umidi.c revision 1.88 1 /* $NetBSD: umidi.c,v 1.88 2022/06/27 18:56:56 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Takuya SHIOZAKI (tshiozak (at) NetBSD.org), (full-size transfers, extended
9 * hw_if) Chapman Flack (chap (at) NetBSD.org), and Matthew R. Green
10 * (mrg (at) eterna.com.au).
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.88 2022/06/27 18:56:56 riastradh Exp $");
36
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59
60 #include <dev/usb/usbdevs.h>
61 #include <dev/usb/umidi_quirks.h>
62 #include <dev/midi_if.h>
63
64 /* Jack Descriptor */
65 #define UMIDI_MS_HEADER 0x01
66 #define UMIDI_IN_JACK 0x02
67 #define UMIDI_OUT_JACK 0x03
68
69 /* Jack Type */
70 #define UMIDI_EMBEDDED 0x01
71 #define UMIDI_EXTERNAL 0x02
72
73 /* generic, for iteration */
74 typedef struct {
75 uByte bLength;
76 uByte bDescriptorType;
77 uByte bDescriptorSubtype;
78 } UPACKED umidi_cs_descriptor_t;
79
80 typedef struct {
81 uByte bLength;
82 uByte bDescriptorType;
83 uByte bDescriptorSubtype;
84 uWord bcdMSC;
85 uWord wTotalLength;
86 } UPACKED umidi_cs_interface_descriptor_t;
87 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
88
89 typedef struct {
90 uByte bLength;
91 uByte bDescriptorType;
92 uByte bDescriptorSubtype;
93 uByte bNumEmbMIDIJack;
94 } UPACKED umidi_cs_endpoint_descriptor_t;
95 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
96
97 typedef struct {
98 uByte bLength;
99 uByte bDescriptorType;
100 uByte bDescriptorSubtype;
101 uByte bJackType;
102 uByte bJackID;
103 } UPACKED umidi_jack_descriptor_t;
104 #define UMIDI_JACK_DESCRIPTOR_SIZE 5
105
106
107 #define TO_D(p) ((usb_descriptor_t *)(p))
108 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
109 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
110 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
111 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
112 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
113
114
115 #define UMIDI_PACKET_SIZE 4
116
117 /*
118 * hierarchie
119 *
120 * <-- parent child -->
121 *
122 * umidi(sc) -> endpoint -> jack <- (dynamically assignable) - mididev
123 * ^ | ^ |
124 * +-----+ +-----+
125 */
126
127 /* midi device */
128 struct umidi_mididev {
129 struct umidi_softc *sc;
130 device_t mdev;
131 /* */
132 struct umidi_jack *in_jack;
133 struct umidi_jack *out_jack;
134 char *label;
135 size_t label_len;
136 /* */
137 int opened;
138 int closing;
139 int flags;
140 };
141
142 /* Jack Information */
143 struct umidi_jack {
144 struct umidi_endpoint *endpoint;
145 /* */
146 int cable_number;
147 void *arg;
148 int bound;
149 int opened;
150 unsigned char *midiman_ppkt;
151 union {
152 struct {
153 void (*intr)(void *);
154 } out;
155 struct {
156 void (*intr)(void *, int);
157 } in;
158 } u;
159 };
160
161 #define UMIDI_MAX_EPJACKS 16
162 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
163 /* endpoint data */
164 struct umidi_endpoint {
165 struct umidi_softc *sc;
166 /* */
167 int addr;
168 struct usbd_pipe *pipe;
169 struct usbd_xfer *xfer;
170 umidi_packet_bufp buffer;
171 umidi_packet_bufp next_slot;
172 uint32_t buffer_size;
173 int num_scheduled;
174 int num_open;
175 int num_jacks;
176 int soliciting;
177 void *solicit_cookie;
178 int armed;
179 struct umidi_jack *jacks[UMIDI_MAX_EPJACKS];
180 uint16_t this_schedule; /* see UMIDI_MAX_EPJACKS */
181 uint16_t next_schedule;
182 };
183
184 /* software context */
185 struct umidi_softc {
186 device_t sc_dev;
187 struct usbd_device *sc_udev;
188 struct usbd_interface *sc_iface;
189 const struct umidi_quirk *sc_quirk;
190
191 int sc_dying;
192
193 int sc_out_num_jacks;
194 struct umidi_jack *sc_out_jacks;
195 int sc_in_num_jacks;
196 struct umidi_jack *sc_in_jacks;
197 struct umidi_jack *sc_jacks;
198
199 int sc_num_mididevs;
200 struct umidi_mididev *sc_mididevs;
201
202 int sc_out_num_endpoints;
203 struct umidi_endpoint *sc_out_ep;
204 int sc_in_num_endpoints;
205 struct umidi_endpoint *sc_in_ep;
206 struct umidi_endpoint *sc_endpoints;
207 size_t sc_endpoints_len;
208 int cblnums_global;
209
210 kmutex_t sc_lock;
211 kcondvar_t sc_cv;
212 kcondvar_t sc_detach_cv;
213
214 int sc_refcnt;
215 };
216
217 #ifdef UMIDI_DEBUG
218 #define DPRINTF(x) if (umididebug) printf x
219 #define DPRINTFN(n,x) if (umididebug >= (n)) printf x
220 #include <sys/time.h>
221 static struct timeval umidi_tv;
222 int umididebug = 0;
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227
228 #define UMIDI_ENDPOINT_SIZE(sc) (sizeof(*(sc)->sc_out_ep) * \
229 (sc->sc_out_num_endpoints + \
230 sc->sc_in_num_endpoints))
231
232
233 static int umidi_open(void *, int,
234 void (*)(void *, int), void (*)(void *), void *);
235 static void umidi_close(void *);
236 static int umidi_channelmsg(void *, int, int, u_char *, int);
237 static int umidi_commonmsg(void *, int, u_char *, int);
238 static int umidi_sysex(void *, u_char *, int);
239 static int umidi_rtmsg(void *, int);
240 static void umidi_getinfo(void *, struct midi_info *);
241 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
242
243 static usbd_status alloc_pipe(struct umidi_endpoint *);
244 static void free_pipe(struct umidi_endpoint *);
245
246 static usbd_status alloc_all_endpoints(struct umidi_softc *);
247 static void free_all_endpoints(struct umidi_softc *);
248
249 static usbd_status alloc_all_jacks(struct umidi_softc *);
250 static void free_all_jacks(struct umidi_softc *);
251 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
252 struct umidi_jack *,
253 struct umidi_jack *,
254 struct umidi_mididev *);
255 static void unbind_jacks_from_mididev(struct umidi_mididev *);
256 static void unbind_all_jacks(struct umidi_softc *);
257 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
258 static usbd_status open_out_jack(struct umidi_jack *, void *,
259 void (*)(void *));
260 static usbd_status open_in_jack(struct umidi_jack *, void *,
261 void (*)(void *, int));
262 static void close_out_jack(struct umidi_jack *);
263 static void close_in_jack(struct umidi_jack *);
264
265 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
266 static usbd_status detach_mididev(struct umidi_mididev *, int);
267 static void deactivate_mididev(struct umidi_mididev *);
268 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
269 static void free_all_mididevs(struct umidi_softc *);
270 static usbd_status attach_all_mididevs(struct umidi_softc *);
271 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
272 static void deactivate_all_mididevs(struct umidi_softc *);
273 static void describe_mididev(struct umidi_mididev *);
274
275 #ifdef UMIDI_DEBUG
276 static void dump_sc(struct umidi_softc *);
277 static void dump_ep(struct umidi_endpoint *);
278 static void dump_jack(struct umidi_jack *);
279 #endif
280
281 static usbd_status start_input_transfer(struct umidi_endpoint *);
282 static usbd_status start_output_transfer(struct umidi_endpoint *);
283 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
284 static void in_intr(struct usbd_xfer *, void *, usbd_status);
285 static void out_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
287 static void out_solicit_locked(void *); /* pre-locked version */
288
289
290 const struct midi_hw_if umidi_hw_if = {
291 .open = umidi_open,
292 .close = umidi_close,
293 .output = umidi_rtmsg,
294 .getinfo = umidi_getinfo,
295 .get_locks = umidi_get_locks,
296 };
297
298 struct midi_hw_if_ext umidi_hw_if_ext = {
