Home | History | Annotate | Line # | Download | only in usb
vhci.c revision 1.15
      1 /*	$NetBSD: vhci.c,v 1.15 2020/03/31 16:28:28 maxv Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2019-2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: vhci.c,v 1.15 2020/03/31 16:28:28 maxv Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_usb.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 
     41 #include <sys/bus.h>
     42 #include <sys/cpu.h>
     43 #include <sys/conf.h>
     44 #include <sys/device.h>
     45 #include <sys/kernel.h>
     46 #include <sys/kmem.h>
     47 #include <sys/mutex.h>
     48 #include <sys/proc.h>
     49 #include <sys/queue.h>
     50 #include <sys/systm.h>
     51 #include <sys/mman.h>
     52 #include <sys/file.h>
     53 #include <sys/filedesc.h>
     54 
     55 #include <machine/endian.h>
     56 
     57 #include "ioconf.h"
     58 
     59 #include <dev/usb/usb.h>
     60 #include <dev/usb/usbdi.h>
     61 #include <dev/usb/usbdivar.h>
     62 
     63 #include <dev/usb/usbroothub.h>
     64 #include <dev/usb/vhci.h>
     65 
     66 #ifdef VHCI_DEBUG
     67 #define DPRINTF(fmt, ...)	printf(fmt, __VA_ARGS__)
     68 #else
     69 #define DPRINTF(fmt, ...)	__nothing
     70 #endif
     71 
     72 static usbd_status vhci_open(struct usbd_pipe *);
     73 static void vhci_softintr(void *);
     74 
     75 static struct usbd_xfer *vhci_allocx(struct usbd_bus *, unsigned int);
     76 static void vhci_freex(struct usbd_bus *, struct usbd_xfer *);
     77 static void vhci_get_lock(struct usbd_bus *, kmutex_t **);
     78 static int vhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
     79     void *, int);
     80 
     81 static const struct usbd_bus_methods vhci_bus_methods = {
     82 	.ubm_open =	vhci_open,
     83 	.ubm_softint =	vhci_softintr,
     84 	.ubm_dopoll =	NULL,
     85 	.ubm_allocx =	vhci_allocx,
     86 	.ubm_freex =	vhci_freex,
     87 	.ubm_getlock =	vhci_get_lock,
     88 	.ubm_rhctrl =	vhci_roothub_ctrl,
     89 };
     90 
     91 static usbd_status vhci_device_ctrl_transfer(struct usbd_xfer *);
     92 static usbd_status vhci_device_ctrl_start(struct usbd_xfer *);
     93 static void vhci_device_ctrl_abort(struct usbd_xfer *);
     94 static void vhci_device_ctrl_close(struct usbd_pipe *);
     95 static void vhci_device_ctrl_cleartoggle(struct usbd_pipe *);
     96 static void vhci_device_ctrl_done(struct usbd_xfer *);
     97 
     98 static const struct usbd_pipe_methods vhci_device_ctrl_methods = {
     99 	.upm_init =		NULL,
    100 	.upm_fini =		NULL,
    101 	.upm_transfer =		vhci_device_ctrl_transfer,
    102 	.upm_start =		vhci_device_ctrl_start,
    103 	.upm_abort =		vhci_device_ctrl_abort,
    104 	.upm_close =		vhci_device_ctrl_close,
    105 	.upm_cleartoggle =	vhci_device_ctrl_cleartoggle,
    106 	.upm_done =		vhci_device_ctrl_done,
    107 };
    108 
    109 static usbd_status vhci_root_intr_transfer(struct usbd_xfer *);
    110 static usbd_status vhci_root_intr_start(struct usbd_xfer *);
    111 static void vhci_root_intr_abort(struct usbd_xfer *);
    112 static void vhci_root_intr_close(struct usbd_pipe *);
    113 static void vhci_root_intr_cleartoggle(struct usbd_pipe *);
    114 static void vhci_root_intr_done(struct usbd_xfer *);
    115 
    116 static const struct usbd_pipe_methods vhci_root_intr_methods = {
    117 	.upm_init =		NULL,
    118 	.upm_fini =		NULL,
    119 	.upm_transfer =		vhci_root_intr_transfer,
    120 	.upm_start =		vhci_root_intr_start,
    121 	.upm_abort =		vhci_root_intr_abort,
    122 	.upm_close =		vhci_root_intr_close,
    123 	.upm_cleartoggle =	vhci_root_intr_cleartoggle,
    124 	.upm_done =		vhci_root_intr_done,
    125 };
    126 
    127 /*
    128  * There are three structures to understand: vxfers, packets, and ports.
    129  *
    130  * Each xfer from the point of view of the USB stack is a vxfer from the point
    131  * of view of vHCI.
    132  *
    133  * A vxfer has a linked list containing a maximum of two packets: a request
    134  * packet and possibly a data packet. Packets basically contain data exchanged
    135  * between the Host and the virtual USB device. A packet is linked to both a
    136  * vxfer and a port.
    137  *
    138  * A port is an abstraction of an actual USB port. Each virtual USB device gets
    139  * connected to a port. A port has two lists:
    140  *  - The Usb-To-Host list, containing packets to be fetched from the USB
    141  *    device and provided to the host.
    142  *  - The Host-To-Usb list, containing packets to be sent from the Host to the
    143  *    USB device.
    144  * Request packets are always in the H->U direction. Data packets however can
    145  * be in both the H->U and U->H directions.
    146  *
    147  * With read() and write() operations on /dev/vhci, userland respectively
    148  * "fetches" and "sends" packets from or to the virtual USB device, which
    149  * respectively means reading/inserting packets in the H->U and U->H lists on
    150  * the port where the virtual USB device is connected.
