Home | History | Annotate | Line # | Download | only in usb
vhci.c revision 1.16
      1 /*	$NetBSD: vhci.c,v 1.16 2020/03/31 16:34:25 maxv Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2019-2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: vhci.c,v 1.16 2020/03/31 16:34:25 maxv Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_usb.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 
     41 #include <sys/bus.h>
     42 #include <sys/cpu.h>
     43 #include <sys/conf.h>
     44 #include <sys/device.h>
     45 #include <sys/kernel.h>
     46 #include <sys/kmem.h>
     47 #include <sys/mutex.h>
     48 #include <sys/proc.h>
     49 #include <sys/queue.h>
     50 #include <sys/systm.h>
     51 #include <sys/mman.h>
     52 #include <sys/file.h>
     53 #include <sys/filedesc.h>
     54 
     55 #include <machine/endian.h>
     56 
     57 #include "ioconf.h"
     58 
     59 #include <dev/usb/usb.h>
     60 #include <dev/usb/usbdi.h>
     61 #include <dev/usb/usbdivar.h>
     62 
     63 #include <dev/usb/usbroothub.h>
     64 #include <dev/usb/vhci.h>
     65 
     66 #ifdef VHCI_DEBUG
     67 #define DPRINTF(fmt, ...)	printf(fmt, __VA_ARGS__)
     68 #else
     69 #define DPRINTF(fmt, ...)	__nothing
     70 #endif
     71 
     72 static usbd_status vhci_open(struct usbd_pipe *);
     73 static void vhci_softintr(void *);
     74 
     75 static struct usbd_xfer *vhci_allocx(struct usbd_bus *, unsigned int);
     76 static void vhci_freex(struct usbd_bus *, struct usbd_xfer *);
     77 static void vhci_get_lock(struct usbd_bus *, kmutex_t **);
     78 static int vhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
     79     void *, int);
     80 
     81 static const struct usbd_bus_methods vhci_bus_methods = {
     82 	.ubm_open =	vhci_open,
     83 	.ubm_softint =	vhci_softintr,
     84 	.ubm_dopoll =	NULL,
     85 	.ubm_allocx =	vhci_allocx,
     86 	.ubm_freex =	vhci_freex,
     87 	.ubm_getlock =	vhci_get_lock,
     88 	.ubm_rhctrl =	vhci_roothub_ctrl,
     89 };
     90 
     91 static usbd_status vhci_device_ctrl_transfer(struct usbd_xfer *);
     92 static usbd_status vhci_device_ctrl_start(struct usbd_xfer *);
     93 static void vhci_device_ctrl_abort(struct usbd_xfer *);
     94 static void vhci_device_ctrl_close(struct usbd_pipe *);
     95 static void vhci_device_ctrl_cleartoggle(struct usbd_pipe *);
     96 static void vhci_device_ctrl_done(struct usbd_xfer *);
     97 
     98 static const struct usbd_pipe_methods vhci_device_ctrl_methods = {
     99 	.upm_init =		NULL,
    100 	.upm_fini =		NULL,
    101 	.upm_transfer =		vhci_device_ctrl_transfer,
    102 	.upm_start =		vhci_device_ctrl_start,
    103 	.upm_abort =		vhci_device_ctrl_abort,
    104 	.upm_close =		vhci_device_ctrl_close,
    105 	.upm_cleartoggle =	vhci_device_ctrl_cleartoggle,
    106 	.upm_done =		vhci_device_ctrl_done,
    107 };
    108 
    109 static usbd_status vhci_root_intr_transfer(struct usbd_xfer *);
    110 static usbd_status vhci_root_intr_start(struct usbd_xfer *);
    111 static void vhci_root_intr_abort(struct usbd_xfer *);
    112 static void vhci_root_intr_close(struct usbd_pipe *);
    113 static void vhci_root_intr_cleartoggle(struct usbd_pipe *);
    114 static void vhci_root_intr_done(struct usbd_xfer *);
    115 
    116 static const struct usbd_pipe_methods vhci_root_intr_methods = {
    117 	.upm_init =		NULL,
    118 	.upm_fini =		NULL,
    119 	.upm_transfer =		vhci_root_intr_transfer,
    120 	.upm_start =		vhci_root_intr_start,
    121 	.upm_abort =		vhci_root_intr_abort,
    122 	.upm_close =		vhci_root_intr_close,
    123 	.upm_cleartoggle =	vhci_root_intr_cleartoggle,
    124 	.upm_done =		vhci_root_intr_done,
    125 };
    126 
    127 /*
    128  * There are three structures to understand: vxfers, packets, and ports.
    129  *
    130  * Each xfer from the point of view of the USB stack is a vxfer from the point
    131  * of view of vHCI.
    132  *
    133  * A vxfer has a linked list containing a maximum of two packets: a request
    134  * packet and possibly a data packet. Packets basically contain data exchanged
    135  * between the Host and the virtual USB device. A packet is linked to both a
    136  * vxfer and a port.
    137  *
    138  * A port is an abstraction of an actual USB port. Each virtual USB device gets
    139  * connected to a port. A port has two lists:
    140  *  - The Usb-To-Host list, containing packets to be fetched from the USB
    141  *    device and provided to the host.
    142  *  - The Host-To-Usb list, containing packets to be sent from the Host to the
    143  *    USB device.
    144  * Request packets are always in the H->U direction. Data packets however can
    145  * be in both the H->U and U->H directions.
    146  *
    147  * With read() and write() operations on /dev/vhci, userland respectively
    148  * "fetches" and "sends" packets from or to the virtual USB device, which
    149  * respectively means reading/inserting packets in the H->U and U->H lists on
    150  * the port where the virtual USB device is connected.
