vhci.c revision 1.20 1 /* $NetBSD: vhci.c,v 1.20 2020/06/05 17:20:56 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2019-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: vhci.c,v 1.20 2020/06/05 17:20:56 maxv Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_usb.h"
37 #endif
38
39 #include <sys/param.h>
40
41 #include <sys/bus.h>
42 #include <sys/cpu.h>
43 #include <sys/conf.h>
44 #include <sys/device.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/queue.h>
50 #include <sys/systm.h>
51 #include <sys/mman.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/kcov.h>
55
56 #include <machine/endian.h>
57
58 #include "ioconf.h"
59
60 #include <dev/usb/usb.h>
61 #include <dev/usb/usbdi.h>
62 #include <dev/usb/usbdivar.h>
63
64 #include <dev/usb/usbroothub.h>
65 #include <dev/usb/vhci.h>
66
67 #ifdef VHCI_DEBUG
68 #define DPRINTF(fmt, ...) printf(fmt, __VA_ARGS__)
69 #else
70 #define DPRINTF(fmt, ...) __nothing
71 #endif
72
73 static usbd_status vhci_open(struct usbd_pipe *);
74 static void vhci_softintr(void *);
75
76 static struct usbd_xfer *vhci_allocx(struct usbd_bus *, unsigned int);
77 static void vhci_freex(struct usbd_bus *, struct usbd_xfer *);
78 static void vhci_get_lock(struct usbd_bus *, kmutex_t **);
79 static int vhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
80 void *, int);
81
82 static const struct usbd_bus_methods vhci_bus_methods = {
83 .ubm_open = vhci_open,
84 .ubm_softint = vhci_softintr,
85 .ubm_dopoll = NULL,
86 .ubm_allocx = vhci_allocx,
87 .ubm_freex = vhci_freex,
88 .ubm_getlock = vhci_get_lock,
89 .ubm_rhctrl = vhci_roothub_ctrl,
90 };
91
92 static usbd_status vhci_device_ctrl_transfer(struct usbd_xfer *);
93 static usbd_status vhci_device_ctrl_start(struct usbd_xfer *);
94 static void vhci_device_ctrl_abort(struct usbd_xfer *);
95 static void vhci_device_ctrl_close(struct usbd_pipe *);
96 static void vhci_device_ctrl_cleartoggle(struct usbd_pipe *);
97 static void vhci_device_ctrl_done(struct usbd_xfer *);
98
99 static const struct usbd_pipe_methods vhci_device_ctrl_methods = {
100 .upm_init = NULL,
101 .upm_fini = NULL,
102 .upm_transfer = vhci_device_ctrl_transfer,
103 .upm_start = vhci_device_ctrl_start,
104 .upm_abort = vhci_device_ctrl_abort,
105 .upm_close = vhci_device_ctrl_close,
106 .upm_cleartoggle = vhci_device_ctrl_cleartoggle,
107 .upm_done = vhci_device_ctrl_done,
108 };
109
110 static usbd_status vhci_root_intr_transfer(struct usbd_xfer *);
111 static usbd_status vhci_root_intr_start(struct usbd_xfer *);
112 static void vhci_root_intr_abort(struct usbd_xfer *);
113 static void vhci_root_intr_close(struct usbd_pipe *);
114 static void vhci_root_intr_cleartoggle(struct usbd_pipe *);
115 static void vhci_root_intr_done(struct usbd_xfer *);
116
117 static const struct usbd_pipe_methods vhci_root_intr_methods = {
118 .upm_init = NULL,
119 .upm_fini = NULL,
120 .upm_transfer = vhci_root_intr_transfer,
121 .upm_start = vhci_root_intr_start,
122 .upm_abort = vhci_root_intr_abort,
123 .upm_close = vhci_root_intr_close,
124 .upm_cleartoggle = vhci_root_intr_cleartoggle,
125 .upm_done = vhci_root_intr_done,
126 };
127
128 /*
129 * There are three structures to understand: vxfers, packets, and ports.
130 *
131 * Each xfer from the point of view of the USB stack is a vxfer from the point
132 * of view of vHCI.
133 *
134 * A vxfer has a linked list containing a maximum of two packets: a request
135 * packet and possibly a data packet. Packets basically contain data exchanged
136 * between the Host and the virtual USB device. A packet is linked to both a
137 * vxfer and a port.
138 *
139 * A port is an abstraction of an actual USB port. Each virtual USB device gets
140 * connected to a port. A port has two lists:
141 * - The Usb-To-Host list, containing packets to be fetched from the USB
142 * device and provided to the host.
143 * - The Host-To-Usb list, containing packets to be sent from the Host to the
144 * USB device.
145 * Request packets are always in the H->U direction. Data packets however can
146 * be in both the H->U and U->H directions.
147 *
148 * With read() and write() operations on /dev/vhci, userland respectively
149 * "fetches" and "sends" packets from or to the virtual USB device, which
150 * respectively means reading/inserting packets in the H->U and U->H lists on
151 * the port where the virtual USB device is connected.
