usb_mem.c revision 1.65 1 /* $NetBSD: usb_mem.c,v 1.65 2014/09/12 16:40:38 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Lennart Augustsson (lennart (at) augustsson.net) at
9 * Carlstedt Research & Technology.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * USB DMA memory allocation.
35 * We need to allocate a lot of small (many 8 byte, some larger)
36 * memory blocks that can be used for DMA. Using the bus_dma
37 * routines directly would incur large overheads in space and time.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: usb_mem.c,v 1.65 2014/09/12 16:40:38 skrll Exp $");
42
43 #ifdef _KERNEL_OPT
44 #include "opt_usb.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/queue.h>
52 #include <sys/device.h> /* for usbdivar.h */
53 #include <sys/bus.h>
54 #include <sys/cpu.h>
55 #include <sys/once.h>
56
57 #include <sys/extent.h>
58
59 #ifdef DIAGNOSTIC
60 #include <sys/proc.h>
61 #endif
62
63 #include <dev/usb/usb.h>
64 #include <dev/usb/usbdi.h>
65 #include <dev/usb/usbdivar.h> /* just for usb_dma_t */
66 #include <dev/usb/usb_mem.h>
67
68 #ifdef USB_DEBUG
69 #define DPRINTF(x) if (usbdebug) printf x
70 #define DPRINTFN(n,x) if (usbdebug>(n)) printf x
71 extern int usbdebug;
72 #else
73 #define DPRINTF(x)
74 #define DPRINTFN(n,x)
75 #endif
76
77 #define USB_MEM_SMALL roundup(64, CACHE_LINE_SIZE)
78 #define USB_MEM_CHUNKS 64
79 #define USB_MEM_BLOCK (USB_MEM_SMALL * USB_MEM_CHUNKS)
80
81 /* This struct is overlayed on free fragments. */
82 struct usb_frag_dma {
83 usb_dma_block_t *block;
84 u_int offs;
85 LIST_ENTRY(usb_frag_dma) next;
86 };
87
88 Static usbd_status usb_block_allocmem(bus_dma_tag_t, size_t, size_t,
89 usb_dma_block_t **, bool);
90 Static void usb_block_freemem(usb_dma_block_t *);
91
92 LIST_HEAD(usb_dma_block_qh, usb_dma_block);
93 Static struct usb_dma_block_qh usb_blk_freelist =
94 LIST_HEAD_INITIALIZER(usb_blk_freelist);
95 kmutex_t usb_blk_lock;
96
97 #ifdef DEBUG
98 Static struct usb_dma_block_qh usb_blk_fraglist =
99 LIST_HEAD_INITIALIZER(usb_blk_fraglist);
100 Static struct usb_dma_block_qh usb_blk_fulllist =
101 LIST_HEAD_INITIALIZER(usb_blk_fulllist);
102 #endif
103 Static u_int usb_blk_nfree = 0;
104 /* XXX should have different free list for different tags (for speed) */
105 Static LIST_HEAD(, usb_frag_dma) usb_frag_freelist =
106 LIST_HEAD_INITIALIZER(usb_frag_freelist);
107
108 Static int usb_mem_init(void);
109
110 Static int
111 usb_mem_init(void)
112 {
113
114 mutex_init(&usb_blk_lock, MUTEX_DEFAULT, IPL_NONE);
115 return 0;
116 }
117
118 Static usbd_status
119 usb_block_allocmem(bus_dma_tag_t tag, size_t size, size_t align,
120 usb_dma_block_t **dmap, bool multiseg)
121 {
122 usb_dma_block_t *b;
123 int error;
124
125 DPRINTFN(5, ("usb_block_allocmem: size=%zu align=%zu\n", size, align));
126
127 if (size == 0) {
128 #ifdef DIAGNOSTIC
129 printf("usb_block_allocmem: called with size==0\n");
130 #endif
131 return USBD_INVAL;
132 }
133
134 #ifdef DIAGNOSTIC
135 if (cpu_softintr_p() || cpu_intr_p()) {
136 printf("usb_block_allocmem: in interrupt context, size=%lu\n",
137 (unsigned long) size);
138 }
