_jacks(struct umidi_softc *);
251 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
252 struct umidi_jack *,
253 struct umidi_jack *,
254 struct umidi_mididev *);
255 static void unbind_jacks_from_mididev(struct umidi_mididev *);
256 static void unbind_all_jacks(struct umidi_softc *);
257 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
258 static usbd_status open_out_jack(struct umidi_jack *, void *,
259 void (*)(void *));
260 static usbd_status open_in_jack(struct umidi_jack *, void *,
261 void (*)(void *, int));
262 static void close_out_jack(struct umidi_jack *);
263 static void close_in_jack(struct umidi_jack *);
264
265 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
266 static usbd_status detach_mididev(struct umidi_mididev *, int);
267 static void deactivate_mididev(struct umidi_mididev *);
268 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
269 static void free_all_mididevs(struct umidi_softc *);
270 static usbd_status attach_all_mididevs(struct umidi_softc *);
271 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
272 static void deactivate_all_mididevs(struct umidi_softc *);
273 static void describe_mididev(struct umidi_mididev *);
274
275 #ifdef UMIDI_DEBUG
276 static void dump_sc(struct umidi_softc *);
277 static void dump_ep(struct umidi_endpoint *);
278 static void dump_jack(struct umidi_jack *);
279 #endif
280
281 static usbd_status start_input_transfer(struct umidi_endpoint *);
282 static usbd_status start_output_transfer(struct umidi_endpoint *);
283 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
284 static void in_intr(struct usbd_xfer *, void *, usbd_status);
285 static void out_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
287 static void out_solicit_locked(void *); /* pre-locked version */
288
289
290 const struct midi_hw_if umidi_hw_if = {
291 .open = umidi_open,
292 .close = umidi_close,
293 .output = umidi_rtmsg,
294 .getinfo = umidi_getinfo,
295 .get_locks = umidi_get_locks,
296 };
297
298 struct midi_hw_if_ext umidi_hw_if_ext = {
299 .channel = umidi_channelmsg,
300 .common = umidi_commonmsg,
301 .sysex = umidi_sysex,
302 };
303
304 struct midi_hw_if_ext umidi_hw_if_mm = {
305 .channel = umidi_channelmsg,
306 .common = umidi_commonmsg,
307 .sysex = umidi_sysex,
308 .compress = 1,
309 };
310
311 static int umidi_match(device_t, cfdata_t, void *);
312 static void umidi_attach(device_t, device_t, void *);
313 static void umidi_childdet(device_t, device_t);
314 static int umidi_detach(device_t, int);
315 static int umidi_activate(device_t, enum devact);
316
317 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
318 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
319
320 static int
321 umidi_match(device_t parent, cfdata_t match, void *aux)
322 {
323 struct usbif_attach_arg *uiaa = aux;
324
325 DPRINTFN(1,("umidi_match\n"));
326
327 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
328 uiaa->uiaa_ifaceno))
329 return UMATCH_IFACECLASS_IFACESUBCLASS;
330
331 if (uiaa->uiaa_class == UICLASS_AUDIO &&
332 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
333 return UMATCH_IFACECLASS_IFACESUBCLASS;
334
335 return UMATCH_NONE;
336 }
337
338 static void
339 umidi_attach(device_t parent, device_t self, void *aux)
340 {
341 usbd_status err;
342 struct umidi_softc *sc = device_private(self);
343 struct usbif_attach_arg *uiaa = aux;
344 char *devinfop;
345
346 DPRINTFN(1,("umidi_attach\n"));
347
348 sc->sc_dev = self;
349
350 aprint_naive("\n");
351 aprint_normal("\n");
352
353 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
354 aprint_normal_dev(self, "%s\n", devinfop);
355 usbd_devinfo_free(devinfop);
356
357 sc->sc_iface = uiaa->uiaa_iface;
358 sc->sc_udev = uiaa->uiaa_device;
359
360 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
361 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
362
363 aprint_normal_dev(self, "");
364 umidi_print_quirk(sc->sc_quirk);
365
366 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
367 cv_init(&sc->sc_cv, "umidopcl");
368 cv_init(&sc->sc_detach_cv, "umidetcv");
369 sc->sc_refcnt = 0;
370
371 err = alloc_all_endpoints(sc);
372 if (err != USBD_NORMAL_COMPLETION) {
373 aprint_error_dev(self,
374 "alloc_all_endpoints failed. (err=%d)\n", err);
375 goto out;
376 }
377 err = alloc_all_jacks(sc);
378 if (err != USBD_NORMAL_COMPLETION) {
379 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
380 err);
381 goto out_free_endpoints;
382 }
383 aprint_normal_dev(self, "out=%d, in=%d\n",
384 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
385
386 err = assign_all_jacks_automatically(sc);
387 if (err != USBD_NORMAL_COMPLETION) {
388 aprint_error_dev(self,
389 "assign_all_jacks_automatically failed. (err=%d)\n", err);
390 goto out_free_jacks;
391 }
392 err = attach_all_mididevs(sc);
393 if (err != USBD_NORMAL_COMPLETION) {
394 aprint_error_dev(self,
395 "attach_all_mididevs failed. (err=%d)\n", err);
396 goto out_free_jacks;
397 }
398
399 #ifdef UMIDI_DEBUG
400 dump_sc(sc);
401 #endif
402
403 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
404
405 return;
406
407 out_free_jacks:
408 unbind_all_jacks(sc);
409 free_all_jacks(sc);
410
411 out_free_endpoints:
412 free_all_endpoints(sc);
413
414 out:
415 aprint_error_dev(self, "disabled.\n");
416 sc->sc_dying = 1;
417 return;
418 }
419
420 static void
421 umidi_childdet(device_t self, device_t child)
422 {
423 int i;
424 struct umidi_softc *sc = device_private(self);
425
426 KASSERT(sc->sc_mididevs != NULL);
427
428 for (i = 0; i < sc->sc_num_mididevs; i++) {
429 if (sc->sc_mididevs[i].mdev == child)
430 break;
431 }
432 KASSERT(i < sc->sc_num_mididevs);
433 sc->sc_mididevs[i].mdev = NULL;
434 }
435
436 static int
437 umidi_activate(device_t self, enum devact act)
438 {
439 struct umidi_softc *sc = device_private(self);
440
441 switch (act) {
442 case DVACT_DEACTIVATE:
443 DPRINTFN(1,("umidi_activate (deactivate)\n"));
444 sc->sc_dying = 1;
445 deactivate_all_mididevs(sc);
446 return 0;
447 default:
