xhci.c revision 1.107.2.9 1 /* $NetBSD: xhci.c,v 1.107.2.9 2021/06/22 05:10:50 martin Exp $ */
2
3 /*
4 * Copyright (c) 2013 Jonathan A. Kollasch
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
25 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
26 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * USB rev 2.0 and rev 3.1 specification
31 * http://www.usb.org/developers/docs/
32 * xHCI rev 1.1 specification
33 * http://www.intel.com/technology/usb/spec.htm
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.107.2.9 2021/06/22 05:10:50 martin Exp $");
38
39 #ifdef _KERNEL_OPT
40 #include "opt_usb.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/device.h>
48 #include <sys/select.h>
49 #include <sys/proc.h>
50 #include <sys/queue.h>
51 #include <sys/mutex.h>
52 #include <sys/condvar.h>
53 #include <sys/bus.h>
54 #include <sys/cpu.h>
55 #include <sys/sysctl.h>
56
57 #include <machine/endian.h>
58
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdivar.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbhist.h>
64 #include <dev/usb/usb_mem.h>
65 #include <dev/usb/usb_quirks.h>
66
67 #include <dev/usb/xhcireg.h>
68 #include <dev/usb/xhcivar.h>
69 #include <dev/usb/usbroothub.h>
70
71
72 #ifdef USB_DEBUG
73 #ifndef XHCI_DEBUG
74 #define xhcidebug 0
75 #else /* !XHCI_DEBUG */
76 #define HEXDUMP(a, b, c) \
77 do { \
78 if (xhcidebug > 0) \
79 hexdump(printf, a, b, c); \
80 } while (/*CONSTCOND*/0)
81 static int xhcidebug = 0;
82
83 SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup")
84 {
85 int err;
86 const struct sysctlnode *rnode;
87 const struct sysctlnode *cnode;
88
89 err = sysctl_createv(clog, 0, NULL, &rnode,
90 CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci",
91 SYSCTL_DESCR("xhci global controls"),
92 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
93
94 if (err)
95 goto fail;
96
97 /* control debugging printfs */
98 err = sysctl_createv(clog, 0, &rnode, &cnode,
99 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
100 "debug", SYSCTL_DESCR("Enable debugging output"),
101 NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL);
102 if (err)
103 goto fail;
104
105 return;
106 fail:
107 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
108 }
109
110 #endif /* !XHCI_DEBUG */
111 #endif /* USB_DEBUG */
112
113 #ifndef HEXDUMP
114 #define HEXDUMP(a, b, c)
115 #endif
116
117 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(xhcidebug,FMT,A,B,C,D)
118 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D)
119 #define XHCIHIST_FUNC() USBHIST_FUNC()
120 #define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug)
121 #define XHCIHIST_CALLARGS(FMT,A,B,C,D) \
122 USBHIST_CALLARGS(xhcidebug,FMT,A,B,C,D)
123
124 #define XHCI_DCI_SLOT 0
125 #define XHCI_DCI_EP_CONTROL 1
126
127 #define XHCI_ICI_INPUT_CONTROL 0
128
129 struct xhci_pipe {
130 struct usbd_pipe xp_pipe;
131 struct usb_task xp_async_task;
132 };
133
134 #define XHCI_COMMAND_RING_TRBS 256
135 #define XHCI_EVENT_RING_TRBS 256
136 #define XHCI_EVENT_RING_SEGMENTS 1
137 #define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT
138
139 static usbd_status xhci_open(struct usbd_pipe *);
140 static void xhci_close_pipe(struct usbd_pipe *);
141 static int xhci_intr1(struct xhci_softc * const);
142 static void xhci_softintr(void *);
143 static void xhci_poll(struct usbd_bus *);
144 static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int);
145 static void xhci_freex(struct usbd_bus *, struct usbd_xfer *);
146 static void xhci_abortx(struct usbd_xfer *);
147 static bool xhci_dying(struct usbd_bus *);
148 static void xhci_get_lock(struct usbd_bus *, kmutex_t **);
149 static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int,
150 struct usbd_port *);
151 static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
152 void *, int);
153
154 static usbd_status xhci_configure_endpoint(struct usbd_pipe *);
155 //static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *);
156 static usbd_status xhci_reset_endpoint(struct usbd_pipe *);
157 static usbd_status xhci_stop_endpoint_cmd(struct xhci_softc *,
158 struct xhci_slot *, u_int, uint32_t);
159 static usbd_status xhci_stop_endpoint(struct usbd_pipe *);
160
161 static void xhci_host_dequeue(struct xhci_ring * const);
162 static usbd_status xhci_set_dequeue(struct usbd_pipe *);
163
164 static usbd_status xhci_do_command(struct xhci_softc * const,
165 struct xhci_soft_trb * const, int);
166 static usbd_status xhci_do_command_locked(struct xhci_softc * const,
167 struct xhci_soft_trb * const, int);
168 static usbd_status xhci_init_slot(struct usbd_device *, uint32_t);
169 static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *, int, int);
170 static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool);
171 static usbd_status xhci_enable_slot(struct xhci_softc * const,
172 uint8_t * const);
173 static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t);
174 static usbd_status xhci_address_device(struct xhci_softc * const,
175 uint64_t, uint8_t, bool);
176 static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int);
177 static usbd_status xhci_update_ep0_mps(struct xhci_softc * const,
178 struct xhci_slot * const, u_int);
179 static usbd_status xhci_ring_init(struct xhci_softc * const,
180 struct xhci_ring * const, size_t, size_t);
181 static void xhci_ring_free(struct xhci_softc * const, struct xhci_ring * const);
182
183 static void xhci_setup_ctx(struct usbd_pipe *);
184 static void xhci_setup_route(struct usbd_pipe *, uint32_t *);
185 static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *);
186 static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *);
187 static uint32_t xhci_bival2ival(uint32_t, uint32_t);
188
189 static void xhci_noop(struct usbd_pipe *);
190
191 static usbd_status xhci_root_intr_transfer(struct usbd_xfer *);
192 static usbd_status xhci_root_intr_start(struct usbd_xfer *);
193 static void xhci_root_intr_abort(struct usbd_xfer *);
194 static void xhci_root_intr_close(struct usbd_pipe *);
195 static void xhci_root_intr_done(struct usbd_xfer *);
196
197 static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *);
198 static usbd_status xhci_device_ctrl_start(struct usbd_xfer *);
199 static void xhci_device_ctrl_abort(struct usbd_xfer *);
200 static void xhci_device_ctrl_close(struct usbd_pipe *);
201 static void xhci_device_ctrl_done(struct usbd_xfer *);
202
203 static usbd_status xhci_device_intr_transfer(struct usbd_xfer *);
204 static usbd_status xhci_device_intr_start(struct usbd_xfer *);
205 static void xhci_device_intr_abort(struct usbd_xfer *);
206 static void xhci_device_intr_close(struct usbd_pipe *);
207 static void xhci_device_intr_done(struct usbd_xfer *);
208
209 static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *);
210 static usbd_status xhci_device_bulk_start(struct usbd_xfer *);
211 static void xhci_device_bulk_abort(struct usbd_xfer *);
212 static void xhci_device_bulk_close(struct usbd_pipe *);