152 *
153 * +------------------------------------------------+
154 * | USB Stack |
155 * +---------------------^--------------------------+
156 * |
157 * +---------------------V--------------------------+
158 * | +----------------+ +-------------+ |
159 * | | Request Packet | | Data Packet | Xfer |
160 * | +-------|--------+ +----|---^----+ |
161 * +---------|------------------|---|---------------+
162 * | | |
163 * | +--------------+ |
164 * | | |
165 * +---------|---|------------------|---------------+
166 * | +---V---V---+ +---------|-+ |
167 * | | H->U List | | U->H List | vHCI Port |
168 * | +-----|-----+ +-----^-----+ |
169 * +-----------|----------------|-------------------+
170 * | |
171 * +-----------|----------------|-------------------+
172 * | +-----V-----+ +-----|-----+ |
173 * | | read() | | write() | vHCI FD |
174 * | +-----------+ +-----------+ |
175 * +------------------------------------------------+
176 */
177
178 struct vhci_xfer;
179
180 typedef struct vhci_packet {
181 /* General. */
182 TAILQ_ENTRY(vhci_packet) portlist;
183 TAILQ_ENTRY(vhci_packet) xferlist;
184 struct vhci_xfer *vxfer;
185 bool utoh;
186 uint8_t addr;
187
188 /* Type. */
189 struct {
190 bool req:1;
191 bool res:1;
192 bool dat:1;
193 } type;
194
195 /* Exposed for FD operations. */
196 uint8_t *buf;
197 size_t size;
198 size_t cursor;
199 } vhci_packet_t;
200
201 typedef TAILQ_HEAD(, vhci_packet) vhci_packet_list_t;
202
203 #define VHCI_NADDRS 16 /* maximum supported by USB */
204
205 typedef struct {
206 kmutex_t lock;
207 int status;
208 int change;
209 struct {
210 vhci_packet_list_t usb_to_host;
211 vhci_packet_list_t host_to_usb;
212 } endpoints[VHCI_NADDRS];
213 } vhci_port_t;
214
215 typedef struct {
216 struct usbd_pipe pipe;
217 } vhci_pipe_t;
218
219 typedef struct vhci_xfer {
220 /* General. */
221 struct usbd_xfer xfer;
222
223 /* Port where the xfer occurs. */
224 vhci_port_t *port;
225
226 /* Packets in the xfer. */
227 size_t npkts;
228 vhci_packet_list_t pkts;
229
230 /* Header storage. */
231 vhci_request_t reqbuf;
232 vhci_response_t resbuf;
233
234 /* Used for G/C. */
235 TAILQ_ENTRY(vhci_xfer) freelist;
236 } vhci_xfer_t;
237
238 typedef TAILQ_HEAD(, vhci_xfer) vhci_xfer_list_t;
239
240 #define VHCI_INDEX2PORT(idx) (idx)
241 #define VHCI_NPORTS 8 /* above 8, update TODO-bitmap */
242 #define VHCI_NBUSES 8
243
244 typedef struct {
245 device_t sc_dev;
246
247 struct usbd_bus sc_bus;
248 bool sc_dying;
249 kmutex_t sc_lock;
250
251 /*
252 * Intr Root. Used to attach the devices.
253 */
254 struct usbd_xfer *sc_intrxfer;
255
256 /*
257 * The ports. Zero is for the roothub, one and beyond for the USB
258 * devices.
259 */
260 size_t sc_nports;
261 vhci_port_t sc_port[VHCI_NPORTS];
262
263 device_t sc_child; /* /dev/usb# device */
264 } vhci_softc_t;
265
266 typedef struct {
267 u_int port;
268 uint8_t addr;
269 vhci_softc_t *softc;
270 } vhci_fd_t;
271
272 extern struct cfdriver vhci_cd;
273
274 /* -------------------------------------------------------------------------- */
275
276 static void
277 vhci_pkt_ctrl_create(vhci_port_t *port, struct usbd_xfer *xfer, bool utoh,
278 uint8_t addr)
279 {
280 vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
281 vhci_packet_list_t *reqlist, *reslist, *datlist = NULL;
282 vhci_packet_t *req, *res = NULL, *dat = NULL;
283 size_t npkts = 0;
284
285 /* Request packet. */
286 reqlist = &port->endpoints[addr].host_to_usb;
287 req = kmem_zalloc(sizeof(*req), KM_SLEEP);
288 req->vxfer = vxfer;
289 req->utoh = false;
290 req->addr = addr;
291 req->type.req = true;
292 req->buf = (uint8_t *)&vxfer->reqbuf;
293 req->size = sizeof(vxfer->reqbuf);
294 req->cursor = 0;
295 npkts++;
296
297 /* Init the request buffer. */
298 memset(&vxfer->reqbuf, 0, sizeof(vxfer->reqbuf));
299 vxfer->reqbuf.type = VHCI_REQ_CTRL;
300 memcpy(&vxfer->reqbuf.u.ctrl, &xfer->ux_request,
301 sizeof(xfer->ux_request));
302
303 /* Response packet. */
304 if (utoh && (xfer->ux_length > 0)) {
305 reslist = &port->endpoints[addr].usb_to_host;
306 res = kmem_zalloc(sizeof(*res), KM_SLEEP);
307 res->vxfer = vxfer;
308 res->utoh = true;
309 res->addr = addr;
310 res->type.res = true;
311 res->buf = (uint8_t *)&vxfer->resbuf;
312 res->size = sizeof(vxfer->resbuf);
313 res->cursor = 0;
314 npkts++;
315 }
316
317 /* Data packet. */
318 if (xfer->ux_length > 0) {
319 if (utoh) {
320 datlist = &port->endpoints[addr].usb_to_host;
321 } else {
322 datlist = &port->endpoints[addr].host_to_usb;
323 }