139 #endif
140
141 KASSERT(mutex_owned(&usb_blk_lock));
142
143 /* First check the free list. */
144 LIST_FOREACH(b, &usb_blk_freelist, next) {
145 /* Don't allocate multiple segments to unwilling callers */
146 if (b->nsegs != 1 && !multiseg)
147 continue;
148 if (b->tag == tag && b->size >= size && b->align >= align) {
149 LIST_REMOVE(b, next);
150 usb_blk_nfree--;
151 *dmap = b;
152 DPRINTFN(6,("usb_block_allocmem: free list size=%zu\n",
153 b->size));
154 return (USBD_NORMAL_COMPLETION);
155 }
156 }
157
158 #ifdef DIAGNOSTIC
159 if (cpu_softintr_p() || cpu_intr_p()) {
160 printf("usb_block_allocmem: in interrupt context, failed\n");
161 return (USBD_NOMEM);
162 }
163 #endif
164
165 DPRINTFN(6, ("usb_block_allocmem: no free\n"));
166 b = kmem_zalloc(sizeof *b, KM_SLEEP);
167 if (b == NULL)
168 return (USBD_NOMEM);
169
170 b->tag = tag;
171 b->size = size;
172 b->align = align;
173
174 if (!multiseg)
175 /* Caller wants one segment */
176 b->nsegs = 1;
177 else
178 b->nsegs = (size + (PAGE_SIZE-1)) / PAGE_SIZE;
179
180 b->segs = kmem_alloc(b->nsegs * sizeof(*b->segs), KM_SLEEP);
181 if (b->segs == NULL) {
182 kmem_free(b, sizeof *b);
183 return USBD_NOMEM;
184 }
185 b->nsegs_alloc = b->nsegs;
186
187 error = bus_dmamem_alloc(tag, b->size, align, 0,
188 b->segs, b->nsegs,
189 &b->nsegs, BUS_DMA_NOWAIT);
190 if (error)
191 goto free0;
192
193 error = bus_dmamem_map(tag, b->segs, b->nsegs, b->size,
194 &b->kaddr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
195 if (error)
196 goto free1;
197
198 error = bus_dmamap_create(tag, b->size, b->nsegs, b->size,
199 0, BUS_DMA_NOWAIT, &b->map);
200 if (error)
201 goto unmap;
202
203 error = bus_dmamap_load(tag, b->map, b->kaddr, b->size, NULL,
204 BUS_DMA_NOWAIT);
205 if (error)
206 goto destroy;
207
208 *dmap = b;
209 #ifdef USB_FRAG_DMA_WORKAROUND
210 memset(b->kaddr, 0, b->size);
211 #endif
212
213 return (USBD_NORMAL_COMPLETION);
214
215 destroy:
216 bus_dmamap_destroy(tag, b->map);
217 unmap:
218 bus_dmamem_unmap(tag, b->kaddr, b->size);
219 free1:
220 bus_dmamem_free(tag, b->segs, b->nsegs);
221 free0:
222 kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs));
223 kmem_free(b, sizeof *b);
224 return (USBD_NOMEM);
225 }
226
227 #if 0
228 void
229 usb_block_real_freemem(usb_dma_block_t *b)
230 {
231 #ifdef DIAGNOSTIC
232 if (cpu_softintr_p() || cpu_intr_p()) {
233 printf("usb_block_real_freemem: in interrupt context\n");
234 return;
235 }
236 #endif
237 bus_dmamap_unload(b->tag, b->map);
238 bus_dmamap_destroy(b->tag, b->map);
239 bus_dmamem_unmap(b->tag, b->kaddr, b->size);
240 bus_dmamem_free(b->tag, b->segs, b->nsegs);
241 kmem_free(b->segs, b->nsegs_alloc * sizeof(*b->segs));
242 kmem_free(b, sizeof *b);
243 }
244 #endif
245
246 #ifdef DEBUG
247 static bool
248 usb_valid_block_p(usb_dma_block_t *b, struct usb_dma_block_qh *qh)
249 {
250 usb_dma_block_t *xb;
251 LIST_FOREACH(xb, qh, next) {
252 if (xb == b)
253 return true;
254 }
255 return false;
256 }
257 #endif
258
259 /*
260 * Do not free the memory unconditionally since we might be called
261 * from an interrupt context and that is BAD.