299 .channel = umidi_channelmsg,
300 .common = umidi_commonmsg,
301 .sysex = umidi_sysex,
302 };
303
304 struct midi_hw_if_ext umidi_hw_if_mm = {
305 .channel = umidi_channelmsg,
306 .common = umidi_commonmsg,
307 .sysex = umidi_sysex,
308 .compress = 1,
309 };
310
311 static int umidi_match(device_t, cfdata_t, void *);
312 static void umidi_attach(device_t, device_t, void *);
313 static void umidi_childdet(device_t, device_t);
314 static int umidi_detach(device_t, int);
315 static int umidi_activate(device_t, enum devact);
316
317 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
318 umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
319
320 static int
321 umidi_match(device_t parent, cfdata_t match, void *aux)
322 {
323 struct usbif_attach_arg *uiaa = aux;
324
325 DPRINTFN(1,("umidi_match\n"));
326
327 if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
328 uiaa->uiaa_ifaceno))
329 return UMATCH_IFACECLASS_IFACESUBCLASS;
330
331 if (uiaa->uiaa_class == UICLASS_AUDIO &&
332 uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
333 return UMATCH_IFACECLASS_IFACESUBCLASS;
334
335 return UMATCH_NONE;
336 }
337
338 static void
339 umidi_attach(device_t parent, device_t self, void *aux)
340 {
341 usbd_status err;
342 struct umidi_softc *sc = device_private(self);
343 struct usbif_attach_arg *uiaa = aux;
344 char *devinfop;
345
346 DPRINTFN(1,("umidi_attach\n"));
347
348 sc->sc_dev = self;
349
350 aprint_naive("\n");
351 aprint_normal("\n");
352
353 devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
354 aprint_normal_dev(self, "%s\n", devinfop);
355 usbd_devinfo_free(devinfop);
356
357 sc->sc_iface = uiaa->uiaa_iface;
358 sc->sc_udev = uiaa->uiaa_device;
359
360 sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
361 uiaa->uiaa_product, uiaa->uiaa_ifaceno);
362
363 aprint_normal_dev(self, "");
364 umidi_print_quirk(sc->sc_quirk);
365
366 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
367 cv_init(&sc->sc_cv, "umidopcl");
368 cv_init(&sc->sc_detach_cv, "umidetcv");
369 sc->sc_refcnt = 0;
370
371 err = alloc_all_endpoints(sc);
372 if (err != USBD_NORMAL_COMPLETION) {
373 aprint_error_dev(self,
374 "alloc_all_endpoints failed. (err=%d)\n", err);
375 goto out;
376 }
377 err = alloc_all_jacks(sc);
378 if (err != USBD_NORMAL_COMPLETION) {
379 aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
380 err);
381 goto out_free_endpoints;
382 }
383 aprint_normal_dev(self, "out=%d, in=%d\n",
384 sc->sc_out_num_jacks, sc->sc_in_num_jacks);
385
386 err = assign_all_jacks_automatically(sc);
387 if (err != USBD_NORMAL_COMPLETION) {
388 aprint_error_dev(self,
389 "assign_all_jacks_automatically failed. (err=%d)\n", err);
390 goto out_free_jacks;
391 }
392 err = attach_all_mididevs(sc);
393 if (err != USBD_NORMAL_COMPLETION) {
394 aprint_error_dev(self,
395 "attach_all_mididevs failed. (err=%d)\n", err);
396 goto out_free_jacks;
397 }
398
399 #ifdef UMIDI_DEBUG
400 dump_sc(sc);
401 #endif
402
403 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
404
405 return;
406
407 out_free_jacks:
408 unbind_all_jacks(sc);
409 free_all_jacks(sc);
410
411 out_free_endpoints:
412 free_all_endpoints(sc);
413
414 out:
415 aprint_error_dev(self, "disabled.\n");
416 sc->sc_dying = 1;
417 return;
418 }
419
420 static void
421 umidi_childdet(device_t self, device_t child)
422 {
423 int i;
424 struct umidi_softc *sc = device_private(self);
425
426 KASSERT(sc->sc_mididevs != NULL);
427
428 for (i = 0; i < sc->sc_num_mididevs; i++) {
429 if (sc->sc_mididevs[i].mdev == child)
430 break;
431 }
432 KASSERT(i < sc->sc_num_mididevs);
433 sc->sc_mididevs[i].mdev = NULL;
434 }
435
436 static int
437 umidi_activate(device_t self, enum devact act)
438 {
439 struct umidi_softc *sc = device_private(self);
440
441 switch (act) {
442 case DVACT_DEACTIVATE:
443 DPRINTFN(1,("umidi_activate (deactivate)\n"));
444 sc->sc_dying = 1;
445 deactivate_all_mididevs(sc);
446 return 0;
447 default:
448 DPRINTFN(1,("umidi_activate (%d)\n", act));
449 return EOPNOTSUPP;
450 }
451 }
452
453 static int
454 umidi_detach(device_t self, int flags)
455 {
456 struct umidi_softc *sc = device_private(self);
457
458 DPRINTFN(1,("umidi_detach\n"));
459
460 mutex_enter(&sc->sc_lock);
461 sc->sc_dying = 1;
462 if (--sc->sc_refcnt >= 0)
463 if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
464 aprint_error_dev(self, ": didn't detach\n");
465 mutex_exit(&sc->sc_lock);
466
467 detach_all_mididevs(sc, flags);
468 free_all_mididevs(sc);
469 free_all_jacks(sc);
470 free_all_endpoints(sc);
471
472 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
473
474 mutex_destroy(&sc->sc_lock);
475 cv_destroy(&sc->sc_detach_cv);
476 cv_destroy(&sc->sc_cv);
477
478 return 0;
479 }
480
481
482 /*
483 * midi_if stuffs
484 */
485 int
486 umidi_open(void *addr,
487 int flags,
488 void (*iintr)(void *, int),
489 void (*ointr)(void *),
490 void *arg)
491 {
492 struct umidi_mididev *mididev = addr;
493 struct umidi_softc *sc = mididev->sc;
494 usbd_status err;
495
496 KASSERT(mutex_owned(&sc->sc_lock));
497 DPRINTF(("umidi_open: sc=%p\n", sc));
498
499 if (mididev->opened)
500 return EBUSY;
501 if (sc->sc_dying)
502 return EIO;
503
504 mididev->opened = 1;
505 mididev->flags = flags;
506 if ((mididev->flags & FWRITE) && mididev->out_jack) {
507 err = open_out_jack(mididev->out_jack, arg, ointr);
508 if (err != USBD_NORMAL_COMPLETION)
509 goto bad;
510 }
511 if ((mididev->flags & FREAD) && mididev->in_jack) {
512 err = open_in_jack(mididev->in_jack, arg, iintr);
513 KASSERT(mididev->opened);
514 if (err != USBD_NORMAL_COMPLETION &&
515 err != USBD_IN_PROGRESS) {
516 if (mididev->out_jack)
517 close_out_jack(mididev->out_jack);
518 goto bad;
519 }
520 }
521
522 return 0;
523 bad:
524 mididev->opened = 0;
525 DPRINTF(("umidi_open: usbd_status %d\n", err));
526 KASSERT(mutex_owned(&sc->sc_lock));
527 return USBD_IN_USE == err ? EBUSY : EIO;
528 }
529
530 void
531 umidi_close(void *addr)
532 {
533 struct umidi_mididev *mididev = addr;
534 struct umidi_softc *sc = mididev->sc;
535
536 KASSERT(mutex_owned(&sc->sc_lock));
537
538 if (mididev->closing)
539 return;
540
541 mididev->closing = 1;
542
543 sc->sc_refcnt++;
544
545 if ((mididev->flags & FWRITE) && mididev->out_jack)
546 close_out_jack(mididev->out_jack);
547 if ((mididev->flags & FREAD) && mididev->in_jack)
548 close_in_jack(mididev->in_jack);
549
550 if (--sc->sc_refcnt < 0)
551 cv_broadcast(&sc->sc_detach_cv);
552
553 mididev->opened = 0;
554 mididev->closing = 0;
555 }
556
557 int
558 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
559 int len)
560 {
561 struct umidi_mididev *mididev = addr;
562
563 KASSERT(mutex_owned(&mididev->sc->sc_lock));
564
565 if (!mididev->out_jack || !mididev->opened || mididev->closing)
566 return EIO;
567
568 return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
569 }
570
571 int
572 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
573 {
574 struct umidi_mididev *mididev = addr;
575 int cin;
576
577 KASSERT(mutex_owned(&mididev->sc->sc_lock));
578
579 if (!mididev->out_jack || !mididev->opened || mididev->closing)
580 return EIO;
581
582 switch ( len ) {
583 case 1: cin = 5; break;
584 case 2: cin = 2; break;
585 case 3: cin = 3; break;
586 default: return EIO; /* or gcc warns of cin uninitialized */
587 }
588
589 return out_jack_output(mididev->out_jack, msg, len, cin);
590 }
591
592 int