    151  *
    152  *             +------------------------------------------------+
    153  *             |                 USB Stack                      |
    154  *             +---------------------^--------------------------+
    155  *                                   |
    156  *             +---------------------V--------------------------+
    157  *             | +----------------+    +-------------+          |
    158  *             | | Request Packet |    | Data Packet |     Xfer |
    159  *             | +-------|--------+    +----|---^----+          |
    160  *             +---------|------------------|---|---------------+
    161  *                       |                  |   |
    162  *                       |   +--------------+   |
    163  *                       |   |                  |
    164  *             +---------|---|------------------|---------------+
    165  *             |     +---V---V---+    +---------|-+             |
    166  *             |     | H->U List |    | U->H List |   vHCI Port |
    167  *             |     +-----|-----+    +-----^-----+             |
    168  *             +-----------|----------------|-------------------+
    169  *                         |                |
    170  *             +-----------|----------------|-------------------+
    171  *             |     +-----V-----+    +-----|-----+             |
    172  *             |     |   read()  |    |  write()  |     vHCI FD |
    173  *             |     +-----------+    +-----------+             |
    174  *             +------------------------------------------------+
    175  */
    176 
    177 struct vhci_xfer;
    178 
    179 typedef struct vhci_packet {
    180 	/* General. */
    181 	TAILQ_ENTRY(vhci_packet) portlist;
    182 	TAILQ_ENTRY(vhci_packet) xferlist;
    183 	struct vhci_xfer *vxfer;
    184 	bool utoh;
    185 	uint8_t addr;
    186 
    187 	/* Type. */
    188 	struct {
    189 		bool req:1;
    190 		bool res:1;
    191 		bool dat:1;
    192 	} type;
    193 
    194 	/* Exposed for FD operations. */
    195 	uint8_t *buf;
    196 	size_t size;
    197 	size_t cursor;
    198 } vhci_packet_t;
    199 
    200 typedef TAILQ_HEAD(, vhci_packet) vhci_packet_list_t;
    201 
    202 #define VHCI_NADDRS	16	/* maximum supported by USB */
    203 
    204 typedef struct {
    205 	kmutex_t lock;
    206 	int status;
    207 	int change;
    208 	struct {
    209 		vhci_packet_list_t usb_to_host;
    210 		vhci_packet_list_t host_to_usb;
    211 	} endpoints[VHCI_NADDRS];
    212 } vhci_port_t;
    213 
    214 typedef struct {
    215 	struct usbd_pipe pipe;
    216 } vhci_pipe_t;
    217 
    218 typedef struct vhci_xfer {
    219 	/* General. */
    220 	struct usbd_xfer xfer;
    221 
    222 	/* Port where the xfer occurs. */
    223 	vhci_port_t *port;
    224 
    225 	/* Packets in the xfer. */
    226 	size_t npkts;
    227 	vhci_packet_list_t pkts;
    228 
    229 	/* Header storage. */
    230 	vhci_request_t reqbuf;
    231 	vhci_response_t resbuf;
    232 
    233 	/* Used for G/C. */
    234 	TAILQ_ENTRY(vhci_xfer) freelist;
    235 } vhci_xfer_t;
    236 
    237 typedef TAILQ_HEAD(, vhci_xfer) vhci_xfer_list_t;
    238 
    239 #define VHCI_INDEX2PORT(idx)	(idx)
    240 #define VHCI_NPORTS		4
    241 
    242 typedef struct {
    243 	device_t sc_dev;
    244 
    245 	struct usbd_bus sc_bus;
    246 	bool sc_dying;
    247 	kmutex_t sc_lock;
    248 
    249 	/*
    250 	 * Intr Root. Used to attach the devices.
    251 	 */
    252 	struct usbd_xfer *sc_intrxfer;
    253 
    254 	/*
    255 	 * The ports. Zero is for the roothub, one and beyond for the USB
    256 	 * devices.
    257 	 */
    258 	size_t sc_nports;
    259 	vhci_port_t sc_port[VHCI_NPORTS];
    260 
    261 	device_t sc_child; /* /dev/usb# device */
    262 } vhci_softc_t;
    263 
    264 typedef struct {
    265 	u_int port;
    266 	uint8_t addr;
    267 	vhci_softc_t *softc;
    268 } vhci_fd_t;
    269 
    270 extern struct cfdriver vhci_cd;
    271 
    272 /* -------------------------------------------------------------------------- */
    273 
    274 static void
    275 vhci_pkt_ctrl_create(vhci_port_t *port, struct usbd_xfer *xfer, bool utoh,
    276     uint8_t addr)
    277 {
    278 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    279 	vhci_packet_list_t *reqlist, *reslist, *datlist = NULL;
    280 	vhci_packet_t *req, *res = NULL, *dat = NULL;
    281 	size_t npkts = 0;
    282 
    283 	/* Request packet. */
    284 	reqlist = &port->endpoints[addr].host_to_usb;
    285 	req = kmem_zalloc(sizeof(*req), KM_SLEEP);
    286 	req->vxfer = vxfer;
    287 	req->utoh = false;
    288 	req->addr = addr;
    289 	req->type.req = true;
    290 	req->buf = (uint8_t *)&vxfer->reqbuf;
    291 	req->size = sizeof(vxfer->reqbuf);
    292 	req->cursor = 0;
    293 	npkts++;
    294 
    295 	/* Init the request buffer. */
    296 	memset(&vxfer->reqbuf, 0, sizeof(vxfer->reqbuf));
    297 	vxfer->reqbuf.type = VHCI_REQ_CTRL;
    298 	memcpy(&vxfer->reqbuf.u.ctrl, &xfer->ux_request,