262 * XXX when should we really free?
263 */
264 Static void
265 usb_block_freemem(usb_dma_block_t *b)
266 {
267
268 KASSERT(mutex_owned(&usb_blk_lock));
269
270 DPRINTFN(6, ("usb_block_freemem: size=%zu\n", b->size));
271 #ifdef DEBUG
272 LIST_REMOVE(b, next);
273 #endif
274 LIST_INSERT_HEAD(&usb_blk_freelist, b, next);
275 usb_blk_nfree++;
276 }
277
278 usbd_status
279 usb_allocmem(usbd_bus_handle bus, size_t size, size_t align, usb_dma_t *p)
280 {
281 return usb_allocmem_flags(bus, size, align, p, 0);
282 }
283
284 usbd_status
285 usb_allocmem_flags(usbd_bus_handle bus, size_t size, size_t align, usb_dma_t *p,
286 int flags)
287 {
288 bus_dma_tag_t tag = bus->dmatag;
289 usbd_status err;
290 struct usb_frag_dma *f;
291 usb_dma_block_t *b;
292 int i;
293 static ONCE_DECL(init_control);
294 bool frag;
295
296 RUN_ONCE(&init_control, usb_mem_init);
297
298 frag = (flags & USBMALLOC_MULTISEG);
299
300 /* If the request is large then just use a full block. */
301 if (size > USB_MEM_SMALL || align > USB_MEM_SMALL) {
302 DPRINTFN(1, ("usb_allocmem: large alloc %d\n", (int)size));
303 size = (size + USB_MEM_BLOCK - 1) & ~(USB_MEM_BLOCK - 1);
304 mutex_enter(&usb_blk_lock);
305 err = usb_block_allocmem(tag, size, align, &p->block, frag);
306 if (!err) {
307 #ifdef DEBUG
308 LIST_INSERT_HEAD(&usb_blk_fulllist, p->block, next);
309 #endif
310 p->block->flags = USB_DMA_FULLBLOCK;
311 p->offs = 0;
312 }
313 mutex_exit(&usb_blk_lock);
314 return (err);
315 }
316
317 mutex_enter(&usb_blk_lock);
318 /* Check for free fragments. */
319 LIST_FOREACH(f, &usb_frag_freelist, next) {
320 KDASSERTMSG(usb_valid_block_p(f->block, &usb_blk_fraglist),
321 "%s: usb frag %p: unknown block pointer %p",
322 __func__, f, f->block);
323 if (f->block->tag == tag)
324 break;
325 }
326 if (f == NULL) {
327 DPRINTFN(1, ("usb_allocmem: adding fragments\n"));
328 err = usb_block_allocmem(tag, USB_MEM_BLOCK, USB_MEM_SMALL, &b,
329 false);
330 if (err) {
331 mutex_exit(&usb_blk_lock);
332 return (err);
333 }
334 #ifdef DEBUG
335 LIST_INSERT_HEAD(&usb_blk_fraglist, b, next);
336 #endif
337 b->flags = 0;
338 for (i = 0; i < USB_MEM_BLOCK; i += USB_MEM_SMALL) {
339 f = (struct usb_frag_dma *)((char *)b->kaddr + i);
340 f->block = b;
341 f->offs = i;
342 LIST_INSERT_HEAD(&usb_frag_freelist, f, next);
343 #ifdef USB_FRAG_DMA_WORKAROUND
344 i += 1 * USB_MEM_SMALL;
345 #endif
346 }
347 f = LIST_FIRST(&usb_frag_freelist);
348 }
349 p->block = f->block;
350 p->offs = f->offs;
351 #ifdef USB_FRAG_DMA_WORKAROUND
352 p->offs += USB_MEM_SMALL;
353 #endif
354 p->block->flags &= ~USB_DMA_RESERVE;
355 LIST_REMOVE(f, next);
356 mutex_exit(&usb_blk_lock);