593 umidi_sysex(void *addr, u_char *msg, int len)
594 {
595 struct umidi_mididev *mididev = addr;
596 int cin;
597
598 KASSERT(mutex_owned(&mididev->sc->sc_lock));
599
600 if (!mididev->out_jack || !mididev->opened || mididev->closing)
601 return EIO;
602
603 switch ( len ) {
604 case 1: cin = 5; break;
605 case 2: cin = 6; break;
606 case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
607 default: return EIO; /* or gcc warns of cin uninitialized */
608 }
609
610 return out_jack_output(mididev->out_jack, msg, len, cin);
611 }
612
613 int
614 umidi_rtmsg(void *addr, int d)
615 {
616 struct umidi_mididev *mididev = addr;
617 u_char msg = d;
618
619 KASSERT(mutex_owned(&mididev->sc->sc_lock));
620
621 if (!mididev->out_jack || !mididev->opened || mididev->closing)
622 return EIO;
623
624 return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
625 }
626
627 void
628 umidi_getinfo(void *addr, struct midi_info *mi)
629 {
630 struct umidi_mididev *mididev = addr;
631 struct umidi_softc *sc = mididev->sc;
632 int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
633
634 KASSERT(mutex_owned(&sc->sc_lock));
635
636 mi->name = mididev->label;
637 mi->props = MIDI_PROP_OUT_INTR;
638 if (mididev->in_jack)
639 mi->props |= MIDI_PROP_CAN_INPUT;
640 midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
641 }
642
643 static void
644 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
645 {
646 struct umidi_mididev *mididev = addr;
647 struct umidi_softc *sc = mididev->sc;
648
649 *intr = NULL;
650 *thread = &sc->sc_lock;
651 }
652
653 /*
654 * each endpoint stuffs
655 */
656
657 /* alloc/free pipe */
658 static usbd_status
659 alloc_pipe(struct umidi_endpoint *ep)
660 {
661 struct umidi_softc *sc = ep->sc;
662 usbd_status err;
663 usb_endpoint_descriptor_t *epd;
664
665 epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
666 /*
667 * For output, an improvement would be to have a buffer bigger than
668 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
669 * allow out_solicit to fill the buffer to the full packet size in
670 * all cases. But to use usbd_create_xfer to get a slightly larger
671 * buffer would not be a good way to do that, because if the addition
672 * would make the buffer exceed USB_MEM_SMALL then a substantially
673 * larger block may be wastefully allocated. Some flavor of double
674 * buffering could serve the same purpose, but would increase the
675 * code complexity, so for now I will live with the current slight
676 * penalty of reducing max transfer size by (num_open-num_scheduled)
677 * packet slots.
678 */
679 ep->buffer_size = UGETW(epd->wMaxPacketSize);
680 ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
681
682 DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
683 device_xname(sc->sc_dev), ep, ep->buffer_size));
684 ep->num_scheduled = 0;
685 ep->this_schedule = 0;
686 ep->next_schedule = 0;
687 ep->soliciting = 0;
688 ep->armed = 0;
689 err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
690 if (err)
691 goto quit;
692 int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
693 0, 0, &ep->xfer);
694 if (error) {
695 usbd_close_pipe(ep->pipe);
696 return USBD_NOMEM;
697 }
698 ep->buffer = usbd_get_buffer(ep->xfer);
699 ep->next_slot = ep->buffer;
700 ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
701 out_solicit, ep);
702 quit:
703 return err;
704 }
705
706 static void
707 free_pipe(struct umidi_endpoint *ep)
708 {
709 DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
710 usbd_abort_pipe(ep->pipe);
711 usbd_destroy_xfer(ep->xfer);
712 usbd_close_pipe(ep->pipe);
713 softint_disestablish(ep->solicit_cookie);
714 }
715
716
717 /* alloc/free the array of endpoint structures */
718
719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
722
723 static usbd_status
724 alloc_all_endpoints(struct umidi_softc *sc)
725 {
726 usbd_status err;
727 struct umidi_endpoint *ep;
728 int i;
729
730 if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
731 err = alloc_all_endpoints_fixed_ep(sc);
732 } else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
733 err = alloc_all_endpoints_yamaha(sc);
734 } else {
735 err = alloc_all_endpoints_genuine(sc);
736 }
737 if (err != USBD_NORMAL_COMPLETION)
738 return err;
739
740 ep = sc->sc_endpoints;
741 for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
742 err = alloc_pipe(ep);
743 if (err != USBD_NORMAL_COMPLETION) {
744 for (; ep != sc->sc_endpoints; ep--)
745 free_pipe(ep-1);
746 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
747 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
748 break;
749 }
750 ep++;
751 }
752 return err;
753 }
754
755 static void
756 free_all_endpoints(struct umidi_softc *sc)
757 {
758 int i;
759
760 if (sc->sc_endpoints == NULL) {
761 /* nothing to free */
762 return;
763 }
764
765 for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
766 free_pipe(&sc->sc_endpoints[i]);
767 kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
768 sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
769 }
770
771 static usbd_status
772 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
773 {
774 usbd_status err;
775 const struct umq_fixed_ep_desc *fp;
776 struct umidi_endpoint *ep;
777 usb_endpoint_descriptor_t *epd;
778 int i;
779
780 fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
781 UMQ_TYPE_FIXED_EP);
782 if (fp->num_in_ep == 0 && fp->num_out_ep == 0)
783 return USBD_INVAL;
784 sc->sc_out_num_jacks = 0;
785 sc->sc_in_num_jacks = 0;
786 sc->sc_out_num_endpoints = fp->num_out_ep;
787 sc->sc_in_num_endpoints = fp->num_in_ep;
788 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
789 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
790 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
791 sc->sc_in_ep =
792 sc->sc_in_num_endpoints ?
793 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
794
795 ep = &sc->sc_out_ep[0];
796 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
797 epd = usbd_interface2endpoint_descriptor(
798 sc->sc_iface,
799 fp->out_ep[i].ep);
800 if (!epd) {
801 aprint_error_dev(sc->sc_dev,
802 "cannot get endpoint descriptor(out:%d)\n",
803 fp->out_ep[i].ep);
804 err = USBD_INVAL;
805 goto error;
806 }
807 if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
808 UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
809 aprint_error_dev(sc->sc_dev,
810 "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
811 err = USBD_INVAL;
812 goto error;
813 }
814 ep->sc = sc;
815 ep->addr = epd->bEndpointAddress;
816 ep->num_jacks = fp->out_ep[i].num_jacks;
817 sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
818 ep->num_open = 0;
819 ep++;
820 }
821 ep = &sc->sc_in_ep[0];
822 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
823 epd = usbd_interface2endpoint_descriptor(
824 sc->sc_iface,
825 fp->in_ep[i].ep);
826 if (!epd) {
827 aprint_error_dev(sc->sc_dev,
828 "cannot get endpoint descriptor(in:%d)\n",
829 fp->in_ep[i].ep);
830 err = USBD_INVAL;
831 goto error;
832 }
833 /*
834 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
835 * endpoint. The existing input logic in this driver seems
836 * to work successfully if we just stop treating an interrupt
837 * endpoint as illegal (or the in_progress status we get on
838 * the initial transfer). It does not seem necessary to
839 * actually use the interrupt flavor of alloc_pipe or make
840 * other serious rearrangements of logic. I like that.