    299 	    sizeof(xfer->ux_request));
    300 
    301 	/* Response packet. */
    302 	if (utoh && (xfer->ux_length > 0)) {
    303 		reslist = &port->endpoints[addr].usb_to_host;
    304 		res = kmem_zalloc(sizeof(*res), KM_SLEEP);
    305 		res->vxfer = vxfer;
    306 		res->utoh = true;
    307 		res->addr = addr;
    308 		res->type.res = true;
    309 		res->buf = (uint8_t *)&vxfer->resbuf;
    310 		res->size = sizeof(vxfer->resbuf);
    311 		res->cursor = 0;
    312 		npkts++;
    313 	}
    314 
    315 	/* Data packet. */
    316 	if (xfer->ux_length > 0) {
    317 		if (utoh) {
    318 			datlist = &port->endpoints[addr].usb_to_host;
    319 		} else {
    320 			datlist = &port->endpoints[addr].host_to_usb;
    321 		}
    322 		dat = kmem_zalloc(sizeof(*dat), KM_SLEEP);
    323 		dat->vxfer = vxfer;
    324 		dat->utoh = utoh;
    325 		dat->addr = addr;
    326 		dat->type.dat = true;
    327 		dat->buf = xfer->ux_buf;
    328 		dat->size = xfer->ux_length;
    329 		dat->cursor = 0;
    330 		npkts++;
    331 	}
    332 
    333 	/* Insert in the xfer. */
    334 	vxfer->port = port;
    335 	vxfer->npkts = npkts;
    336 	TAILQ_INIT(&vxfer->pkts);
    337 	TAILQ_INSERT_TAIL(&vxfer->pkts, req, xferlist);
    338 	if (res != NULL)
    339 		TAILQ_INSERT_TAIL(&vxfer->pkts, res, xferlist);
    340 	if (dat != NULL)
    341 		TAILQ_INSERT_TAIL(&vxfer->pkts, dat, xferlist);
    342 
    343 	/* Insert in the port. */
    344 	KASSERT(mutex_owned(&port->lock));
    345 	TAILQ_INSERT_TAIL(reqlist, req, portlist);
    346 	if (res != NULL)
    347 		TAILQ_INSERT_TAIL(reslist, res, portlist);
    348 	if (dat != NULL)
    349 		TAILQ_INSERT_TAIL(datlist, dat, portlist);
    350 }
    351 
    352 static void
    353 vhci_pkt_destroy(vhci_softc_t *sc, vhci_packet_t *pkt)
    354 {
    355 	vhci_xfer_t *vxfer = pkt->vxfer;
    356 	vhci_port_t *port = vxfer->port;
    357 	vhci_packet_list_t *pktlist;
    358 
    359 	KASSERT(mutex_owned(&port->lock));
    360 
    361 	/* Remove from the port. */
    362 	if (pkt->utoh) {
    363 		pktlist = &port->endpoints[pkt->addr].usb_to_host;
    364 	} else {
    365 		pktlist = &port->endpoints[pkt->addr].host_to_usb;
    366 	}
    367 	TAILQ_REMOVE(pktlist, pkt, portlist);
    368 
    369 	/* Remove from the xfer. */
    370 	TAILQ_REMOVE(&vxfer->pkts, pkt, xferlist);
    371 	kmem_free(pkt, sizeof(*pkt));
    372 
    373 	/* Unref. */
    374 	KASSERT(vxfer->npkts > 0);
    375 	vxfer->npkts--;
    376 	if (vxfer->npkts > 0)
    377 		return;
    378 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    379 }
    380 
    381 /* -------------------------------------------------------------------------- */
    382 
    383 static usbd_status
    384 vhci_open(struct usbd_pipe *pipe)
    385 {
    386 	struct usbd_device *dev = pipe->up_dev;
    387 	struct usbd_bus *bus = dev->ud_bus;
    388 	usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
    389 	vhci_softc_t *sc = bus->ub_hcpriv;
    390 	uint8_t addr = dev->ud_addr;
    391 
    392 	if (sc->sc_dying)
    393 		return USBD_IOERROR;
    394 
    395 	DPRINTF("%s: called, type=%d\n", __func__,
    396 	    UE_GET_XFERTYPE(ed->bmAttributes));
    397 
    398 	if (addr == bus->ub_rhaddr) {
    399 		switch (ed->bEndpointAddress) {
    400 		case USB_CONTROL_ENDPOINT:
    401 			DPRINTF("%s: roothub_ctrl\n", __func__);
    402 			pipe->up_methods = &roothub_ctrl_methods;
    403 			break;
    404 		case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
    405 			DPRINTF("%s: root_intr\n", __func__);
    406 			pipe->up_methods = &vhci_root_intr_methods;
    407 			break;
    408 		default:
    409 			DPRINTF("%s: inval\n", __func__);
    410 			return USBD_INVAL;
    411 		}
    412 	} else {
    413 		switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
    414 		case UE_CONTROL:
    415 			pipe->up_methods = &vhci_device_ctrl_methods;
    416 			break;
    417 		case UE_INTERRUPT:
    418 		case UE_BULK:
    419 		default:
    420 			goto bad;
    421 		}
    422 	}
    423 
    424 	return USBD_NORMAL_COMPLETION;
    425 
    426 bad:
    427 	return USBD_NOMEM;
    428 }
    429 
    430 static void
    431 vhci_softintr(void *v)
    432 {
    433 	DPRINTF("%s: called\n", __func__);
    434 }
    435 
    436 static struct usbd_xfer *
    437 vhci_allocx(struct usbd_bus *bus, unsigned int nframes)
    438 {
    439 	vhci_xfer_t *vxfer;
    440 
    441 	vxfer = kmem_zalloc(sizeof(*vxfer), KM_SLEEP);
    442 #ifdef DIAGNOSTIC
    443 	vxfer->xfer.ux_state = XFER_BUSY;
    444 #endif
    445 	return (struct usbd_xfer *)vxfer;
    446 }
    447 
    448 static void
    449 vhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
    450 {
    451 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    452 
    453 	KASSERT(vxfer->npkts == 0);
    454 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    455 
    456 #ifdef DIAGNOSTIC
    457 	vxfer->xfer.ux_state = XFER_FREE;
    458 #endif
    459 	kmem_free(vxfer, sizeof(*vxfer));