213 static void xhci_device_bulk_done(struct usbd_xfer *);
214
215 static const struct usbd_bus_methods xhci_bus_methods = {
216 .ubm_open = xhci_open,
217 .ubm_softint = xhci_softintr,
218 .ubm_dopoll = xhci_poll,
219 .ubm_allocx = xhci_allocx,
220 .ubm_freex = xhci_freex,
221 .ubm_abortx = xhci_abortx,
222 .ubm_dying = xhci_dying,
223 .ubm_getlock = xhci_get_lock,
224 .ubm_newdev = xhci_new_device,
225 .ubm_rhctrl = xhci_roothub_ctrl,
226 };
227
228 static const struct usbd_pipe_methods xhci_root_intr_methods = {
229 .upm_transfer = xhci_root_intr_transfer,
230 .upm_start = xhci_root_intr_start,
231 .upm_abort = xhci_root_intr_abort,
232 .upm_close = xhci_root_intr_close,
233 .upm_cleartoggle = xhci_noop,
234 .upm_done = xhci_root_intr_done,
235 };
236
237
238 static const struct usbd_pipe_methods xhci_device_ctrl_methods = {
239 .upm_transfer = xhci_device_ctrl_transfer,
240 .upm_start = xhci_device_ctrl_start,
241 .upm_abort = xhci_device_ctrl_abort,
242 .upm_close = xhci_device_ctrl_close,
243 .upm_cleartoggle = xhci_noop,
244 .upm_done = xhci_device_ctrl_done,
245 };
246
247 static const struct usbd_pipe_methods xhci_device_isoc_methods = {
248 .upm_cleartoggle = xhci_noop,
249 };
250
251 static const struct usbd_pipe_methods xhci_device_bulk_methods = {
252 .upm_transfer = xhci_device_bulk_transfer,
253 .upm_start = xhci_device_bulk_start,
254 .upm_abort = xhci_device_bulk_abort,
255 .upm_close = xhci_device_bulk_close,
256 .upm_cleartoggle = xhci_noop,
257 .upm_done = xhci_device_bulk_done,
258 };
259
260 static const struct usbd_pipe_methods xhci_device_intr_methods = {
261 .upm_transfer = xhci_device_intr_transfer,
262 .upm_start = xhci_device_intr_start,
263 .upm_abort = xhci_device_intr_abort,
264 .upm_close = xhci_device_intr_close,
265 .upm_cleartoggle = xhci_noop,
266 .upm_done = xhci_device_intr_done,
267 };
268
269 static inline uint32_t
270 xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset)
271 {
272 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
273 }
274
275 static inline uint32_t
276 xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset)
277 {
278 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset);
279 }
280
281 static inline void
282 xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset,
283 uint32_t value)
284 {
285 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value);
286 }
287
288 #if 0 /* unused */
289 static inline void
290 xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset,
291 uint32_t value)
292 {
293 bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value);
294 }
295 #endif /* unused */
296
297 static inline uint32_t
298 xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset)
299 {
300 return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset);
301 }
302
303 static inline uint32_t
304 xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset)
305 {
306 return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
307 }
308
309 static inline void
310 xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset,
311 uint32_t value)
312 {
313 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
314 }
315
316 static inline uint64_t
317 xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset)
318 {
319 uint64_t value;
320
321 if (sc->sc_ac64) {
322 #ifdef XHCI_USE_BUS_SPACE_8
323 value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset);
324 #else
325 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
326 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh,
327 offset + 4) << 32;
328 #endif
329 } else {
330 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
331 }
332
333 return value;
334 }
335
336 static inline void
337 xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset,
338 uint64_t value)
339 {
340 if (sc->sc_ac64) {
341 #ifdef XHCI_USE_BUS_SPACE_8
342 bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value);
343 #else
344 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0,
345 (value >> 0) & 0xffffffff);
346 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4,
347 (value >> 32) & 0xffffffff);
348 #endif
349 } else {
350 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
351 }
352 }
353
354 static inline void
355 xhci_op_barrier(const struct xhci_softc * const sc, bus_size_t offset,
356 bus_size_t len, int flags)
357 {
358 bus_space_barrier(sc->sc_iot, sc->sc_obh, offset, len, flags);
359 }
360
361 static inline uint32_t
362 xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset)
363 {
364 return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
365 }
366
367 static inline void
368 xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset,
369 uint32_t value)
370 {
371 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
372 }
373
374 static inline uint64_t
375 xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset)
376 {
377 uint64_t value;
378
379 if (sc->sc_ac64) {
380 #ifdef XHCI_USE_BUS_SPACE_8
381 value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset);
382 #else
383 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
384 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh,
385 offset + 4) << 32;
386 #endif
387 } else {
388 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
389 }
390
391 return value;
392 }
393
394 static inline void
395 xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset,
396 uint64_t value)
397 {
398 if (sc->sc_ac64) {
399 #ifdef XHCI_USE_BUS_SPACE_8
400 bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value);
401 #else
402 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0,
403 (value >> 0) & 0xffffffff);
404 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4,
405 (value >> 32) & 0xffffffff);
406 #endif
407 } else {
408 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
409 }
410 }
411
412 #if 0 /* unused */
413 static inline uint32_t
414 xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset)
415 {
416 return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset);
417 }
418 #endif /* unused */
419
420 static inline void
421 xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset,
422 uint32_t value)
423 {
424 bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value);
425 }
426
427 /* --- */
428
429 static inline uint8_t
430 xhci_ep_get_type(usb_endpoint_descriptor_t * const ed)
431 {
432 u_int eptype = 0;
433
434 switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
435 case UE_CONTROL:
436 eptype = 0x0;
437 break;
438 case UE_ISOCHRONOUS:
439 eptype = 0x1;
440 break;
441 case UE_BULK:
442 eptype = 0x2;
443 break;
444 case UE_INTERRUPT:
445 eptype = 0x3;
446 break;
447 }
448
449 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
450 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
451 return eptype | 0x4;
452 else
453 return eptype;
454 }
455
456 static u_int
457 xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed)
458 {
459 /* xHCI 1.0 section 4.5.1 */
460 u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress);
