Home | History | Annotate | Line # | Download | only in usb
vhci.c revision 1.17
      1 /*	$NetBSD: vhci.c,v 1.17 2020/05/15 12:34:52 maxv Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2019-2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: vhci.c,v 1.17 2020/05/15 12:34:52 maxv Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_usb.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 
     41 #include <sys/bus.h>
     42 #include <sys/cpu.h>
     43 #include <sys/conf.h>
     44 #include <sys/device.h>
     45 #include <sys/kernel.h>
     46 #include <sys/kmem.h>
     47 #include <sys/mutex.h>
     48 #include <sys/proc.h>
     49 #include <sys/queue.h>
     50 #include <sys/systm.h>
     51 #include <sys/mman.h>
     52 #include <sys/file.h>
     53 #include <sys/filedesc.h>
     54 #include <sys/kcov.h>
     55 
     56 #include <machine/endian.h>
     57 
     58 #include "ioconf.h"
     59 
     60 #include <dev/usb/usb.h>
     61 #include <dev/usb/usbdi.h>
     62 #include <dev/usb/usbdivar.h>
     63 
     64 #include <dev/usb/usbroothub.h>
     65 #include <dev/usb/vhci.h>
     66 
     67 #ifdef VHCI_DEBUG
     68 #define DPRINTF(fmt, ...)	printf(fmt, __VA_ARGS__)
     69 #else
     70 #define DPRINTF(fmt, ...)	__nothing
     71 #endif
     72 
     73 static usbd_status vhci_open(struct usbd_pipe *);
     74 static void vhci_softintr(void *);
     75 
     76 static struct usbd_xfer *vhci_allocx(struct usbd_bus *, unsigned int);
     77 static void vhci_freex(struct usbd_bus *, struct usbd_xfer *);
     78 static void vhci_get_lock(struct usbd_bus *, kmutex_t **);
     79 static int vhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
     80     void *, int);
     81 
     82 static const struct usbd_bus_methods vhci_bus_methods = {
     83 	.ubm_open =	vhci_open,
     84 	.ubm_softint =	vhci_softintr,
     85 	.ubm_dopoll =	NULL,
     86 	.ubm_allocx =	vhci_allocx,
     87 	.ubm_freex =	vhci_freex,
     88 	.ubm_getlock =	vhci_get_lock,
     89 	.ubm_rhctrl =	vhci_roothub_ctrl,
     90 };
     91 
     92 static usbd_status vhci_device_ctrl_transfer(struct usbd_xfer *);
     93 static usbd_status vhci_device_ctrl_start(struct usbd_xfer *);
     94 static void vhci_device_ctrl_abort(struct usbd_xfer *);
     95 static void vhci_device_ctrl_close(struct usbd_pipe *);
     96 static void vhci_device_ctrl_cleartoggle(struct usbd_pipe *);
     97 static void vhci_device_ctrl_done(struct usbd_xfer *);
     98 
     99 static const struct usbd_pipe_methods vhci_device_ctrl_methods = {
    100 	.upm_init =		NULL,
    101 	.upm_fini =		NULL,
    102 	.upm_transfer =		vhci_device_ctrl_transfer,
    103 	.upm_start =		vhci_device_ctrl_start,
    104 	.upm_abort =		vhci_device_ctrl_abort,
    105 	.upm_close =		vhci_device_ctrl_close,
    106 	.upm_cleartoggle =	vhci_device_ctrl_cleartoggle,
    107 	.upm_done =		vhci_device_ctrl_done,
    108 };
    109 
    110 static usbd_status vhci_root_intr_transfer(struct usbd_xfer *);
    111 static usbd_status vhci_root_intr_start(struct usbd_xfer *);
    112 static void vhci_root_intr_abort(struct usbd_xfer *);
    113 static void vhci_root_intr_close(struct usbd_pipe *);
    114 static void vhci_root_intr_cleartoggle(struct usbd_pipe *);
    115 static void vhci_root_intr_done(struct usbd_xfer *);
    116 
    117 static const struct usbd_pipe_methods vhci_root_intr_methods = {
    118 	.upm_init =		NULL,
    119 	.upm_fini =		NULL,
    120 	.upm_transfer =		vhci_root_intr_transfer,
    121 	.upm_start =		vhci_root_intr_start,
    122 	.upm_abort =		vhci_root_intr_abort,
    123 	.upm_close =		vhci_root_intr_close,
    124 	.upm_cleartoggle =	vhci_root_intr_cleartoggle,
    125 	.upm_done =		vhci_root_intr_done,
    126 };
    127 
    128 /*
    129  * There are three structures to understand: vxfers, packets, and ports.
    130  *
    131  * Each xfer from the point of view of the USB stack is a vxfer from the point
    132  * of view of vHCI.
    133  *
    134  * A vxfer has a linked list containing a maximum of two packets: a request
    135  * packet and possibly a data packet. Packets basically contain data exchanged
    136  * between the Host and the virtual USB device. A packet is linked to both a
    137  * vxfer and a port.
    138  *
    139  * A port is an abstraction of an actual USB port. Each virtual USB device gets
    140  * connected to a port. A port has two lists:
    141  *  - The Usb-To-Host list, containing packets to be fetched from the USB
    142  *    device and provided to the host.
    143  *  - The Host-To-Usb list, containing packets to be sent from the Host to the
    144  *    USB device.
    145  * Request packets are always in the H->U direction. Data packets however can
    146  * be in both the H->U and U->H directions.
    147  *
    148  * With read() and write() operations on /dev/vhci, userland respectively
    149  * "fetches" and "sends" packets from or to the virtual USB device, which
    150  * respectively means reading/inserting packets in the H->U and U->H lists on
    151  * the port where the virtual USB device is connected.