    151  *
    152  *             +------------------------------------------------+
    153  *             |                 USB Stack                      |
    154  *             +---------------------^--------------------------+
    155  *                                   |
    156  *             +---------------------V--------------------------+
    157  *             | +----------------+    +-------------+          |
    158  *             | | Request Packet |    | Data Packet |     Xfer |
    159  *             | +-------|--------+    +----|---^----+          |
    160  *             +---------|------------------|---|---------------+
    161  *                       |                  |   |
    162  *                       |   +--------------+   |
    163  *                       |   |                  |
    164  *             +---------|---|------------------|---------------+
    165  *             |     +---V---V---+    +---------|-+             |
    166  *             |     | H->U List |    | U->H List |   vHCI Port |
    167  *             |     +-----|-----+    +-----^-----+             |
    168  *             +-----------|----------------|-------------------+
    169  *                         |                |
    170  *             +-----------|----------------|-------------------+
    171  *             |     +-----V-----+    +-----|-----+             |
    172  *             |     |   read()  |    |  write()  |     vHCI FD |
    173  *             |     +-----------+    +-----------+             |
    174  *             +------------------------------------------------+
    175  */
    176 
    177 typedef struct {
    178 	int type;
    179 #define VHCI_REQ_CTRL	0
    180 
    181 	union {
    182 		usb_device_request_t ctrl;
    183 	} u;
    184 } vhci_request_t;
    185 
    186 typedef struct {
    187 	size_t size;
    188 } vhci_response_t;
    189 
    190 struct vhci_xfer;
    191 
    192 typedef struct vhci_packet {
    193 	/* General. */
    194 	TAILQ_ENTRY(vhci_packet) portlist;
    195 	TAILQ_ENTRY(vhci_packet) xferlist;
    196 	struct vhci_xfer *vxfer;
    197 	bool utoh;
    198 	uint8_t addr;
    199 
    200 	/* Type. */
    201 	struct {
    202 		bool req:1;
    203 		bool res:1;
    204 		bool dat:1;
    205 	} type;
    206 
    207 	/* Exposed for FD operations. */
    208 	uint8_t *buf;
    209 	size_t size;
    210 	size_t cursor;
    211 } vhci_packet_t;
    212 
    213 typedef TAILQ_HEAD(, vhci_packet) vhci_packet_list_t;
    214 
    215 #define VHCI_NADDRS	16	/* maximum supported by USB */
    216 
    217 typedef struct {
    218 	kmutex_t lock;
    219 	int status;
    220 	int change;
    221 	struct {
    222 		vhci_packet_list_t usb_to_host;
    223 		vhci_packet_list_t host_to_usb;
    224 	} endpoints[VHCI_NADDRS];
    225 } vhci_port_t;
    226 
    227 typedef struct {
    228 	struct usbd_pipe pipe;
    229 } vhci_pipe_t;
    230 
    231 typedef struct vhci_xfer {
    232 	/* General. */
    233 	struct usbd_xfer xfer;
    234 
    235 	/* Port where the xfer occurs. */
    236 	vhci_port_t *port;
    237 
    238 	/* Packets in the xfer. */
    239 	size_t npkts;
    240 	vhci_packet_list_t pkts;
    241 
    242 	/* Header storage. */
    243 	vhci_request_t reqbuf;
    244 	vhci_response_t resbuf;
    245 
    246 	/* Used for G/C. */
    247 	TAILQ_ENTRY(vhci_xfer) freelist;
    248 } vhci_xfer_t;
    249 
    250 typedef TAILQ_HEAD(, vhci_xfer) vhci_xfer_list_t;
    251 
    252 #define VHCI_INDEX2PORT(idx)	(idx)
    253 #define VHCI_NPORTS		4
    254 
    255 typedef struct {
    256 	device_t sc_dev;
    257 
    258 	struct usbd_bus sc_bus;
    259 	bool sc_dying;
    260 	kmutex_t sc_lock;
    261 
    262 	/*
    263 	 * Intr Root. Used to attach the devices.
    264 	 */
    265 	struct usbd_xfer *sc_intrxfer;
    266 
    267 	/*
    268 	 * The ports. Zero is for the roothub, one and beyond for the USB
    269 	 * devices.
    270 	 */
    271 	size_t sc_nports;
    272 	vhci_port_t sc_port[VHCI_NPORTS];
    273 
    274 	device_t sc_child; /* /dev/usb# device */
    275 } vhci_softc_t;
    276 
    277 typedef struct {
    278 	u_int port;
    279 	uint8_t addr;
    280 	vhci_softc_t *softc;
    281 } vhci_fd_t;
    282 
    283 extern struct cfdriver vhci_cd;
    284 
    285 /* -------------------------------------------------------------------------- */
    286 
    287 static void
    288 vhci_pkt_ctrl_create(vhci_port_t *port, struct usbd_xfer *xfer, bool utoh,
    289     uint8_t addr)
    290 {
    291 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    292 	vhci_packet_list_t *reqlist, *reslist, *datlist = NULL;
    293 	vhci_packet_t *req, *res = NULL, *dat = NULL;
    294 	size_t npkts = 0;
    295 
    296 	/* Request packet. */
    297 	reqlist = &port->endpoints[addr].host_to_usb;
    298 	req = kmem_zalloc(sizeof(*req), KM_SLEEP);
    299 	req->vxfer = vxfer;
    300 	req->utoh = false;
    301 	req->addr = addr;
    302 	req->type.req = true;
    303 	req->buf = (uint8_t *)&vxfer->reqbuf;
    304 	req->size = sizeof(vxfer->reqbuf);
    305 	req->cursor = 0;