461 u_int in = 0;
462
463 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
464 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
465 in = 1;
466
467 return epaddr * 2 + in;
468 }
469
470 static inline u_int
471 xhci_dci_to_ici(const u_int i)
472 {
473 return i + 1;
474 }
475
476 static inline void *
477 xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs,
478 const u_int dci)
479 {
480 return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
481 }
482
483 #if 0 /* unused */
484 static inline bus_addr_t
485 xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs,
486 const u_int dci)
487 {
488 return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
489 }
490 #endif /* unused */
491
492 static inline void *
493 xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs,
494 const u_int ici)
495 {
496 return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
497 }
498
499 static inline bus_addr_t
500 xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs,
501 const u_int ici)
502 {
503 return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
504 }
505
506 static inline struct xhci_trb *
507 xhci_ring_trbv(struct xhci_ring * const xr, u_int idx)
508 {
509 return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
510 }
511
512 static inline bus_addr_t
513 xhci_ring_trbp(struct xhci_ring * const xr, u_int idx)
514 {
515 return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
516 }
517
518 static inline void
519 xhci_soft_trb_put(struct xhci_soft_trb * const trb,
520 uint64_t parameter, uint32_t status, uint32_t control)
521 {
522 trb->trb_0 = parameter;
523 trb->trb_2 = status;
524 trb->trb_3 = control;
525 }
526
527 static inline void
528 xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status,
529 uint32_t control)
530 {
531 trb->trb_0 = htole64(parameter);
532 trb->trb_2 = htole32(status);
533 trb->trb_3 = htole32(control);
534 }
535
536 static int
537 xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx)
538 {
539 /* base address of TRBs */
540 bus_addr_t trbp = xhci_ring_trbp(xr, 0);
541
542 /* trb_0 range sanity check */
543 if (trb_0 == 0 || trb_0 < trbp ||
544 (trb_0 - trbp) % sizeof(struct xhci_trb) != 0 ||
545 (trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) {
546 return 1;
547 }
548 *idx = (trb_0 - trbp) / sizeof(struct xhci_trb);
549 return 0;
550 }
551
552 static unsigned int
553 xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs,
554 u_int dci)
555 {
556 uint32_t *cp;
557
558 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
559 cp = xhci_slot_get_dcv(sc, xs, dci);
560 return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0]));
561 }
562
563 static inline unsigned int
564 xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport)
565 {
566 const unsigned int port = ctlrport - 1;
567 const uint8_t bit = __BIT(port % NBBY);
568
569 return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit);
570 }
571
572 /*
573 * Return the roothub port for a controller port. Both are 1..n.
574 */
575 static inline unsigned int
576 xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport)
577 {
578
579 return sc->sc_ctlrportmap[ctrlport - 1];
580 }
581
582 /*
583 * Return the controller port for a bus roothub port. Both are 1..n.
584 */
585 static inline unsigned int
586 xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn,
587 unsigned int rhport)
588 {
589
590 return sc->sc_rhportmap[bn][rhport - 1];
591 }
592
593 /* --- */
594
595 void
596 xhci_childdet(device_t self, device_t child)
597 {
598 struct xhci_softc * const sc = device_private(self);
599
600 KASSERT((sc->sc_child == child) || (sc->sc_child2 == child));
601 if (child == sc->sc_child2)
602 sc->sc_child2 = NULL;
603 else if (child == sc->sc_child)
604 sc->sc_child = NULL;
605 }
606
607 int
608 xhci_detach(struct xhci_softc *sc, int flags)
609 {
610 int rv = 0;
611
612 if (sc->sc_child2 != NULL) {
613 rv = config_detach(sc->sc_child2, flags);
614 if (rv != 0)
615 return rv;
616 KASSERT(sc->sc_child2 == NULL);
617 }
618
619 if (sc->sc_child != NULL) {
620 rv = config_detach(sc->sc_child, flags);
621 if (rv != 0)
622 return rv;
623 KASSERT(sc->sc_child == NULL);
624 }
625
626 /* XXX unconfigure/free slots */
627
628 /* verify: */
629 xhci_rt_write_4(sc, XHCI_IMAN(0), 0);
630 xhci_op_write_4(sc, XHCI_USBCMD, 0);
631 /* do we need to wait for stop? */
632
633 xhci_op_write_8(sc, XHCI_CRCR, 0);
634 xhci_ring_free(sc, &sc->sc_cr);
635 cv_destroy(&sc->sc_command_cv);
636 cv_destroy(&sc->sc_cmdbusy_cv);
637
638 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0);
639 xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0);
640 xhci_rt_write_8(sc, XHCI_ERDP(0), 0|XHCI_ERDP_LO_BUSY);
641 xhci_ring_free(sc, &sc->sc_er);
642
643 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
644
645 xhci_op_write_8(sc, XHCI_DCBAAP, 0);
646 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
647
648 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots);
649
650 kmem_free(sc->sc_ctlrportbus,
651 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY));
652 kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int));
653
654 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
655 kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int));
656 }
657
658 mutex_destroy(&sc->sc_lock);
659 mutex_destroy(&sc->sc_intr_lock);
660
661 pool_cache_destroy(sc->sc_xferpool);
662
663 return rv;
664 }
665
666 int
667 xhci_activate(device_t self, enum devact act)
668 {
669 struct xhci_softc * const sc = device_private(self);
670
671 switch (act) {
672 case DVACT_DEACTIVATE:
673 sc->sc_dying = true;
674 return 0;
675 default:
676 return EOPNOTSUPP;
677 }
678 }
679
680 bool
681 xhci_suspend(device_t self, const pmf_qual_t *qual)
682 {
683 struct xhci_softc * const sc = device_private(self);
684 size_t i, j, bn, dci;
685 int port;
686 uint32_t v;
687 usbd_status err;
688 bool ok = false;
689
690 XHCIHIST_FUNC(); XHCIHIST_CALLED();
691
692 mutex_enter(&sc->sc_lock);
693
694 /*
695 * Block issuance of new commands, and wait for all pending
696 * commands to complete.
697 */
698 KASSERT(sc->sc_suspender == NULL);
699 sc->sc_suspender = curlwp;
700 while (sc->sc_command_addr != 0)
701 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
702
703 /*
704 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.23.2:
705 * xHCI Power Management, p. 342
706 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=342
707 */
708
709 /*
710 * `1. Stop all USB activity by issuing Stop Endpoint Commands
711 * for Busy endpoints in the Running state. If the Force
712 * Save Context Capability (FSC = ``0'') is not supported,
713 * then Stop Endpoint Commands shall be issued for all idle
714 * endpoints in the Running state as well. The Stop
715 * Endpoint Command causes the xHC to update the respective
716 * Endpoint or Stream Contexts in system memory, e.g. the
717 * TR Dequeue Pointer, DCS, etc. fields. Refer to
718 * Implementation Note "0".'