448 DPRINTFN(1,("umidi_activate (%d)\n", act));
449 return EOPNOTSUPP;
450 }
451 }
452
453 static int
454 umidi_detach(device_t self, int flags)
455 {
456 struct umidi_softc *sc = device_private(self);
457
458 DPRINTFN(1,("umidi_detach\n"));
459
460 mutex_enter(&sc->sc_lock);
461 sc->sc_dying = 1;
462 if (--sc->sc_refcnt >= 0)
463 if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
464 aprint_error_dev(self, ": didn't detach\n");
465 mutex_exit(&sc->sc_lock);
466
467 detach_all_mididevs(sc, flags);
468 free_all_mididevs(sc);
469 free_all_jacks(sc);
470 free_all_endpoints(sc);
471
472 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
473
474 mutex_destroy(&sc->sc_lock);
475 cv_destroy(&sc->sc_detach_cv);
476 cv_destroy(&sc->sc_cv);
477
478 return 0;
479 }
480
481
482 /*
483 * midi_if stuffs
484 */
485 int
486 umidi_open(void *addr,
487 int flags,
488 void (*iintr)(void *, int),
489 void (*ointr)(void *),
490 void *arg)
491 {
492 struct umidi_mididev *mididev = addr;
493 struct umidi_softc *sc = mididev->sc;
494 usbd_status err;
495
496 KASSERT(mutex_owned(&sc->sc_lock));
497 DPRINTF(("umidi_open: sc=%p\n", sc));
498
499 if (mididev->opened)
500 return EBUSY;
501 if (sc->sc_dying)
502 return EIO;
503
504 mididev->opened = 1;
505 mididev->flags = flags;
506 if ((mididev->flags & FWRITE) && mididev->out_jack) {
507 err = open_out_jack(mididev->out_jack, arg, ointr);
508 if (err != USBD_NORMAL_COMPLETION)
509 goto bad;
510 }
511 if ((mididev->flags & FREAD) && mididev->in_jack) {
512 err = open_in_jack(mididev->in_jack, arg, iintr);
513 KASSERT(mididev->opened);
514 if (err != USBD_NORMAL_COMPLETION &&
515 err != USBD_IN_PROGRESS) {
516 if (mididev->out_jack)
517 close_out_jack(mididev->out_jack);
518 goto bad;
519 }
520 }
521
522 return 0;
523 bad:
524 mididev->opened = 0;
525 DPRINTF(("umidi_open: usbd_status %d\n", err));
526 KASSERT(mutex_owned(&sc->sc_lock));
527 return USBD_IN_USE == err ? EBUSY : EIO;
528 }
529
530 void
531 umidi_close(void *addr)
532 {
533 struct umidi_mididev *mididev = addr;
534 struct umidi_softc *sc = mididev->sc;
535
536 KASSERT(mutex_owned(&sc->sc_lock));
537
538 if (mididev->closing)
539 return;
540
541 mididev->closing = 1;
542
543 sc->sc_refcnt++;
544
545 if ((mididev->flags & FWRITE) && mididev->out_jack)
546 close_out_jack(mididev->out_jack);
547 if ((mididev->flags & FREAD) && mididev->in_jack)
548 close_in_jack(mididev->in_jack);
549
550 if (--sc->sc_refcnt < 0)
551 cv_broadcast(&sc->sc_detach_cv);
552
553 mididev->opened = 0;
554 mididev->closing = 0;
555 }
556
557 int
558 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
559 int len)
560 {
561 struct umidi_mididev *mididev = addr;
562
563 KASSERT(mutex_owned(&mididev->sc->sc_lock));
564
565 if (!mididev->out_jack || !mididev->opened || mididev->closing)
566 return EIO;
567
568 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
569 }
570
571 int
572 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
573 {
574 struct umidi_mididev *mididev = addr;
575 int cin;
576
577 KASSERT(mutex_owned(&mididev->sc->sc_lock));
578
579 if (!mididev->out_jack || !mididev->opened || mididev->closing)
580 return EIO;
581
582 switch ( len ) {
583 case 1: cin = 5; break;
584 case 2: cin = 2; break;
585 case 3: cin = 3; break;
586 default: return EIO; /* or gcc warns of cin uninitialized */
587 }
588
589 return out_jack_output(mididev->out_jack, msg, len, cin);
590 }
591
592 int
593 umidi_sysex(void *addr, u_char *msg, int len)
594 {
595 struct umidi_mididev *mididev = addr;
596 int cin;
597
598 KASSERT(mutex_owned(&mididev->sc->sc_lock));
599
600 if (!mididev->out_jack || !mididev->opened || mididev->closing)
601 return EIO;
602
603 switch ( len ) {
604 case 1: cin = 5; break;
605 case 2: cin = 6; break;
606 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
607 default: return EIO; /* or gcc warns of cin uninitialized */
608 }
609
610 return out_jack_output(mididev->out_jack, msg, len, cin);
611 }
612
613 int
614 umidi_rtmsg(void *addr, int d)
615 {
616 struct umidi_mididev *mididev = addr;
617 u_char msg = d;
618
619 KASSERT(mutex_owned(&mididev->sc->sc_lock));
620
621 if (!mididev->out_jack || !mididev->opened || mididev->closing)
622 return EIO;
623
624 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
625 }
626
627 void
628 umidi_getinfo(void *addr, struct midi_info *mi)
629 {
630 struct umidi_mididev *mididev = addr;
631 struct umidi_softc *sc = mididev->sc;
632 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
633
634 KASSERT(mutex_owned(&sc->sc_lock));
635
636 mi->name = mididev->label;
637 mi->props = MIDI_PROP_OUT_INTR;
638 if (mididev->in_jack)
639 mi->props |= MIDI_PROP_CAN_INPUT;
640 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
641 }
642
643 static void
644 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
645 {
646 struct umidi_mididev *mididev = addr;
647 struct umidi_softc *sc = mididev->sc;
648
649 *intr = NULL;
650 *thread = &sc->sc_lock;
651 }
652
653 /*
654 * each endpoint stuffs
655 */
656
657 /* alloc/free pipe */
658 static usbd_status
659 alloc_pipe(struct umidi_endpoint *ep)
660 {
661 struct umidi_softc *sc = ep->sc;
662 usbd_status err;
663 usb_endpoint_descriptor_t *epd;
664
665 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
666 /*
667 * For output, an improvement would be to have a buffer bigger than
668 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
669 * allow out_solicit to fill the buffer to the full packet size in
670 * all cases. But to use usbd_create_xfer to get a slightly larger
671 * buffer would not be a good way to do that, because if the addition
672 * would make the buffer exceed USB_MEM_SMALL then a substantially
673 * larger block may be wastefully allocated. Some flavor of double
674 * buffering could serve the same purpose, but would increase the
675 * code complexity, so for now I will live with the current slight
676 * penalty of reducing max transfer size by (num_open-num_scheduled)
677 * packet slots.