    306 	npkts++;
    307 
    308 	/* Init the request buffer. */
    309 	memset(&vxfer->reqbuf, 0, sizeof(vxfer->reqbuf));
    310 	vxfer->reqbuf.type = VHCI_REQ_CTRL;
    311 	memcpy(&vxfer->reqbuf.u.ctrl, &xfer->ux_request,
    312 	    sizeof(xfer->ux_request));
    313 
    314 	/* Response packet. */
    315 	if (utoh && (xfer->ux_length > 0)) {
    316 		reslist = &port->endpoints[addr].usb_to_host;
    317 		res = kmem_zalloc(sizeof(*res), KM_SLEEP);
    318 		res->vxfer = vxfer;
    319 		res->utoh = true;
    320 		res->addr = addr;
    321 		res->type.res = true;
    322 		res->buf = (uint8_t *)&vxfer->resbuf;
    323 		res->size = sizeof(vxfer->resbuf);
    324 		res->cursor = 0;
    325 		npkts++;
    326 	}
    327 
    328 	/* Data packet. */
    329 	if (xfer->ux_length > 0) {
    330 		if (utoh) {
    331 			datlist = &port->endpoints[addr].usb_to_host;
    332 		} else {
    333 			datlist = &port->endpoints[addr].host_to_usb;
    334 		}
    335 		dat = kmem_zalloc(sizeof(*dat), KM_SLEEP);
    336 		dat->vxfer = vxfer;
    337 		dat->utoh = utoh;
    338 		dat->addr = addr;
    339 		dat->type.dat = true;
    340 		dat->buf = xfer->ux_buf;
    341 		dat->size = xfer->ux_length;
    342 		dat->cursor = 0;
    343 		npkts++;
    344 	}
    345 
    346 	/* Insert in the xfer. */
    347 	vxfer->port = port;
    348 	vxfer->npkts = npkts;
    349 	TAILQ_INIT(&vxfer->pkts);
    350 	TAILQ_INSERT_TAIL(&vxfer->pkts, req, xferlist);
    351 	if (res != NULL)
    352 		TAILQ_INSERT_TAIL(&vxfer->pkts, res, xferlist);
    353 	if (dat != NULL)
    354 		TAILQ_INSERT_TAIL(&vxfer->pkts, dat, xferlist);
    355 
    356 	/* Insert in the port. */
    357 	KASSERT(mutex_owned(&port->lock));
    358 	TAILQ_INSERT_TAIL(reqlist, req, portlist);
    359 	if (res != NULL)
    360 		TAILQ_INSERT_TAIL(reslist, res, portlist);
    361 	if (dat != NULL)
    362 		TAILQ_INSERT_TAIL(datlist, dat, portlist);
    363 }
    364 
    365 static void
    366 vhci_pkt_destroy(vhci_softc_t *sc, vhci_packet_t *pkt)
    367 {
    368 	vhci_xfer_t *vxfer = pkt->vxfer;
    369 	vhci_port_t *port = vxfer->port;
    370 	vhci_packet_list_t *pktlist;
    371 
    372 	KASSERT(mutex_owned(&port->lock));
    373 
    374 	/* Remove from the port. */
    375 	if (pkt->utoh) {
    376 		pktlist = &port->endpoints[pkt->addr].usb_to_host;
    377 	} else {
    378 		pktlist = &port->endpoints[pkt->addr].host_to_usb;
    379 	}
    380 	TAILQ_REMOVE(pktlist, pkt, portlist);
    381 
    382 	/* Remove from the xfer. */
    383 	TAILQ_REMOVE(&vxfer->pkts, pkt, xferlist);
    384 	kmem_free(pkt, sizeof(*pkt));
    385 
    386 	/* Unref. */
    387 	KASSERT(vxfer->npkts > 0);
    388 	vxfer->npkts--;
    389 	if (vxfer->npkts > 0)
    390 		return;
    391 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    392 }
    393 
    394 /* -------------------------------------------------------------------------- */
    395 
    396 static usbd_status
    397 vhci_open(struct usbd_pipe *pipe)
    398 {
    399 	struct usbd_device *dev = pipe->up_dev;
    400 	struct usbd_bus *bus = dev->ud_bus;
    401 	usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
    402 	vhci_softc_t *sc = bus->ub_hcpriv;
    403 	uint8_t addr = dev->ud_addr;
    404 
    405 	if (sc->sc_dying)
    406 		return USBD_IOERROR;
    407 
    408 	DPRINTF("%s: called, type=%d\n", __func__,
    409 	    UE_GET_XFERTYPE(ed->bmAttributes));
    410 
    411 	if (addr == bus->ub_rhaddr) {
    412 		switch (ed->bEndpointAddress) {
    413 		case USB_CONTROL_ENDPOINT:
    414 			DPRINTF("%s: roothub_ctrl\n", __func__);
    415 			pipe->up_methods = &roothub_ctrl_methods;
    416 			break;
    417 		case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
    418 			DPRINTF("%s: root_intr\n", __func__);
    419 			pipe->up_methods = &vhci_root_intr_methods;
    420 			break;
    421 		default:
    422 			DPRINTF("%s: inval\n", __func__);
    423 			return USBD_INVAL;
    424 		}
    425 	} else {
    426 		switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
    427 		case UE_CONTROL:
    428 			pipe->up_methods = &vhci_device_ctrl_methods;
    429 			break;
    430 		case UE_INTERRUPT:
    431 		case UE_BULK:
    432 		default:
    433 			goto bad;
    434 		}
    435 	}
    436 
    437 	return USBD_NORMAL_COMPLETION;
    438 
    439 bad:
    440 	return USBD_NOMEM;
    441 }
    442 
    443 static void
    444 vhci_softintr(void *v)
    445 {
    446 	DPRINTF("%s: called\n", __func__);
    447 }
    448 
    449 static struct usbd_xfer *
    450 vhci_allocx(struct usbd_bus *bus, unsigned int nframes)
    451 {
    452 	vhci_xfer_t *vxfer;
    453 
    454 	vxfer = kmem_zalloc(sizeof(*vxfer), KM_SLEEP);
    455 #ifdef DIAGNOSTIC
    456 	vxfer->xfer.ux_state = XFER_BUSY;
    457 #endif
    458 	return (struct usbd_xfer *)vxfer;
    459 }
    460 
    461 static void
    462 vhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
    463 {
    464 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    465 
    466 	KASSERT(vxfer->npkts == 0);
    467 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    468 