719 */
720 for (i = 0; i < sc->sc_maxslots; i++) {
721 struct xhci_slot *xs = &sc->sc_slots[i];
722
723 /* Skip if the slot is not in use. */
724 if (xs->xs_idx == 0)
725 continue;
726
727 for (dci = 0; dci < 32; dci++) {
728 /* Skip if the endpoint is not Running. */
729 /* XXX What about Busy? */
730 if (xhci_get_epstate(sc, xs, dci) !=
731 XHCI_EPSTATE_RUNNING)
732 continue;
733
734 /* Stop endpoint. */
735 err = xhci_stop_endpoint_cmd(sc, xs, dci,
736 XHCI_TRB_3_SUSP_EP_BIT);
737 if (err) {
738 device_printf(self, "failed to stop endpoint"
739 " slot %zu dci %zu err %d\n",
740 i, dci, err);
741 goto out;
742 }
743 }
744 }
745
746 /*
747 * Next, suspend all the ports:
748 *
749 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.15:
750 * Suspend-Resume, pp. 276-283
751 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=276
752 */
753 for (bn = 0; bn < 2; bn++) {
754 for (i = 1; i <= sc->sc_rhportcount[bn]; i++) {
755 /* 4.15.1: Port Suspend. */
756 port = XHCI_PORTSC(xhci_rhport2ctlrport(sc, bn, i));
757
758 /*
759 * `System software places individual ports
760 * into suspend mode by writing a ``3'' into
761 * the appropriate PORTSC register Port Link
762 * State (PLS) field (refer to Section 5.4.8).
763 * Software should only set the PLS field to
764 * ``3'' when the port is in the Enabled
765 * state.'
766 *
767 * `Software should not attempt to suspend a
768 * port unless the port reports that it is in
769 * the enabled (PED = ``1''; PLS < ``3'')
770 * state (refer to Section 5.4.8 for more
771 * information about PED and PLS).'
772 */
773 v = xhci_op_read_4(sc, port);
774 if (((v & XHCI_PS_PED) == 0) ||
775 XHCI_PS_PLS_GET(v) >= XHCI_PS_PLS_U3)
776 continue;
777 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
778 v |= XHCI_PS_LWS | XHCI_PS_PLS_SET(XHCI_PS_PLS_SETU3);
779 xhci_op_write_4(sc, port, v);
780
781 /*
782 * `When the PLS field is written with U3
783 * (``3''), the status of the PLS bit will not
784 * change to the target U state U3 until the
785 * suspend signaling has completed to the
786 * attached device (which may be as long as
787 * 10ms.).'
788 *
789 * `Software is required to wait for U3
790 * transitions to complete before it puts the
791 * xHC into a low power state, and before
792 * resuming the port.'
793 *
794 * XXX Take advantage of the technique to
795 * reduce polling on host controllers that
796 * support the U3C capability.
797 */
798 for (j = 0; j < XHCI_WAIT_PLS_U3; j++) {
799 v = xhci_op_read_4(sc, port);
800 if (XHCI_PS_PLS_GET(v) == XHCI_PS_PLS_U3)
801 break;
802 usb_delay_ms(&sc->sc_bus, 1);
803 }
804 if (j == XHCI_WAIT_PLS_U3) {
805 device_printf(self,
806 "suspend timeout on bus %zu port %zu\n",
807 bn, i);
808 goto out;
809 }
810 }
811 }
812
813 /*
814 * `2. Ensure that the Command Ring is in the Stopped state
815 * (CRR = ``0'') or Idle (i.e. the Command Transfer Ring is
816 * empty), and all Command Completion Events associated
817 * with them have been received.'
818 *
819 * XXX
820 */
821
822 /* `3. Stop the controller by setting Run/Stop (R/S) = ``0''.' */
823 xhci_op_write_4(sc, XHCI_USBCMD,
824 xhci_op_read_4(sc, XHCI_USBCMD) & ~XHCI_CMD_RS);
825
826 /*
827 * `4. Read the Operational Runtime, and VTIO registers in the
828 * following order: USBCMD, DNCTRL, DCBAAP, CONFIG, ERSTSZ,
829 * ERSTBA, ERDP, IMAN, IMOD, and VTIO and save their
830 * state.'
831 *
832 * (We don't use VTIO here (XXX for now?).)
833 */
834 sc->sc_regs.usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
835 sc->sc_regs.dnctrl = xhci_op_read_4(sc, XHCI_DNCTRL);
836 sc->sc_regs.dcbaap = xhci_op_read_8(sc, XHCI_DCBAAP);
837 sc->sc_regs.config = xhci_op_read_4(sc, XHCI_CONFIG);
838 sc->sc_regs.erstsz0 = xhci_rt_read_4(sc, XHCI_ERSTSZ(0));
839 sc->sc_regs.erstba0 = xhci_rt_read_8(sc, XHCI_ERSTBA(0));
840 sc->sc_regs.erdp0 = xhci_rt_read_8(sc, XHCI_ERDP(0));
841 sc->sc_regs.iman0 = xhci_rt_read_4(sc, XHCI_IMAN(0));
842 sc->sc_regs.imod0 = xhci_rt_read_4(sc, XHCI_IMOD(0));
843
844 /*
845 * `5. Set the Controller Save State (CSS) flag in the USBCMD
846 * register (5.4.1)...'
847 */
848 xhci_op_write_4(sc, XHCI_USBCMD,
849 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_CSS);
850
851 /*
852 * `...and wait for the Save State Status (SSS) flag in the
853 * USBSTS register (5.4.2) to transition to ``0''.'
854 */
855 for (i = 0; i < XHCI_WAIT_SSS; i++) {
856 if ((xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SSS) == 0)
857 break;
858 usb_delay_ms(&sc->sc_bus, 1);
859 }
860 if (i >= XHCI_WAIT_SSS) {
861 device_printf(self, "suspend timeout, USBSTS.SSS\n");
862 /*
863 * Just optimistically go on and check SRE anyway --
864 * what's the worst that could happen?
865 */
866 }
867
868 /*
869 * `Note: After a Save or Restore operation completes, the
870 * Save/Restore Error (SRE) flag in the USBSTS register should
871 * be checked to ensure that the operation completed
872 * successfully.'