    460 }
    461 
    462 static void
    463 vhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
    464 {
    465 	vhci_softc_t *sc = bus->ub_hcpriv;
    466 
    467 	*lock = &sc->sc_lock;
    468 }
    469 
    470 static int
    471 vhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
    472     void *buf, int buflen)
    473 {
    474 	vhci_softc_t *sc = bus->ub_hcpriv;
    475 	vhci_port_t *port;
    476 	usb_hub_descriptor_t hubd;
    477 	uint16_t len, value, index;
    478 	int totlen = 0;
    479 
    480 	len = UGETW(req->wLength);
    481 	value = UGETW(req->wValue);
    482 	index = UGETW(req->wIndex);
    483 
    484 #define C(x,y) ((x) | ((y) << 8))
    485 	switch (C(req->bRequest, req->bmRequestType)) {
    486 	case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
    487 		switch (value) {
    488 		case C(0, UDESC_DEVICE): {
    489 			usb_device_descriptor_t devd;
    490 
    491 			totlen = uimin(buflen, sizeof(devd));
    492 			memcpy(&devd, buf, totlen);
    493 			USETW(devd.idVendor, 0);
    494 			USETW(devd.idProduct, 0);
    495 			memcpy(buf, &devd, totlen);
    496 			break;
    497 		}
    498 #define sd ((usb_string_descriptor_t *)buf)
    499 		case C(1, UDESC_STRING):
    500 			/* Vendor */
    501 			totlen = usb_makestrdesc(sd, len, "NetBSD");
    502 			break;
    503 		case C(2, UDESC_STRING):
    504 			/* Product */
    505 			totlen = usb_makestrdesc(sd, len, "VHCI root hub");
    506 			break;
    507 #undef sd
    508 		default:
    509 			/* default from usbroothub */
    510 			return buflen;
    511 		}
    512 		break;
    513 
    514 	case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
    515 		switch (value) {
    516 		case UHF_PORT_RESET:
    517 			if (index < 1 || index >= sc->sc_nports) {
    518 				return -1;
    519 			}
    520 			port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    521 			port->status |= UPS_C_PORT_RESET;
    522 			break;
    523 		case UHF_PORT_POWER:
    524 			break;
    525 		default:
    526 			return -1;
    527 		}
    528 		break;
    529 
    530 	/* Hub requests. */
    531 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
    532 		break;
    533 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
    534 		if (index < 1 || index >= sc->sc_nports) {
    535 			return -1;
    536 		}
    537 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    538 		switch (value) {
    539 		case UHF_PORT_ENABLE:
    540 			port->status &= ~UPS_PORT_ENABLED;
    541 			break;
    542 		case UHF_C_PORT_ENABLE:
    543 			port->change |= UPS_C_PORT_ENABLED;
    544 			break;
    545 		default:
    546 			return -1;
    547 		}
    548 		break;
    549 
    550 	case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
    551 		totlen = uimin(buflen, sizeof(hubd));
    552 		memcpy(&hubd, buf, totlen);
    553 		hubd.bNbrPorts = sc->sc_nports - 1;
    554 		hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE;
    555 		totlen = uimin(totlen, hubd.bDescLength);
    556 		memcpy(buf, &hubd, totlen);
    557 		break;
    558 
    559 	case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
    560 		/* XXX The other HCs do this */
    561 		memset(buf, 0, len);
    562 		totlen = len;
    563 		break;
    564 
    565 	case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
    566 		usb_port_status_t ps;
    567 
    568 		if (index < 1 || index >= sc->sc_nports) {
    569 			return -1;
    570 		}
    571 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    572 		USETW(ps.wPortStatus, port->status);
    573 		USETW(ps.wPortChange, port->change);
    574 		totlen = uimin(len, sizeof(ps));
    575 		memcpy(buf, &ps, totlen);
    576 		break;
    577 	}
    578 	default:
    579 		/* default from usbroothub */
    580 		return buflen;
    581 	}
    582 
    583 	return totlen;
    584 }
    585 
    586 /* -------------------------------------------------------------------------- */
    587 
    588 static usbd_status
    589 vhci_device_ctrl_transfer(struct usbd_xfer *xfer)
    590 {
    591 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    592 	usbd_status err;
    593 
    594 	DPRINTF("%s: called\n", __func__);
    595 
    596 	/* Insert last in queue. */
    597 	mutex_enter(&sc->sc_lock);
    598 	err = usb_insert_transfer(xfer);
    599 	mutex_exit(&sc->sc_lock);
    600 	if (err)
    601 		return err;
    602 
    603 	/* Pipe isn't running, start first */
    604 	return vhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
    605 }
    606 
    607 static usbd_status
    608 vhci_device_ctrl_start(struct usbd_xfer *xfer)
    609 {
    610 	usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
    611 	usb_device_request_t *req = &xfer->ux_request;
    612 	struct usbd_device *dev = xfer->ux_pipe->up_dev;
    613 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    614 	vhci_port_t *port;
    615 	bool polling = sc->sc_bus.ub_usepolling;
    616 	bool isread = (req->bmRequestType & UT_READ) != 0;
    617 	uint8_t addr = UE_GET_ADDR(ed->bEndpointAddress);