324 dat = kmem_zalloc(sizeof(*dat), KM_SLEEP);
325 dat->vxfer = vxfer;
326 dat->utoh = utoh;
327 dat->addr = addr;
328 dat->type.dat = true;
329 dat->buf = xfer->ux_buf;
330 dat->size = xfer->ux_length;
331 dat->cursor = 0;
332 npkts++;
333 }
334
335 /* Insert in the xfer. */
336 vxfer->port = port;
337 vxfer->npkts = npkts;
338 TAILQ_INIT(&vxfer->pkts);
339 TAILQ_INSERT_TAIL(&vxfer->pkts, req, xferlist);
340 if (res != NULL)
341 TAILQ_INSERT_TAIL(&vxfer->pkts, res, xferlist);
342 if (dat != NULL)
343 TAILQ_INSERT_TAIL(&vxfer->pkts, dat, xferlist);
344
345 /* Insert in the port. */
346 KASSERT(mutex_owned(&port->lock));
347 TAILQ_INSERT_TAIL(reqlist, req, portlist);
348 if (res != NULL)
349 TAILQ_INSERT_TAIL(reslist, res, portlist);
350 if (dat != NULL)
351 TAILQ_INSERT_TAIL(datlist, dat, portlist);
352 }
353
354 static void
355 vhci_pkt_destroy(vhci_softc_t *sc, vhci_packet_t *pkt)
356 {
357 vhci_xfer_t *vxfer = pkt->vxfer;
358 vhci_port_t *port = vxfer->port;
359 vhci_packet_list_t *pktlist;
360
361 KASSERT(mutex_owned(&port->lock));
362
363 /* Remove from the port. */
364 if (pkt->utoh) {
365 pktlist = &port->endpoints[pkt->addr].usb_to_host;
366 } else {
367 pktlist = &port->endpoints[pkt->addr].host_to_usb;
368 }
369 TAILQ_REMOVE(pktlist, pkt, portlist);
370
371 /* Remove from the xfer. */
372 TAILQ_REMOVE(&vxfer->pkts, pkt, xferlist);
373 kmem_free(pkt, sizeof(*pkt));
374
375 /* Unref. */
376 KASSERT(vxfer->npkts > 0);
377 vxfer->npkts--;
378 if (vxfer->npkts > 0)
379 return;
380 KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
381 }
382
383 /* -------------------------------------------------------------------------- */
384
385 static usbd_status
386 vhci_open(struct usbd_pipe *pipe)
387 {
388 struct usbd_device *dev = pipe->up_dev;
389 struct usbd_bus *bus = dev->ud_bus;
390 usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
391 vhci_softc_t *sc = bus->ub_hcpriv;
392 uint8_t addr = dev->ud_addr;
393
394 if (sc->sc_dying)
395 return USBD_IOERROR;
396
397 DPRINTF("%s: called, type=%d\n", __func__,
398 UE_GET_XFERTYPE(ed->bmAttributes));
399
400 if (addr == bus->ub_rhaddr) {
401 switch (ed->bEndpointAddress) {
402 case USB_CONTROL_ENDPOINT:
403 DPRINTF("%s: roothub_ctrl\n", __func__);
404 pipe->up_methods = &roothub_ctrl_methods;
405 break;
406 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
407 DPRINTF("%s: root_intr\n", __func__);
408 pipe->up_methods = &vhci_root_intr_methods;
409 break;
410 default:
411 DPRINTF("%s: inval\n", __func__);
412 return USBD_INVAL;
413 }
414 } else {
415 switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
416 case UE_CONTROL:
417 pipe->up_methods = &vhci_device_ctrl_methods;
418 break;
419 case UE_INTERRUPT:
420 case UE_BULK:
421 default:
422 goto bad;
423 }
424 }
425
426 return USBD_NORMAL_COMPLETION;
427
428 bad:
429 return USBD_NOMEM;
430 }
431
432 static void
433 vhci_softintr(void *v)
434 {
435 DPRINTF("%s: called\n", __func__);
436 }
437
438 static struct usbd_xfer *
439 vhci_allocx(struct usbd_bus *bus, unsigned int nframes)
440 {
441 vhci_xfer_t *vxfer;
442
443 vxfer = kmem_zalloc(sizeof(*vxfer), KM_SLEEP);
444 #ifdef DIAGNOSTIC
445 vxfer->xfer.ux_state = XFER_BUSY;
446 #endif
447 return (struct usbd_xfer *)vxfer;
448 }
449
450 static void
451 vhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
452 {
453 vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
454
455 KASSERT(vxfer->npkts == 0);
456 KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
457
458 #ifdef DIAGNOSTIC
459 vxfer->xfer.ux_state = XFER_FREE;
460 #endif
461 kmem_free(vxfer, sizeof(*vxfer));
462 }
463
464 static void
465 vhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
466 {
467 vhci_softc_t *sc = bus->ub_hcpriv;
468
469 *lock = &sc->sc_lock;
470 }
471
472 static int
473 vhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
474 void *buf, int buflen)
475 {
476 vhci_softc_t *sc = bus->ub_hcpriv;
477 vhci_port_t *port;
478 usb_hub_descriptor_t hubd;
479 uint16_t len, value, index;
480 int totlen = 0;
481
482 len = UGETW(req->wLength);
483 value = UGETW(req->wValue);
484 index = UGETW(req->wIndex);
485
486 #define C(x,y) ((x) | ((y) << 8))
487 switch (C(req->bRequest, req->bmRequestType)) {
488 case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
489 switch (value) {
490 case C(0, UDESC_DEVICE): {
491 usb_device_descriptor_t devd;
492
493 totlen = uimin(buflen, sizeof(devd));
494 memcpy(&devd, buf, totlen);
495 USETW(devd.idVendor, 0);
496 USETW(devd.idProduct, 0);