873 */
874 if (xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SRE) {
875 device_printf(self, "suspend error, USBSTS.SRE\n");
876 goto out;
877 }
878
879 /* Success! */
880 ok = true;
881
882 out: mutex_exit(&sc->sc_lock);
883 return ok;
884 }
885
886 bool
887 xhci_resume(device_t self, const pmf_qual_t *qual)
888 {
889 struct xhci_softc * const sc = device_private(self);
890 size_t i, j, bn, dci;
891 int port;
892 uint32_t v;
893 bool ok = false;
894
895 XHCIHIST_FUNC(); XHCIHIST_CALLED();
896
897 mutex_enter(&sc->sc_lock);
898 KASSERT(sc->sc_suspender);
899
900 /*
901 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.23.2:
902 * xHCI Power Management, p. 343
903 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=343
904 */
905
906 /*
907 * `4. Restore the Operational Runtime, and VTIO registers with
908 * their previously saved state in the following order:
909 * DNCTRL, DCBAAP, CONFIG, ERSTSZ, ERSTBA, ERDP, IMAN,
910 * IMOD, and VTIO.'
911 *
912 * (We don't use VTIO here (for now?).)
913 */
914 xhci_op_write_4(sc, XHCI_USBCMD, sc->sc_regs.usbcmd);
915 xhci_op_write_4(sc, XHCI_DNCTRL, sc->sc_regs.dnctrl);
916 xhci_op_write_8(sc, XHCI_DCBAAP, sc->sc_regs.dcbaap);
917 xhci_op_write_4(sc, XHCI_CONFIG, sc->sc_regs.config);
918 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), sc->sc_regs.erstsz0);
919 xhci_rt_write_8(sc, XHCI_ERSTBA(0), sc->sc_regs.erstba0);
920 xhci_rt_write_8(sc, XHCI_ERDP(0), sc->sc_regs.erdp0);
921 xhci_rt_write_4(sc, XHCI_IMAN(0), sc->sc_regs.iman0);
922 xhci_rt_write_4(sc, XHCI_IMOD(0), sc->sc_regs.imod0);
923
924 memset(&sc->sc_regs, 0, sizeof(sc->sc_regs)); /* paranoia */
925
926 /*
927 * `5. Set the Controller Restore State (CRS) flag in the
928 * USBCMD register (5.4.1) to ``1''...'
929 */
930 xhci_op_write_4(sc, XHCI_USBCMD,
931 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_CRS);
932
933 /*
934 * `...and wait for the Restore State Status (RSS) in the
935 * USBSTS register (5.4.2) to transition to ``0''.'
936 */
937 for (i = 0; i < XHCI_WAIT_RSS; i++) {
938 if ((xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_RSS) == 0)
939 break;
940 usb_delay_ms(&sc->sc_bus, 1);
941 }
942 if (i >= XHCI_WAIT_RSS) {
943 device_printf(self, "suspend timeout, USBSTS.RSS\n");
944 goto out;
945 }
946
947 /*
948 * `6. Reinitialize the Command Ring, i.e. so its Cycle bits
949 * are consistent with the RCS values to be written to the
950 * CRCR.'
951 *
952 * XXX Hope just zeroing it is good enough!
953 */
954 xhci_host_dequeue(&sc->sc_cr);
955
956 /*
957 * `7. Write the CRCR with the address and RCS value of the
958 * reinitialized Command Ring. Note that this write will
959 * cause the Command Ring to restart at the address
960 * specified by the CRCR.'
961 */
962 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(&sc->sc_cr, 0) |
963 sc->sc_cr.xr_cs);
964
965 /*
966 * `8. Enable the controller by setting Run/Stop (R/S) =
967 * ``1''.'
968 */
969 xhci_op_write_4(sc, XHCI_USBCMD,
970 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_RS);
971
972 /*
973 * `9. Software shall walk the USB topology and initialize each
974 * of the xHC PORTSC, PORTPMSC, and PORTLI registers, and
975 * external hub ports attached to USB devices.'
976 *
977 * This follows the procedure in 4.15 `Suspend-Resume', 4.15.2
978 * `Port Resume', 4.15.2.1 `Host Initiated'.
979 *
980 * XXX We should maybe batch up initiating the state
981 * transitions, and then wait for them to complete all at once.
982 */
983 for (bn = 0; bn < 2; bn++) {
984 for (i = 1; i <= sc->sc_rhportcount[bn]; i++) {
985 port = XHCI_PORTSC(xhci_rhport2ctlrport(sc, bn, i));
986
987 /* `When a port is in the U3 state: ...' */
988 v = xhci_op_read_4(sc, port);
989 if (XHCI_PS_PLS_GET(v) != XHCI_PS_PLS_U3)
990 continue;
991
992 /*
993 * `For a USB2 protocol port, software shall
994 * write a ``15'' (Resume) to the PLS field to
995 * initiate resume signaling. The port shall
996 * transition to the Resume substate and the
997 * xHC shall transmit the resume signaling
998 * within 1ms (T_URSM). Software shall ensure
999 * that resume is signaled for at least 20ms
1000 * (T_DRSMDN). Software shall start timing
1001 * T_DRSMDN from the write of ``15'' (Resume)
1002 * to PLS.'
1003 */
1004 if (bn == 1) {
1005 KASSERT(sc->sc_bus2.ub_revision == USBREV_2_0);
1006 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
1007 v |= XHCI_PS_LWS;
1008 v |= XHCI_PS_PLS_SET(XHCI_PS_PLS_SETRESUME);
1009 xhci_op_write_4(sc, port, v);
1010 usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT);
1011 } else {
1012 KASSERT(sc->sc_bus.ub_revision > USBREV_2_0);
1013 }
1014
1015 /*
1016 * `For a USB3 protocol port [and a USB2
1017 * protocol port after transitioning to
1018 * Resume], software shall write a ``0'' (U0)
1019 * to the PLS field...'
1020 */
1021 v = xhci_op_read_4(sc, port);
1022 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
1023 v |= XHCI_PS_LWS | XHCI_PS_PLS_SET(XHCI_PS_PLS_SETU0);
1024 xhci_op_write_4(sc, port, v);
1025
1026 for (j = 0; j < XHCI_WAIT_PLS_U0; j++) {
1027 v = xhci_op_read_4(sc, port);
1028 if (XHCI_PS_PLS_GET(v) == XHCI_PS_PLS_U0)
1029 break;
1030 usb_delay_ms(&sc->sc_bus, 1);
1031 }
1032 if (j == XHCI_WAIT_PLS_U0) {
1033 device_printf(self,
1034 "resume timeout on bus %zu port %zu\n",
1035 bn, i);
1036 goto out;
1037 }
1038 }
1039 }
1040
1041 /*
1042 * `10. Restart each of the previously Running endpoints by
1043 * ringing their doorbells.'