    469 #ifdef DIAGNOSTIC
    470 	vxfer->xfer.ux_state = XFER_FREE;
    471 #endif
    472 	kmem_free(vxfer, sizeof(*vxfer));
    473 }
    474 
    475 static void
    476 vhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
    477 {
    478 	vhci_softc_t *sc = bus->ub_hcpriv;
    479 
    480 	*lock = &sc->sc_lock;
    481 }
    482 
    483 static int
    484 vhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
    485     void *buf, int buflen)
    486 {
    487 	vhci_softc_t *sc = bus->ub_hcpriv;
    488 	vhci_port_t *port;
    489 	usb_hub_descriptor_t hubd;
    490 	uint16_t len, value, index;
    491 	int totlen = 0;
    492 
    493 	len = UGETW(req->wLength);
    494 	value = UGETW(req->wValue);
    495 	index = UGETW(req->wIndex);
    496 
    497 #define C(x,y) ((x) | ((y) << 8))
    498 	switch (C(req->bRequest, req->bmRequestType)) {
    499 	case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
    500 		switch (value) {
    501 		case C(0, UDESC_DEVICE): {
    502 			usb_device_descriptor_t devd;
    503 
    504 			totlen = uimin(buflen, sizeof(devd));
    505 			memcpy(&devd, buf, totlen);
    506 			USETW(devd.idVendor, 0);
    507 			USETW(devd.idProduct, 0);
    508 			memcpy(buf, &devd, totlen);
    509 			break;
    510 		}
    511 #define sd ((usb_string_descriptor_t *)buf)
    512 		case C(1, UDESC_STRING):
    513 			/* Vendor */
    514 			totlen = usb_makestrdesc(sd, len, "NetBSD");
    515 			break;
    516 		case C(2, UDESC_STRING):
    517 			/* Product */
    518 			totlen = usb_makestrdesc(sd, len, "VHCI root hub");
    519 			break;
    520 #undef sd
    521 		default:
    522 			/* default from usbroothub */
    523 			return buflen;
    524 		}
    525 		break;
    526 
    527 	case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
    528 		switch (value) {
    529 		case UHF_PORT_RESET:
    530 			if (index < 1 || index >= sc->sc_nports) {
    531 				return -1;
    532 			}
    533 			port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    534 			port->status |= UPS_C_PORT_RESET;
    535 			break;
    536 		case UHF_PORT_POWER:
    537 			break;
    538 		default:
    539 			return -1;
    540 		}
    541 		break;
    542 
    543 	/* Hub requests. */
    544 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
    545 		break;
    546 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
    547 		if (index < 1 || index >= sc->sc_nports) {
    548 			return -1;
    549 		}
    550 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    551 		switch (value) {
    552 		case UHF_PORT_ENABLE:
    553 			port->status &= ~UPS_PORT_ENABLED;
    554 			break;
    555 		case UHF_C_PORT_ENABLE:
    556 			port->change |= UPS_C_PORT_ENABLED;
    557 			break;
    558 		default:
    559 			return -1;
    560 		}
    561 		break;
    562 
    563 	case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
    564 		totlen = uimin(buflen, sizeof(hubd));
    565 		memcpy(&hubd, buf, totlen);
    566 		hubd.bNbrPorts = sc->sc_nports - 1;
    567 		hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE;
    568 		totlen = uimin(totlen, hubd.bDescLength);
    569 		memcpy(buf, &hubd, totlen);
    570 		break;
    571 
    572 	case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
    573 		/* XXX The other HCs do this */
    574 		memset(buf, 0, len);
    575 		totlen = len;
    576 		break;
    577 
    578 	case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
    579 		usb_port_status_t ps;
    580 
    581 		if (index < 1 || index >= sc->sc_nports) {
    582 			return -1;
    583 		}
    584 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    585 		USETW(ps.wPortStatus, port->status);
    586 		USETW(ps.wPortChange, port->change);
    587 		totlen = uimin(len, sizeof(ps));
    588 		memcpy(buf, &ps, totlen);
    589 		break;
    590 	}
    591 	default:
    592 		/* default from usbroothub */
    593 		return buflen;
    594 	}
    595 
    596 	return totlen;
    597 }
    598 
    599 /* -------------------------------------------------------------------------- */
    600 
    601 static usbd_status
    602 vhci_device_ctrl_transfer(struct usbd_xfer *xfer)
    603 {
    604 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    605 	usbd_status err;
    606 
    607 	DPRINTF("%s: called\n", __func__);
    608 
    609 	/* Insert last in queue. */
    610 	mutex_enter(&sc->sc_lock);
    611 	err = usb_insert_transfer(xfer);
    612 	mutex_exit(&sc->sc_lock);
    613 	if (err)
    614 		return err;
    615 
    616 	/* Pipe isn't running, start first */
    617 	return vhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
    618 }
    619 
    620 static usbd_status
    621 vhci_device_ctrl_start(struct usbd_xfer *xfer)
    622 {
    623 	usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
    624 	usb_device_request_t *req = &xfer->ux_request;
    625 	struct usbd_device *dev = xfer->ux_pipe->up_dev;
    626 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    627 	vhci_port_t *port;
    628 	bool polling = sc->sc_bus.ub_usepolling;
    629 	bool isread = (req->bmRequestType & UT_READ) != 0;