497 memcpy(buf, &devd, totlen);
498 break;
499 }
500 #define sd ((usb_string_descriptor_t *)buf)
501 case C(1, UDESC_STRING):
502 /* Vendor */
503 totlen = usb_makestrdesc(sd, len, "NetBSD");
504 break;
505 case C(2, UDESC_STRING):
506 /* Product */
507 totlen = usb_makestrdesc(sd, len, "VHCI root hub");
508 break;
509 #undef sd
510 default:
511 /* default from usbroothub */
512 return buflen;
513 }
514 break;
515
516 case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
517 switch (value) {
518 case UHF_PORT_RESET:
519 if (index < 1 || index >= sc->sc_nports) {
520 return -1;
521 }
522 port = &sc->sc_port[VHCI_INDEX2PORT(index)];
523 port->status |= UPS_C_PORT_RESET;
524 break;
525 case UHF_PORT_POWER:
526 break;
527 default:
528 return -1;
529 }
530 break;
531
532 /* Hub requests. */
533 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
534 break;
535 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
536 if (index < 1 || index >= sc->sc_nports) {
537 return -1;
538 }
539 port = &sc->sc_port[VHCI_INDEX2PORT(index)];
540 switch (value) {
541 case UHF_PORT_ENABLE:
542 port->status &= ~UPS_PORT_ENABLED;
543 break;
544 case UHF_C_PORT_ENABLE:
545 port->change |= UPS_C_PORT_ENABLED;
546 break;
547 default:
548 return -1;
549 }
550 break;
551
552 case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
553 totlen = uimin(buflen, sizeof(hubd));
554 memcpy(&hubd, buf, totlen);
555 hubd.bNbrPorts = sc->sc_nports - 1;
556 hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE;
557 totlen = uimin(totlen, hubd.bDescLength);
558 memcpy(buf, &hubd, totlen);
559 break;
560
561 case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
562 /* XXX The other HCs do this */
563 memset(buf, 0, len);
564 totlen = len;
565 break;
566
567 case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
568 usb_port_status_t ps;
569
570 if (index < 1 || index >= sc->sc_nports) {
571 return -1;
572 }
573 port = &sc->sc_port[VHCI_INDEX2PORT(index)];
574 USETW(ps.wPortStatus, port->status);
575 USETW(ps.wPortChange, port->change);
576 totlen = uimin(len, sizeof(ps));
577 memcpy(buf, &ps, totlen);
578 break;
579 }
580 default:
581 /* default from usbroothub */
582 return buflen;
583 }
584
585 return totlen;
586 }
587
588 /* -------------------------------------------------------------------------- */
589
590 static usbd_status
591 vhci_device_ctrl_transfer(struct usbd_xfer *xfer)
592 {
593 vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
594 usbd_status err;
595
596 DPRINTF("%s: called\n", __func__);
597
598 /* Insert last in queue. */
599 mutex_enter(&sc->sc_lock);
600 err = usb_insert_transfer(xfer);
601 mutex_exit(&sc->sc_lock);
602 if (err)
603 return err;
604
605 /* Pipe isn't running, start first */
606 return vhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
607 }
608
609 static usbd_status
610 vhci_device_ctrl_start(struct usbd_xfer *xfer)
611 {
612 usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
613 usb_device_request_t *req = &xfer->ux_request;
614 struct usbd_device *dev = xfer->ux_pipe->up_dev;
615 vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
616 vhci_port_t *port;
617 bool polling = sc->sc_bus.ub_usepolling;
618 bool isread = (req->bmRequestType & UT_READ) != 0;
619 uint8_t addr = UE_GET_ADDR(ed->bEndpointAddress);
620 int portno, ret;
621
622 KASSERT(addr == 0);
623 KASSERT(xfer->ux_rqflags & URQ_REQUEST);
624 KASSERT(dev->ud_myhsport != NULL);
625 portno = dev->ud_myhsport->up_portno;
626
627 DPRINTF("%s: type=0x%02x, len=%d, isread=%d, portno=%d\n",
628 __func__, req->bmRequestType, UGETW(req->wLength), isread, portno);
629
630 if (sc->sc_dying)
631 return USBD_IOERROR;
632
633 port = &sc->sc_port[portno];
634
635 if (!polling)
636 mutex_enter(&sc->sc_lock);
637
638 mutex_enter(&port->lock);
639 if (port->status & UPS_PORT_ENABLED) {
640 xfer->ux_status = USBD_IN_PROGRESS;
641 vhci_pkt_ctrl_create(port, xfer, isread, addr);
642 ret = USBD_IN_PROGRESS;
643 } else {
644 ret = USBD_IOERROR;
645 }
646 mutex_exit(&port->lock);
647
648 if (!polling)
649 mutex_exit(&sc->sc_lock);
650
651 return ret;
652 }
653
654 static void
655 vhci_device_ctrl_abort(struct usbd_xfer *xfer)
656 {
657 vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
658 vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
659 vhci_port_t *port = vxfer->port;
660 vhci_packet_t *pkt;
661
662 DPRINTF("%s: called\n", __func__);
663
664 KASSERT(mutex_owned(&sc->sc_lock));
665
666 callout_halt(&xfer->ux_callout, &sc->sc_lock);