    618 	int portno, ret;
    619 
    620 	KASSERT(addr == 0);
    621 	KASSERT(xfer->ux_rqflags & URQ_REQUEST);
    622 	KASSERT(dev->ud_myhsport != NULL);
    623 	portno = dev->ud_myhsport->up_portno;
    624 
    625 	DPRINTF("%s: type=0x%02x, len=%d, isread=%d, portno=%d\n",
    626 	    __func__, req->bmRequestType, UGETW(req->wLength), isread, portno);
    627 
    628 	if (sc->sc_dying)
    629 		return USBD_IOERROR;
    630 
    631 	port = &sc->sc_port[portno];
    632 
    633 	if (!polling)
    634 		mutex_enter(&sc->sc_lock);
    635 
    636 	mutex_enter(&port->lock);
    637 	if (port->status & UPS_PORT_ENABLED) {
    638 		xfer->ux_status = USBD_IN_PROGRESS;
    639 		vhci_pkt_ctrl_create(port, xfer, isread, addr);
    640 		ret = USBD_IN_PROGRESS;
    641 	} else {
    642 		ret = USBD_IOERROR;
    643 	}
    644 	mutex_exit(&port->lock);
    645 
    646 	if (!polling)
    647 		mutex_exit(&sc->sc_lock);
    648 
    649 	return ret;
    650 }
    651 
    652 static void
    653 vhci_device_ctrl_abort(struct usbd_xfer *xfer)
    654 {
    655 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    656 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    657 	vhci_port_t *port = vxfer->port;
    658 	vhci_packet_t *pkt;
    659 
    660 	DPRINTF("%s: called\n", __func__);
    661 
    662 	KASSERT(mutex_owned(&sc->sc_lock));
    663 
    664 	callout_halt(&xfer->ux_callout, &sc->sc_lock);
    665 
    666 	/* If anyone else beat us, we're done.  */
    667 	KASSERT(xfer->ux_status != USBD_CANCELLED);
    668 	if (xfer->ux_status != USBD_IN_PROGRESS)
    669 		return;
    670 
    671 	mutex_enter(&port->lock);
    672 	while (vxfer->npkts > 0) {
    673 		pkt = TAILQ_FIRST(&vxfer->pkts);
    674 		KASSERT(pkt != NULL);
    675 		vhci_pkt_destroy(sc, pkt);
    676 	}
    677 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    678 	mutex_exit(&port->lock);
    679 
    680 	xfer->ux_status = USBD_CANCELLED;
    681 	usb_transfer_complete(xfer);
    682 	KASSERT(mutex_owned(&sc->sc_lock));
    683 }
    684 
    685 static void
    686 vhci_device_ctrl_close(struct usbd_pipe *pipe)
    687 {
    688 	DPRINTF("%s: called\n", __func__);
    689 }
    690 
    691 static void
    692 vhci_device_ctrl_cleartoggle(struct usbd_pipe *pipe)
    693 {
    694 	DPRINTF("%s: called\n", __func__);
    695 }
    696 
    697 static void
    698 vhci_device_ctrl_done(struct usbd_xfer *xfer)
    699 {
    700 	DPRINTF("%s: called\n", __func__);
    701 }
    702 
    703 /* -------------------------------------------------------------------------- */
    704 
    705 static usbd_status
    706 vhci_root_intr_transfer(struct usbd_xfer *xfer)
    707 {
    708 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    709 	usbd_status err;
    710 
    711 	DPRINTF("%s: called\n", __func__);
    712 
    713 	/* Insert last in queue. */
    714 	mutex_enter(&sc->sc_lock);
    715 	err = usb_insert_transfer(xfer);
    716 	mutex_exit(&sc->sc_lock);
    717 	if (err)
    718 		return err;
    719 
    720 	/* Pipe isn't running, start first */
    721 	return vhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
    722 }
    723 
    724 static usbd_status
    725 vhci_root_intr_start(struct usbd_xfer *xfer)
    726 {
    727 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    728 	const bool polling = sc->sc_bus.ub_usepolling;
    729 
    730 	DPRINTF("%s: called, len=%zu\n", __func__, (size_t)xfer->ux_length);
    731 
    732 	if (sc->sc_dying)
    733 		return USBD_IOERROR;
    734 
    735 	if (!polling)
    736 		mutex_enter(&sc->sc_lock);
    737 	KASSERT(sc->sc_intrxfer == NULL);
    738 	sc->sc_intrxfer = xfer;
    739 	xfer->ux_status = USBD_IN_PROGRESS;
    740 	if (!polling)
    741 		mutex_exit(&sc->sc_lock);
    742 
    743 	return USBD_IN_PROGRESS;
    744 }
    745 
    746 static void
    747 vhci_root_intr_abort(struct usbd_xfer *xfer)
    748 {
    749 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    750 
    751 	DPRINTF("%s: called\n", __func__);
    752 
    753 	KASSERT(mutex_owned(&sc->sc_lock));
    754 	KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
    755 
    756 	/* If xfer has already completed, nothing to do here.  */
    757 	if (sc->sc_intrxfer == NULL)
    758 		return;
    759 
    760 	/*
    761 	 * Otherwise, sc->sc_intrxfer had better be this transfer.
    762 	 * Cancel it.
    763 	 */
    764 	KASSERT(sc->sc_intrxfer == xfer);
    765 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    766 	xfer->ux_status = USBD_CANCELLED;
    767 	usb_transfer_complete(xfer);
    768 }
    769 
    770 static void
    771 vhci_root_intr_close(struct usbd_pipe *pipe)
    772 {
    773 	vhci_softc_t *sc __diagused = pipe->up_dev->ud_bus->ub_hcpriv;
    774 
    775 	DPRINTF("%s: called\n", __func__);
    776 
    777 	KASSERT(mutex_owned(&sc->sc_lock));
    778 
    779 	/*
    780 	 * Caller must guarantee the xfer has completed first, by
    781 	 * closing the pipe only after normal completion or an abort.