    630 	uint8_t addr = UE_GET_ADDR(ed->bEndpointAddress);
    631 	int portno, ret;
    632 
    633 	KASSERT(addr == 0);
    634 	KASSERT(xfer->ux_rqflags & URQ_REQUEST);
    635 	KASSERT(dev->ud_myhsport != NULL);
    636 	portno = dev->ud_myhsport->up_portno;
    637 
    638 	DPRINTF("%s: type=0x%02x, len=%d, isread=%d, portno=%d\n",
    639 	    __func__, req->bmRequestType, UGETW(req->wLength), isread, portno);
    640 
    641 	if (sc->sc_dying)
    642 		return USBD_IOERROR;
    643 
    644 	port = &sc->sc_port[portno];
    645 
    646 	if (!polling)
    647 		mutex_enter(&sc->sc_lock);
    648 
    649 	mutex_enter(&port->lock);
    650 	if (port->status & UPS_PORT_ENABLED) {
    651 		xfer->ux_status = USBD_IN_PROGRESS;
    652 		vhci_pkt_ctrl_create(port, xfer, isread, addr);
    653 		ret = USBD_IN_PROGRESS;
    654 	} else {
    655 		ret = USBD_IOERROR;
    656 	}
    657 	mutex_exit(&port->lock);
    658 
    659 	if (!polling)
    660 		mutex_exit(&sc->sc_lock);
    661 
    662 	return ret;
    663 }
    664 
    665 static void
    666 vhci_device_ctrl_abort(struct usbd_xfer *xfer)
    667 {
    668 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    669 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    670 	vhci_port_t *port = vxfer->port;
    671 	vhci_packet_t *pkt;
    672 
    673 	DPRINTF("%s: called\n", __func__);
    674 
    675 	KASSERT(mutex_owned(&sc->sc_lock));
    676 
    677 	callout_halt(&xfer->ux_callout, &sc->sc_lock);
    678 
    679 	/* If anyone else beat us, we're done.  */
    680 	KASSERT(xfer->ux_status != USBD_CANCELLED);
    681 	if (xfer->ux_status != USBD_IN_PROGRESS)
    682 		return;
    683 
    684 	mutex_enter(&port->lock);
    685 	while (vxfer->npkts > 0) {
    686 		pkt = TAILQ_FIRST(&vxfer->pkts);
    687 		KASSERT(pkt != NULL);
    688 		vhci_pkt_destroy(sc, pkt);
    689 	}
    690 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    691 	mutex_exit(&port->lock);
    692 
    693 	xfer->ux_status = USBD_CANCELLED;
    694 	usb_transfer_complete(xfer);
    695 	KASSERT(mutex_owned(&sc->sc_lock));
    696 }
    697 
    698 static void
    699 vhci_device_ctrl_close(struct usbd_pipe *pipe)
    700 {
    701 	DPRINTF("%s: called\n", __func__);
    702 }
    703 
    704 static void
    705 vhci_device_ctrl_cleartoggle(struct usbd_pipe *pipe)
    706 {
    707 	DPRINTF("%s: called\n", __func__);
    708 }
    709 
    710 static void
    711 vhci_device_ctrl_done(struct usbd_xfer *xfer)
    712 {
    713 	DPRINTF("%s: called\n", __func__);
    714 }
    715 
    716 /* -------------------------------------------------------------------------- */
    717 
    718 static usbd_status
    719 vhci_root_intr_transfer(struct usbd_xfer *xfer)
    720 {
    721 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    722 	usbd_status err;
    723 
    724 	DPRINTF("%s: called\n", __func__);
    725 
    726 	/* Insert last in queue. */
    727 	mutex_enter(&sc->sc_lock);
    728 	err = usb_insert_transfer(xfer);
    729 	mutex_exit(&sc->sc_lock);
    730 	if (err)
    731 		return err;
    732 
    733 	/* Pipe isn't running, start first */
    734 	return vhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
    735 }
    736 
    737 static usbd_status
    738 vhci_root_intr_start(struct usbd_xfer *xfer)
    739 {
    740 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    741 	const bool polling = sc->sc_bus.ub_usepolling;
    742 
    743 	DPRINTF("%s: called, len=%zu\n", __func__, (size_t)xfer->ux_length);
    744 
    745 	if (sc->sc_dying)
    746 		return USBD_IOERROR;
    747 
    748 	if (!polling)
    749 		mutex_enter(&sc->sc_lock);
    750 	KASSERT(sc->sc_intrxfer == NULL);
    751 	sc->sc_intrxfer = xfer;
    752 	xfer->ux_status = USBD_IN_PROGRESS;
    753 	if (!polling)
    754 		mutex_exit(&sc->sc_lock);
    755 
    756 	return USBD_IN_PROGRESS;
    757 }
    758 
    759 static void
    760 vhci_root_intr_abort(struct usbd_xfer *xfer)
    761 {
    762 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    763 
    764 	DPRINTF("%s: called\n", __func__);
    765 
    766 	KASSERT(mutex_owned(&sc->sc_lock));
    767 	KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
    768 
    769 	/* If xfer has already completed, nothing to do here.  */
    770 	if (sc->sc_intrxfer == NULL)
    771 		return;
    772 
    773 	/*
    774 	 * Otherwise, sc->sc_intrxfer had better be this transfer.
    775 	 * Cancel it.
    776 	 */
    777 	KASSERT(sc->sc_intrxfer == xfer);
    778 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    779 	xfer->ux_status = USBD_CANCELLED;
    780 	usb_transfer_complete(xfer);
    781 }
    782 
    783 static void
    784 vhci_root_intr_close(struct usbd_pipe *pipe)
    785 {
    786 	vhci_softc_t *sc __diagused = pipe->up_dev->ud_bus->ub_hcpriv;
    787 
    788 	DPRINTF("%s: called\n", __func__);
    789 
    790 	KASSERT(mutex_owned(&sc->sc_lock));
    791 
    792 	/*
    793 	 * Caller must guarantee the xfer has completed first, by
    794 	 * closing the pipe only after normal completion or an abort.