678 */
679 ep->buffer_size = UGETW(epd->wMaxPacketSize);
680 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
681
682 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
683 device_xname(sc->sc_dev), ep, ep->buffer_size));
684 ep->num_scheduled = 0;
685 ep->this_schedule = 0;
686 ep->next_schedule = 0;
687 ep->soliciting = 0;
688 ep->armed = 0;
689 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
690 if (err)
691 goto quit;
692 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
693 0, 0, &ep->xfer);
694 if (error) {
695 usbd_close_pipe(ep->pipe);
696 return USBD_NOMEM;
697 }
698 ep->buffer = usbd_get_buffer(ep->xfer);
699 ep->next_slot = ep->buffer;
700 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
701 out_solicit, ep);
702 quit:
703 return err;
704 }
705
706 static void
707 free_pipe(struct umidi_endpoint *ep)
708 {
709 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
710 usbd_abort_pipe(ep->pipe);
711 usbd_destroy_xfer(ep->xfer);
712 usbd_close_pipe(ep->pipe);
713 softint_disestablish(ep->solicit_cookie);
714 }
715
716
717 /* alloc/free the array of endpoint structures */
718
719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
722
723 static usbd_status
724 alloc_all_endpoints(struct umidi_softc *sc)
725 {
726 usbd_status err;
727 struct umidi_endpoint *ep;
728 int i;
729
730 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
731 err = alloc_all_endpoints_fixed_ep(sc);
732 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
733 err = alloc_all_endpoints_yamaha(sc);
734 } else {
735 err = alloc_all_endpoints_genuine(sc);
736 }
737 if (err != USBD_NORMAL_COMPLETION)
738 return err;
739
740 ep = sc->sc_endpoints;
741 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
742 err = alloc_pipe(ep++);
743 if (err != USBD_NORMAL_COMPLETION) {
744 for (; ep != sc->sc_endpoints; ep--)
745 free_pipe(ep-1);
746 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
747 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
748 break;
749 }
750 }
751 return err;
752 }
753
754 static void
755 free_all_endpoints(struct umidi_softc *sc)
756 {
757 int i;
758
759 if (sc->sc_endpoints == NULL) {
760 /* nothing to free */
761 return;
762 }
763
764 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
765 free_pipe(&sc->sc_endpoints[i]);
766 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
767 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
768 }
769
770 static usbd_status
771 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
772 {
773 usbd_status err;
774 const struct umq_fixed_ep_desc *fp;
775 struct umidi_endpoint *ep;
776 usb_endpoint_descriptor_t *epd;
777 int i;
778
779 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
780 UMQ_TYPE_FIXED_EP);
781 sc->sc_out_num_jacks = 0;
782 sc->sc_in_num_jacks = 0;
783 sc->sc_out_num_endpoints = fp->num_out_ep;
784 sc->sc_in_num_endpoints = fp->num_in_ep;
785 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
786 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
787 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
788 sc->sc_in_ep =
789 sc->sc_in_num_endpoints ?
790 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
791
792 ep = &sc->sc_out_ep[0];
793 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
794 epd = usbd_interface2endpoint_descriptor(
795 sc->sc_iface,
796 fp->out_ep[i].ep);
797 if (!epd) {
798 aprint_error_dev(sc->sc_dev,
799 "cannot get endpoint descriptor(out:%d)\n",
800 fp->out_ep[i].ep);
801 err = USBD_INVAL;
802 goto error;
803 }
804 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
805 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
806 aprint_error_dev(sc->sc_dev,
807 "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
808 err = USBD_INVAL;
809 goto error;
810 }
811 ep->sc = sc;
812 ep->addr = epd->bEndpointAddress;
813 ep->num_jacks = fp->out_ep[i].num_jacks;
814 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
815 ep->num_open = 0;
816 ep++;
817 }
818 ep = &sc->sc_in_ep[0];
819 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
820 epd = usbd_interface2endpoint_descriptor(
821 sc->sc_iface,
822 fp->in_ep[i].ep);
823 if (!epd) {
824 aprint_error_dev(sc->sc_dev,
825 "cannot get endpoint descriptor(in:%d)\n",
826 fp->in_ep[i].ep);
827 err = USBD_INVAL;
828 goto error;
829 }
830 /*
831 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
832 * endpoint. The existing input logic in this driver seems
833 * to work successfully if we just stop treating an interrupt
834 * endpoint as illegal (or the in_progress status we get on
835 * the initial transfer). It does not seem necessary to
836 * actually use the interrupt flavor of alloc_pipe or make
837 * other serious rearrangements of logic. I like that.
838 */
839 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
840 case UE_BULK:
841 case UE_INTERRUPT:
842 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
843 break;
844 /*FALLTHROUGH*/
845 default:
846 aprint_error_dev(sc->sc_dev,
847 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
848 err = USBD_INVAL;
849 goto error;
850 }
851
852 ep->sc = sc;
853 ep->addr = epd->bEndpointAddress;
854 ep->num_jacks = fp->in_ep[i].num_jacks;
855 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
856 ep->num_open = 0;
857 ep++;
858 }
859
860 return USBD_NORMAL_COMPLETION;
861 error:
862 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
863 sc->sc_endpoints = NULL;
864 return err;
865 }
866
867 static usbd_status
868 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
869 {
870 /* This driver currently supports max 1in/1out bulk endpoints */
871 usb_descriptor_t *desc;
872 umidi_cs_descriptor_t *udesc;
873 usb_endpoint_descriptor_t *epd;
874 int out_addr, in_addr, i;
875 int dir;
876 size_t remain, descsize;
877
878 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
879 out_addr = in_addr = 0;
880
881 /* detect endpoints */
882 desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
883 for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
884 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
885 KASSERT(epd != NULL);
886 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
887 dir = UE_GET_DIR(epd->bEndpointAddress);
888 if (dir==UE_DIR_OUT && !out_addr)
889 out_addr = epd->bEndpointAddress;
890 else if (dir==UE_DIR_IN && !in_addr)
891 in_addr = epd->bEndpointAddress;
892 }
893 }
894 udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
895
896 /* count jacks */
897 if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
898 udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
899 return USBD_INVAL;
900 remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
901 (size_t)udesc->bLength;
902 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
903