    782 	 */
    783 	KASSERT(sc->sc_intrxfer == NULL);
    784 }
    785 
    786 static void
    787 vhci_root_intr_cleartoggle(struct usbd_pipe *pipe)
    788 {
    789 	DPRINTF("%s: called\n", __func__);
    790 }
    791 
    792 static void
    793 vhci_root_intr_done(struct usbd_xfer *xfer)
    794 {
    795 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    796 
    797 	KASSERT(mutex_owned(&sc->sc_lock));
    798 
    799 	/* Claim the xfer so it doesn't get completed again.  */
    800 	KASSERT(sc->sc_intrxfer == xfer);
    801 	KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
    802 	sc->sc_intrxfer = NULL;
    803 }
    804 
    805 /* -------------------------------------------------------------------------- */
    806 
    807 static int
    808 vhci_usb_attach(vhci_fd_t *vfd)
    809 {
    810 	vhci_softc_t *sc = vfd->softc;
    811 	vhci_port_t *port;
    812 	struct usbd_xfer *xfer;
    813 	u_char *p;
    814 	int ret = 0;
    815 
    816 	port = &sc->sc_port[vfd->port];
    817 
    818 	mutex_enter(&sc->sc_lock);
    819 
    820 	mutex_enter(&port->lock);
    821 	port->status = UPS_CURRENT_CONNECT_STATUS | UPS_PORT_ENABLED |
    822 	    UPS_PORT_POWER;
    823 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
    824 	mutex_exit(&port->lock);
    825 
    826 	xfer = sc->sc_intrxfer;
    827 
    828 	if (xfer == NULL) {
    829 		ret = ENOBUFS;
    830 		goto done;
    831 	}
    832 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    833 
    834 	p = xfer->ux_buf;
    835 	memset(p, 0, xfer->ux_length);
    836 	p[0] = __BIT(vfd->port);
    837 	xfer->ux_actlen = xfer->ux_length;
    838 	xfer->ux_status = USBD_NORMAL_COMPLETION;
    839 
    840 	usb_transfer_complete(xfer);
    841 
    842 done:
    843 	mutex_exit(&sc->sc_lock);
    844 	return ret;
    845 }
    846 
    847 static void
    848 vhci_port_flush(vhci_softc_t *sc, vhci_port_t *port)
    849 {
    850 	vhci_packet_list_t *pktlist;
    851 	vhci_packet_t *pkt, *nxt;
    852 	vhci_xfer_list_t vxferlist;
    853 	vhci_xfer_t *vxfer;
    854 	uint8_t addr;
    855 
    856 	KASSERT(mutex_owned(&sc->sc_lock));
    857 	KASSERT(mutex_owned(&port->lock));
    858 
    859 	TAILQ_INIT(&vxferlist);
    860 
    861 	for (addr = 0; addr < VHCI_NADDRS; addr++) {
    862 		/* Drop all the packets in the H->U direction. */
    863 		pktlist = &port->endpoints[addr].host_to_usb;
    864 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
    865 			vxfer = pkt->vxfer;
    866 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
    867 			vhci_pkt_destroy(sc, pkt);
    868 			if (vxfer->npkts == 0)
    869 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
    870 		}
    871 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
    872 
    873 		/* Drop all the packets in the U->H direction. */
    874 		pktlist = &port->endpoints[addr].usb_to_host;
    875 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
    876 			vxfer = pkt->vxfer;
    877 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
    878 			vhci_pkt_destroy(sc, pkt);
    879 			if (vxfer->npkts == 0)
    880 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
    881 		}
    882 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
    883 
    884 		/* Terminate all the xfers collected. */
    885 		while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
    886 			struct usbd_xfer *xfer = &vxfer->xfer;
    887 			TAILQ_REMOVE(&vxferlist, vxfer, freelist);
    888 
    889 			xfer->ux_status = USBD_TIMEOUT;
    890 			usb_transfer_complete(xfer);
    891 		}
    892 	}
    893 }
    894 
    895 static int
    896 vhci_usb_detach(vhci_fd_t *vfd)
    897 {
    898 	vhci_softc_t *sc = vfd->softc;
    899 	vhci_port_t *port;
    900 	struct usbd_xfer *xfer;
    901 	u_char *p;
    902 
    903 	port = &sc->sc_port[vfd->port];
    904 
    905 	mutex_enter(&sc->sc_lock);
    906 
    907 	xfer = sc->sc_intrxfer;
    908 	if (xfer == NULL) {
    909 		mutex_exit(&sc->sc_lock);
    910 		return ENOBUFS;
    911 	}
    912 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    913 
    914 	mutex_enter(&port->lock);
    915 
    916 	port->status = 0;
    917 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
    918 
    919 	p = xfer->ux_buf;
    920 	memset(p, 0, xfer->ux_length);
    921 	p[0] = __BIT(vfd->port);
    922 	xfer->ux_actlen = xfer->ux_length;
    923 	xfer->ux_status = USBD_NORMAL_COMPLETION;
    924 
    925 	usb_transfer_complete(xfer);
    926 	vhci_port_flush(sc, port);
    927 
    928 	mutex_exit(&port->lock);
    929 	mutex_exit(&sc->sc_lock);
    930 	return 0;
    931 }
    932 
    933 static int
    934 vhci_get_info(vhci_fd_t *vfd, struct vhci_ioc_get_info *args)
    935 {
    936 	vhci_softc_t *sc = vfd->softc;
    937 	vhci_port_t *port;
    938 
    939 	port = &sc->sc_port[vfd->port];
    940 
    941 	args->nports = VHCI_NPORTS;
    942 	args->port = vfd->port;
    943 	mutex_enter(&port->lock);
    944 	args->status = port->status;
    945 	mutex_exit(&port->lock);
    946 	args->addr = vfd->addr;
    947 
    948 	return 0;
    949 }
    950 
    951 static int