667
668 /* If anyone else beat us, we're done. */
669 KASSERT(xfer->ux_status != USBD_CANCELLED);
670 if (xfer->ux_status != USBD_IN_PROGRESS)
671 return;
672
673 mutex_enter(&port->lock);
674 while (vxfer->npkts > 0) {
675 pkt = TAILQ_FIRST(&vxfer->pkts);
676 KASSERT(pkt != NULL);
677 vhci_pkt_destroy(sc, pkt);
678 }
679 KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
680 mutex_exit(&port->lock);
681
682 xfer->ux_status = USBD_CANCELLED;
683 usb_transfer_complete(xfer);
684 KASSERT(mutex_owned(&sc->sc_lock));
685 }
686
687 static void
688 vhci_device_ctrl_close(struct usbd_pipe *pipe)
689 {
690 DPRINTF("%s: called\n", __func__);
691 }
692
693 static void
694 vhci_device_ctrl_cleartoggle(struct usbd_pipe *pipe)
695 {
696 DPRINTF("%s: called\n", __func__);
697 }
698
699 static void
700 vhci_device_ctrl_done(struct usbd_xfer *xfer)
701 {
702 DPRINTF("%s: called\n", __func__);
703 }
704
705 /* -------------------------------------------------------------------------- */
706
707 static usbd_status
708 vhci_root_intr_transfer(struct usbd_xfer *xfer)
709 {
710 vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
711 usbd_status err;
712
713 DPRINTF("%s: called\n", __func__);
714
715 /* Insert last in queue. */
716 mutex_enter(&sc->sc_lock);
717 err = usb_insert_transfer(xfer);
718 mutex_exit(&sc->sc_lock);
719 if (err)
720 return err;
721
722 /* Pipe isn't running, start first */
723 return vhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
724 }
725
726 static usbd_status
727 vhci_root_intr_start(struct usbd_xfer *xfer)
728 {
729 vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
730 const bool polling = sc->sc_bus.ub_usepolling;
731
732 DPRINTF("%s: called, len=%zu\n", __func__, (size_t)xfer->ux_length);
733
734 if (sc->sc_dying)
735 return USBD_IOERROR;
736
737 if (!polling)
738 mutex_enter(&sc->sc_lock);
739 KASSERT(sc->sc_intrxfer == NULL);
740 sc->sc_intrxfer = xfer;
741 xfer->ux_status = USBD_IN_PROGRESS;
742 if (!polling)
743 mutex_exit(&sc->sc_lock);
744
745 return USBD_IN_PROGRESS;
746 }
747
748 static void
749 vhci_root_intr_abort(struct usbd_xfer *xfer)
750 {
751 vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
752
753 DPRINTF("%s: called\n", __func__);
754
755 KASSERT(mutex_owned(&sc->sc_lock));
756 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
757
758 /* If xfer has already completed, nothing to do here. */
759 if (sc->sc_intrxfer == NULL)
760 return;
761
762 /*
763 * Otherwise, sc->sc_intrxfer had better be this transfer.
764 * Cancel it.
765 */
766 KASSERT(sc->sc_intrxfer == xfer);
767 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
768 xfer->ux_status = USBD_CANCELLED;
769 usb_transfer_complete(xfer);
770 }
771
772 static void
773 vhci_root_intr_close(struct usbd_pipe *pipe)
774 {
775 vhci_softc_t *sc __diagused = pipe->up_dev->ud_bus->ub_hcpriv;
776
777 DPRINTF("%s: called\n", __func__);
778
779 KASSERT(mutex_owned(&sc->sc_lock));
780
781 /*
782 * Caller must guarantee the xfer has completed first, by
783 * closing the pipe only after normal completion or an abort.
784 */
785 KASSERT(sc->sc_intrxfer == NULL);
786 }
787
788 static void
789 vhci_root_intr_cleartoggle(struct usbd_pipe *pipe)
790 {
791 DPRINTF("%s: called\n", __func__);
792 }
793
794 static void
795 vhci_root_intr_done(struct usbd_xfer *xfer)
796 {
797 vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
798
799 KASSERT(mutex_owned(&sc->sc_lock));
800
801 /* Claim the xfer so it doesn't get completed again. */
802 KASSERT(sc->sc_intrxfer == xfer);
803 KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
804 sc->sc_intrxfer = NULL;
805 }
806
807 /* -------------------------------------------------------------------------- */
808
809 static int
810 vhci_usb_attach(vhci_fd_t *vfd)
811 {
812 vhci_softc_t *sc = vfd->softc;
813 vhci_port_t *port;
814 struct usbd_xfer *xfer;
815 u_char *p;
816 int ret = 0;
817
818 port = &sc->sc_port[vfd->port];
819
820 mutex_enter(&sc->sc_lock);
821
822 mutex_enter(&port->lock);
823 port->status = UPS_CURRENT_CONNECT_STATUS | UPS_PORT_ENABLED |
824 UPS_PORT_POWER;
825 port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
826 mutex_exit(&port->lock);
827
828 xfer = sc->sc_intrxfer;
829
830 if (xfer == NULL) {
831 ret = ENOBUFS;
832 goto done;
833 }
834 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
835
836 /*
837 * Mark our port has having changed state. Uhub will then fetch
838 * status/change and see it needs to perform an attach.