357 DPRINTFN(5, ("usb_allocmem: use frag=%p size=%d\n", f, (int)size));
358
359 return (USBD_NORMAL_COMPLETION);
360 }
361
362 void
363 usb_freemem(usbd_bus_handle bus, usb_dma_t *p)
364 {
365 struct usb_frag_dma *f;
366
367 mutex_enter(&usb_blk_lock);
368 if (p->block->flags & USB_DMA_FULLBLOCK) {
369 KDASSERTMSG(usb_valid_block_p(p->block, &usb_blk_fulllist),
370 "%s: dma %p: invalid block pointer %p",
371 __func__, p, p->block);
372 DPRINTFN(1, ("usb_freemem: large free\n"));
373 usb_block_freemem(p->block);
374 mutex_exit(&usb_blk_lock);
375 return;
376 }
377 KDASSERTMSG(usb_valid_block_p(p->block, &usb_blk_fraglist),
378 "%s: dma %p: invalid block pointer %p",
379 __func__, p, p->block);
380 //usb_syncmem(p, 0, USB_MEM_SMALL, BUS_DMASYNC_POSTREAD);
381 f = KERNADDR(p, 0);
382 #ifdef USB_FRAG_DMA_WORKAROUND
383 f = (void *)((uintptr_t)f - USB_MEM_SMALL);
384 #endif
385 f->block = p->block;
386 f->offs = p->offs;
387 #ifdef USB_FRAG_DMA_WORKAROUND
388 f->offs -= USB_MEM_SMALL;
389 #endif
390 LIST_INSERT_HEAD(&usb_frag_freelist, f, next);
391 mutex_exit(&usb_blk_lock);
392 DPRINTFN(5, ("usb_freemem: frag=%p\n", f));
393 }
394
395 bus_addr_t
396 usb_dmaaddr(usb_dma_t *dma, unsigned int offset)
397 {
398 unsigned int i;
399 bus_size_t seg_offs;
400
401 offset += dma->offs;
402
403 KASSERT(offset < dma->block->size);
404
405 if (dma->block->nsegs == 1) {
406 KASSERT(dma->block->map->dm_segs[0].ds_len > offset);
407 return dma->block->map->dm_segs[0].ds_addr + offset;
408 }
409
410 /* Search for a bus_segment_t corresponding to this offset. With no
411 * record of the offset in the map to a particular dma_segment_t, we
412 * have to iterate from the start of the list each time. Could be
413 * improved */
414 seg_offs = 0;
415 for (i = 0; i < dma->block->nsegs; i++) {
416 if (seg_offs + dma->block->map->dm_segs[i].ds_len > offset)
417 break;
418
419 seg_offs += dma->block->map->dm_segs[i].ds_len;
420 }
421
422 KASSERT(i != dma->block->nsegs);
423 offset -= seg_offs;
424 return dma->block->map->dm_segs[i].ds_addr + offset;
425 }
426
427 void
428 usb_syncmem(usb_dma_t *p, bus_addr_t offset, bus_size_t len, int ops)
429 {
430 bus_dmamap_sync(p->block->tag, p->block->map, p->offs + offset,
431 len, ops);
432 }
433
434
435 usbd_status
436 usb_reserve_allocm(struct usb_dma_reserve *rs, usb_dma_t *dma, u_int32_t size)
437 {
438 int error;
439 u_long start;
440 bus_addr_t baddr;
441
442 if (rs->vaddr == 0 || size > USB_MEM_RESERVE)
443 return USBD_NOMEM;
444
445 dma->block = kmem_zalloc(sizeof *dma->block, KM_SLEEP);
446 if (dma->block == NULL) {
447 aprint_error_dev(rs->dv, "%s: failed allocating dma block",
448 __func__);
449 goto out0;
450 }
451