904 while (remain >= sizeof(usb_descriptor_t)) {
905 descsize = udesc->bLength;
906 if (descsize>remain || descsize==0)
907 break;
908 if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
909 remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
910 if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
911 sc->sc_out_num_jacks++;
912 else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
913 sc->sc_in_num_jacks++;
914 }
915 udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
916 remain -= descsize;
917 }
918
919 /* validate some parameters */
920 if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
921 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
922 if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
923 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
924 if (sc->sc_out_num_jacks && out_addr) {
925 sc->sc_out_num_endpoints = 1;
926 } else {
927 sc->sc_out_num_endpoints = 0;
928 sc->sc_out_num_jacks = 0;
929 }
930 if (sc->sc_in_num_jacks && in_addr) {
931 sc->sc_in_num_endpoints = 1;
932 } else {
933 sc->sc_in_num_endpoints = 0;
934 sc->sc_in_num_jacks = 0;
935 }
936 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
937 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
938 if (sc->sc_out_num_endpoints) {
939 sc->sc_out_ep = sc->sc_endpoints;
940 sc->sc_out_ep->sc = sc;
941 sc->sc_out_ep->addr = out_addr;
942 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
943 sc->sc_out_ep->num_open = 0;
944 } else
945 sc->sc_out_ep = NULL;
946
947 if (sc->sc_in_num_endpoints) {
948 sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
949 sc->sc_in_ep->sc = sc;
950 sc->sc_in_ep->addr = in_addr;
951 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
952 sc->sc_in_ep->num_open = 0;
953 } else
954 sc->sc_in_ep = NULL;
955
956 return USBD_NORMAL_COMPLETION;
957 }
958
959 static usbd_status
960 alloc_all_endpoints_genuine(struct umidi_softc *sc)
961 {
962 usb_interface_descriptor_t *interface_desc;
963 usb_config_descriptor_t *config_desc;
964 usb_descriptor_t *desc;
965 int num_ep;
966 size_t remain, descsize;
967 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
968 int epaddr;
969
970 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
971 num_ep = interface_desc->bNumEndpoints;
972 if (num_ep == 0)
973 return USBD_INVAL;
974 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
975 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
976 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
977 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
978 epaddr = -1;
979
980 /* get the list of endpoints for midi stream */
981 config_desc = usbd_get_config_descriptor(sc->sc_udev);
982 desc = (usb_descriptor_t *) config_desc;
983 remain = (size_t)UGETW(config_desc->wTotalLength);
984 while (remain>=sizeof(usb_descriptor_t)) {
985 descsize = desc->bLength;
986 if (descsize>remain || descsize==0)
987 break;
988 if (desc->bDescriptorType==UDESC_ENDPOINT &&
989 remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
990 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
991 epaddr = TO_EPD(desc)->bEndpointAddress;
992 } else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
993 remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
994 epaddr!=-1) {
995 if (num_ep>0) {
996 num_ep--;
997 p->sc = sc;
998 p->addr = epaddr;
999 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1000 if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
1001 sc->sc_out_num_endpoints++;
1002 sc->sc_out_num_jacks += p->num_jacks;
1003 } else {
1004 sc->sc_in_num_endpoints++;
1005 sc->sc_in_num_jacks += p->num_jacks;
1006 }
1007 p++;
1008 }
1009 } else
1010 epaddr = -1;
1011 desc = NEXT_D(desc);
1012 remain-=descsize;
1013 }
1014
1015 /* sort endpoints */
1016 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1017 p = sc->sc_endpoints;
1018 endep = p + num_ep;
1019 while (p<endep) {
1020 lowest = p;
1021 for (q=p+1; q<endep; q++) {
1022 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1023 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1024 ((UE_GET_DIR(lowest->addr)==
1025 UE_GET_DIR(q->addr)) &&
1026 (UE_GET_ADDR(lowest->addr)>
1027 UE_GET_ADDR(q->addr))))
1028 lowest = q;
1029 }
1030 if (lowest != p) {
1031 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1032 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1033 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1034 }
1035 p->num_open = 0;
1036 p++;
1037 }
1038
1039 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1040 sc->sc_in_ep =
1041 sc->sc_in_num_endpoints ?
1042 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1043
1044 return USBD_NORMAL_COMPLETION;
1045 }
1046
1047
1048 /*
1049 * jack stuffs
1050 */
1051
1052 static usbd_status
1053 alloc_all_jacks(struct umidi_softc *sc)
1054 {
1055 int i, j;
1056 struct umidi_endpoint *ep;
1057 struct umidi_jack *jack;
1058 const unsigned char *cn_spec;
1059
1060 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1061 sc->cblnums_global = 0;
1062 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1063 sc->cblnums_global = 1;
1064 else {
1065 /*
1066 * I don't think this default is correct, but it preserves
1067 * the prior behavior of the code. That's why I defined two
1068 * complementary quirks. Any device for which the default
1069 * behavior is wrong can be made to work by giving it an
1070 * explicit quirk, and if a pattern ever develops (as I suspect
1071 * it will) that a lot of otherwise standard USB MIDI devices
1072 * need the CN_SEQ_PER_EP "quirk," then this default can be
1073 * changed to 0, and the only devices that will break are those
1074 * listing neither quirk, and they'll easily be fixed by giving
1075 * them the CN_SEQ_GLOBAL quirk.
1076 */
1077 sc->cblnums_global = 1;
1078 }
1079
1080 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1081 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1082 UMQ_TYPE_CN_FIXED);
1083 else
1084 cn_spec = NULL;
1085
1086 /* allocate/initialize structures */
1087 if (sc->sc_in_num_jacks == 0 && sc->sc_out_num_jacks == 0)
1088 return USBD_INVAL;
1089 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks) *
1090 (sc->sc_in_num_jacks + sc->sc_out_num_jacks), KM_SLEEP);
1091 if (!sc->sc_jacks)
1092 return USBD_NOMEM;
1093 sc->sc_out_jacks =
1094 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1095 sc->sc_in_jacks =
1096 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1097
1098 jack = &sc->sc_out_jacks[0];
1099 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1100 jack->opened = 0;
1101 jack->bound = 0;
1102 jack->arg = NULL;
1103 jack->u.out.intr = NULL;
1104 jack->midiman_ppkt = NULL;
1105 if (sc->cblnums_global)
1106 jack->cable_number = i;
1107 jack++;
1108 }
1109 jack = &sc->sc_in_jacks[0];