1044 */
1045 for (i = 0; i < sc->sc_maxslots; i++) {
1046 struct xhci_slot *xs = &sc->sc_slots[i];
1047
1048 /* Skip if the slot is not in use. */
1049 if (xs->xs_idx == 0)
1050 continue;
1051
1052 for (dci = 0; dci < 32; dci++) {
1053 /* Skip if the endpoint is not Running. */
1054 if (xhci_get_epstate(sc, xs, dci) !=
1055 XHCI_EPSTATE_RUNNING)
1056 continue;
1057
1058 /* Ring the doorbell. */
1059 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
1060 }
1061 }
1062
1063 /*
1064 * `Note: After a Save or Restore operation completes, the
1065 * Save/Restore Error (SRE) flag in the USBSTS register should
1066 * be checked to ensure that the operation completed
1067 * successfully.'
1068 */
1069 if (xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SRE) {
1070 device_printf(self, "resume error, USBSTS.SRE\n");
1071 goto out;
1072 }
1073
1074 /* Resume command issuance. */
1075 sc->sc_suspender = NULL;
1076 cv_broadcast(&sc->sc_cmdbusy_cv);
1077
1078 /* Success! */
1079 ok = true;
1080
1081 out: mutex_exit(&sc->sc_lock);
1082 return ok;
1083 }
1084
1085 bool
1086 xhci_shutdown(device_t self, int flags)
1087 {
1088 return false;
1089 }
1090
1091 static int
1092 xhci_hc_reset(struct xhci_softc * const sc)
1093 {
1094 uint32_t usbcmd, usbsts;
1095 int i;
1096
1097 /* Check controller not ready */
1098 for (i = 0; i < XHCI_WAIT_CNR; i++) {
1099 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1100 if ((usbsts & XHCI_STS_CNR) == 0)
1101 break;
1102 usb_delay_ms(&sc->sc_bus, 1);
1103 }
1104 if (i >= XHCI_WAIT_CNR) {
1105 aprint_error_dev(sc->sc_dev, "controller not ready timeout\n");
1106 return EIO;
1107 }
1108
1109 /* Halt controller */
1110 usbcmd = 0;
1111 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
1112 usb_delay_ms(&sc->sc_bus, 1);
1113
1114 /* Reset controller */
1115 usbcmd = XHCI_CMD_HCRST;
1116 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
1117 for (i = 0; i < XHCI_WAIT_HCRST; i++) {
1118 /*
1119 * Wait 1ms first. Existing Intel xHCI requies 1ms delay to
1120 * prevent system hang (Errata).
1121 */
1122 usb_delay_ms(&sc->sc_bus, 1);
1123 usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
1124 if ((usbcmd & XHCI_CMD_HCRST) == 0)
1125 break;
1126 }
1127 if (i >= XHCI_WAIT_HCRST) {
1128 aprint_error_dev(sc->sc_dev, "host controller reset timeout\n");
1129 return EIO;
1130 }
1131
1132 /* Check controller not ready */
1133 for (i = 0; i < XHCI_WAIT_CNR; i++) {
1134 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1135 if ((usbsts & XHCI_STS_CNR) == 0)
1136 break;
1137 usb_delay_ms(&sc->sc_bus, 1);
1138 }
1139 if (i >= XHCI_WAIT_CNR) {
1140 aprint_error_dev(sc->sc_dev,
1141 "controller not ready timeout after reset\n");
1142 return EIO;
1143 }
1144
1145 return 0;
1146 }
1147
1148 /* 7.2 xHCI Support Protocol Capability */
1149 static void
1150 xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp)
1151 {
1152 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1153
1154 /* XXX Cache this lot */
1155
1156 const uint32_t w0 = xhci_read_4(sc, ecp);
1157 const uint32_t w4 = xhci_read_4(sc, ecp + 4);
1158 const uint32_t w8 = xhci_read_4(sc, ecp + 8);
1159 const uint32_t wc = xhci_read_4(sc, ecp + 0xc);
1160
1161 aprint_debug_dev(sc->sc_dev,
1162 " SP: %08x %08x %08x %08x\n", w0, w4, w8, wc);
1163
1164 if (w4 != XHCI_XECP_USBID)
1165 return;
1166
1167 const int major = XHCI_XECP_SP_W0_MAJOR(w0);
1168 const int minor = XHCI_XECP_SP_W0_MINOR(w0);
1169 const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8);
1170 const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8);
1171
1172 const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16));
1173 switch (mm) {
1174 case 0x0200:
1175 case 0x0300:
1176 case 0x0301:
1177 case 0x0310:
1178 aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n",
1179 major == 3 ? "ss" : "hs", cpo, cpo + cpc -1);
1180 break;
1181 default:
1182 aprint_error_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n",
1183 major, minor);
1184 return;
1185 }
1186
1187 const size_t bus = (major == 3) ? 0 : 1;
1188
1189 /* Index arrays with 0..n-1 where ports are numbered 1..n */
1190 for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) {
1191 if (sc->sc_ctlrportmap[cp] != 0) {
1192 aprint_error_dev(sc->sc_dev, "controller port %zu "
1193 "already assigned", cp);
1194 continue;
1195 }
1196
1197 sc->sc_ctlrportbus[cp / NBBY] |=
1198 bus == 0 ? 0 : __BIT(cp % NBBY);
1199
1200 const size_t rhp = sc->sc_rhportcount[bus]++;
1201
1202 KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0,
1203 "bus %zu rhp %zu is %d", bus, rhp,
1204 sc->sc_rhportmap[bus][rhp]);
1205
1206 sc->sc_rhportmap[bus][rhp] = cp + 1;
1207 sc->sc_ctlrportmap[cp] = rhp + 1;
1208 }
1209 }
1210
1211 /* Process extended capabilities */
1212 static void
1213 xhci_ecp(struct xhci_softc *sc, uint32_t hcc)
1214 {
1215 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1216
1217 bus_size_t ecp = XHCI_HCC_XECP(hcc) * 4;
1218 while (ecp != 0) {
1219 uint32_t ecr = xhci_read_4(sc, ecp);
1220 aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr);
1221 switch (XHCI_XECP_ID(ecr)) {
1222 case XHCI_ID_PROTOCOLS: {
1223 xhci_id_protocols(sc, ecp);
1224 break;
1225 }
1226 case XHCI_ID_USB_LEGACY: {
1227 uint8_t bios_sem;
1228
1229 /* Take host controller ownership from BIOS */
1230 bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM);
1231 if (bios_sem) {
1232 /* sets xHCI to be owned by OS */
1233 xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1);
1234 aprint_debug_dev(sc->sc_dev,
1235 "waiting for BIOS to give up control\n");
1236 for (int i = 0; i < 5000; i++) {
1237 bios_sem = xhci_read_1(sc, ecp +
1238 XHCI_XECP_BIOS_SEM);
1239 if (bios_sem == 0)
1240 break;
1241 DELAY(1000);
1242 }
1243 if (bios_sem) {
1244 aprint_error_dev(sc->sc_dev,
1245 "timed out waiting for BIOS\n");
1246 }
1247 }
1248 break;
1249 }
1250 default:
1251 break;
1252 }
1253 ecr = xhci_read_4(sc, ecp);
1254 if (XHCI_XECP_NEXT(ecr) == 0) {