    795 	 */
    796 	KASSERT(sc->sc_intrxfer == NULL);
    797 }
    798 
    799 static void
    800 vhci_root_intr_cleartoggle(struct usbd_pipe *pipe)
    801 {
    802 	DPRINTF("%s: called\n", __func__);
    803 }
    804 
    805 static void
    806 vhci_root_intr_done(struct usbd_xfer *xfer)
    807 {
    808 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    809 
    810 	KASSERT(mutex_owned(&sc->sc_lock));
    811 
    812 	/* Claim the xfer so it doesn't get completed again.  */
    813 	KASSERT(sc->sc_intrxfer == xfer);
    814 	KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
    815 	sc->sc_intrxfer = NULL;
    816 }
    817 
    818 /* -------------------------------------------------------------------------- */
    819 
    820 static int
    821 vhci_usb_attach(vhci_fd_t *vfd)
    822 {
    823 	vhci_softc_t *sc = vfd->softc;
    824 	vhci_port_t *port;
    825 	struct usbd_xfer *xfer;
    826 	u_char *p;
    827 	int ret = 0;
    828 
    829 	port = &sc->sc_port[vfd->port];
    830 
    831 	mutex_enter(&sc->sc_lock);
    832 
    833 	mutex_enter(&port->lock);
    834 	port->status = UPS_CURRENT_CONNECT_STATUS | UPS_PORT_ENABLED |
    835 	    UPS_PORT_POWER;
    836 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
    837 	mutex_exit(&port->lock);
    838 
    839 	xfer = sc->sc_intrxfer;
    840 
    841 	if (xfer == NULL) {
    842 		ret = ENOBUFS;
    843 		goto done;
    844 	}
    845 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    846 
    847 	p = xfer->ux_buf;
    848 	memset(p, 0, xfer->ux_length);
    849 	p[0] = __BIT(vfd->port);
    850 	xfer->ux_actlen = xfer->ux_length;
    851 	xfer->ux_status = USBD_NORMAL_COMPLETION;
    852 
    853 	usb_transfer_complete(xfer);
    854 
    855 done:
    856 	mutex_exit(&sc->sc_lock);
    857 	return ret;
    858 }
    859 
    860 static void
    861 vhci_port_flush(vhci_softc_t *sc, vhci_port_t *port)
    862 {
    863 	vhci_packet_list_t *pktlist;
    864 	vhci_packet_t *pkt, *nxt;
    865 	vhci_xfer_list_t vxferlist;
    866 	vhci_xfer_t *vxfer;
    867 	uint8_t addr;
    868 
    869 	KASSERT(mutex_owned(&sc->sc_lock));
    870 	KASSERT(mutex_owned(&port->lock));
    871 
    872 	TAILQ_INIT(&vxferlist);
    873 
    874 	for (addr = 0; addr < VHCI_NADDRS; addr++) {
    875 		/* Drop all the packets in the H->U direction. */
    876 		pktlist = &port->endpoints[addr].host_to_usb;
    877 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
    878 			vxfer = pkt->vxfer;
    879 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
    880 			vhci_pkt_destroy(sc, pkt);
    881 			if (vxfer->npkts == 0)
    882 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
    883 		}
    884 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
    885 
    886 		/* Drop all the packets in the U->H direction. */
    887 		pktlist = &port->endpoints[addr].usb_to_host;
    888 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
    889 			vxfer = pkt->vxfer;
    890 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
    891 			vhci_pkt_destroy(sc, pkt);
    892 			if (vxfer->npkts == 0)
    893 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
    894 		}
    895 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
    896 
    897 		/* Terminate all the xfers collected. */
    898 		while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
    899 			struct usbd_xfer *xfer = &vxfer->xfer;
    900 			TAILQ_REMOVE(&vxferlist, vxfer, freelist);
    901 
    902 			xfer->ux_status = USBD_TIMEOUT;
    903 			usb_transfer_complete(xfer);
    904 		}
    905 	}
    906 }
    907 
    908 static int
    909 vhci_usb_detach(vhci_fd_t *vfd)
    910 {
    911 	vhci_softc_t *sc = vfd->softc;
    912 	vhci_port_t *port;
    913 	struct usbd_xfer *xfer;
    914 	u_char *p;
    915 
    916 	port = &sc->sc_port[vfd->port];
    917 
    918 	mutex_enter(&sc->sc_lock);
    919 
    920 	xfer = sc->sc_intrxfer;
    921 	if (xfer == NULL) {
    922 		mutex_exit(&sc->sc_lock);
    923 		return ENOBUFS;
    924 	}
    925 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    926 
    927 	mutex_enter(&port->lock);
    928 
    929 	port->status = 0;
    930 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
    931 
    932 	p = xfer->ux_buf;
    933 	memset(p, 0, xfer->ux_length);
    934 	p[0] = __BIT(vfd->port);
    935 	xfer->ux_actlen = xfer->ux_length;
    936 	xfer->ux_status = USBD_NORMAL_COMPLETION;
    937 
    938 	usb_transfer_complete(xfer);
    939 	vhci_port_flush(sc, port);
    940 
    941 	mutex_exit(&port->lock);
    942 	mutex_exit(&sc->sc_lock);
    943 	return 0;
    944 }
    945 
    946 static int
    947 vhci_get_info(vhci_fd_t *vfd, struct vhci_ioc_get_info *args)
    948 {
    949 	vhci_softc_t *sc = vfd->softc;
    950 	vhci_port_t *port;
    951 
    952 	port = &sc->sc_port[vfd->port];
    953 
    954 	args->nports = VHCI_NPORTS;
    955 	args->port = vfd->port;
    956 	mutex_enter(&port->lock);
    957 	args->status = port->status;
    958 	mutex_exit(&port->lock);
    959 	args->addr = vfd->addr;
    960 
    961 	return 0;
    962 }
    963 
    964 static int