    152  *
    153  *             +------------------------------------------------+
    154  *             |                 USB Stack                      |
    155  *             +---------------------^--------------------------+
    156  *                                   |
    157  *             +---------------------V--------------------------+
    158  *             | +----------------+    +-------------+          |
    159  *             | | Request Packet |    | Data Packet |     Xfer |
    160  *             | +-------|--------+    +----|---^----+          |
    161  *             +---------|------------------|---|---------------+
    162  *                       |                  |   |
    163  *                       |   +--------------+   |
    164  *                       |   |                  |
    165  *             +---------|---|------------------|---------------+
    166  *             |     +---V---V---+    +---------|-+             |
    167  *             |     | H->U List |    | U->H List |   vHCI Port |
    168  *             |     +-----|-----+    +-----^-----+             |
    169  *             +-----------|----------------|-------------------+
    170  *                         |                |
    171  *             +-----------|----------------|-------------------+
    172  *             |     +-----V-----+    +-----|-----+             |
    173  *             |     |   read()  |    |  write()  |     vHCI FD |
    174  *             |     +-----------+    +-----------+             |
    175  *             +------------------------------------------------+
    176  */
    177 
    178 struct vhci_xfer;
    179 
    180 typedef struct vhci_packet {
    181 	/* General. */
    182 	TAILQ_ENTRY(vhci_packet) portlist;
    183 	TAILQ_ENTRY(vhci_packet) xferlist;
    184 	struct vhci_xfer *vxfer;
    185 	bool utoh;
    186 	uint8_t addr;
    187 
    188 	/* Type. */
    189 	struct {
    190 		bool req:1;
    191 		bool res:1;
    192 		bool dat:1;
    193 	} type;
    194 
    195 	/* Exposed for FD operations. */
    196 	uint8_t *buf;
    197 	size_t size;
    198 	size_t cursor;
    199 } vhci_packet_t;
    200 
    201 typedef TAILQ_HEAD(, vhci_packet) vhci_packet_list_t;
    202 
    203 #define VHCI_NADDRS	16	/* maximum supported by USB */
    204 
    205 typedef struct {
    206 	kmutex_t lock;
    207 	int status;
    208 	int change;
    209 	struct {
    210 		vhci_packet_list_t usb_to_host;
    211 		vhci_packet_list_t host_to_usb;
    212 	} endpoints[VHCI_NADDRS];
    213 } vhci_port_t;
    214 
    215 typedef struct {
    216 	struct usbd_pipe pipe;
    217 } vhci_pipe_t;
    218 
    219 typedef struct vhci_xfer {
    220 	/* General. */
    221 	struct usbd_xfer xfer;
    222 
    223 	/* Port where the xfer occurs. */
    224 	vhci_port_t *port;
    225 
    226 	/* Packets in the xfer. */
    227 	size_t npkts;
    228 	vhci_packet_list_t pkts;
    229 
    230 	/* Header storage. */
    231 	vhci_request_t reqbuf;
    232 	vhci_response_t resbuf;
    233 
    234 	/* Used for G/C. */
    235 	TAILQ_ENTRY(vhci_xfer) freelist;
    236 } vhci_xfer_t;
    237 
    238 typedef TAILQ_HEAD(, vhci_xfer) vhci_xfer_list_t;
    239 
    240 #define VHCI_INDEX2PORT(idx)	(idx)
    241 #define VHCI_NPORTS		4
    242 
    243 typedef struct {
    244 	device_t sc_dev;
    245 
    246 	struct usbd_bus sc_bus;
    247 	bool sc_dying;
    248 	kmutex_t sc_lock;
    249 
    250 	/*
    251 	 * Intr Root. Used to attach the devices.
    252 	 */
    253 	struct usbd_xfer *sc_intrxfer;
    254 
    255 	/*
    256 	 * The ports. Zero is for the roothub, one and beyond for the USB
    257 	 * devices.
    258 	 */
    259 	size_t sc_nports;
    260 	vhci_port_t sc_port[VHCI_NPORTS];
    261 
    262 	device_t sc_child; /* /dev/usb# device */
    263 } vhci_softc_t;
    264 
    265 typedef struct {
    266 	u_int port;
    267 	uint8_t addr;
    268 	vhci_softc_t *softc;
    269 } vhci_fd_t;
    270 
    271 extern struct cfdriver vhci_cd;
    272 
    273 /* -------------------------------------------------------------------------- */
    274 
    275 static void
    276 vhci_pkt_ctrl_create(vhci_port_t *port, struct usbd_xfer *xfer, bool utoh,
    277     uint8_t addr)
    278 {
    279 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    280 	vhci_packet_list_t *reqlist, *reslist, *datlist = NULL;
    281 	vhci_packet_t *req, *res = NULL, *dat = NULL;
    282 	size_t npkts = 0;
    283 
    284 	/* Request packet. */
    285 	reqlist = &port->endpoints[addr].host_to_usb;
    286 	req = kmem_zalloc(sizeof(*req), KM_SLEEP);
    287 	req->vxfer = vxfer;
    288 	req->utoh = false;
    289 	req->addr = addr;
    290 	req->type.req = true;
    291 	req->buf = (uint8_t *)&vxfer->reqbuf;
    292 	req->size = sizeof(vxfer->reqbuf);
    293 	req->cursor = 0;
    294 	npkts++;
    295 
    296 	/* Init the request buffer. */
    297 	memset(&vxfer->reqbuf, 0, sizeof(vxfer->reqbuf));
    298 	vxfer->reqbuf.type = VHCI_REQ_CTRL;
    299 	memcpy(&vxfer->reqbuf.u.ctrl, &xfer->ux_request,