841 */
842 switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
843 case UE_BULK:
844 case UE_INTERRUPT:
845 if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
846 break;
847 /*FALLTHROUGH*/
848 default:
849 aprint_error_dev(sc->sc_dev,
850 "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
851 err = USBD_INVAL;
852 goto error;
853 }
854
855 ep->sc = sc;
856 ep->addr = epd->bEndpointAddress;
857 ep->num_jacks = fp->in_ep[i].num_jacks;
858 sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
859 ep->num_open = 0;
860 ep++;
861 }
862
863 return USBD_NORMAL_COMPLETION;
864 error:
865 kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
866 sc->sc_endpoints = NULL;
867 return err;
868 }
869
870 static usbd_status
871 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
872 {
873 /* This driver currently supports max 1in/1out bulk endpoints */
874 char *end;
875 usb_config_descriptor_t *cdesc;
876 usb_descriptor_t *desc;
877 umidi_cs_descriptor_t *csdesc;
878 usb_interface_descriptor_t *idesc;
879 umidi_cs_interface_descriptor_t *udesc;
880 usb_endpoint_descriptor_t *epd;
881 int out_addr, in_addr, i;
882 int dir;
883
884 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
885 out_addr = in_addr = 0;
886
887 /* detect endpoints */
888 cdesc = usbd_get_config_descriptor(sc->sc_udev);
889 end = (char *)cdesc + UGETW(cdesc->wTotalLength);
890 idesc = usbd_get_interface_descriptor(sc->sc_iface);
891 KASSERT((char *)cdesc <= (char *)idesc);
892 KASSERT((char *)idesc < end);
893 KASSERT(end - (char *)idesc >= sizeof(*idesc));
894 KASSERT(idesc->bLength >= sizeof(*idesc));
895 KASSERT(idesc->bLength <= end - (char *)idesc);
896 for (i = idesc->bNumEndpoints; i --> 0;) {
897 epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
898 KASSERT(epd != NULL);
899 if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
900 dir = UE_GET_DIR(epd->bEndpointAddress);
901 if (dir == UE_DIR_OUT && !out_addr)
902 out_addr = epd->bEndpointAddress;
903 else if (dir == UE_DIR_IN && !in_addr)
904 in_addr = epd->bEndpointAddress;
905 }
906 }
907 desc = NEXT_D(idesc);
908 if ((char *)desc > end || end - (char *)desc < sizeof(*desc) ||
909 desc->bLength < sizeof(*desc) ||
910 desc->bLength > end - (char *)desc)
911 return USBD_INVAL;
912
913 /* count jacks */
914 if (desc->bDescriptorType != UDESC_CS_INTERFACE ||
915 desc->bLength < sizeof(*csdesc))
916 return USBD_INVAL;
917 csdesc = (umidi_cs_descriptor_t *)desc;
918 if (csdesc->bDescriptorSubtype != UMIDI_MS_HEADER)
919 return USBD_INVAL;
920 udesc = TO_CSIFD(csdesc);
921 if (UGETW(udesc->wTotalLength) > end - (char *)udesc)
922 return USBD_INVAL;
923 if (UGETW(udesc->wTotalLength) < udesc->bLength)
924 return USBD_INVAL;
925 end = (char *)udesc + UGETW(udesc->wTotalLength);
926 desc = NEXT_D(udesc);
927
928 for (; end - (char *)desc >= sizeof(*desc); desc = NEXT_D(desc)) {
929 if (desc->bLength < sizeof(*desc) ||
930 desc->bLength > end - (char *)desc)
931 break;
932 if (desc->bDescriptorType != UDESC_CS_INTERFACE ||
933 desc->bLength < sizeof(*csdesc) ||
934 desc->bLength < UMIDI_JACK_DESCRIPTOR_SIZE)
935 continue;
936 csdesc = (umidi_cs_descriptor_t *)desc;
937 if (csdesc->bDescriptorSubtype == UMIDI_OUT_JACK)
938 sc->sc_out_num_jacks++;
939 else if (csdesc->bDescriptorSubtype == UMIDI_IN_JACK)
940 sc->sc_in_num_jacks++;
941 }
942
943 /* validate some parameters */
944 if (sc->sc_out_num_jacks > UMIDI_MAX_EPJACKS)
945 sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
946 if (sc->sc_in_num_jacks > UMIDI_MAX_EPJACKS)
947 sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
948 if (sc->sc_out_num_jacks && out_addr) {
949 sc->sc_out_num_endpoints = 1;
950 } else {
951 sc->sc_out_num_endpoints = 0;
952 sc->sc_out_num_jacks = 0;
953 }
954 if (sc->sc_in_num_jacks && in_addr) {
955 sc->sc_in_num_endpoints = 1;
956 } else {
957 sc->sc_in_num_endpoints = 0;
958 sc->sc_in_num_jacks = 0;
959 }
960 sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
961 if (sc->sc_endpoints_len == 0)
962 return USBD_INVAL;
963 sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
964 if (sc->sc_out_num_endpoints) {
965 sc->sc_out_ep = sc->sc_endpoints;
966 sc->sc_out_ep->sc = sc;
967 sc->sc_out_ep->addr = out_addr;
968 sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
969 sc->sc_out_ep->num_open = 0;
970 } else
971 sc->sc_out_ep = NULL;
972
973 if (sc->sc_in_num_endpoints) {
974 sc->sc_in_ep = sc->sc_endpoints + sc->sc_out_num_endpoints;
975 sc->sc_in_ep->sc = sc;
976 sc->sc_in_ep->addr = in_addr;
977 sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
978 sc->sc_in_ep->num_open = 0;
979 } else
980 sc->sc_in_ep = NULL;
981
982 return USBD_NORMAL_COMPLETION;
983 }
984
985 static usbd_status
986 alloc_all_endpoints_genuine(struct umidi_softc *sc)
987 {
988 usb_interface_descriptor_t *interface_desc;
989 usb_config_descriptor_t *config_desc;
990 usb_descriptor_t *desc;
991 char *end;
992 int num_ep;
993 struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
994 int epaddr;
995
996 interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
997 num_ep = interface_desc->bNumEndpoints;
998 if (num_ep == 0)
999 return USBD_INVAL;
1000 sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
1001 sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
1002 sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
1003 sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
1004 epaddr = -1;
1005
1006 /* get the list of endpoints for midi stream */
1007 config_desc = usbd_get_config_descriptor(sc->sc_udev);
1008 end = (char *)config_desc + UGETW(config_desc->wTotalLength);
1009 desc = TO_D(config_desc);
1010 for (; end - (char *)desc >= sizeof(*desc); desc = NEXT_D(desc)) {
1011 if (desc->bLength < sizeof(*desc) ||
1012 desc->bLength > end - (char *)desc)
1013 break;
1014 if (desc->bDescriptorType == UDESC_ENDPOINT &&
1015 desc->bLength >= sizeof(*TO_EPD(desc)) &&
1016 UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
1017 epaddr = TO_EPD(desc)->bEndpointAddress;
1018 } else if (desc->bDescriptorType == UDESC_CS_ENDPOINT &&
1019 desc->bLength >= sizeof(*TO_CSEPD(desc)) &&
1020 epaddr != -1) {
1021 if (num_ep > 0) {
1022 num_ep--;
1023 p->sc = sc;
1024 p->addr = epaddr;
1025 p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1026 if (UE_GET_DIR(epaddr) == UE_DIR_OUT) {
1027 sc->sc_out_num_endpoints++;
1028 sc->sc_out_num_jacks += p->num_jacks;
1029 } else {
1030 sc->sc_in_num_endpoints++;
1031 sc->sc_in_num_jacks += p->num_jacks;
1032 }
1033 p++;
1034 }
1035 } else
1036 epaddr = -1;
1037 }
1038
1039 /* sort endpoints */
1040 num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1041 p = sc->sc_endpoints;
1042 endep = p + num_ep;
1043 while (p<endep) {
1044 lowest = p;
1045 for (q=p+1; q<endep; q++) {
1046 if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1047 UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1048 ((UE_GET_DIR(lowest->addr)==
1049 UE_GET_DIR(q->addr)) &&
1050 (UE_GET_ADDR(lowest->addr)>
1051 UE_GET_ADDR(q->addr))))
1052 lowest = q;
1053 }
1054 if (lowest != p) {
1055 memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1056 memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1057 memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1058 }
1059 p->num_open = 0;
1060 p++;
1061 }
1062
1063 sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1064 sc->sc_in_ep =
1065 sc->sc_in_num_endpoints ?