    952 vhci_set_port(vhci_fd_t *vfd, struct vhci_ioc_set_port *args)
    953 {
    954 	vhci_softc_t *sc = vfd->softc;
    955 
    956 	if (args->port == 0 || args->port >= sc->sc_nports)
    957 		return EINVAL;
    958 
    959 	vfd->port = args->port;
    960 
    961 	return 0;
    962 }
    963 
    964 static int
    965 vhci_set_addr(vhci_fd_t *vfd, struct vhci_ioc_set_addr *args)
    966 {
    967 	if (args->addr >= VHCI_NADDRS)
    968 		return EINVAL;
    969 
    970 	vfd->addr = args->addr;
    971 
    972 	return 0;
    973 }
    974 
    975 /* -------------------------------------------------------------------------- */
    976 
    977 static dev_type_open(vhci_fd_open);
    978 
    979 const struct cdevsw vhci_cdevsw = {
    980 	.d_open = vhci_fd_open,
    981 	.d_close = noclose,
    982 	.d_read = noread,
    983 	.d_write = nowrite,
    984 	.d_ioctl = noioctl,
    985 	.d_stop = nostop,
    986 	.d_tty = notty,
    987 	.d_poll = nopoll,
    988 	.d_mmap = nommap,
    989 	.d_kqfilter = nokqfilter,
    990 	.d_discard = nodiscard,
    991 	.d_flag = D_OTHER | D_MPSAFE
    992 };
    993 
    994 static int vhci_fd_ioctl(file_t *, u_long, void *);
    995 static int vhci_fd_close(file_t *);
    996 static int vhci_fd_read(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    997 static int vhci_fd_write(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    998 
    999 const struct fileops vhci_fileops = {
   1000 	.fo_read = vhci_fd_read,
   1001 	.fo_write = vhci_fd_write,
   1002 	.fo_ioctl = vhci_fd_ioctl,
   1003 	.fo_fcntl = fnullop_fcntl,
   1004 	.fo_poll = fnullop_poll,
   1005 	.fo_stat = fbadop_stat,
   1006 	.fo_close = vhci_fd_close,
   1007 	.fo_kqfilter = fnullop_kqfilter,
   1008 	.fo_restart = fnullop_restart,
   1009 	.fo_mmap = NULL,
   1010 };
   1011 
   1012 static int
   1013 vhci_fd_open(dev_t dev, int flags, int type, struct lwp *l)
   1014 {
   1015 	vhci_fd_t *vfd;
   1016 	struct file *fp;
   1017 	int error, fd;
   1018 
   1019 	if (minor(dev) != 0)
   1020 		return EXDEV;
   1021 	error = fd_allocfile(&fp, &fd);
   1022 	if (error)
   1023 		return error;
   1024 
   1025 	vfd = kmem_alloc(sizeof(*vfd), KM_SLEEP);
   1026 	vfd->port = 1;
   1027 	vfd->addr = 0;
   1028 	vfd->softc = device_lookup_private(&vhci_cd, minor(dev));
   1029 
   1030 	return fd_clone(fp, fd, flags, &vhci_fileops, vfd);
   1031 }
   1032 
   1033 static int
   1034 vhci_fd_close(file_t *fp)
   1035 {
   1036 	vhci_fd_t *vfd = fp->f_data;
   1037 	int ret __diagused;
   1038 
   1039 	KASSERT(vfd != NULL);
   1040 	ret = vhci_usb_detach(vfd);
   1041 	KASSERT(ret == 0);
   1042 
   1043 	kmem_free(vfd, sizeof(*vfd));
   1044 	fp->f_data = NULL;
   1045 
   1046 	return 0;
   1047 }
   1048 
   1049 static int
   1050 vhci_fd_read(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1051     int flags)
   1052 {
   1053 	vhci_fd_t *vfd = fp->f_data;
   1054 	vhci_softc_t *sc = vfd->softc;
   1055 	vhci_packet_list_t *pktlist;
   1056 	vhci_packet_t *pkt, *nxt;
   1057 	vhci_xfer_list_t vxferlist;
   1058 	vhci_xfer_t *vxfer;
   1059 	vhci_port_t *port;
   1060 	int error = 0;
   1061 	uint8_t *buf;
   1062 	size_t size;
   1063 
   1064 	if (uio->uio_resid == 0)
   1065 		return 0;
   1066 	port = &sc->sc_port[vfd->port];
   1067 	pktlist = &port->endpoints[vfd->addr].host_to_usb;
   1068 
   1069 	TAILQ_INIT(&vxferlist);
   1070 
   1071 	mutex_enter(&port->lock);
   1072 
   1073 	if (!(port->status & UPS_PORT_ENABLED)) {
   1074 		error = ENOBUFS;
   1075 		goto out;
   1076 	}
   1077 
   1078 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
   1079 		vxfer = pkt->vxfer;
   1080 		buf = pkt->buf + pkt->cursor;
   1081 
   1082 		KASSERT(pkt->size >= pkt->cursor);
   1083 		size = uimin(uio->uio_resid, pkt->size - pkt->cursor);
   1084 
   1085 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
   1086 
   1087 		error = uiomove(buf, size, uio);
   1088 		if (error) {
   1089 			DPRINTF("%s: error = %d\n", __func__, error);
   1090 			goto out;
   1091 		}
   1092 
   1093 		pkt->cursor += size;
   1094 
   1095 		if (pkt->cursor == pkt->size) {
   1096 			vhci_pkt_destroy(sc, pkt);
   1097 			if (vxfer->npkts == 0) {
   1098 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
   1099 			}
   1100 		}
   1101 		if (uio->uio_resid == 0) {
   1102 			break;
   1103 		}
   1104 	}
   1105 
   1106 out:
   1107 	mutex_exit(&port->lock);
   1108 
   1109 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
   1110 		struct usbd_xfer *xfer = &vxfer->xfer;
   1111 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
   1112 
   1113 		mutex_enter(&sc->sc_lock);
   1114 		xfer->ux_actlen = xfer->ux_length;
   1115 		xfer->ux_status = USBD_NORMAL_COMPLETION;
   1116 		usb_transfer_complete(xfer);
   1117 		mutex_exit(&sc->sc_lock);
   1118 	}
   1119 
   1120 	return error;
   1121 }
   1122 
   1123 static int
   1124 vhci_fd_write(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1125     int flags)
   1126 {
   1127 	vhci_fd_t *vfd = fp->f_data;
   1128 	vhci_softc_t *sc = vfd->softc;
   1129 	vhci_packet_list_t *pktlist;
   1130 	vhci_packet_t *pkt, *nxt;