    300 	    sizeof(xfer->ux_request));
    301 
    302 	/* Response packet. */
    303 	if (utoh && (xfer->ux_length > 0)) {
    304 		reslist = &port->endpoints[addr].usb_to_host;
    305 		res = kmem_zalloc(sizeof(*res), KM_SLEEP);
    306 		res->vxfer = vxfer;
    307 		res->utoh = true;
    308 		res->addr = addr;
    309 		res->type.res = true;
    310 		res->buf = (uint8_t *)&vxfer->resbuf;
    311 		res->size = sizeof(vxfer->resbuf);
    312 		res->cursor = 0;
    313 		npkts++;
    314 	}
    315 
    316 	/* Data packet. */
    317 	if (xfer->ux_length > 0) {
    318 		if (utoh) {
    319 			datlist = &port->endpoints[addr].usb_to_host;
    320 		} else {
    321 			datlist = &port->endpoints[addr].host_to_usb;
    322 		}
    323 		dat = kmem_zalloc(sizeof(*dat), KM_SLEEP);
    324 		dat->vxfer = vxfer;
    325 		dat->utoh = utoh;
    326 		dat->addr = addr;
    327 		dat->type.dat = true;
    328 		dat->buf = xfer->ux_buf;
    329 		dat->size = xfer->ux_length;
    330 		dat->cursor = 0;
    331 		npkts++;
    332 	}
    333 
    334 	/* Insert in the xfer. */
    335 	vxfer->port = port;
    336 	vxfer->npkts = npkts;
    337 	TAILQ_INIT(&vxfer->pkts);
    338 	TAILQ_INSERT_TAIL(&vxfer->pkts, req, xferlist);
    339 	if (res != NULL)
    340 		TAILQ_INSERT_TAIL(&vxfer->pkts, res, xferlist);
    341 	if (dat != NULL)
    342 		TAILQ_INSERT_TAIL(&vxfer->pkts, dat, xferlist);
    343 
    344 	/* Insert in the port. */
    345 	KASSERT(mutex_owned(&port->lock));
    346 	TAILQ_INSERT_TAIL(reqlist, req, portlist);
    347 	if (res != NULL)
    348 		TAILQ_INSERT_TAIL(reslist, res, portlist);
    349 	if (dat != NULL)
    350 		TAILQ_INSERT_TAIL(datlist, dat, portlist);
    351 }
    352 
    353 static void
    354 vhci_pkt_destroy(vhci_softc_t *sc, vhci_packet_t *pkt)
    355 {
    356 	vhci_xfer_t *vxfer = pkt->vxfer;
    357 	vhci_port_t *port = vxfer->port;
    358 	vhci_packet_list_t *pktlist;
    359 
    360 	KASSERT(mutex_owned(&port->lock));
    361 
    362 	/* Remove from the port. */
    363 	if (pkt->utoh) {
    364 		pktlist = &port->endpoints[pkt->addr].usb_to_host;
    365 	} else {
    366 		pktlist = &port->endpoints[pkt->addr].host_to_usb;
    367 	}
    368 	TAILQ_REMOVE(pktlist, pkt, portlist);
    369 
    370 	/* Remove from the xfer. */
    371 	TAILQ_REMOVE(&vxfer->pkts, pkt, xferlist);
    372 	kmem_free(pkt, sizeof(*pkt));
    373 
    374 	/* Unref. */
    375 	KASSERT(vxfer->npkts > 0);
    376 	vxfer->npkts--;
    377 	if (vxfer->npkts > 0)
    378 		return;
    379 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    380 }
    381 
    382 /* -------------------------------------------------------------------------- */
    383 
    384 static usbd_status
    385 vhci_open(struct usbd_pipe *pipe)
    386 {
    387 	struct usbd_device *dev = pipe->up_dev;
    388 	struct usbd_bus *bus = dev->ud_bus;
    389 	usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
    390 	vhci_softc_t *sc = bus->ub_hcpriv;
    391 	uint8_t addr = dev->ud_addr;
    392 
    393 	if (sc->sc_dying)
    394 		return USBD_IOERROR;
    395 
    396 	DPRINTF("%s: called, type=%d\n", __func__,
    397 	    UE_GET_XFERTYPE(ed->bmAttributes));
    398 
    399 	if (addr == bus->ub_rhaddr) {
    400 		switch (ed->bEndpointAddress) {
    401 		case USB_CONTROL_ENDPOINT:
    402 			DPRINTF("%s: roothub_ctrl\n", __func__);
    403 			pipe->up_methods = &roothub_ctrl_methods;
    404 			break;
    405 		case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
    406 			DPRINTF("%s: root_intr\n", __func__);
    407 			pipe->up_methods = &vhci_root_intr_methods;
    408 			break;
    409 		default:
    410 			DPRINTF("%s: inval\n", __func__);
    411 			return USBD_INVAL;
    412 		}
    413 	} else {
    414 		switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
    415 		case UE_CONTROL:
    416 			pipe->up_methods = &vhci_device_ctrl_methods;
    417 			break;
    418 		case UE_INTERRUPT:
    419 		case UE_BULK:
    420 		default:
    421 			goto bad;
    422 		}
    423 	}
    424 
    425 	return USBD_NORMAL_COMPLETION;
    426 
    427 bad:
    428 	return USBD_NOMEM;
    429 }
    430 
    431 static void
    432 vhci_softintr(void *v)
    433 {
    434 	DPRINTF("%s: called\n", __func__);
    435 }
    436 
    437 static struct usbd_xfer *
    438 vhci_allocx(struct usbd_bus *bus, unsigned int nframes)
    439 {
    440 	vhci_xfer_t *vxfer;
    441 
    442 	vxfer = kmem_zalloc(sizeof(*vxfer), KM_SLEEP);
    443 #ifdef DIAGNOSTIC
    444 	vxfer->xfer.ux_state = XFER_BUSY;
    445 #endif
    446 	return (struct usbd_xfer *)vxfer;
    447 }
    448 
    449 static void
    450 vhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
    451 {
    452 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    453 
    454 	KASSERT(vxfer->npkts == 0);
    455 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    456 
    457 #ifdef DIAGNOSTIC
    458 	vxfer->xfer.ux_state = XFER_FREE;
    459 #endif
    460 	kmem_free(vxfer, sizeof(*vxfer));