1110 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1111 jack->opened = 0;
1112 jack->bound = 0;
1113 jack->arg = NULL;
1114 jack->u.in.intr = NULL;
1115 if (sc->cblnums_global)
1116 jack->cable_number = i;
1117 jack++;
1118 }
1119
1120 /* assign each jacks to each endpoints */
1121 jack = &sc->sc_out_jacks[0];
1122 ep = &sc->sc_out_ep[0];
1123 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1124 for (j = 0; j < ep->num_jacks; j++) {
1125 jack->endpoint = ep;
1126 if (cn_spec != NULL)
1127 jack->cable_number = *cn_spec++;
1128 else if (!sc->cblnums_global)
1129 jack->cable_number = j;
1130 ep->jacks[jack->cable_number] = jack;
1131 jack++;
1132 }
1133 ep++;
1134 }
1135 jack = &sc->sc_in_jacks[0];
1136 ep = &sc->sc_in_ep[0];
1137 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1138 for (j = 0; j < ep->num_jacks; j++) {
1139 jack->endpoint = ep;
1140 if (cn_spec != NULL)
1141 jack->cable_number = *cn_spec++;
1142 else if (!sc->cblnums_global)
1143 jack->cable_number = j;
1144 ep->jacks[jack->cable_number] = jack;
1145 jack++;
1146 }
1147 ep++;
1148 }
1149
1150 return USBD_NORMAL_COMPLETION;
1151 }
1152
1153 static void
1154 free_all_jacks(struct umidi_softc *sc)
1155 {
1156 struct umidi_jack *jacks;
1157 size_t len;
1158
1159 mutex_enter(&sc->sc_lock);
1160 jacks = sc->sc_jacks;
1161 len = sizeof(*sc->sc_out_jacks) *
1162 (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1163 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1164 mutex_exit(&sc->sc_lock);
1165
1166 if (jacks)
1167 kmem_free(jacks, len);
1168 }
1169
1170 static usbd_status
1171 bind_jacks_to_mididev(struct umidi_softc *sc,
1172 struct umidi_jack *out_jack,
1173 struct umidi_jack *in_jack,
1174 struct umidi_mididev *mididev)
1175 {
1176 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1177 return USBD_IN_USE;
1178 if (mididev->out_jack || mididev->in_jack)
1179 return USBD_IN_USE;
1180
1181 if (out_jack)
1182 out_jack->bound = 1;
1183 if (in_jack)
1184 in_jack->bound = 1;
1185 mididev->in_jack = in_jack;
1186 mididev->out_jack = out_jack;
1187
1188 mididev->closing = 0;
1189
1190 return USBD_NORMAL_COMPLETION;
1191 }
1192
1193 static void
1194 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1195 {
1196 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1197
1198 mididev->closing = 1;
1199
1200 if ((mididev->flags & FWRITE) && mididev->out_jack)
1201 close_out_jack(mididev->out_jack);
1202 if ((mididev->flags & FREAD) && mididev->in_jack)
1203 close_in_jack(mididev->in_jack);
1204
1205 if (mididev->out_jack) {
1206 mididev->out_jack->bound = 0;
1207 mididev->out_jack = NULL;
1208 }
1209 if (mididev->in_jack) {
1210 mididev->in_jack->bound = 0;
1211 mididev->in_jack = NULL;
1212 }
1213 }
1214
1215 static void
1216 unbind_all_jacks(struct umidi_softc *sc)
1217 {
1218 int i;
1219
1220 mutex_enter(&sc->sc_lock);
1221 if (sc->sc_mididevs)
1222 for (i = 0; i < sc->sc_num_mididevs; i++)
1223 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1224 mutex_exit(&sc->sc_lock);
1225 }
1226
1227 static usbd_status
1228 assign_all_jacks_automatically(struct umidi_softc *sc)
1229 {
1230 usbd_status err;
1231 int i;
1232 struct umidi_jack *out, *in;
1233 const signed char *asg_spec;
1234
1235 err =
1236 alloc_all_mididevs(sc,
1237 uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1238 if (err!=USBD_NORMAL_COMPLETION)
1239 return err;
1240
1241 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1242 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1243 UMQ_TYPE_MD_FIXED);
1244 else
1245 asg_spec = NULL;
1246
1247 for (i = 0; i < sc->sc_num_mididevs; i++) {
1248 if (asg_spec != NULL) {
1249 if (*asg_spec == -1)
1250 out = NULL;
1251 else
1252 out = &sc->sc_out_jacks[*asg_spec];
1253 ++ asg_spec;
1254 if (*asg_spec == -1)
1255 in = NULL;
1256 else
1257 in = &sc->sc_in_jacks[*asg_spec];
1258 ++ asg_spec;
1259 } else {
1260 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1261 : NULL;
1262 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1263 : NULL;
1264 }
1265 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1266 if (err != USBD_NORMAL_COMPLETION) {
1267 free_all_mididevs(sc);
1268 return err;
1269 }
1270 }
1271
1272 return USBD_NORMAL_COMPLETION;
1273 }
1274
1275 static usbd_status
1276 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1277 {
1278 struct umidi_endpoint *ep = jack->endpoint;
1279 struct umidi_softc *sc = ep->sc;
1280 umidi_packet_bufp end;
1281 int err;
1282
1283 KASSERT(mutex_owned(&sc->sc_lock));
1284
1285 if (jack->opened)
1286 return USBD_IN_USE;
1287
1288 jack->arg = arg;
1289 jack->u.out.intr = intr;
1290 jack->midiman_ppkt = NULL;
1291 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1292 jack->opened = 1;
1293 ep->num_open++;
1294 /*
1295 * out_solicit maintains an invariant that there will always be
1296 * (num_open - num_scheduled) slots free in the buffer. as we have
1297 * just incremented num_open, the buffer may be too full to satisfy
1298 * the invariant until a transfer completes, for which we must wait.
1299 */
1300 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1301 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1302 mstohz(10));
1303 if (err) {
1304 ep->num_open--;
1305 jack->opened = 0;
1306 return USBD_IOERROR;
1307 }
1308 }
1309
1310 return USBD_NORMAL_COMPLETION;
1311 }
1312
1313 static usbd_status
1314 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1315 {
1316 usbd_status err = USBD_NORMAL_COMPLETION;
1317 struct umidi_endpoint *ep = jack->endpoint;
1318
1319 KASSERT(mutex_owned(&ep->sc->sc_lock));
1320
1321 if (jack->opened)
1322 return USBD_IN_USE;
1323
1324 jack->arg = arg;
1325 jack->u.in.intr = intr;
1326 jack->opened = 1;
1327 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1328 /*
1329 * Can't hold the interrupt lock while calling into USB,
1330 * but we can safely drop it here.
1331 */
1332 mutex_exit(&ep->sc->sc_lock);
1333 err = start_input_transfer(ep);
1334 if (err != USBD_NORMAL_COMPLETION &&
1335 err != USBD_IN_PROGRESS) {
1336 ep->num_open--;
1337 }
1338 mutex_enter(&ep->sc->sc_lock);
1339 }
1340
1341 return err;
1342 }
1343
1344 static void
1345 close_out_jack(struct umidi_jack *jack)
1346 {
1347 struct umidi_endpoint *ep;
1348 struct umidi_softc *sc;
1349 uint16_t mask;
1350 int err;
1351
1352 if (jack->opened) {
1353 ep = jack->endpoint;
1354 sc = ep->sc;
1355
1356 KASSERT(mutex_owned(&sc->sc_lock));
1357 mask = 1 << (jack->cable_number);
1358 while (mask & (ep->this_schedule | ep->next_schedule)) {
1359 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1360 mstohz(10));
1361 if (err)
1362 break;
1363 }
1364 /*
1365 * We can re-enter this function from both close() and
1366 * detach(). Make sure only one of them does this part.