1066 sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1067
1068 return USBD_NORMAL_COMPLETION;
1069 }
1070
1071
1072 /*
1073 * jack stuffs
1074 */
1075
1076 static usbd_status
1077 alloc_all_jacks(struct umidi_softc *sc)
1078 {
1079 int i, j;
1080 struct umidi_endpoint *ep;
1081 struct umidi_jack *jack;
1082 const unsigned char *cn_spec;
1083
1084 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1085 sc->cblnums_global = 0;
1086 else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1087 sc->cblnums_global = 1;
1088 else {
1089 /*
1090 * I don't think this default is correct, but it preserves
1091 * the prior behavior of the code. That's why I defined two
1092 * complementary quirks. Any device for which the default
1093 * behavior is wrong can be made to work by giving it an
1094 * explicit quirk, and if a pattern ever develops (as I suspect
1095 * it will) that a lot of otherwise standard USB MIDI devices
1096 * need the CN_SEQ_PER_EP "quirk," then this default can be
1097 * changed to 0, and the only devices that will break are those
1098 * listing neither quirk, and they'll easily be fixed by giving
1099 * them the CN_SEQ_GLOBAL quirk.
1100 */
1101 sc->cblnums_global = 1;
1102 }
1103
1104 if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1105 cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1106 UMQ_TYPE_CN_FIXED);
1107 else
1108 cn_spec = NULL;
1109
1110 /* allocate/initialize structures */
1111 if (sc->sc_in_num_jacks == 0 && sc->sc_out_num_jacks == 0)
1112 return USBD_INVAL;
1113 sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks) *
1114 (sc->sc_in_num_jacks + sc->sc_out_num_jacks), KM_SLEEP);
1115 if (!sc->sc_jacks)
1116 return USBD_NOMEM;
1117 sc->sc_out_jacks =
1118 sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1119 sc->sc_in_jacks =
1120 sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1121
1122 jack = &sc->sc_out_jacks[0];
1123 for (i = 0; i < sc->sc_out_num_jacks; i++) {
1124 jack->opened = 0;
1125 jack->bound = 0;
1126 jack->arg = NULL;
1127 jack->u.out.intr = NULL;
1128 jack->midiman_ppkt = NULL;
1129 if (sc->cblnums_global)
1130 jack->cable_number = i;
1131 jack++;
1132 }
1133 jack = &sc->sc_in_jacks[0];
1134 for (i = 0; i < sc->sc_in_num_jacks; i++) {
1135 jack->opened = 0;
1136 jack->bound = 0;
1137 jack->arg = NULL;
1138 jack->u.in.intr = NULL;
1139 if (sc->cblnums_global)
1140 jack->cable_number = i;
1141 jack++;
1142 }
1143
1144 /* assign each jacks to each endpoints */
1145 jack = &sc->sc_out_jacks[0];
1146 ep = &sc->sc_out_ep[0];
1147 for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1148 for (j = 0; j < ep->num_jacks; j++) {
1149 jack->endpoint = ep;
1150 if (cn_spec != NULL)
1151 jack->cable_number = *cn_spec++;
1152 else if (!sc->cblnums_global)
1153 jack->cable_number = j;
1154 ep->jacks[jack->cable_number] = jack;
1155 jack++;
1156 }
1157 ep++;
1158 }
1159 jack = &sc->sc_in_jacks[0];
1160 ep = &sc->sc_in_ep[0];
1161 for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1162 for (j = 0; j < ep->num_jacks; j++) {
1163 jack->endpoint = ep;
1164 if (cn_spec != NULL)
1165 jack->cable_number = *cn_spec++;
1166 else if (!sc->cblnums_global)
1167 jack->cable_number = j;
1168 ep->jacks[jack->cable_number] = jack;
1169 jack++;
1170 }
1171 ep++;
1172 }
1173
1174 return USBD_NORMAL_COMPLETION;
1175 }
1176
1177 static void
1178 free_all_jacks(struct umidi_softc *sc)
1179 {
1180 struct umidi_jack *jacks;
1181 size_t len;
1182
1183 mutex_enter(&sc->sc_lock);
1184 jacks = sc->sc_jacks;
1185 len = sizeof(*sc->sc_out_jacks) *
1186 (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1187 sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1188 mutex_exit(&sc->sc_lock);
1189
1190 if (jacks)
1191 kmem_free(jacks, len);
1192 }
1193
1194 static usbd_status
1195 bind_jacks_to_mididev(struct umidi_softc *sc,
1196 struct umidi_jack *out_jack,
1197 struct umidi_jack *in_jack,
1198 struct umidi_mididev *mididev)
1199 {
1200 if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1201 return USBD_IN_USE;
1202 if (mididev->out_jack || mididev->in_jack)
1203 return USBD_IN_USE;
1204
1205 if (out_jack)
1206 out_jack->bound = 1;
1207 if (in_jack)
1208 in_jack->bound = 1;
1209 mididev->in_jack = in_jack;
1210 mididev->out_jack = out_jack;
1211
1212 mididev->closing = 0;
1213
1214 return USBD_NORMAL_COMPLETION;
1215 }
1216
1217 static void
1218 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1219 {
1220 KASSERT(mutex_owned(&mididev->sc->sc_lock));
1221
1222 mididev->closing = 1;
1223
1224 if ((mididev->flags & FWRITE) && mididev->out_jack)
1225 close_out_jack(mididev->out_jack);
1226 if ((mididev->flags & FREAD) && mididev->in_jack)
1227 close_in_jack(mididev->in_jack);
1228
1229 if (mididev->out_jack) {
1230 mididev->out_jack->bound = 0;
1231 mididev->out_jack = NULL;
1232 }
1233 if (mididev->in_jack) {
1234 mididev->in_jack->bound = 0;
1235 mididev->in_jack = NULL;
1236 }
1237 }
1238
1239 static void
1240 unbind_all_jacks(struct umidi_softc *sc)
1241 {
1242 int i;
1243
1244 mutex_enter(&sc->sc_lock);
1245 if (sc->sc_mididevs)
1246 for (i = 0; i < sc->sc_num_mididevs; i++)
1247 unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1248 mutex_exit(&sc->sc_lock);
1249 }
1250
1251 static usbd_status
1252 assign_all_jacks_automatically(struct umidi_softc *sc)
1253 {
1254 usbd_status err;
1255 int i;
1256 struct umidi_jack *out, *in;
1257 const signed char *asg_spec;
1258
1259 err =
1260 alloc_all_mididevs(sc,
1261 uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1262 if (err!=USBD_NORMAL_COMPLETION)
1263 return err;
1264
1265 if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1266 asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1267 UMQ_TYPE_MD_FIXED);
1268 else
1269 asg_spec = NULL;
1270
1271 for (i = 0; i < sc->sc_num_mididevs; i++) {
1272 if (asg_spec != NULL) {
1273 if (*asg_spec == -1)
1274 out = NULL;
1275 else
1276 out = &sc->sc_out_jacks[*asg_spec];
1277 ++ asg_spec;
1278 if (*asg_spec == -1)
1279 in = NULL;
1280 else
1281 in = &sc->sc_in_jacks[*asg_spec];
1282 ++ asg_spec;
1283 } else {
1284 out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1285 : NULL;
1286 in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1287 : NULL;
1288 }
1289 err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1290 if (err != USBD_NORMAL_COMPLETION) {
1291 free_all_mididevs(sc);
1292 return err;
1293 }
1294 }
1295
1296 return USBD_NORMAL_COMPLETION;
1297 }
1298
1299 static usbd_status
1300 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1301 {
1302 struct umidi_endpoint *ep = jack->endpoint;
1303 struct umidi_softc *sc = ep->sc;
1304 umidi_packet_bufp end;
1305 int err;
1306
1307 KASSERT(mutex_owned(&sc->sc_lock));
1308
1309 if (jack->opened)
1310 return USBD_IN_USE;
1311
1312 jack->arg = arg;
1313 jack->u.out.intr = intr;
1314 jack->midiman_ppkt = NULL;
1315 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1316 jack->opened = 1;
1317 ep->num_open++;
1318 /*
1319 * out_solicit maintains an invariant that there will always be
1320 * (num_open - num_scheduled) slots free in the buffer. as we have
1321 * just incremented num_open, the buffer may be too full to satisfy
1322 * the invariant until a transfer completes, for which we must wait.