    461 }
    462 
    463 static void
    464 vhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
    465 {
    466 	vhci_softc_t *sc = bus->ub_hcpriv;
    467 
    468 	*lock = &sc->sc_lock;
    469 }
    470 
    471 static int
    472 vhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
    473     void *buf, int buflen)
    474 {
    475 	vhci_softc_t *sc = bus->ub_hcpriv;
    476 	vhci_port_t *port;
    477 	usb_hub_descriptor_t hubd;
    478 	uint16_t len, value, index;
    479 	int totlen = 0;
    480 
    481 	len = UGETW(req->wLength);
    482 	value = UGETW(req->wValue);
    483 	index = UGETW(req->wIndex);
    484 
    485 #define C(x,y) ((x) | ((y) << 8))
    486 	switch (C(req->bRequest, req->bmRequestType)) {
    487 	case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
    488 		switch (value) {
    489 		case C(0, UDESC_DEVICE): {
    490 			usb_device_descriptor_t devd;
    491 
    492 			totlen = uimin(buflen, sizeof(devd));
    493 			memcpy(&devd, buf, totlen);
    494 			USETW(devd.idVendor, 0);
    495 			USETW(devd.idProduct, 0);
    496 			memcpy(buf, &devd, totlen);
    497 			break;
    498 		}
    499 #define sd ((usb_string_descriptor_t *)buf)
    500 		case C(1, UDESC_STRING):
    501 			/* Vendor */
    502 			totlen = usb_makestrdesc(sd, len, "NetBSD");
    503 			break;
    504 		case C(2, UDESC_STRING):
    505 			/* Product */
    506 			totlen = usb_makestrdesc(sd, len, "VHCI root hub");
    507 			break;
    508 #undef sd
    509 		default:
    510 			/* default from usbroothub */
    511 			return buflen;
    512 		}
    513 		break;
    514 
    515 	case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
    516 		switch (value) {
    517 		case UHF_PORT_RESET:
    518 			if (index < 1 || index >= sc->sc_nports) {
    519 				return -1;
    520 			}
    521 			port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    522 			port->status |= UPS_C_PORT_RESET;
    523 			break;
    524 		case UHF_PORT_POWER:
    525 			break;
    526 		default:
    527 			return -1;
    528 		}
    529 		break;
    530 
    531 	/* Hub requests. */
    532 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
    533 		break;
    534 	case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
    535 		if (index < 1 || index >= sc->sc_nports) {
    536 			return -1;
    537 		}
    538 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    539 		switch (value) {
    540 		case UHF_PORT_ENABLE:
    541 			port->status &= ~UPS_PORT_ENABLED;
    542 			break;
    543 		case UHF_C_PORT_ENABLE:
    544 			port->change |= UPS_C_PORT_ENABLED;
    545 			break;
    546 		default:
    547 			return -1;
    548 		}
    549 		break;
    550 
    551 	case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
    552 		totlen = uimin(buflen, sizeof(hubd));
    553 		memcpy(&hubd, buf, totlen);
    554 		hubd.bNbrPorts = sc->sc_nports - 1;
    555 		hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE;
    556 		totlen = uimin(totlen, hubd.bDescLength);
    557 		memcpy(buf, &hubd, totlen);
    558 		break;
    559 
    560 	case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
    561 		/* XXX The other HCs do this */
    562 		memset(buf, 0, len);
    563 		totlen = len;
    564 		break;
    565 
    566 	case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
    567 		usb_port_status_t ps;
    568 
    569 		if (index < 1 || index >= sc->sc_nports) {
    570 			return -1;
    571 		}
    572 		port = &sc->sc_port[VHCI_INDEX2PORT(index)];
    573 		USETW(ps.wPortStatus, port->status);
    574 		USETW(ps.wPortChange, port->change);
    575 		totlen = uimin(len, sizeof(ps));
    576 		memcpy(buf, &ps, totlen);
    577 		break;
    578 	}
    579 	default:
    580 		/* default from usbroothub */
    581 		return buflen;
    582 	}
    583 
    584 	return totlen;
    585 }
    586 
    587 /* -------------------------------------------------------------------------- */
    588 
    589 static usbd_status
    590 vhci_device_ctrl_transfer(struct usbd_xfer *xfer)
    591 {
    592 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    593 	usbd_status err;
    594 
    595 	DPRINTF("%s: called\n", __func__);
    596 
    597 	/* Insert last in queue. */
    598 	mutex_enter(&sc->sc_lock);
    599 	err = usb_insert_transfer(xfer);
    600 	mutex_exit(&sc->sc_lock);
    601 	if (err)
    602 		return err;
    603 
    604 	/* Pipe isn't running, start first */
    605 	return vhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
    606 }
    607 
    608 static usbd_status
    609 vhci_device_ctrl_start(struct usbd_xfer *xfer)
    610 {
    611 	usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
    612 	usb_device_request_t *req = &xfer->ux_request;
    613 	struct usbd_device *dev = xfer->ux_pipe->up_dev;
    614 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    615 	vhci_port_t *port;
    616 	bool polling = sc->sc_bus.ub_usepolling;
    617 	bool isread = (req->bmRequestType & UT_READ) != 0;
    618 	uint8_t addr = UE_GET_ADDR(ed->bEndpointAddress);