   1131 	vhci_xfer_list_t vxferlist;
   1132 	vhci_xfer_t *vxfer;
   1133 	vhci_port_t *port;
   1134 	int error = 0;
   1135 	uint8_t *buf;
   1136 	size_t pktsize, size;
   1137 
   1138 	if (uio->uio_resid == 0)
   1139 		return 0;
   1140 	port = &sc->sc_port[vfd->port];
   1141 	pktlist = &port->endpoints[vfd->addr].usb_to_host;
   1142 
   1143 	TAILQ_INIT(&vxferlist);
   1144 
   1145 	mutex_enter(&port->lock);
   1146 
   1147 	if (!(port->status & UPS_PORT_ENABLED)) {
   1148 		error = ENOBUFS;
   1149 		goto out;
   1150 	}
   1151 
   1152 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
   1153 		vxfer = pkt->vxfer;
   1154 		buf = pkt->buf + pkt->cursor;
   1155 
   1156 		pktsize = pkt->size;
   1157 		if (pkt->type.dat)
   1158 			pktsize = ulmin(vxfer->resbuf.size, pktsize);
   1159 
   1160 		KASSERT(pktsize >= pkt->cursor);
   1161 		size = uimin(uio->uio_resid, pktsize - pkt->cursor);
   1162 
   1163 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
   1164 
   1165 		error = uiomove(buf, size, uio);
   1166 		if (error) {
   1167 			DPRINTF("%s: error = %d\n", __func__, error);
   1168 			goto out;
   1169 		}
   1170 
   1171 		pkt->cursor += size;
   1172 
   1173 		if (pkt->cursor == pktsize) {
   1174 			vhci_pkt_destroy(sc, pkt);
   1175 			if (vxfer->npkts == 0) {
   1176 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
   1177 			}
   1178 		}
   1179 		if (uio->uio_resid == 0) {
   1180 			break;
   1181 		}
   1182 	}
   1183 
   1184 out:
   1185 	mutex_exit(&port->lock);
   1186 
   1187 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
   1188 		struct usbd_xfer *xfer = &vxfer->xfer;
   1189 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
   1190 
   1191 		mutex_enter(&sc->sc_lock);
   1192 		xfer->ux_actlen = ulmin(vxfer->resbuf.size, xfer->ux_length);
   1193 		xfer->ux_status = USBD_NORMAL_COMPLETION;
   1194 		usb_transfer_complete(xfer);
   1195 		mutex_exit(&sc->sc_lock);
   1196 	}
   1197 
   1198 	return error;
   1199 }
   1200 
   1201 static int
   1202 vhci_fd_ioctl(file_t *fp, u_long cmd, void *data)
   1203 {
   1204 	vhci_fd_t *vfd = fp->f_data;
   1205 
   1206 	KASSERT(vfd != NULL);
   1207 
   1208 	switch (cmd) {
   1209 	case VHCI_IOC_GET_INFO:
   1210 		return vhci_get_info(vfd, data);
   1211 	case VHCI_IOC_SET_PORT:
   1212 		return vhci_set_port(vfd, data);
   1213 	case VHCI_IOC_SET_ADDR:
   1214 		return vhci_set_addr(vfd, data);
   1215 	case VHCI_IOC_USB_ATTACH:
   1216 		return vhci_usb_attach(vfd);
   1217 	case VHCI_IOC_USB_DETACH:
   1218 		return vhci_usb_detach(vfd);
   1219 	default:
   1220 		return EINVAL;
   1221 	}
   1222 }
   1223 
   1224 /* -------------------------------------------------------------------------- */
   1225 
   1226 static int vhci_match(device_t, cfdata_t, void *);
   1227 static void vhci_attach(device_t, device_t, void *);
   1228 static int vhci_activate(device_t, enum devact);
   1229 
   1230 CFATTACH_DECL_NEW(vhci, sizeof(vhci_softc_t), vhci_match, vhci_attach,
   1231     NULL, vhci_activate);
   1232 
   1233 void
   1234 vhciattach(int nunits)
   1235 {
   1236 	static struct cfdata vhci_cfdata = {
   1237 		.cf_name = "vhci",
   1238 		.cf_atname = "vhci",
   1239 		.cf_unit = 0,
   1240 		.cf_fstate = FSTATE_STAR,
   1241 	};
   1242 	int error;
   1243 
   1244 	error = config_cfattach_attach(vhci_cd.cd_name, &vhci_ca);
   1245 	if (error) {
   1246 		aprint_error("%s: unable to register cfattach\n",
   1247 		    vhci_cd.cd_name);
   1248 		(void)config_cfdriver_detach(&vhci_cd);
   1249 		return;
   1250 	}
   1251 
   1252 	config_attach_pseudo(&vhci_cfdata);
   1253 }
   1254 
   1255 static int
   1256 vhci_activate(device_t self, enum devact act)
   1257 {
   1258 	vhci_softc_t *sc = device_private(self);
   1259 
   1260 	switch (act) {
   1261 	case DVACT_DEACTIVATE:
   1262 		sc->sc_dying = 1;
   1263 		return 0;
   1264 	default:
   1265 		return EOPNOTSUPP;
   1266 	}
   1267 }
   1268 
   1269 static int
   1270 vhci_match(device_t parent, cfdata_t match, void *aux)
   1271 {
   1272 	return 1;
   1273 }
   1274 
   1275 static void
   1276 vhci_attach(device_t parent, device_t self, void *aux)
   1277 {
   1278 	vhci_softc_t *sc = device_private(self);
   1279 	vhci_port_t *port;
   1280 	uint8_t addr;
   1281 	size_t i;
   1282 
   1283 	sc->sc_dev = self;
   1284 	sc->sc_bus.ub_revision = USBREV_2_0;
   1285 	sc->sc_bus.ub_usedma = false;
   1286 	sc->sc_bus.ub_methods = &vhci_bus_methods;
   1287 	sc->sc_bus.ub_pipesize = sizeof(vhci_pipe_t);
   1288 	sc->sc_bus.ub_hcpriv = sc;
   1289 	sc->sc_dying = false;
   1290 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
   1291 
   1292 	sc->sc_nports = VHCI_NPORTS;
   1293 	for (i = 0; i < sc->sc_nports; i++) {
   1294 		port = &sc->sc_port[i];
   1295 		mutex_init(&port->lock, MUTEX_DEFAULT, IPL_SOFTUSB);
   1296 		for (addr = 0; addr < VHCI_NADDRS; addr++) {
   1297 			TAILQ_INIT(&port->endpoints[addr].usb_to_host);
   1298 			TAILQ_INIT(&port->endpoints[addr].host_to_usb);
   1299 		}
   1300 	}
   1301 
   1302 	sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint);
   1303 }
   1304