    965 vhci_set_port(vhci_fd_t *vfd, struct vhci_ioc_set_port *args)
    966 {
    967 	vhci_softc_t *sc = vfd->softc;
    968 
    969 	if (args->port == 0 || args->port >= sc->sc_nports)
    970 		return EINVAL;
    971 
    972 	vfd->port = args->port;
    973 
    974 	return 0;
    975 }
    976 
    977 static int
    978 vhci_set_addr(vhci_fd_t *vfd, struct vhci_ioc_set_addr *args)
    979 {
    980 	if (args->addr >= VHCI_NADDRS)
    981 		return EINVAL;
    982 
    983 	vfd->addr = args->addr;
    984 
    985 	return 0;
    986 }
    987 
    988 /* -------------------------------------------------------------------------- */
    989 
    990 static dev_type_open(vhci_fd_open);
    991 
    992 const struct cdevsw vhci_cdevsw = {
    993 	.d_open = vhci_fd_open,
    994 	.d_close = noclose,
    995 	.d_read = noread,
    996 	.d_write = nowrite,
    997 	.d_ioctl = noioctl,
    998 	.d_stop = nostop,
    999 	.d_tty = notty,
   1000 	.d_poll = nopoll,
   1001 	.d_mmap = nommap,
   1002 	.d_kqfilter = nokqfilter,
   1003 	.d_discard = nodiscard,
   1004 	.d_flag = D_OTHER | D_MPSAFE
   1005 };
   1006 
   1007 static int vhci_fd_ioctl(file_t *, u_long, void *);
   1008 static int vhci_fd_close(file_t *);
   1009 static int vhci_fd_read(struct file *, off_t *, struct uio *, kauth_cred_t, int);
   1010 static int vhci_fd_write(struct file *, off_t *, struct uio *, kauth_cred_t, int);
   1011 
   1012 const struct fileops vhci_fileops = {
   1013 	.fo_read = vhci_fd_read,
   1014 	.fo_write = vhci_fd_write,
   1015 	.fo_ioctl = vhci_fd_ioctl,
   1016 	.fo_fcntl = fnullop_fcntl,
   1017 	.fo_poll = fnullop_poll,
   1018 	.fo_stat = fbadop_stat,
   1019 	.fo_close = vhci_fd_close,
   1020 	.fo_kqfilter = fnullop_kqfilter,
   1021 	.fo_restart = fnullop_restart,
   1022 	.fo_mmap = NULL,
   1023 };
   1024 
   1025 static int
   1026 vhci_fd_open(dev_t dev, int flags, int type, struct lwp *l)
   1027 {
   1028 	vhci_fd_t *vfd;
   1029 	struct file *fp;
   1030 	int error, fd;
   1031 
   1032 	if (minor(dev) != 0)
   1033 		return EXDEV;
   1034 	error = fd_allocfile(&fp, &fd);
   1035 	if (error)
   1036 		return error;
   1037 
   1038 	vfd = kmem_alloc(sizeof(*vfd), KM_SLEEP);
   1039 	vfd->port = 1;
   1040 	vfd->addr = 0;
   1041 	vfd->softc = device_lookup_private(&vhci_cd, minor(dev));
   1042 
   1043 	return fd_clone(fp, fd, flags, &vhci_fileops, vfd);
   1044 }
   1045 
   1046 static int
   1047 vhci_fd_close(file_t *fp)
   1048 {
   1049 	vhci_fd_t *vfd = fp->f_data;
   1050 	int ret __diagused;
   1051 
   1052 	KASSERT(vfd != NULL);
   1053 	ret = vhci_usb_detach(vfd);
   1054 	KASSERT(ret == 0);
   1055 
   1056 	kmem_free(vfd, sizeof(*vfd));
   1057 	fp->f_data = NULL;
   1058 
   1059 	return 0;
   1060 }
   1061 
   1062 static int
   1063 vhci_fd_read(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1064     int flags)
   1065 {
   1066 	vhci_fd_t *vfd = fp->f_data;
   1067 	vhci_softc_t *sc = vfd->softc;
   1068 	vhci_packet_list_t *pktlist;
   1069 	vhci_packet_t *pkt, *nxt;
   1070 	vhci_xfer_list_t vxferlist;
   1071 	vhci_xfer_t *vxfer;
   1072 	vhci_port_t *port;
   1073 	int error = 0;
   1074 	uint8_t *buf;
   1075 	size_t size;
   1076 
   1077 	if (uio->uio_resid == 0)
   1078 		return 0;
   1079 	port = &sc->sc_port[vfd->port];
   1080 	pktlist = &port->endpoints[vfd->addr].host_to_usb;
   1081 
   1082 	TAILQ_INIT(&vxferlist);
   1083 
   1084 	mutex_enter(&port->lock);
   1085 
   1086 	if (!(port->status & UPS_PORT_ENABLED)) {
   1087 		error = ENOBUFS;
   1088 		goto out;
   1089 	}
   1090 
   1091 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
   1092 		vxfer = pkt->vxfer;
   1093 		buf = pkt->buf + pkt->cursor;
   1094 
   1095 		KASSERT(pkt->size >= pkt->cursor);
   1096 		size = uimin(uio->uio_resid, pkt->size - pkt->cursor);
   1097 
   1098 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
   1099 
   1100 		error = uiomove(buf, size, uio);
   1101 		if (error) {
   1102 			DPRINTF("%s: error = %d\n", __func__, error);
   1103 			goto out;
   1104 		}
   1105 
   1106 		pkt->cursor += size;
   1107 
   1108 		if (pkt->cursor == pkt->size) {
   1109 			vhci_pkt_destroy(sc, pkt);
   1110 			if (vxfer->npkts == 0) {
   1111 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
   1112 			}
   1113 		}
   1114 		if (uio->uio_resid == 0) {
   1115 			break;
   1116 		}
   1117 	}
   1118 
   1119 out:
   1120 	mutex_exit(&port->lock);
   1121 
   1122 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
   1123 		struct usbd_xfer *xfer = &vxfer->xfer;
   1124 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
   1125 
   1126 		mutex_enter(&sc->sc_lock);
   1127 		xfer->ux_actlen = xfer->ux_length;
   1128 		xfer->ux_status = USBD_NORMAL_COMPLETION;
   1129 		usb_transfer_complete(xfer);
   1130 		mutex_exit(&sc->sc_lock);
   1131 	}
   1132 
   1133 	return error;
   1134 }
   1135 
   1136 static int
   1137 vhci_fd_write(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1138     int flags)
   1139 {
   1140 	vhci_fd_t *vfd = fp->f_data;
   1141 	vhci_softc_t *sc = vfd->softc;
   1142 	vhci_packet_list_t *pktlist;
   1143 	vhci_packet_t *pkt, *nxt;