452 dma->block->nsegs = 1;
453 dma->block->segs = kmem_alloc(dma->block->nsegs *
454 sizeof(*dma->block->segs), KM_SLEEP);
455 if (dma->block->segs == NULL) {
456 aprint_error_dev(rs->dv, "%s: failed allocating 1 dma segment",
457 __func__);
458 goto out1;
459 }
460
461 error = extent_alloc(rs->extent, size, PAGE_SIZE, 0,
462 EX_NOWAIT, &start);
463
464 if (error != 0) {
465 aprint_error_dev(rs->dv, "%s: extent_alloc size %u failed "
466 "(error %d)", __func__, size, error);
467 goto out2;
468 }
469
470 baddr = start;
471 dma->offs = baddr - rs->paddr;
472 dma->block->flags = USB_DMA_RESERVE;
473 dma->block->align = PAGE_SIZE;
474 dma->block->size = size;
475 dma->block->segs[0] = rs->map->dm_segs[0];
476 dma->block->map = rs->map;
477 dma->block->kaddr = rs->vaddr;
478 dma->block->tag = rs->dtag;
479
480 return USBD_NORMAL_COMPLETION;
481 out2:
482 kmem_free(dma->block->segs, dma->block->nsegs *
483 sizeof(*dma->block->segs));
484 out1:
485 kmem_free(dma->block, sizeof *dma->block);
486 out0:
487 return USBD_NOMEM;
488 }
489
490 void
491 usb_reserve_freem(struct usb_dma_reserve *rs, usb_dma_t *dma)
492 {
493
494 extent_free(rs->extent,
495 (u_long)(rs->paddr + dma->offs), dma->block->size, 0);
496 kmem_free(dma->block->segs, dma->block->nsegs *
497 sizeof(*dma->block->segs));
498 kmem_free(dma->block, sizeof *dma->block);
499 }
500
501 int
502 usb_setup_reserve(device_t dv, struct usb_dma_reserve *rs, bus_dma_tag_t dtag,
503 size_t size)
504 {
505 int error, nseg;
506 bus_dma_segment_t seg;
507
508 rs->dtag = dtag;
509 rs->size = size;
510 rs->dv = dv;
511
512 error = bus_dmamem_alloc(dtag, USB_MEM_RESERVE, PAGE_SIZE, 0,
513 &seg, 1, &nseg, BUS_DMA_NOWAIT);
514 if (error != 0)
515 return error;
516
517 error = bus_dmamem_map(dtag, &seg, nseg, USB_MEM_RESERVE,
518 &rs->vaddr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
519 if (error != 0)
520 goto freeit;
521
522 error = bus_dmamap_create(dtag, USB_MEM_RESERVE, 1,
523 USB_MEM_RESERVE, 0, BUS_DMA_NOWAIT, &rs->map);
524 if (error != 0)
525 goto unmap;
526
527 error = bus_dmamap_load(dtag, rs->map, rs->vaddr, USB_MEM_RESERVE,
528 NULL, BUS_DMA_NOWAIT);
529 if (error != 0)
530 goto destroy;
531
532 rs->paddr = rs->map->dm_segs[0].ds_addr;
533 rs->extent = extent_create(device_xname(dv), (u_long)rs->paddr,
534 (u_long)(rs->paddr + USB_MEM_RESERVE - 1), 0, 0, 0);
535 if (rs->extent == NULL) {
536 rs->vaddr = 0;
537 return ENOMEM;
538 }
539
540 return 0;
541
542 destroy:
543 bus_dmamap_destroy(dtag, rs->map);
544 unmap:
545 bus_dmamem_unmap(dtag, rs->vaddr, size);
546 freeit:
547 bus_dmamem_free(dtag, &seg, nseg);
548
549 rs->vaddr = 0;
550
551 return error;
552 }
553