1255 ecp = 0;
1256 } else {
1257 ecp += XHCI_XECP_NEXT(ecr) * 4;
1258 }
1259 }
1260 }
1261
1262 #define XHCI_HCCPREV1_BITS \
1263 "\177\020" /* New bitmask */ \
1264 "f\020\020XECP\0" \
1265 "f\014\4MAXPSA\0" \
1266 "b\013CFC\0" \
1267 "b\012SEC\0" \
1268 "b\011SBD\0" \
1269 "b\010FSE\0" \
1270 "b\7NSS\0" \
1271 "b\6LTC\0" \
1272 "b\5LHRC\0" \
1273 "b\4PIND\0" \
1274 "b\3PPC\0" \
1275 "b\2CZC\0" \
1276 "b\1BNC\0" \
1277 "b\0AC64\0" \
1278 "\0"
1279 #define XHCI_HCCV1_x_BITS \
1280 "\177\020" /* New bitmask */ \
1281 "f\020\020XECP\0" \
1282 "f\014\4MAXPSA\0" \
1283 "b\013CFC\0" \
1284 "b\012SEC\0" \
1285 "b\011SPC\0" \
1286 "b\010PAE\0" \
1287 "b\7NSS\0" \
1288 "b\6LTC\0" \
1289 "b\5LHRC\0" \
1290 "b\4PIND\0" \
1291 "b\3PPC\0" \
1292 "b\2CSZ\0" \
1293 "b\1BNC\0" \
1294 "b\0AC64\0" \
1295 "\0"
1296
1297 #define XHCI_HCC2_BITS \
1298 "\177\020" /* New bitmask */ \
1299 "b\7ETC_TSC\0" \
1300 "b\6ETC\0" \
1301 "b\5CIC\0" \
1302 "b\4LEC\0" \
1303 "b\3CTC\0" \
1304 "b\2FSC\0" \
1305 "b\1CMC\0" \
1306 "b\0U3C\0" \
1307 "\0"
1308
1309 void
1310 xhci_start(struct xhci_softc *sc)
1311 {
1312 xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA);
1313 if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0)
1314 /* Intel xhci needs interrupt rate moderated. */
1315 xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP);
1316 else
1317 xhci_rt_write_4(sc, XHCI_IMOD(0), 0);
1318 aprint_debug_dev(sc->sc_dev, "current IMOD %u\n",
1319 xhci_rt_read_4(sc, XHCI_IMOD(0)));
1320
1321 /* Go! */
1322 xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS);
1323 aprint_debug_dev(sc->sc_dev, "USBCMD %08"PRIx32"\n",
1324 xhci_op_read_4(sc, XHCI_USBCMD));
1325 }
1326
1327 int
1328 xhci_init(struct xhci_softc *sc)
1329 {
1330 bus_size_t bsz;
1331 uint32_t cap, hcs1, hcs2, hcs3, hcc, dboff, rtsoff, hcc2;
1332 uint32_t pagesize, config;
1333 int i = 0;
1334 uint16_t hciversion;
1335 uint8_t caplength;
1336
1337 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1338
1339 /* Set up the bus struct for the usb 3 and usb 2 buses */
1340 sc->sc_bus.ub_methods = &xhci_bus_methods;
1341 sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe);
1342 sc->sc_bus.ub_usedma = true;
1343 sc->sc_bus.ub_hcpriv = sc;
1344
1345 sc->sc_bus2.ub_methods = &xhci_bus_methods;
1346 sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe);
1347 sc->sc_bus2.ub_revision = USBREV_2_0;
1348 sc->sc_bus2.ub_usedma = true;
1349 sc->sc_bus2.ub_hcpriv = sc;
1350 sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag;
1351
1352 cap = xhci_read_4(sc, XHCI_CAPLENGTH);
1353 caplength = XHCI_CAP_CAPLENGTH(cap);
1354 hciversion = XHCI_CAP_HCIVERSION(cap);
1355
1356 if (hciversion < XHCI_HCIVERSION_0_96 ||
1357 hciversion >= 0x0200) {
1358 aprint_normal_dev(sc->sc_dev,
1359 "xHCI version %x.%x not known to be supported\n",
1360 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
1361 } else {
1362 aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n",
1363 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
1364 }
1365
1366 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength,
1367 &sc->sc_cbh) != 0) {
1368 aprint_error_dev(sc->sc_dev, "capability subregion failure\n");
1369 return ENOMEM;
1370 }
1371
1372 hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1);
1373 sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1);
1374 sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1);
1375 sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1);
1376 hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2);
1377 hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3);
1378 aprint_debug_dev(sc->sc_dev,
1379 "hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3);
1380
1381 hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS);
1382 sc->sc_ac64 = XHCI_HCC_AC64(hcc);
1383 sc->sc_ctxsz = XHCI_HCC_CSZ(hcc) ? 64 : 32;
1384
1385 char sbuf[128];
1386 if (hciversion < XHCI_HCIVERSION_1_0)
1387 snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, hcc);
1388 else
1389 snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, hcc);
1390 aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf);
1391 aprint_debug_dev(sc->sc_dev, "xECP %x\n", XHCI_HCC_XECP(hcc) * 4);
1392 if (hciversion >= XHCI_HCIVERSION_1_1) {
1393 hcc2 = xhci_cap_read_4(sc, XHCI_HCCPARAMS2);
1394 snprintb(sbuf, sizeof(sbuf), XHCI_HCC2_BITS, hcc2);
1395 aprint_debug_dev(sc->sc_dev, "hcc2=%s\n", sbuf);
1396 }
1397
1398 /* default all ports to bus 0, i.e. usb 3 */
1399 sc->sc_ctlrportbus = kmem_zalloc(
1400 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP);
1401 sc->sc_ctlrportmap = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1402
1403 /* controller port to bus roothub port map */
1404 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
1405 sc->sc_rhportmap[j] = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1406 }
1407
1408 /*
1409 * Process all Extended Capabilities
1410 */
1411 xhci_ecp(sc, hcc);
1412
1413 bsz = XHCI_PORTSC(sc->sc_maxports);
1414 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz,
1415 &sc->sc_obh) != 0) {
1416 aprint_error_dev(sc->sc_dev, "operational subregion failure\n");
1417 return ENOMEM;
1418 }
1419
1420 dboff = xhci_cap_read_4(sc, XHCI_DBOFF);
1421 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff,
1422 sc->sc_maxslots * 4, &sc->sc_dbh) != 0) {
1423 aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n");
1424 return ENOMEM;
1425 }
1426
1427 rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF);
1428 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff,
1429 sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) {
1430 aprint_error_dev(sc->sc_dev, "runtime subregion failure\n");
1431 return ENOMEM;
1432 }
1433
1434 int rv;
1435 rv = xhci_hc_reset(sc);
1436 if (rv != 0) {
1437 return rv;
1438 }
1439
1440 if (sc->sc_vendor_init)
1441 sc->sc_vendor_init(sc);
1442
1443 pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE);