1367 */
1368 if (jack->opened) {
1369 jack->opened = 0;
1370 jack->endpoint->num_open--;
1371 ep->this_schedule &= ~mask;
1372 ep->next_schedule &= ~mask;
1373 }
1374 }
1375 }
1376
1377 static void
1378 close_in_jack(struct umidi_jack *jack)
1379 {
1380 if (jack->opened) {
1381 struct umidi_softc *sc = jack->endpoint->sc;
1382
1383 KASSERT(mutex_owned(&sc->sc_lock));
1384
1385 jack->opened = 0;
1386 if (--jack->endpoint->num_open == 0) {
1387 /*
1388 * We have to drop the (interrupt) lock so that
1389 * the USB thread lock can be safely taken by
1390 * the abort operation. This is safe as this
1391 * either closing or dying will be set proerly.
1392 */
1393 mutex_exit(&sc->sc_lock);
1394 usbd_abort_pipe(jack->endpoint->pipe);
1395 mutex_enter(&sc->sc_lock);
1396 }
1397 }
1398 }
1399
1400 static usbd_status
1401 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1402 {
1403 if (mididev->sc)
1404 return USBD_IN_USE;
1405
1406 mididev->sc = sc;
1407
1408 describe_mididev(mididev);
1409
1410 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1411
1412 return USBD_NORMAL_COMPLETION;
1413 }
1414
1415 static usbd_status
1416 detach_mididev(struct umidi_mididev *mididev, int flags)
1417 {
1418 struct umidi_softc *sc = mididev->sc;
1419
1420 if (!sc)
1421 return USBD_NO_ADDR;
1422
1423 mutex_enter(&sc->sc_lock);
1424 if (mididev->opened) {
1425 umidi_close(mididev);
1426 }
1427 unbind_jacks_from_mididev(mididev);
1428 mutex_exit(&sc->sc_lock);
1429
1430 if (mididev->mdev != NULL)
1431 config_detach(mididev->mdev, flags);
1432
1433 if (NULL != mididev->label) {
1434 kmem_free(mididev->label, mididev->label_len);
1435 mididev->label = NULL;
1436 }
1437
1438 mididev->sc = NULL;
1439
1440 return USBD_NORMAL_COMPLETION;
1441 }
1442
1443 static void
1444 deactivate_mididev(struct umidi_mididev *mididev)
1445 {
1446 if (mididev->out_jack)
1447 mididev->out_jack->bound = 0;
1448 if (mididev->in_jack)
1449 mididev->in_jack->bound = 0;
1450 }
1451
1452 static usbd_status
1453 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1454 {
1455 sc->sc_num_mididevs = nmidi;
1456 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1457 return USBD_NORMAL_COMPLETION;
1458 }
1459
1460 static void
1461 free_all_mididevs(struct umidi_softc *sc)
1462 {
1463 struct umidi_mididev *mididevs;
1464 size_t len;
1465
1466 mutex_enter(&sc->sc_lock);
1467 mididevs = sc->sc_mididevs;
1468 if (mididevs)
1469 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1470 sc->sc_mididevs = NULL;
1471 sc->sc_num_mididevs = 0;
1472 mutex_exit(&sc->sc_lock);
1473
1474 if (mididevs)
1475 kmem_free(mididevs, len);
1476 }
1477
1478 static usbd_status
1479 attach_all_mididevs(struct umidi_softc *sc)
1480 {
1481 usbd_status err;
1482 int i;
1483
1484 if (sc->sc_mididevs)
1485 for (i = 0; i < sc->sc_num_mididevs; i++) {
1486 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1487 if (err != USBD_NORMAL_COMPLETION)
1488 return err;
1489 }
1490
1491 return USBD_NORMAL_COMPLETION;
1492 }
1493
1494 static usbd_status
1495 detach_all_mididevs(struct umidi_softc *sc, int flags)
1496 {
1497 usbd_status err;
1498 int i;
1499
1500 if (sc->sc_mididevs)
1501 for (i = 0; i < sc->sc_num_mididevs; i++) {
1502 err = detach_mididev(&sc->sc_mididevs[i], flags);
1503 if (err != USBD_NORMAL_COMPLETION)
1504 return err;
1505 }
1506
1507 return USBD_NORMAL_COMPLETION;
1508 }
1509
1510 static void
1511 deactivate_all_mididevs(struct umidi_softc *sc)
1512 {
1513 int i;
1514
1515 if (sc->sc_mididevs) {
1516 for (i = 0; i < sc->sc_num_mididevs; i++)
1517 deactivate_mididev(&sc->sc_mididevs[i]);
1518 }
1519 }
1520
1521 /*
1522 * TODO: the 0-based cable numbers will often not match the labeling of the
1523 * equipment. Ideally:
1524 * For class-compliant devices: get the iJack string from the jack descriptor.
1525 * Otherwise:
1526 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1527 * number for display)
1528 * - support an array quirk explictly giving a char * for each jack.
1529 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1530 * the CNs are not globally unique, each is shown with its associated endpoint
1531 * address in hex also. That should not be necessary when using iJack values
1532 * or a quirk array.