839 */
840 p = xfer->ux_buf;
841 memset(p, 0, xfer->ux_length);
842 p[0] = __BIT(vfd->port); /* TODO-bitmap */
843 xfer->ux_actlen = xfer->ux_length;
844 xfer->ux_status = USBD_NORMAL_COMPLETION;
845
846 usb_transfer_complete(xfer);
847
848 done:
849 mutex_exit(&sc->sc_lock);
850 return ret;
851 }
852
853 static void
854 vhci_port_flush(vhci_softc_t *sc, vhci_port_t *port)
855 {
856 vhci_packet_list_t *pktlist;
857 vhci_packet_t *pkt, *nxt;
858 vhci_xfer_list_t vxferlist;
859 vhci_xfer_t *vxfer;
860 uint8_t addr;
861
862 KASSERT(mutex_owned(&sc->sc_lock));
863 KASSERT(mutex_owned(&port->lock));
864
865 TAILQ_INIT(&vxferlist);
866
867 for (addr = 0; addr < VHCI_NADDRS; addr++) {
868 /* Drop all the packets in the H->U direction. */
869 pktlist = &port->endpoints[addr].host_to_usb;
870 TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
871 vxfer = pkt->vxfer;
872 KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
873 vhci_pkt_destroy(sc, pkt);
874 if (vxfer->npkts == 0)
875 TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
876 }
877 KASSERT(TAILQ_FIRST(pktlist) == NULL);
878
879 /* Drop all the packets in the U->H direction. */
880 pktlist = &port->endpoints[addr].usb_to_host;
881 TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
882 vxfer = pkt->vxfer;
883 KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
884 vhci_pkt_destroy(sc, pkt);
885 if (vxfer->npkts == 0)
886 TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
887 }
888 KASSERT(TAILQ_FIRST(pktlist) == NULL);
889
890 /* Terminate all the xfers collected. */
891 while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
892 struct usbd_xfer *xfer = &vxfer->xfer;
893 TAILQ_REMOVE(&vxferlist, vxfer, freelist);
894
895 xfer->ux_status = USBD_TIMEOUT;
896 usb_transfer_complete(xfer);
897 }
898 }
899 }
900
901 static int
902 vhci_usb_detach(vhci_fd_t *vfd)
903 {
904 vhci_softc_t *sc = vfd->softc;
905 vhci_port_t *port;
906 struct usbd_xfer *xfer;
907 u_char *p;
908
909 port = &sc->sc_port[vfd->port];
910
911 mutex_enter(&sc->sc_lock);
912
913 xfer = sc->sc_intrxfer;
914 if (xfer == NULL) {
915 mutex_exit(&sc->sc_lock);
916 return ENOBUFS;
917 }
918 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
919
920 mutex_enter(&port->lock);
921
922 port->status = 0;
923 port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
924
925 /*
926 * Mark our port has having changed state. Uhub will then fetch
927 * status/change and see it needs to perform a detach.
928 */
929 p = xfer->ux_buf;
930 memset(p, 0, xfer->ux_length);
931 p[0] = __BIT(vfd->port); /* TODO-bitmap */
932 xfer->ux_actlen = xfer->ux_length;
933 xfer->ux_status = USBD_NORMAL_COMPLETION;
934
935 usb_transfer_complete(xfer);
936 vhci_port_flush(sc, port);
937
938 mutex_exit(&port->lock);
939 mutex_exit(&sc->sc_lock);
940 return 0;
941 }
942
943 static int
944 vhci_get_info(vhci_fd_t *vfd, struct vhci_ioc_get_info *args)
945 {
946 vhci_softc_t *sc = vfd->softc;
947 vhci_port_t *port;
948
949 port = &sc->sc_port[vfd->port];
950
951 args->nports = VHCI_NPORTS;
952 args->port = vfd->port;
953 mutex_enter(&port->lock);
954 args->status = port->status;
955 mutex_exit(&port->lock);
956 args->addr = vfd->addr;
957
958 return 0;
959 }
960
961 static int
962 vhci_set_port(vhci_fd_t *vfd, struct vhci_ioc_set_port *args)
963 {
964 vhci_softc_t *sc = vfd->softc;
965
966 if (args->port == 0 || args->port >= sc->sc_nports)
967 return EINVAL;
968
969 vfd->port = args->port;
970
971 return 0;
972 }
973
974 static int
975 vhci_set_addr(vhci_fd_t *vfd, struct vhci_ioc_set_addr *args)
976 {
977 if (args->addr >= VHCI_NADDRS)
978 return EINVAL;
979
980 vfd->addr = args->addr;
981
982 return 0;
983 }
984
985 /* -------------------------------------------------------------------------- */
986
987 static dev_type_open(vhci_fd_open);
988
989 const struct cdevsw vhci_cdevsw = {
990 .d_open = vhci_fd_open,
991 .d_close = noclose,
992 .d_read = noread,
993 .d_write = nowrite,
994 .d_ioctl = noioctl,
995 .d_stop = nostop,
996 .d_tty = notty,
997 .d_poll = nopoll,
998 .d_mmap = nommap,
999 .d_kqfilter = nokqfilter,
1000 .d_discard = nodiscard,
1001 .d_flag = D_OTHER | D_MPSAFE
1002 };