    619 	int portno, ret;
    620 
    621 	KASSERT(addr == 0);
    622 	KASSERT(xfer->ux_rqflags & URQ_REQUEST);
    623 	KASSERT(dev->ud_myhsport != NULL);
    624 	portno = dev->ud_myhsport->up_portno;
    625 
    626 	DPRINTF("%s: type=0x%02x, len=%d, isread=%d, portno=%d\n",
    627 	    __func__, req->bmRequestType, UGETW(req->wLength), isread, portno);
    628 
    629 	if (sc->sc_dying)
    630 		return USBD_IOERROR;
    631 
    632 	port = &sc->sc_port[portno];
    633 
    634 	if (!polling)
    635 		mutex_enter(&sc->sc_lock);
    636 
    637 	mutex_enter(&port->lock);
    638 	if (port->status & UPS_PORT_ENABLED) {
    639 		xfer->ux_status = USBD_IN_PROGRESS;
    640 		vhci_pkt_ctrl_create(port, xfer, isread, addr);
    641 		ret = USBD_IN_PROGRESS;
    642 	} else {
    643 		ret = USBD_IOERROR;
    644 	}
    645 	mutex_exit(&port->lock);
    646 
    647 	if (!polling)
    648 		mutex_exit(&sc->sc_lock);
    649 
    650 	return ret;
    651 }
    652 
    653 static void
    654 vhci_device_ctrl_abort(struct usbd_xfer *xfer)
    655 {
    656 	vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
    657 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    658 	vhci_port_t *port = vxfer->port;
    659 	vhci_packet_t *pkt;
    660 
    661 	DPRINTF("%s: called\n", __func__);
    662 
    663 	KASSERT(mutex_owned(&sc->sc_lock));
    664 
    665 	callout_halt(&xfer->ux_callout, &sc->sc_lock);
    666 
    667 	/* If anyone else beat us, we're done.  */
    668 	KASSERT(xfer->ux_status != USBD_CANCELLED);
    669 	if (xfer->ux_status != USBD_IN_PROGRESS)
    670 		return;
    671 
    672 	mutex_enter(&port->lock);
    673 	while (vxfer->npkts > 0) {
    674 		pkt = TAILQ_FIRST(&vxfer->pkts);
    675 		KASSERT(pkt != NULL);
    676 		vhci_pkt_destroy(sc, pkt);
    677 	}
    678 	KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
    679 	mutex_exit(&port->lock);
    680 
    681 	xfer->ux_status = USBD_CANCELLED;
    682 	usb_transfer_complete(xfer);
    683 	KASSERT(mutex_owned(&sc->sc_lock));
    684 }
    685 
    686 static void
    687 vhci_device_ctrl_close(struct usbd_pipe *pipe)
    688 {
    689 	DPRINTF("%s: called\n", __func__);
    690 }
    691 
    692 static void
    693 vhci_device_ctrl_cleartoggle(struct usbd_pipe *pipe)
    694 {
    695 	DPRINTF("%s: called\n", __func__);
    696 }
    697 
    698 static void
    699 vhci_device_ctrl_done(struct usbd_xfer *xfer)
    700 {
    701 	DPRINTF("%s: called\n", __func__);
    702 }
    703 
    704 /* -------------------------------------------------------------------------- */
    705 
    706 static usbd_status
    707 vhci_root_intr_transfer(struct usbd_xfer *xfer)
    708 {
    709 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    710 	usbd_status err;
    711 
    712 	DPRINTF("%s: called\n", __func__);
    713 
    714 	/* Insert last in queue. */
    715 	mutex_enter(&sc->sc_lock);
    716 	err = usb_insert_transfer(xfer);
    717 	mutex_exit(&sc->sc_lock);
    718 	if (err)
    719 		return err;
    720 
    721 	/* Pipe isn't running, start first */
    722 	return vhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
    723 }
    724 
    725 static usbd_status
    726 vhci_root_intr_start(struct usbd_xfer *xfer)
    727 {
    728 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    729 	const bool polling = sc->sc_bus.ub_usepolling;
    730 
    731 	DPRINTF("%s: called, len=%zu\n", __func__, (size_t)xfer->ux_length);
    732 
    733 	if (sc->sc_dying)
    734 		return USBD_IOERROR;
    735 
    736 	if (!polling)
    737 		mutex_enter(&sc->sc_lock);
    738 	KASSERT(sc->sc_intrxfer == NULL);
    739 	sc->sc_intrxfer = xfer;
    740 	xfer->ux_status = USBD_IN_PROGRESS;
    741 	if (!polling)
    742 		mutex_exit(&sc->sc_lock);
    743 
    744 	return USBD_IN_PROGRESS;
    745 }
    746 
    747 static void
    748 vhci_root_intr_abort(struct usbd_xfer *xfer)
    749 {
    750 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    751 
    752 	DPRINTF("%s: called\n", __func__);
    753 
    754 	KASSERT(mutex_owned(&sc->sc_lock));
    755 	KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
    756 
    757 	/* If xfer has already completed, nothing to do here.  */
    758 	if (sc->sc_intrxfer == NULL)
    759 		return;
    760 
    761 	/*
    762 	 * Otherwise, sc->sc_intrxfer had better be this transfer.
    763 	 * Cancel it.
    764 	 */
    765 	KASSERT(sc->sc_intrxfer == xfer);
    766 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    767 	xfer->ux_status = USBD_CANCELLED;
    768 	usb_transfer_complete(xfer);
    769 }
    770 
    771 static void
    772 vhci_root_intr_close(struct usbd_pipe *pipe)
    773 {
    774 	vhci_softc_t *sc __diagused = pipe->up_dev->ud_bus->ub_hcpriv;
    775 
    776 	DPRINTF("%s: called\n", __func__);
    777 
    778 	KASSERT(mutex_owned(&sc->sc_lock));
    779 
    780 	/*
    781 	 * Caller must guarantee the xfer has completed first, by
    782 	 * closing the pipe only after normal completion or an abort.