   1144 	vhci_xfer_list_t vxferlist;
   1145 	vhci_xfer_t *vxfer;
   1146 	vhci_port_t *port;
   1147 	int error = 0;
   1148 	uint8_t *buf;
   1149 	size_t pktsize, size;
   1150 
   1151 	if (uio->uio_resid == 0)
   1152 		return 0;
   1153 	port = &sc->sc_port[vfd->port];
   1154 	pktlist = &port->endpoints[vfd->addr].usb_to_host;
   1155 
   1156 	TAILQ_INIT(&vxferlist);
   1157 
   1158 	mutex_enter(&port->lock);
   1159 
   1160 	if (!(port->status & UPS_PORT_ENABLED)) {
   1161 		error = ENOBUFS;
   1162 		goto out;
   1163 	}
   1164 
   1165 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
   1166 		vxfer = pkt->vxfer;
   1167 		buf = pkt->buf + pkt->cursor;
   1168 
   1169 		pktsize = pkt->size;
   1170 		if (pkt->type.dat)
   1171 			pktsize = ulmin(vxfer->resbuf.size, pktsize);
   1172 
   1173 		KASSERT(pktsize >= pkt->cursor);
   1174 		size = uimin(uio->uio_resid, pktsize - pkt->cursor);
   1175 
   1176 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
   1177 
   1178 		error = uiomove(buf, size, uio);
   1179 		if (error) {
   1180 			DPRINTF("%s: error = %d\n", __func__, error);
   1181 			goto out;
   1182 		}
   1183 
   1184 		pkt->cursor += size;
   1185 
   1186 		if (pkt->cursor == pktsize) {
   1187 			vhci_pkt_destroy(sc, pkt);
   1188 			if (vxfer->npkts == 0) {
   1189 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
   1190 			}
   1191 		}
   1192 		if (uio->uio_resid == 0) {
   1193 			break;
   1194 		}
   1195 	}
   1196 
   1197 out:
   1198 	mutex_exit(&port->lock);
   1199 
   1200 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
   1201 		struct usbd_xfer *xfer = &vxfer->xfer;
   1202 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
   1203 
   1204 		mutex_enter(&sc->sc_lock);
   1205 		xfer->ux_actlen = ulmin(vxfer->resbuf.size, xfer->ux_length);
   1206 		xfer->ux_status = USBD_NORMAL_COMPLETION;
   1207 		usb_transfer_complete(xfer);
   1208 		mutex_exit(&sc->sc_lock);
   1209 	}
   1210 
   1211 	return error;
   1212 }
   1213 
   1214 static int
   1215 vhci_fd_ioctl(file_t *fp, u_long cmd, void *data)
   1216 {
   1217 	vhci_fd_t *vfd = fp->f_data;
   1218 
   1219 	KASSERT(vfd != NULL);
   1220 
   1221 	switch (cmd) {
   1222 	case VHCI_IOC_GET_INFO:
   1223 		return vhci_get_info(vfd, data);
   1224 	case VHCI_IOC_SET_PORT:
   1225 		return vhci_set_port(vfd, data);
   1226 	case VHCI_IOC_SET_ADDR:
   1227 		return vhci_set_addr(vfd, data);
   1228 	case VHCI_IOC_USB_ATTACH:
   1229 		return vhci_usb_attach(vfd);
   1230 	case VHCI_IOC_USB_DETACH:
   1231 		return vhci_usb_detach(vfd);
   1232 	default:
   1233 		return EINVAL;
   1234 	}
   1235 }
   1236 
   1237 /* -------------------------------------------------------------------------- */
   1238 
   1239 static int vhci_match(device_t, cfdata_t, void *);
   1240 static void vhci_attach(device_t, device_t, void *);
   1241 static int vhci_activate(device_t, enum devact);
   1242 
   1243 CFATTACH_DECL_NEW(vhci, sizeof(vhci_softc_t), vhci_match, vhci_attach,
   1244     NULL, vhci_activate);
   1245 
   1246 void
   1247 vhciattach(int nunits)
   1248 {
   1249 	static struct cfdata vhci_cfdata = {
   1250 		.cf_name = "vhci",
   1251 		.cf_atname = "vhci",
   1252 		.cf_unit = 0,
   1253 		.cf_fstate = FSTATE_STAR,
   1254 	};
   1255 	int error;
   1256 
   1257 	error = config_cfattach_attach(vhci_cd.cd_name, &vhci_ca);
   1258 	if (error) {
   1259 		aprint_error("%s: unable to register cfattach\n",
   1260 		    vhci_cd.cd_name);
   1261 		(void)config_cfdriver_detach(&vhci_cd);
   1262 		return;
   1263 	}
   1264 
   1265 	config_attach_pseudo(&vhci_cfdata);
   1266 }
   1267 
   1268 static int
   1269 vhci_activate(device_t self, enum devact act)
   1270 {
   1271 	vhci_softc_t *sc = device_private(self);
   1272 
   1273 	switch (act) {
   1274 	case DVACT_DEACTIVATE:
   1275 		sc->sc_dying = 1;
   1276 		return 0;
   1277 	default:
   1278 		return EOPNOTSUPP;
   1279 	}
   1280 }
   1281 
   1282 static int
   1283 vhci_match(device_t parent, cfdata_t match, void *aux)
   1284 {
   1285 	return 1;
   1286 }
   1287 
   1288 static void
   1289 vhci_attach(device_t parent, device_t self, void *aux)
   1290 {
   1291 	vhci_softc_t *sc = device_private(self);
   1292 	vhci_port_t *port;
   1293 	uint8_t addr;
   1294 	size_t i;
   1295 
   1296 	sc->sc_dev = self;
   1297 	sc->sc_bus.ub_revision = USBREV_2_0;
   1298 	sc->sc_bus.ub_usedma = false;
   1299 	sc->sc_bus.ub_methods = &vhci_bus_methods;
   1300 	sc->sc_bus.ub_pipesize = sizeof(vhci_pipe_t);
   1301 	sc->sc_bus.ub_hcpriv = sc;
   1302 	sc->sc_dying = false;
   1303 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
   1304 
   1305 	sc->sc_nports = VHCI_NPORTS;
   1306 	for (i = 0; i < sc->sc_nports; i++) {
   1307 		port = &sc->sc_port[i];
   1308 		mutex_init(&port->lock, MUTEX_DEFAULT, IPL_SOFTUSB);
   1309 		for (addr = 0; addr < VHCI_NADDRS; addr++) {
   1310 			TAILQ_INIT(&port->endpoints[addr].usb_to_host);
   1311 			TAILQ_INIT(&port->endpoints[addr].host_to_usb);
   1312 		}
   1313 	}
   1314 
   1315 	sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint);
   1316 }
   1317