1003
1004 static int vhci_fd_ioctl(file_t *, u_long, void *);
1005 static int vhci_fd_close(file_t *);
1006 static int vhci_fd_read(struct file *, off_t *, struct uio *, kauth_cred_t, int);
1007 static int vhci_fd_write(struct file *, off_t *, struct uio *, kauth_cred_t, int);
1008
1009 const struct fileops vhci_fileops = {
1010 .fo_read = vhci_fd_read,
1011 .fo_write = vhci_fd_write,
1012 .fo_ioctl = vhci_fd_ioctl,
1013 .fo_fcntl = fnullop_fcntl,
1014 .fo_poll = fnullop_poll,
1015 .fo_stat = fbadop_stat,
1016 .fo_close = vhci_fd_close,
1017 .fo_kqfilter = fnullop_kqfilter,
1018 .fo_restart = fnullop_restart,
1019 .fo_mmap = NULL,
1020 };
1021
1022 static int
1023 vhci_fd_open(dev_t dev, int flags, int type, struct lwp *l)
1024 {
1025 vhci_softc_t *sc;
1026 vhci_fd_t *vfd;
1027 struct file *fp;
1028 int error, fd;
1029
1030 sc = device_lookup_private(&vhci_cd, minor(dev));
1031 if (sc == NULL)
1032 return EXDEV;
1033
1034 error = fd_allocfile(&fp, &fd);
1035 if (error)
1036 return error;
1037
1038 vfd = kmem_alloc(sizeof(*vfd), KM_SLEEP);
1039 vfd->port = 1;
1040 vfd->addr = 0;
1041 vfd->softc = sc;
1042
1043 return fd_clone(fp, fd, flags, &vhci_fileops, vfd);
1044 }
1045
1046 static int
1047 vhci_fd_close(file_t *fp)
1048 {
1049 vhci_fd_t *vfd = fp->f_data;
1050 int ret __diagused;
1051
1052 KASSERT(vfd != NULL);
1053 ret = vhci_usb_detach(vfd);
1054 KASSERT(ret == 0);
1055
1056 kmem_free(vfd, sizeof(*vfd));
1057 fp->f_data = NULL;
1058
1059 return 0;
1060 }
1061
1062 static int
1063 vhci_fd_read(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1064 int flags)
1065 {
1066 vhci_fd_t *vfd = fp->f_data;
1067 vhci_softc_t *sc = vfd->softc;
1068 vhci_packet_list_t *pktlist;
1069 vhci_packet_t *pkt, *nxt;
1070 vhci_xfer_list_t vxferlist;
1071 vhci_xfer_t *vxfer;
1072 vhci_port_t *port;
1073 int error = 0;
1074 uint8_t *buf;
1075 size_t size;
1076
1077 if (uio->uio_resid == 0)
1078 return 0;
1079 port = &sc->sc_port[vfd->port];
1080 pktlist = &port->endpoints[vfd->addr].host_to_usb;
1081
1082 TAILQ_INIT(&vxferlist);
1083
1084 mutex_enter(&port->lock);
1085
1086 if (!(port->status & UPS_PORT_ENABLED)) {
1087 error = ENOBUFS;
1088 goto out;
1089 }
1090
1091 TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
1092 vxfer = pkt->vxfer;
1093 buf = pkt->buf + pkt->cursor;
1094
1095 KASSERT(pkt->size >= pkt->cursor);
1096 size = uimin(uio->uio_resid, pkt->size - pkt->cursor);
1097
1098 KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
1099
1100 error = uiomove(buf, size, uio);
1101 if (error) {
1102 DPRINTF("%s: error = %d\n", __func__, error);
1103 goto out;
1104 }
1105
1106 pkt->cursor += size;
1107
1108 if (pkt->cursor == pkt->size) {
1109 vhci_pkt_destroy(sc, pkt);
1110 if (vxfer->npkts == 0) {
1111 TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
1112 }
1113 }
1114 if (uio->uio_resid == 0) {
1115 break;
1116 }
1117 }
1118
1119 out:
1120 mutex_exit(&port->lock);
1121
1122 while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
1123 struct usbd_xfer *xfer = &vxfer->xfer;
1124 TAILQ_REMOVE(&vxferlist, vxfer, freelist);
1125
1126 mutex_enter(&sc->sc_lock);
1127 xfer->ux_actlen = xfer->ux_length;
1128 xfer->ux_status = USBD_NORMAL_COMPLETION;
1129 usb_transfer_complete(xfer);
1130 mutex_exit(&sc->sc_lock);
1131 }
1132
1133 return error;
1134 }
1135
1136 static int
1137 vhci_fd_write(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1138 int flags)
1139 {
1140 vhci_fd_t *vfd = fp->f_data;
1141 vhci_softc_t *sc = vfd->softc;
1142 vhci_packet_list_t *pktlist;
1143 vhci_packet_t *pkt, *nxt;
1144 vhci_xfer_list_t vxferlist;
1145 vhci_xfer_t *vxfer;
1146 vhci_port_t *port;
1147 int error = 0;
1148 uint8_t *buf;
1149 size_t pktsize, size;
1150
1151 if (uio->uio_resid == 0)
1152 return 0;
1153 port = &sc->sc_port[vfd->port];
1154 pktlist = &port->endpoints[vfd->addr].usb_to_host;
1155
1156 TAILQ_INIT(&vxferlist);
1157
1158 mutex_enter(&port->lock);
1159
1160 if (!(port->status & UPS_PORT_ENABLED)) {
1161 error = ENOBUFS;
1162 goto out;
1163 }
1164
1165 TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
1166 vxfer = pkt->vxfer;
1167 buf = pkt->buf + pkt->cursor;
1168
1169 pktsize = pkt->size;