1323 */
1324 while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1325 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1326 mstohz(10));
1327 if (err) {
1328 ep->num_open--;
1329 jack->opened = 0;
1330 return USBD_IOERROR;
1331 }
1332 }
1333
1334 return USBD_NORMAL_COMPLETION;
1335 }
1336
1337 static usbd_status
1338 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1339 {
1340 usbd_status err = USBD_NORMAL_COMPLETION;
1341 struct umidi_endpoint *ep = jack->endpoint;
1342
1343 KASSERT(mutex_owned(&ep->sc->sc_lock));
1344
1345 if (jack->opened)
1346 return USBD_IN_USE;
1347
1348 jack->arg = arg;
1349 jack->u.in.intr = intr;
1350 jack->opened = 1;
1351 if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1352 /*
1353 * Can't hold the interrupt lock while calling into USB,
1354 * but we can safely drop it here.
1355 */
1356 mutex_exit(&ep->sc->sc_lock);
1357 err = start_input_transfer(ep);
1358 if (err != USBD_NORMAL_COMPLETION &&
1359 err != USBD_IN_PROGRESS) {
1360 ep->num_open--;
1361 }
1362 mutex_enter(&ep->sc->sc_lock);
1363 }
1364
1365 return err;
1366 }
1367
1368 static void
1369 close_out_jack(struct umidi_jack *jack)
1370 {
1371 struct umidi_endpoint *ep;
1372 struct umidi_softc *sc;
1373 uint16_t mask;
1374 int err;
1375
1376 if (jack->opened) {
1377 ep = jack->endpoint;
1378 sc = ep->sc;
1379
1380 KASSERT(mutex_owned(&sc->sc_lock));
1381 mask = 1 << (jack->cable_number);
1382 while (mask & (ep->this_schedule | ep->next_schedule)) {
1383 err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1384 mstohz(10));
1385 if (err)
1386 break;
1387 }
1388 /*
1389 * We can re-enter this function from both close() and
1390 * detach(). Make sure only one of them does this part.
1391 */
1392 if (jack->opened) {
1393 jack->opened = 0;
1394 jack->endpoint->num_open--;
1395 ep->this_schedule &= ~mask;
1396 ep->next_schedule &= ~mask;
1397 }
1398 }
1399 }
1400
1401 static void
1402 close_in_jack(struct umidi_jack *jack)
1403 {
1404 if (jack->opened) {
1405 struct umidi_softc *sc = jack->endpoint->sc;
1406
1407 KASSERT(mutex_owned(&sc->sc_lock));
1408
1409 jack->opened = 0;
1410 if (--jack->endpoint->num_open == 0) {
1411 /*
1412 * We have to drop the (interrupt) lock so that
1413 * the USB thread lock can be safely taken by
1414 * the abort operation. This is safe as this
1415 * either closing or dying will be set properly.
1416 */
1417 mutex_exit(&sc->sc_lock);
1418 usbd_abort_pipe(jack->endpoint->pipe);
1419 mutex_enter(&sc->sc_lock);
1420 }
1421 }
1422 }
1423
1424 static usbd_status
1425 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1426 {
1427 if (mididev->sc)
1428 return USBD_IN_USE;
1429
1430 mididev->sc = sc;
1431
1432 describe_mididev(mididev);
1433
1434 mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1435
1436 return USBD_NORMAL_COMPLETION;
1437 }
1438
1439 static usbd_status
1440 detach_mididev(struct umidi_mididev *mididev, int flags)
1441 {
1442 struct umidi_softc *sc = mididev->sc;
1443
1444 if (!sc)
1445 return USBD_NO_ADDR;
1446
1447 mutex_enter(&sc->sc_lock);
1448 if (mididev->opened) {
1449 umidi_close(mididev);
1450 }
1451 unbind_jacks_from_mididev(mididev);
1452 mutex_exit(&sc->sc_lock);
1453
1454 if (mididev->mdev != NULL)
1455 config_detach(mididev->mdev, flags);
1456
1457 if (NULL != mididev->label) {
1458 kmem_free(mididev->label, mididev->label_len);
1459 mididev->label = NULL;
1460 }
1461
1462 mididev->sc = NULL;
1463
1464 return USBD_NORMAL_COMPLETION;
1465 }
1466
1467 static void
1468 deactivate_mididev(struct umidi_mididev *mididev)
1469 {
1470 if (mididev->out_jack)
1471 mididev->out_jack->bound = 0;
1472 if (mididev->in_jack)
1473 mididev->in_jack->bound = 0;
1474 }
1475
1476 static usbd_status
1477 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1478 {
1479 sc->sc_num_mididevs = nmidi;
1480 sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1481 return USBD_NORMAL_COMPLETION;
1482 }
1483
1484 static void
1485 free_all_mididevs(struct umidi_softc *sc)
1486 {
1487 struct umidi_mididev *mididevs;
1488 size_t len;
1489
1490 mutex_enter(&sc->sc_lock);
1491 mididevs = sc->sc_mididevs;
1492 if (mididevs)
1493 len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1494 sc->sc_mididevs = NULL;
1495 sc->sc_num_mididevs = 0;
1496 mutex_exit(&sc->sc_lock);
1497
1498 if (mididevs)
1499 kmem_free(mididevs, len);
1500 }
1501
1502 static usbd_status
1503 attach_all_mididevs(struct umidi_softc *sc)
1504 {
1505 usbd_status err;
1506 int i;
1507
1508 if (sc->sc_mididevs)
1509 for (i = 0; i < sc->sc_num_mididevs; i++) {
1510 err = attach_mididev(sc, &sc->sc_mididevs[i]);
1511 if (err != USBD_NORMAL_COMPLETION)
1512 return err;
1513 }
1514
1515 return USBD_NORMAL_COMPLETION;
1516 }
1517
1518 static usbd_status
1519 detach_all_mididevs(struct umidi_softc *sc, int flags)
1520 {
1521 usbd_status err;
1522 int i;
1523
1524 if (sc->sc_mididevs)
1525 for (i = 0; i < sc->sc_num_mididevs; i++) {
1526 err = detach_mididev(&sc->sc_mididevs[i], flags);
1527 if (err != USBD_NORMAL_COMPLETION)
1528 return err;
1529 }
1530
1531 return USBD_NORMAL_COMPLETION;
1532 }
1533
1534 static void
1535 deactivate_all_mididevs(struct umidi_softc *sc)
1536 {
1537 int i;
1538
1539 if (sc->sc_mididevs) {
1540 for (i = 0; i < sc->sc_num_mididevs; i++)
1541 deactivate_mididev(&sc->sc_mididevs[i]);
1542 }
1543 }
1544
1545 /*
1546 * TODO: the 0-based cable numbers will often not match the labeling of the
1547 * equipment. Ideally:
1548 * For class-compliant devices: get the iJack string from the jack descriptor.
1549 * Otherwise:
1550 * - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1551 * number for display)
1552 * - support an array quirk explicitly giving a char * for each jack.