1533 */
1534 void
1535 describe_mididev(struct umidi_mididev *md)
1536 {
1537 char in_label[16];
1538 char out_label[16];
1539 const char *unit_label;
1540 char *final_label;
1541 struct umidi_softc *sc;
1542 int show_ep_in;
1543 int show_ep_out;
1544 size_t len;
1545
1546 sc = md->sc;
1547 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1548 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1549
1550 if (NULL == md->in_jack)
1551 in_label[0] = '\0';
1552 else if (show_ep_in)
1553 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1554 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1555 else
1556 snprintf(in_label, sizeof(in_label), "<%d ",
1557 md->in_jack->cable_number);
1558
1559 if (NULL == md->out_jack)
1560 out_label[0] = '\0';
1561 else if (show_ep_out)
1562 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1563 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1564 else
1565 snprintf(out_label, sizeof(out_label), ">%d ",
1566 md->out_jack->cable_number);
1567
1568 unit_label = device_xname(sc->sc_dev);
1569
1570 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1571
1572 final_label = kmem_alloc(len, KM_SLEEP);
1573
1574 snprintf(final_label, len, "%s%son %s",
1575 in_label, out_label, unit_label);
1576
1577 md->label = final_label;
1578 md->label_len = len;
1579 }
1580
1581 #ifdef UMIDI_DEBUG
1582 static void
1583 dump_sc(struct umidi_softc *sc)
1584 {
1585 int i;
1586
1587 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1588 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1589 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1590 dump_ep(&sc->sc_out_ep[i]);
1591 }
1592 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1593 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1594 dump_ep(&sc->sc_in_ep[i]);
1595 }
1596 }
1597
1598 static void
1599 dump_ep(struct umidi_endpoint *ep)
1600 {
1601 int i;
1602 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1603 if (NULL==ep->jacks[i])
1604 continue;
1605 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1606 dump_jack(ep->jacks[i]);
1607 }
1608 }
1609 static void
1610 dump_jack(struct umidi_jack *jack)
1611 {
1612 DPRINTFN(10, ("\t\t\tep=%p\n",
1613 jack->endpoint));
1614 }
1615
1616 #endif /* UMIDI_DEBUG */
1617
1618
1619
1620 /*
1621 * MUX MIDI PACKET
1622 */
1623
1624 static const int packet_length[16] = {
1625 /*0*/ -1,
1626 /*1*/ -1,
1627 /*2*/ 2,
1628 /*3*/ 3,
1629 /*4*/ 3,
1630 /*5*/ 1,
1631 /*6*/ 2,
1632 /*7*/ 3,
1633 /*8*/ 3,
1634 /*9*/ 3,
1635 /*A*/ 3,
1636 /*B*/ 3,
1637 /*C*/ 2,
1638 /*D*/ 2,
1639 /*E*/ 3,
1640 /*F*/ 1,
1641 };
1642
1643 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1644 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1645 #define MIX_CN_CIN(cn, cin) \
1646 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1647 ((unsigned char)(cin)&0x0F)))
1648
1649 static usbd_status
1650 start_input_transfer(struct umidi_endpoint *ep)
1651 {
1652 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1653 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1654 return usbd_transfer(ep->xfer);
1655 }
1656
1657 static usbd_status
1658 start_output_transfer(struct umidi_endpoint *ep)
1659 {
1660 usbd_status rv;
1661 uint32_t length;
1662 int i;
1663
1664 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1665 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1666 ep->buffer, ep->next_slot, length));
1667
1668 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1669 USBD_NO_TIMEOUT, out_intr);
1670 rv = usbd_transfer(ep->xfer);
1671
1672 /*
1673 * Once the transfer is scheduled, no more adding to partial
1674 * packets within it.
1675 */
1676 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1677 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1678 if (NULL != ep->jacks[i])
1679 ep->jacks[i]->midiman_ppkt = NULL;
1680 }
1681
1682 return rv;
1683 }
1684
1685 #ifdef UMIDI_DEBUG
1686 #define DPR_PACKET(dir, sc, p) \
1687 if ((unsigned char)(p)[1]!=0xFE) \
1688 DPRINTFN(500, \
1689 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1690 device_xname(sc->sc_dev), \
1691 (unsigned char)(p)[0], \
1692 (unsigned char)(p)[1], \
1693 (unsigned char)(p)[2], \
1694 (unsigned char)(p)[3]));
1695 #else
1696 #define DPR_PACKET(dir, sc, p)
1697 #endif
1698
1699 /*
1700 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1701 * with the cable number and length in the last byte instead of the first,
1702 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1703 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1704 * with a cable nybble and a length nybble (which, unlike the CIN of a
1705 * real USB MIDI packet, has no semantics at all besides the length).
1706 * A packet received from a Midiman may contain part of a MIDI message,
1707 * more than one MIDI message, or parts of more than one MIDI message. A
1708 * three-byte MIDI message may arrive in three packets of data length 1, and
1709 * running status may be used. Happily, the midi(4) driver above us will put
1710 * it all back together, so the only cost is in USB bandwidth. The device
1711 * has an easier time with what it receives from us: we'll pack messages in
1712 * and across packets, but filling the packets whenever possible and,
1713 * as midi(4) hands us a complete message at a time, we'll never send one
1714 * in a dribble of short packets.
1715 */
1716
1717 static int
1718 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1719 {
1720 struct umidi_endpoint *ep = out_jack->endpoint;
1721 struct umidi_softc *sc = ep->sc;
1722 unsigned char *packet;
1723 int plen;
1724 int poff;
1725
1726 KASSERT(mutex_owned(&sc->sc_lock));
1727
1728 if (sc->sc_dying)
1729 return EIO;
1730
1731 if (!out_jack->opened)
1732 return ENODEV; /* XXX as it was, is this the right errno? */
1733
1734 sc->sc_refcnt++;
1735
1736 #ifdef UMIDI_DEBUG
1737 if (umididebug >= 100)
1738 microtime(&umidi_tv);
1739 #endif
1740 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1741 "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1742 (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1743
1744 packet = *ep->next_slot++;
1745 KASSERT(ep->buffer_size >=
1746 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1747 memset(packet, 0, UMIDI_PACKET_SIZE);
1748 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1749 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1750 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1751 plen = 3 - poff;
1752 if (plen > len)
1753 plen = len;
1754 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1755 src += plen;
1756 len -= plen;
1757 plen += poff;
1758 out_jack->midiman_ppkt[3] =
1759 MIX_CN_CIN(out_jack->cable_number, plen);
1760 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1761 if (3 == plen)
1762 out_jack->midiman_ppkt = NULL; /* no more */
1763 }
1764 if (0 == len)
1765 ep->next_slot--; /* won't be needed, nevermind */
1766 else {
1767 memcpy(packet, src, len);
1768 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1769 DPR_PACKET(out, sc, packet);
1770 if (len < 3)
1771 out_jack->midiman_ppkt = packet;
1772 }
1773 } else { /* the nice simple USB class-compliant case */
1774 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1775 memcpy(packet+1, src, len);
1776 DPR_PACKET(out, sc, packet);
1777 }
1778 ep->next_schedule |= 1<<(out_jack->cable_number);
1779 ++ ep->num_scheduled;
1780 if (!ep->armed && !ep->soliciting) {
1781 /*
1782 * It would be bad to call out_solicit directly here (the
1783 * caller need not be reentrant) but a soft interrupt allows
1784 * solicit to run immediately the caller exits its critical
1785 * section, and if the caller has more to write we can get it
1786 * before starting the USB transfer, and send a longer one.