    783 	 */
    784 	KASSERT(sc->sc_intrxfer == NULL);
    785 }
    786 
    787 static void
    788 vhci_root_intr_cleartoggle(struct usbd_pipe *pipe)
    789 {
    790 	DPRINTF("%s: called\n", __func__);
    791 }
    792 
    793 static void
    794 vhci_root_intr_done(struct usbd_xfer *xfer)
    795 {
    796 	vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
    797 
    798 	KASSERT(mutex_owned(&sc->sc_lock));
    799 
    800 	/* Claim the xfer so it doesn't get completed again.  */
    801 	KASSERT(sc->sc_intrxfer == xfer);
    802 	KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
    803 	sc->sc_intrxfer = NULL;
    804 }
    805 
    806 /* -------------------------------------------------------------------------- */
    807 
    808 static int
    809 vhci_usb_attach(vhci_fd_t *vfd)
    810 {
    811 	vhci_softc_t *sc = vfd->softc;
    812 	vhci_port_t *port;
    813 	struct usbd_xfer *xfer;
    814 	u_char *p;
    815 	int ret = 0;
    816 
    817 	port = &sc->sc_port[vfd->port];
    818 
    819 	mutex_enter(&sc->sc_lock);
    820 
    821 	mutex_enter(&port->lock);
    822 	port->status = UPS_CURRENT_CONNECT_STATUS | UPS_PORT_ENABLED |
    823 	    UPS_PORT_POWER;
    824 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
    825 	mutex_exit(&port->lock);
    826 
    827 	xfer = sc->sc_intrxfer;
    828 
    829 	if (xfer == NULL) {
    830 		ret = ENOBUFS;
    831 		goto done;
    832 	}
    833 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    834 
    835 	p = xfer->ux_buf;
    836 	memset(p, 0, xfer->ux_length);
    837 	p[0] = __BIT(vfd->port);
    838 	xfer->ux_actlen = xfer->ux_length;
    839 	xfer->ux_status = USBD_NORMAL_COMPLETION;
    840 
    841 	usb_transfer_complete(xfer);
    842 
    843 done:
    844 	mutex_exit(&sc->sc_lock);
    845 	return ret;
    846 }
    847 
    848 static void
    849 vhci_port_flush(vhci_softc_t *sc, vhci_port_t *port)
    850 {
    851 	vhci_packet_list_t *pktlist;
    852 	vhci_packet_t *pkt, *nxt;
    853 	vhci_xfer_list_t vxferlist;
    854 	vhci_xfer_t *vxfer;
    855 	uint8_t addr;
    856 
    857 	KASSERT(mutex_owned(&sc->sc_lock));
    858 	KASSERT(mutex_owned(&port->lock));
    859 
    860 	TAILQ_INIT(&vxferlist);
    861 
    862 	for (addr = 0; addr < VHCI_NADDRS; addr++) {
    863 		/* Drop all the packets in the H->U direction. */
    864 		pktlist = &port->endpoints[addr].host_to_usb;
    865 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
    866 			vxfer = pkt->vxfer;
    867 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
    868 			vhci_pkt_destroy(sc, pkt);
    869 			if (vxfer->npkts == 0)
    870 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
    871 		}
    872 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
    873 
    874 		/* Drop all the packets in the U->H direction. */
    875 		pktlist = &port->endpoints[addr].usb_to_host;
    876 		TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
    877 			vxfer = pkt->vxfer;
    878 			KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
    879 			vhci_pkt_destroy(sc, pkt);
    880 			if (vxfer->npkts == 0)
    881 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
    882 		}
    883 		KASSERT(TAILQ_FIRST(pktlist) == NULL);
    884 
    885 		/* Terminate all the xfers collected. */
    886 		while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
    887 			struct usbd_xfer *xfer = &vxfer->xfer;
    888 			TAILQ_REMOVE(&vxferlist, vxfer, freelist);
    889 
    890 			xfer->ux_status = USBD_TIMEOUT;
    891 			usb_transfer_complete(xfer);
    892 		}
    893 	}
    894 }
    895 
    896 static int
    897 vhci_usb_detach(vhci_fd_t *vfd)
    898 {
    899 	vhci_softc_t *sc = vfd->softc;
    900 	vhci_port_t *port;
    901 	struct usbd_xfer *xfer;
    902 	u_char *p;
    903 
    904 	port = &sc->sc_port[vfd->port];
    905 
    906 	mutex_enter(&sc->sc_lock);
    907 
    908 	xfer = sc->sc_intrxfer;
    909 	if (xfer == NULL) {
    910 		mutex_exit(&sc->sc_lock);
    911 		return ENOBUFS;
    912 	}
    913 	KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
    914 
    915 	mutex_enter(&port->lock);
    916 
    917 	port->status = 0;
    918 	port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
    919 
    920 	p = xfer->ux_buf;
    921 	memset(p, 0, xfer->ux_length);
    922 	p[0] = __BIT(vfd->port);
    923 	xfer->ux_actlen = xfer->ux_length;
    924 	xfer->ux_status = USBD_NORMAL_COMPLETION;
    925 
    926 	usb_transfer_complete(xfer);
    927 	vhci_port_flush(sc, port);
    928 
    929 	mutex_exit(&port->lock);
    930 	mutex_exit(&sc->sc_lock);
    931 	return 0;
    932 }
    933 
    934 static int
    935 vhci_get_info(vhci_fd_t *vfd, struct vhci_ioc_get_info *args)
    936 {
    937 	vhci_softc_t *sc = vfd->softc;
    938 	vhci_port_t *port;
    939 
    940 	port = &sc->sc_port[vfd->port];
    941 
    942 	args->nports = VHCI_NPORTS;
    943 	args->port = vfd->port;
    944 	mutex_enter(&port->lock);
    945 	args->status = port->status;
    946 	mutex_exit(&port->lock);
    947 	args->addr = vfd->addr;
    948 
    949 	return 0;
    950 }
    951 
    952 static int
    953 vhci_set_port(vhci_fd_t *vfd, struct vhci_ioc_set_port *args)