1553 * For now, you get 0-based cable numbers. If there are multiple endpoints and
1554 * the CNs are not globally unique, each is shown with its associated endpoint
1555 * address in hex also. That should not be necessary when using iJack values
1556 * or a quirk array.
1557 */
1558 void
1559 describe_mididev(struct umidi_mididev *md)
1560 {
1561 char in_label[16];
1562 char out_label[16];
1563 const char *unit_label;
1564 char *final_label;
1565 struct umidi_softc *sc;
1566 int show_ep_in;
1567 int show_ep_out;
1568 size_t len;
1569
1570 sc = md->sc;
1571 show_ep_in = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1572 show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1573
1574 if (NULL == md->in_jack)
1575 in_label[0] = '\0';
1576 else if (show_ep_in)
1577 snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1578 md->in_jack->cable_number, md->in_jack->endpoint->addr);
1579 else
1580 snprintf(in_label, sizeof(in_label), "<%d ",
1581 md->in_jack->cable_number);
1582
1583 if (NULL == md->out_jack)
1584 out_label[0] = '\0';
1585 else if (show_ep_out)
1586 snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1587 md->out_jack->cable_number, md->out_jack->endpoint->addr);
1588 else
1589 snprintf(out_label, sizeof(out_label), ">%d ",
1590 md->out_jack->cable_number);
1591
1592 unit_label = device_xname(sc->sc_dev);
1593
1594 len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1595
1596 final_label = kmem_alloc(len, KM_SLEEP);
1597
1598 snprintf(final_label, len, "%s%son %s",
1599 in_label, out_label, unit_label);
1600
1601 md->label = final_label;
1602 md->label_len = len;
1603 }
1604
1605 #ifdef UMIDI_DEBUG
1606 static void
1607 dump_sc(struct umidi_softc *sc)
1608 {
1609 int i;
1610
1611 DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1612 for (i=0; i<sc->sc_out_num_endpoints; i++) {
1613 DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1614 dump_ep(&sc->sc_out_ep[i]);
1615 }
1616 for (i=0; i<sc->sc_in_num_endpoints; i++) {
1617 DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1618 dump_ep(&sc->sc_in_ep[i]);
1619 }
1620 }
1621
1622 static void
1623 dump_ep(struct umidi_endpoint *ep)
1624 {
1625 int i;
1626 for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1627 if (NULL==ep->jacks[i])
1628 continue;
1629 DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1630 dump_jack(ep->jacks[i]);
1631 }
1632 }
1633 static void
1634 dump_jack(struct umidi_jack *jack)
1635 {
1636 DPRINTFN(10, ("\t\t\tep=%p\n",
1637 jack->endpoint));
1638 }
1639
1640 #endif /* UMIDI_DEBUG */
1641
1642
1643
1644 /*
1645 * MUX MIDI PACKET
1646 */
1647
1648 static const int packet_length[16] = {
1649 /*0*/ -1,
1650 /*1*/ -1,
1651 /*2*/ 2,
1652 /*3*/ 3,
1653 /*4*/ 3,
1654 /*5*/ 1,
1655 /*6*/ 2,
1656 /*7*/ 3,
1657 /*8*/ 3,
1658 /*9*/ 3,
1659 /*A*/ 3,
1660 /*B*/ 3,
1661 /*C*/ 2,
1662 /*D*/ 2,
1663 /*E*/ 3,
1664 /*F*/ 1,
1665 };
1666
1667 #define GET_CN(p) (((unsigned char)(p)>>4)&0x0F)
1668 #define GET_CIN(p) ((unsigned char)(p)&0x0F)
1669 #define MIX_CN_CIN(cn, cin) \
1670 ((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1671 ((unsigned char)(cin)&0x0F)))
1672
1673 static usbd_status
1674 start_input_transfer(struct umidi_endpoint *ep)
1675 {
1676 usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1677 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1678 return usbd_transfer(ep->xfer);
1679 }
1680
1681 static usbd_status
1682 start_output_transfer(struct umidi_endpoint *ep)
1683 {
1684 usbd_status rv;
1685 uint32_t length;
1686 int i;
1687
1688 length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1689 DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1690 ep->buffer, ep->next_slot, length));
1691
1692 usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1693 USBD_NO_TIMEOUT, out_intr);
1694 rv = usbd_transfer(ep->xfer);
1695
1696 /*
1697 * Once the transfer is scheduled, no more adding to partial
1698 * packets within it.
1699 */
1700 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1701 for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1702 if (NULL != ep->jacks[i])
1703 ep->jacks[i]->midiman_ppkt = NULL;
1704 }
1705
1706 return rv;
1707 }
1708
1709 #ifdef UMIDI_DEBUG
1710 #define DPR_PACKET(dir, sc, p) \
1711 if ((unsigned char)(p)[1]!=0xFE) \
1712 DPRINTFN(500, \
1713 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n", \
1714 device_xname(sc->sc_dev), \
1715 (unsigned char)(p)[0], \
1716 (unsigned char)(p)[1], \
1717 (unsigned char)(p)[2], \
1718 (unsigned char)(p)[3]));
1719 #else
1720 #define DPR_PACKET(dir, sc, p)
1721 #endif
1722
1723 /*
1724 * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1725 * with the cable number and length in the last byte instead of the first,
1726 * but there the resemblance ends. Where a USB MIDI packet is a semantic
1727 * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1728 * with a cable nybble and a length nybble (which, unlike the CIN of a
1729 * real USB MIDI packet, has no semantics at all besides the length).
1730 * A packet received from a Midiman may contain part of a MIDI message,
1731 * more than one MIDI message, or parts of more than one MIDI message. A
1732 * three-byte MIDI message may arrive in three packets of data length 1, and
1733 * running status may be used. Happily, the midi(4) driver above us will put
1734 * it all back together, so the only cost is in USB bandwidth. The device
1735 * has an easier time with what it receives from us: we'll pack messages in
1736 * and across packets, but filling the packets whenever possible and,
1737 * as midi(4) hands us a complete message at a time, we'll never send one
1738 * in a dribble of short packets.
1739 */
1740
1741 static int
1742 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1743 {
1744 struct umidi_endpoint *ep = out_jack->endpoint;
1745 struct umidi_softc *sc = ep->sc;
1746 unsigned char *packet;
1747 int plen;
1748 int poff;
1749
1750 KASSERT(mutex_owned(&sc->sc_lock));
1751
1752 if (sc->sc_dying)
1753 return EIO;
1754
1755 if (!out_jack->opened)
1756 return ENODEV; /* XXX as it was, is this the right errno? */
1757
1758 sc->sc_refcnt++;
1759
1760 #ifdef UMIDI_DEBUG
1761 if (umididebug >= 100)
1762 microtime(&umidi_tv);
1763 #endif
1764 DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1765 "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1766 (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1767
1768 packet = *ep->next_slot++;
1769 KASSERT(ep->buffer_size >=
1770 (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1771 memset(packet, 0, UMIDI_PACKET_SIZE);
1772 if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1773 if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1774 poff = 0x0f & (out_jack->midiman_ppkt[3]);
1775 plen = 3 - poff;
1776 if (plen > len)
1777 plen = len;
1778 memcpy(out_jack->midiman_ppkt+poff, src, plen);
1779 src += plen;
1780 len -= plen;
1781 plen += poff;
1782 out_jack->midiman_ppkt[3] =
1783 MIX_CN_CIN(out_jack->cable_number, plen);
1784 DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1785 if (3 == plen)
1786 out_jack->midiman_ppkt = NULL; /* no more */
1787 }
1788 if (0 == len)
1789 ep->next_slot--; /* won't be needed, nevermind */
1790 else {
1791 memcpy(packet, src, len);
1792 packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1793 DPR_PACKET(out, sc, packet);
1794 if (len < 3)
1795 out_jack->midiman_ppkt = packet;
1796 }
1797 } else { /* the nice simple USB class-compliant case */
1798 packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1799 memcpy(packet+1, src, len);
1800 DPR_PACKET(out, sc, packet);
1801 }
1802 ep->next_schedule |= 1<<(out_jack->cable_number);
1803 ++ ep->num_scheduled;
1804 if (!ep->armed && !ep->soliciting) {
1805 /*
1806 * It would be bad to call out_solicit directly here (the
1807 * caller need not be reentrant) but a soft interrupt allows
1808 * solicit to run immediately the caller exits its critical
1809 * section, and if the caller has more to write we can get it
1810 * before starting the USB transfer, and send a longer one.