1787 */
1788 ep->soliciting = 1;
1789 kpreempt_disable();
1790 softint_schedule(ep->solicit_cookie);
1791 kpreempt_enable();
1792 }
1793
1794 if (--sc->sc_refcnt < 0)
1795 cv_broadcast(&sc->sc_detach_cv);
1796
1797 return 0;
1798 }
1799
1800 static void
1801 in_intr(struct usbd_xfer *xfer, void *priv,
1802 usbd_status status)
1803 {
1804 int cn, len, i;
1805 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1806 struct umidi_softc *sc = ep->sc;
1807 struct umidi_jack *jack;
1808 unsigned char *packet;
1809 umidi_packet_bufp slot;
1810 umidi_packet_bufp end;
1811 unsigned char *data;
1812 uint32_t count;
1813
1814 if (ep->sc->sc_dying || !ep->num_open)
1815 return;
1816
1817 mutex_enter(&sc->sc_lock);
1818 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1819 if (0 == count % UMIDI_PACKET_SIZE) {
1820 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1821 device_xname(ep->sc->sc_dev), ep, count));
1822 } else {
1823 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1824 device_xname(ep->sc->sc_dev), ep, count));
1825 }
1826
1827 slot = ep->buffer;
1828 end = slot + count / sizeof(*slot);
1829
1830 for (packet = *slot; slot < end; packet = *++slot) {
1831
1832 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1833 cn = (0xf0&(packet[3]))>>4;
1834 len = 0x0f&(packet[3]);
1835 data = packet;
1836 } else {
1837 cn = GET_CN(packet[0]);
1838 len = packet_length[GET_CIN(packet[0])];
1839 data = packet + 1;
1840 }
1841 /* 0 <= cn <= 15 by inspection of above code */
1842 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1843 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1844 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1845 device_xname(ep->sc->sc_dev), ep, cn, len,
1846 (unsigned)data[0],
1847 (unsigned)data[1],
1848 (unsigned)data[2]));
1849 mutex_exit(&sc->sc_lock);
1850 return;
1851 }
1852
1853 if (!jack->bound || !jack->opened)
1854 continue;
1855
1856 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1857 "%02X %02X %02X\n",
1858 device_xname(ep->sc->sc_dev), ep, cn, len,
1859 (unsigned)data[0],
1860 (unsigned)data[1],
1861 (unsigned)data[2]));
1862
1863 if (jack->u.in.intr) {
1864 for (i = 0; i < len; i++) {
1865 (*jack->u.in.intr)(jack->arg, data[i]);
1866 }
1867 }
1868
1869 }
1870
1871 (void)start_input_transfer(ep);
1872 mutex_exit(&sc->sc_lock);
1873 }
1874
1875 static void
1876 out_intr(struct usbd_xfer *xfer, void *priv,
1877 usbd_status status)
1878 {
1879 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1880 struct umidi_softc *sc = ep->sc;
1881 uint32_t count;
1882
1883 if (sc->sc_dying)
1884 return;
1885
1886 mutex_enter(&sc->sc_lock);
1887 #ifdef UMIDI_DEBUG
1888 if (umididebug >= 200)
1889 microtime(&umidi_tv);
1890 #endif
1891 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1892 if (0 == count % UMIDI_PACKET_SIZE) {
1893 DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1894 "length %u\n", device_xname(ep->sc->sc_dev),
1895 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1896 count));
1897 } else {
1898 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1899 device_xname(ep->sc->sc_dev), ep, count));
1900 }
1901 count /= UMIDI_PACKET_SIZE;
1902
1903 /*
1904 * If while the transfer was pending we buffered any new messages,
1905 * move them to the start of the buffer.
1906 */
1907 ep->next_slot -= count;
1908 if (ep->buffer < ep->next_slot) {
1909 memcpy(ep->buffer, ep->buffer + count,
1910 (char *)ep->next_slot - (char *)ep->buffer);
1911 }
1912 cv_broadcast(&sc->sc_cv);
1913 /*
1914 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1915 * Running at IPL_USB so the following should happen to be safe.
1916 */
1917 ep->armed = 0;
1918 if (!ep->soliciting) {
1919 ep->soliciting = 1;
1920 out_solicit_locked(ep);
1921 }
1922 mutex_exit(&sc->sc_lock);
1923 }
1924
1925 /*
1926 * A jack on which we have received a packet must be called back on its
1927 * out.intr handler before it will send us another; it is considered
1928 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1929 * we need no extra buffer space for it.
1930 *
1931 * In contrast, a jack that is open but not scheduled may supply us a packet
1932 * at any time, driven by the top half, and we must be able to accept it, no
1933 * excuses. So we must ensure that at any point in time there are at least
1934 * (num_open - num_scheduled) slots free.
1935 *
1936 * As long as there are more slots free than that minimum, we can loop calling
1937 * scheduled jacks back on their "interrupt" handlers, soliciting more
1938 * packets, starting the USB transfer only when the buffer space is down to
1939 * the minimum or no jack has any more to send.
1940 */
1941
1942 static void
1943 out_solicit_locked(void *arg)
1944 {
1945 struct umidi_endpoint *ep = arg;
1946 umidi_packet_bufp end;
1947 uint16_t which;
1948 struct umidi_jack *jack;
1949
1950 KASSERT(mutex_owned(&ep->sc->sc_lock));
1951
1952 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1953
1954 for ( ;; ) {
1955 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1956 break; /* at IPL_USB */
1957 if (ep->this_schedule == 0) {
1958 if (ep->next_schedule == 0)
1959 break; /* at IPL_USB */
1960 ep->this_schedule = ep->next_schedule;
1961 ep->next_schedule = 0;
1962 }
1963 /*
1964 * At least one jack is scheduled. Find and mask off the least
1965 * set bit in this_schedule and decrement num_scheduled.
1966 * Convert mask to bit index to find the corresponding jack,
1967 * and call its intr handler. If it has a message, it will call
1968 * back one of the output methods, which will set its bit in
1969 * next_schedule (not copied into this_schedule until the
1970 * latter is empty). In this way we round-robin the jacks that
1971 * have messages to send, until the buffer is as full as we
1972 * dare, and then start a transfer.
1973 */
1974 which = ep->this_schedule;
1975 which &= (~which)+1; /* now mask of least set bit */
1976 ep->this_schedule &= ~which;
1977 --ep->num_scheduled;
1978
1979 --which; /* now 1s below mask - count 1s to get index */
1980 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1981 which = (((which >> 2) & 0x3333) + (which & 0x3333));
1982 which = (((which >> 4) + which) & 0x0f0f);
1983 which += (which >> 8);
1984 which &= 0x1f; /* the bit index a/k/a jack number */
1985
1986 jack = ep->jacks[which];
1987 if (jack->u.out.intr)
1988 (*jack->u.out.intr)(jack->arg);
1989 }
1990 /* intr lock held at loop exit */
1991 if (!ep->armed && ep->next_slot > ep->buffer) {
1992 /*
1993 * Can't hold the interrupt lock while calling into USB,
1994 * but we can safely drop it here.
1995 */
1996 mutex_exit(&ep->sc->sc_lock);
1997 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1998 mutex_enter(&ep->sc->sc_lock);
1999 }
2000 ep->soliciting = 0;
2001 }
2002
2003 /* Entry point for the softintr. */
2004 static void
2005 out_solicit(void *arg)
2006 {
2007 struct umidi_endpoint *ep = arg;
2008 struct umidi_softc *sc = ep->sc;
2009
2010 mutex_enter(&sc->sc_lock);
2011 out_solicit_locked(arg);
2012 mutex_exit(&sc->sc_lock);
2013 }
2014