    954 {
    955 	vhci_softc_t *sc = vfd->softc;
    956 
    957 	if (args->port == 0 || args->port >= sc->sc_nports)
    958 		return EINVAL;
    959 
    960 	vfd->port = args->port;
    961 
    962 	return 0;
    963 }
    964 
    965 static int
    966 vhci_set_addr(vhci_fd_t *vfd, struct vhci_ioc_set_addr *args)
    967 {
    968 	if (args->addr >= VHCI_NADDRS)
    969 		return EINVAL;
    970 
    971 	vfd->addr = args->addr;
    972 
    973 	return 0;
    974 }
    975 
    976 /* -------------------------------------------------------------------------- */
    977 
    978 static dev_type_open(vhci_fd_open);
    979 
    980 const struct cdevsw vhci_cdevsw = {
    981 	.d_open = vhci_fd_open,
    982 	.d_close = noclose,
    983 	.d_read = noread,
    984 	.d_write = nowrite,
    985 	.d_ioctl = noioctl,
    986 	.d_stop = nostop,
    987 	.d_tty = notty,
    988 	.d_poll = nopoll,
    989 	.d_mmap = nommap,
    990 	.d_kqfilter = nokqfilter,
    991 	.d_discard = nodiscard,
    992 	.d_flag = D_OTHER | D_MPSAFE
    993 };
    994 
    995 static int vhci_fd_ioctl(file_t *, u_long, void *);
    996 static int vhci_fd_close(file_t *);
    997 static int vhci_fd_read(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    998 static int vhci_fd_write(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    999 
   1000 const struct fileops vhci_fileops = {
   1001 	.fo_read = vhci_fd_read,
   1002 	.fo_write = vhci_fd_write,
   1003 	.fo_ioctl = vhci_fd_ioctl,
   1004 	.fo_fcntl = fnullop_fcntl,
   1005 	.fo_poll = fnullop_poll,
   1006 	.fo_stat = fbadop_stat,
   1007 	.fo_close = vhci_fd_close,
   1008 	.fo_kqfilter = fnullop_kqfilter,
   1009 	.fo_restart = fnullop_restart,
   1010 	.fo_mmap = NULL,
   1011 };
   1012 
   1013 static int
   1014 vhci_fd_open(dev_t dev, int flags, int type, struct lwp *l)
   1015 {
   1016 	vhci_fd_t *vfd;
   1017 	struct file *fp;
   1018 	int error, fd;
   1019 
   1020 	if (minor(dev) != 0)
   1021 		return EXDEV;
   1022 	error = fd_allocfile(&fp, &fd);
   1023 	if (error)
   1024 		return error;
   1025 
   1026 	vfd = kmem_alloc(sizeof(*vfd), KM_SLEEP);
   1027 	vfd->port = 1;
   1028 	vfd->addr = 0;
   1029 	vfd->softc = device_lookup_private(&vhci_cd, minor(dev));
   1030 
   1031 	return fd_clone(fp, fd, flags, &vhci_fileops, vfd);
   1032 }
   1033 
   1034 static int
   1035 vhci_fd_close(file_t *fp)
   1036 {
   1037 	vhci_fd_t *vfd = fp->f_data;
   1038 	int ret __diagused;
   1039 
   1040 	KASSERT(vfd != NULL);
   1041 	ret = vhci_usb_detach(vfd);
   1042 	KASSERT(ret == 0);
   1043 
   1044 	kmem_free(vfd, sizeof(*vfd));
   1045 	fp->f_data = NULL;
   1046 
   1047 	return 0;
   1048 }
   1049 
   1050 static int
   1051 vhci_fd_read(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1052     int flags)
   1053 {
   1054 	vhci_fd_t *vfd = fp->f_data;
   1055 	vhci_softc_t *sc = vfd->softc;
   1056 	vhci_packet_list_t *pktlist;
   1057 	vhci_packet_t *pkt, *nxt;
   1058 	vhci_xfer_list_t vxferlist;
   1059 	vhci_xfer_t *vxfer;
   1060 	vhci_port_t *port;
   1061 	int error = 0;
   1062 	uint8_t *buf;
   1063 	size_t size;
   1064 
   1065 	if (uio->uio_resid == 0)
   1066 		return 0;
   1067 	port = &sc->sc_port[vfd->port];
   1068 	pktlist = &port->endpoints[vfd->addr].host_to_usb;
   1069 
   1070 	TAILQ_INIT(&vxferlist);
   1071 
   1072 	mutex_enter(&port->lock);
   1073 
   1074 	if (!(port->status & UPS_PORT_ENABLED)) {
   1075 		error = ENOBUFS;
   1076 		goto out;
   1077 	}
   1078 
   1079 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
   1080 		vxfer = pkt->vxfer;
   1081 		buf = pkt->buf + pkt->cursor;
   1082 
   1083 		KASSERT(pkt->size >= pkt->cursor);
   1084 		size = uimin(uio->uio_resid, pkt->size - pkt->cursor);
   1085 
   1086 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
   1087 
   1088 		error = uiomove(buf, size, uio);
   1089 		if (error) {
   1090 			DPRINTF("%s: error = %d\n", __func__, error);
   1091 			goto out;
   1092 		}
   1093 
   1094 		pkt->cursor += size;
   1095 
   1096 		if (pkt->cursor == pkt->size) {
   1097 			vhci_pkt_destroy(sc, pkt);
   1098 			if (vxfer->npkts == 0) {
   1099 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
   1100 			}
   1101 		}
   1102 		if (uio->uio_resid == 0) {
   1103 			break;
   1104 		}
   1105 	}
   1106 
   1107 out:
   1108 	mutex_exit(&port->lock);
   1109 
   1110 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
   1111 		struct usbd_xfer *xfer = &vxfer->xfer;
   1112 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
   1113 
   1114 		mutex_enter(&sc->sc_lock);
   1115 		xfer->ux_actlen = xfer->ux_length;
   1116 		xfer->ux_status = USBD_NORMAL_COMPLETION;
   1117 		usb_transfer_complete(xfer);
   1118 		mutex_exit(&sc->sc_lock);
   1119 	}
   1120 
   1121 	return error;
   1122 }
   1123 
   1124 static int
   1125 vhci_fd_write(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1126     int flags)
   1127 {
   1128 	vhci_fd_t *vfd = fp->f_data;
   1129 	vhci_softc_t *sc = vfd->softc;
   1130 	vhci_packet_list_t *pktlist;
   1131 	vhci_packet_t *pkt, *nxt;
   1132 	vhci_xfer_list_t vxferlist;
   1133 	vhci_xfer_t *vxfer;