1170 if (pkt->type.dat)
1171 pktsize = ulmin(vxfer->resbuf.size, pktsize);
1172
1173 KASSERT(pktsize >= pkt->cursor);
1174 size = uimin(uio->uio_resid, pktsize - pkt->cursor);
1175
1176 KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
1177
1178 error = uiomove(buf, size, uio);
1179 if (error) {
1180 DPRINTF("%s: error = %d\n", __func__, error);
1181 goto out;
1182 }
1183
1184 pkt->cursor += size;
1185
1186 if (pkt->cursor == pktsize) {
1187 vhci_pkt_destroy(sc, pkt);
1188 if (vxfer->npkts == 0) {
1189 TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
1190 }
1191 }
1192 if (uio->uio_resid == 0) {
1193 break;
1194 }
1195 }
1196
1197 out:
1198 mutex_exit(&port->lock);
1199
1200 while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
1201 struct usbd_xfer *xfer = &vxfer->xfer;
1202 TAILQ_REMOVE(&vxferlist, vxfer, freelist);
1203
1204 mutex_enter(&sc->sc_lock);
1205 xfer->ux_actlen = ulmin(vxfer->resbuf.size, xfer->ux_length);
1206 xfer->ux_status = USBD_NORMAL_COMPLETION;
1207 usb_transfer_complete(xfer);
1208 mutex_exit(&sc->sc_lock);
1209 }
1210
1211 return error;
1212 }
1213
1214 static int
1215 vhci_fd_ioctl(file_t *fp, u_long cmd, void *data)
1216 {
1217 vhci_fd_t *vfd = fp->f_data;
1218
1219 KASSERT(vfd != NULL);
1220
1221 switch (cmd) {
1222 case VHCI_IOC_GET_INFO:
1223 return vhci_get_info(vfd, data);
1224 case VHCI_IOC_SET_PORT:
1225 return vhci_set_port(vfd, data);
1226 case VHCI_IOC_SET_ADDR:
1227 return vhci_set_addr(vfd, data);
1228 case VHCI_IOC_USB_ATTACH:
1229 return vhci_usb_attach(vfd);
1230 case VHCI_IOC_USB_DETACH:
1231 return vhci_usb_detach(vfd);
1232 default:
1233 return EINVAL;
1234 }
1235 }
1236
1237 /* -------------------------------------------------------------------------- */
1238
1239 static int vhci_match(device_t, cfdata_t, void *);
1240 static void vhci_attach(device_t, device_t, void *);
1241 static int vhci_activate(device_t, enum devact);
1242
1243 CFATTACH_DECL_NEW(vhci, sizeof(vhci_softc_t), vhci_match, vhci_attach,
1244 NULL, vhci_activate);
1245
1246 void
1247 vhciattach(int nunits)
1248 {
1249 struct cfdata *cf;
1250 int error;
1251 size_t i;
1252
1253 error = config_cfattach_attach(vhci_cd.cd_name, &vhci_ca);
1254 if (error) {
1255 aprint_error("%s: unable to register cfattach\n",
1256 vhci_cd.cd_name);
1257 (void)config_cfdriver_detach(&vhci_cd);
1258 return;
1259 }
1260
1261 for (i = 0; i < VHCI_NBUSES; i++) {
1262 cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
1263 cf->cf_name = vhci_cd.cd_name;
1264 cf->cf_atname = vhci_cd.cd_name;
1265 cf->cf_unit = i;
1266 cf->cf_fstate = FSTATE_STAR;
1267 config_attach_pseudo(cf);
1268 }
1269 }
1270
1271 static int
1272 vhci_activate(device_t self, enum devact act)
1273 {
1274 vhci_softc_t *sc = device_private(self);
1275
1276 switch (act) {
1277 case DVACT_DEACTIVATE:
1278 sc->sc_dying = 1;
1279 return 0;
1280 default:
1281 return EOPNOTSUPP;
1282 }
1283 }
1284
1285 static int
1286 vhci_match(device_t parent, cfdata_t match, void *aux)
1287 {
1288 return 1;
1289 }
1290
1291 static void
1292 vhci_attach(device_t parent, device_t self, void *aux)
1293 {
1294 vhci_softc_t *sc = device_private(self);
1295 vhci_port_t *port;
1296 uint8_t addr;
1297 size_t i;
1298
1299 sc->sc_dev = self;
1300 sc->sc_bus.ub_revision = USBREV_2_0;
1301 sc->sc_bus.ub_hctype = USBHCTYPE_VHCI;
1302 sc->sc_bus.ub_busnum = self->dv_unit;
1303 sc->sc_bus.ub_usedma = false;
1304 sc->sc_bus.ub_methods = &vhci_bus_methods;
1305 sc->sc_bus.ub_pipesize = sizeof(vhci_pipe_t);
1306 sc->sc_bus.ub_hcpriv = sc;
1307 sc->sc_dying = false;
1308 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1309
1310 sc->sc_nports = VHCI_NPORTS;
1311 for (i = 0; i < sc->sc_nports; i++) {
1312 port = &sc->sc_port[i];
1313 mutex_init(&port->lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1314 for (addr = 0; addr < VHCI_NADDRS; addr++) {
1315 TAILQ_INIT(&port->endpoints[addr].usb_to_host);
1316 TAILQ_INIT(&port->endpoints[addr].host_to_usb);
1317 }
1318 kcov_remote_register(KCOV_REMOTE_VHCI,
1319 KCOV_REMOTE_VHCI_ID(sc->sc_bus.ub_busnum, i));
1320 }
1321
1322 sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint);
1323 }
1324