1811 */
1812 ep->soliciting = 1;
1813 kpreempt_disable();
1814 softint_schedule(ep->solicit_cookie);
1815 kpreempt_enable();
1816 }
1817
1818 if (--sc->sc_refcnt < 0)
1819 cv_broadcast(&sc->sc_detach_cv);
1820
1821 return 0;
1822 }
1823
1824 static void
1825 in_intr(struct usbd_xfer *xfer, void *priv,
1826 usbd_status status)
1827 {
1828 int cn, len, i;
1829 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1830 struct umidi_softc *sc = ep->sc;
1831 struct umidi_jack *jack;
1832 unsigned char *packet;
1833 umidi_packet_bufp slot;
1834 umidi_packet_bufp end;
1835 unsigned char *data;
1836 uint32_t count;
1837
1838 if (ep->sc->sc_dying || !ep->num_open)
1839 return;
1840
1841 mutex_enter(&sc->sc_lock);
1842 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1843 if (0 == count % UMIDI_PACKET_SIZE) {
1844 DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1845 device_xname(ep->sc->sc_dev), ep, count));
1846 } else {
1847 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1848 device_xname(ep->sc->sc_dev), ep, count));
1849 }
1850
1851 slot = ep->buffer;
1852 end = slot + count / sizeof(*slot);
1853
1854 for (packet = *slot; slot < end; packet = *++slot) {
1855
1856 if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1857 cn = (0xf0&(packet[3]))>>4;
1858 len = 0x0f&(packet[3]);
1859 data = packet;
1860 } else {
1861 cn = GET_CN(packet[0]);
1862 len = packet_length[GET_CIN(packet[0])];
1863 data = packet + 1;
1864 }
1865 /* 0 <= cn <= 15 by inspection of above code */
1866 if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1867 DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1868 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1869 device_xname(ep->sc->sc_dev), ep, cn, len,
1870 (unsigned)data[0],
1871 (unsigned)data[1],
1872 (unsigned)data[2]));
1873 mutex_exit(&sc->sc_lock);
1874 return;
1875 }
1876
1877 if (!jack->bound || !jack->opened)
1878 continue;
1879
1880 DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1881 "%02X %02X %02X\n",
1882 device_xname(ep->sc->sc_dev), ep, cn, len,
1883 (unsigned)data[0],
1884 (unsigned)data[1],
1885 (unsigned)data[2]));
1886
1887 if (jack->u.in.intr) {
1888 for (i = 0; i < len; i++) {
1889 (*jack->u.in.intr)(jack->arg, data[i]);
1890 }
1891 }
1892
1893 }
1894
1895 (void)start_input_transfer(ep);
1896 mutex_exit(&sc->sc_lock);
1897 }
1898
1899 static void
1900 out_intr(struct usbd_xfer *xfer, void *priv,
1901 usbd_status status)
1902 {
1903 struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1904 struct umidi_softc *sc = ep->sc;
1905 uint32_t count;
1906
1907 if (sc->sc_dying)
1908 return;
1909
1910 mutex_enter(&sc->sc_lock);
1911 #ifdef UMIDI_DEBUG
1912 if (umididebug >= 200)
1913 microtime(&umidi_tv);
1914 #endif
1915 usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1916 if (0 == count % UMIDI_PACKET_SIZE) {
1917 DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1918 "length %u\n", device_xname(ep->sc->sc_dev),
1919 umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1920 count));
1921 } else {
1922 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1923 device_xname(ep->sc->sc_dev), ep, count));
1924 }
1925 count /= UMIDI_PACKET_SIZE;
1926
1927 /*
1928 * If while the transfer was pending we buffered any new messages,
1929 * move them to the start of the buffer.
1930 */
1931 ep->next_slot -= count;
1932 if (ep->buffer < ep->next_slot) {
1933 memcpy(ep->buffer, ep->buffer + count,
1934 (char *)ep->next_slot - (char *)ep->buffer);
1935 }
1936 cv_broadcast(&sc->sc_cv);
1937 /*
1938 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1939 * Running at IPL_USB so the following should happen to be safe.
1940 */
1941 ep->armed = 0;
1942 if (!ep->soliciting) {
1943 ep->soliciting = 1;
1944 out_solicit_locked(ep);
1945 }
1946 mutex_exit(&sc->sc_lock);
1947 }
1948
1949 /*
1950 * A jack on which we have received a packet must be called back on its
1951 * out.intr handler before it will send us another; it is considered
1952 * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1953 * we need no extra buffer space for it.
1954 *
1955 * In contrast, a jack that is open but not scheduled may supply us a packet
1956 * at any time, driven by the top half, and we must be able to accept it, no
1957 * excuses. So we must ensure that at any point in time there are at least
1958 * (num_open - num_scheduled) slots free.
1959 *
1960 * As long as there are more slots free than that minimum, we can loop calling
1961 * scheduled jacks back on their "interrupt" handlers, soliciting more
1962 * packets, starting the USB transfer only when the buffer space is down to
1963 * the minimum or no jack has any more to send.
1964 */
1965
1966 static void
1967 out_solicit_locked(void *arg)
1968 {
1969 struct umidi_endpoint *ep = arg;
1970 umidi_packet_bufp end;
1971 uint16_t which;
1972 struct umidi_jack *jack;
1973
1974 KASSERT(mutex_owned(&ep->sc->sc_lock));
1975
1976 end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1977
1978 for ( ;; ) {
1979 if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1980 break; /* at IPL_USB */
1981 if (ep->this_schedule == 0) {
1982 if (ep->next_schedule == 0)
1983 break; /* at IPL_USB */
1984 ep->this_schedule = ep->next_schedule;
1985 ep->next_schedule = 0;
1986 }
1987 /*
1988 * At least one jack is scheduled. Find and mask off the least
1989 * set bit in this_schedule and decrement num_scheduled.
1990 * Convert mask to bit index to find the corresponding jack,
1991 * and call its intr handler. If it has a message, it will call
1992 * back one of the output methods, which will set its bit in
1993 * next_schedule (not copied into this_schedule until the
1994 * latter is empty). In this way we round-robin the jacks that
1995 * have messages to send, until the buffer is as full as we
1996 * dare, and then start a transfer.
1997 */
1998 which = ep->this_schedule;
1999 which &= (~which)+1; /* now mask of least set bit */
2000 ep->this_schedule &= ~which;
2001 --ep->num_scheduled;
2002
2003 --which; /* now 1s below mask - count 1s to get index */
2004 which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
2005 which = (((which >> 2) & 0x3333) + (which & 0x3333));
2006 which = (((which >> 4) + which) & 0x0f0f);
2007 which += (which >> 8);
2008 which &= 0x1f; /* the bit index a/k/a jack number */
2009
2010 jack = ep->jacks[which];
2011 if (jack->u.out.intr)
2012 (*jack->u.out.intr)(jack->arg);
2013 }
2014 /* intr lock held at loop exit */
2015 if (!ep->armed && ep->next_slot > ep->buffer) {
2016 /*
2017 * Can't hold the interrupt lock while calling into USB,
2018 * but we can safely drop it here.
2019 */
2020 mutex_exit(&ep->sc->sc_lock);
2021 ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
2022 mutex_enter(&ep->sc->sc_lock);
2023 }
2024 ep->soliciting = 0;
2025 }
2026
2027 /* Entry point for the softintr. */
2028 static void
2029 out_solicit(void *arg)
2030 {
2031 struct umidi_endpoint *ep = arg;
2032 struct umidi_softc *sc = ep->sc;
2033
2034 mutex_enter(&sc->sc_lock);
2035 out_solicit_locked(arg);
2036 mutex_exit(&sc->sc_lock);
2037 }
2038