   1134 	vhci_port_t *port;
   1135 	int error = 0;
   1136 	uint8_t *buf;
   1137 	size_t pktsize, size;
   1138 
   1139 	if (uio->uio_resid == 0)
   1140 		return 0;
   1141 	port = &sc->sc_port[vfd->port];
   1142 	pktlist = &port->endpoints[vfd->addr].usb_to_host;
   1143 
   1144 	TAILQ_INIT(&vxferlist);
   1145 
   1146 	mutex_enter(&port->lock);
   1147 
   1148 	if (!(port->status & UPS_PORT_ENABLED)) {
   1149 		error = ENOBUFS;
   1150 		goto out;
   1151 	}
   1152 
   1153 	TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
   1154 		vxfer = pkt->vxfer;
   1155 		buf = pkt->buf + pkt->cursor;
   1156 
   1157 		pktsize = pkt->size;
   1158 		if (pkt->type.dat)
   1159 			pktsize = ulmin(vxfer->resbuf.size, pktsize);
   1160 
   1161 		KASSERT(pktsize >= pkt->cursor);
   1162 		size = uimin(uio->uio_resid, pktsize - pkt->cursor);
   1163 
   1164 		KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
   1165 
   1166 		error = uiomove(buf, size, uio);
   1167 		if (error) {
   1168 			DPRINTF("%s: error = %d\n", __func__, error);
   1169 			goto out;
   1170 		}
   1171 
   1172 		pkt->cursor += size;
   1173 
   1174 		if (pkt->cursor == pktsize) {
   1175 			vhci_pkt_destroy(sc, pkt);
   1176 			if (vxfer->npkts == 0) {
   1177 				TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
   1178 			}
   1179 		}
   1180 		if (uio->uio_resid == 0) {
   1181 			break;
   1182 		}
   1183 	}
   1184 
   1185 out:
   1186 	mutex_exit(&port->lock);
   1187 
   1188 	while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
   1189 		struct usbd_xfer *xfer = &vxfer->xfer;
   1190 		TAILQ_REMOVE(&vxferlist, vxfer, freelist);
   1191 
   1192 		mutex_enter(&sc->sc_lock);
   1193 		xfer->ux_actlen = ulmin(vxfer->resbuf.size, xfer->ux_length);
   1194 		xfer->ux_status = USBD_NORMAL_COMPLETION;
   1195 		usb_transfer_complete(xfer);
   1196 		mutex_exit(&sc->sc_lock);
   1197 	}
   1198 
   1199 	return error;
   1200 }
   1201 
   1202 static int
   1203 vhci_fd_ioctl(file_t *fp, u_long cmd, void *data)
   1204 {
   1205 	vhci_fd_t *vfd = fp->f_data;
   1206 
   1207 	KASSERT(vfd != NULL);
   1208 
   1209 	switch (cmd) {
   1210 	case VHCI_IOC_GET_INFO:
   1211 		return vhci_get_info(vfd, data);
   1212 	case VHCI_IOC_SET_PORT:
   1213 		return vhci_set_port(vfd, data);
   1214 	case VHCI_IOC_SET_ADDR:
   1215 		return vhci_set_addr(vfd, data);
   1216 	case VHCI_IOC_USB_ATTACH:
   1217 		return vhci_usb_attach(vfd);
   1218 	case VHCI_IOC_USB_DETACH:
   1219 		return vhci_usb_detach(vfd);
   1220 	default:
   1221 		return EINVAL;
   1222 	}
   1223 }
   1224 
   1225 /* -------------------------------------------------------------------------- */
   1226 
   1227 static int vhci_match(device_t, cfdata_t, void *);
   1228 static void vhci_attach(device_t, device_t, void *);
   1229 static int vhci_activate(device_t, enum devact);
   1230 
   1231 CFATTACH_DECL_NEW(vhci, sizeof(vhci_softc_t), vhci_match, vhci_attach,
   1232     NULL, vhci_activate);
   1233 
   1234 void
   1235 vhciattach(int nunits)
   1236 {
   1237 	static struct cfdata vhci_cfdata = {
   1238 		.cf_name = "vhci",
   1239 		.cf_atname = "vhci",
   1240 		.cf_unit = 0,
   1241 		.cf_fstate = FSTATE_STAR,
   1242 	};
   1243 	int error;
   1244 
   1245 	error = config_cfattach_attach(vhci_cd.cd_name, &vhci_ca);
   1246 	if (error) {
   1247 		aprint_error("%s: unable to register cfattach\n",
   1248 		    vhci_cd.cd_name);
   1249 		(void)config_cfdriver_detach(&vhci_cd);
   1250 		return;
   1251 	}
   1252 
   1253 	config_attach_pseudo(&vhci_cfdata);
   1254 }
   1255 
   1256 static int
   1257 vhci_activate(device_t self, enum devact act)
   1258 {
   1259 	vhci_softc_t *sc = device_private(self);
   1260 
   1261 	switch (act) {
   1262 	case DVACT_DEACTIVATE:
   1263 		sc->sc_dying = 1;
   1264 		return 0;
   1265 	default:
   1266 		return EOPNOTSUPP;
   1267 	}
   1268 }
   1269 
   1270 static int
   1271 vhci_match(device_t parent, cfdata_t match, void *aux)
   1272 {
   1273 	return 1;
   1274 }
   1275 
   1276 static void
   1277 vhci_attach(device_t parent, device_t self, void *aux)
   1278 {
   1279 	vhci_softc_t *sc = device_private(self);
   1280 	vhci_port_t *port;
   1281 	uint8_t addr;
   1282 	size_t i;
   1283 
   1284 	sc->sc_dev = self;
   1285 	sc->sc_bus.ub_revision = USBREV_2_0;
   1286 	sc->sc_bus.ub_hctype = USBHCTYPE_VHCI;
   1287 	sc->sc_bus.ub_usedma = false;
   1288 	sc->sc_bus.ub_methods = &vhci_bus_methods;
   1289 	sc->sc_bus.ub_pipesize = sizeof(vhci_pipe_t);
   1290 	sc->sc_bus.ub_hcpriv = sc;
   1291 	sc->sc_dying = false;
   1292 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
   1293 
   1294 	sc->sc_nports = VHCI_NPORTS;
   1295 	for (i = 0; i < sc->sc_nports; i++) {
   1296 		port = &sc->sc_port[i];
   1297 		mutex_init(&port->lock, MUTEX_DEFAULT, IPL_SOFTUSB);
   1298 		for (addr = 0; addr < VHCI_NADDRS; addr++) {
   1299 			TAILQ_INIT(&port->endpoints[addr].usb_to_host);
   1300 			TAILQ_INIT(&port->endpoints[addr].host_to_usb);
   1301 		}
   1302 		kcov_remote_register(KCOV_REMOTE_VHCI, i);
   1303 	}
   1304 
   1305 	sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint);
   1306 }
   1307