1444 aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize);
1445 pagesize = ffs(pagesize);
1446 if (pagesize == 0) {
1447 aprint_error_dev(sc->sc_dev, "pagesize is 0\n");
1448 return EIO;
1449 }
1450 sc->sc_pgsz = 1 << (12 + (pagesize - 1));
1451 aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz);
1452 aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n",
1453 (uint32_t)sc->sc_maxslots);
1454 aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports);
1455
1456 usbd_status err;
1457
1458 sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2);
1459 aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf);
1460 if (sc->sc_maxspbuf != 0) {
1461 err = usb_allocmem(&sc->sc_bus,
1462 sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t),
1463 &sc->sc_spbufarray_dma);
1464 if (err) {
1465 aprint_error_dev(sc->sc_dev,
1466 "spbufarray init fail, err %d\n", err);
1467 return ENOMEM;
1468 }
1469
1470 sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) *
1471 sc->sc_maxspbuf, KM_SLEEP);
1472 uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0);
1473 for (i = 0; i < sc->sc_maxspbuf; i++) {
1474 usb_dma_t * const dma = &sc->sc_spbuf_dma[i];
1475 /* allocate contexts */
1476 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz,
1477 sc->sc_pgsz, dma);
1478 if (err) {
1479 aprint_error_dev(sc->sc_dev,
1480 "spbufarray_dma init fail, err %d\n", err);
1481 rv = ENOMEM;
1482 goto bad1;
1483 }
1484 spbufarray[i] = htole64(DMAADDR(dma, 0));
1485 usb_syncmem(dma, 0, sc->sc_pgsz,
1486 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1487 }
1488
1489 usb_syncmem(&sc->sc_spbufarray_dma, 0,
1490 sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE);
1491 }
1492
1493 config = xhci_op_read_4(sc, XHCI_CONFIG);
1494 config &= ~0xFF;
1495 config |= sc->sc_maxslots & 0xFF;
1496 xhci_op_write_4(sc, XHCI_CONFIG, config);
1497
1498 err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS,
1499 XHCI_COMMAND_RING_SEGMENTS_ALIGN);
1500 if (err) {
1501 aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n",
1502 err);
1503 rv = ENOMEM;
1504 goto bad1;
1505 }
1506
1507 err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS,
1508 XHCI_EVENT_RING_SEGMENTS_ALIGN);
1509 if (err) {
1510 aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n",
1511 err);
1512 rv = ENOMEM;
1513 goto bad2;
1514 }
1515
1516 usb_dma_t *dma;
1517 size_t size;
1518 size_t align;
1519
1520 dma = &sc->sc_eventst_dma;
1521 size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE,
1522 XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN);
1523 KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size);
1524 align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN;
1525 err = usb_allocmem(&sc->sc_bus, size, align, dma);
1526 if (err) {
1527 aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n",
1528 err);
1529 rv = ENOMEM;
1530 goto bad3;
1531 }
1532
1533 memset(KERNADDR(dma, 0), 0, size);
1534 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1535 aprint_debug_dev(sc->sc_dev, "eventst: %016jx %p %zx\n",
1536 (uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0),
1537 KERNADDR(&sc->sc_eventst_dma, 0),
1538 sc->sc_eventst_dma.udma_block->size);
1539
1540 dma = &sc->sc_dcbaa_dma;
1541 size = (1 + sc->sc_maxslots) * sizeof(uint64_t);
1542 KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size);
1543 align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN;
1544 err = usb_allocmem(&sc->sc_bus, size, align, dma);
1545 if (err) {
1546 aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err);
1547 rv = ENOMEM;
1548 goto bad4;
1549 }
1550 aprint_debug_dev(sc->sc_dev, "dcbaa: %016jx %p %zx\n",
1551 (uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0),
1552 KERNADDR(&sc->sc_dcbaa_dma, 0),
1553 sc->sc_dcbaa_dma.udma_block->size);
1554
1555 memset(KERNADDR(dma, 0), 0, size);
1556 if (sc->sc_maxspbuf != 0) {
1557 /*
1558 * DCBA entry 0 hold the scratchbuf array pointer.
1559 */
1560 *(uint64_t *)KERNADDR(dma, 0) =
1561 htole64(DMAADDR(&sc->sc_spbufarray_dma, 0));
1562 }
1563 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1564
1565 sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots,
1566 KM_SLEEP);
1567 if (sc->sc_slots == NULL) {
1568 aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err);
1569 rv = ENOMEM;
1570 goto bad;
1571 }
1572
1573 sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0,
1574 "xhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
1575 if (sc->sc_xferpool == NULL) {
1576 aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n",
1577 err);
1578 rv = ENOMEM;
1579 goto bad;
1580 }
1581
1582 cv_init(&sc->sc_command_cv, "xhcicmd");
1583 cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq");
1584 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1585 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1586
1587 struct xhci_erste *erst;
1588 erst = KERNADDR(&sc->sc_eventst_dma, 0);
1589 erst[0].erste_0 = htole64(xhci_ring_trbp(&sc->sc_er, 0));
1590 erst[0].erste_2 = htole32(sc->sc_er.xr_ntrb);
1591 erst[0].erste_3 = htole32(0);
1592 usb_syncmem(&sc->sc_eventst_dma, 0,
1593 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE);
1594
1595 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS);
1596 xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0));
1597 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(&sc->sc_er, 0) |
1598 XHCI_ERDP_LO_BUSY);
1599
1600 xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0));
1601 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(&sc->sc_cr, 0) |
1602 sc->sc_cr.xr_cs);
1603
1604 xhci_op_barrier(sc, 0, 4, BUS_SPACE_BARRIER_WRITE);
1605
1606 HEXDUMP("eventst", KERNADDR(&sc->sc_eventst_dma, 0),
1607 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS);
1608
1609 if ((sc->sc_quirks & XHCI_DEFERRED_START) == 0)
1610 xhci_start(sc);
1611
1612 return 0;
1613
1614 bad:
1615 if (sc->sc_xferpool) {
1616 pool_cache_destroy(sc->sc_xferpool);
1617 sc->sc_xferpool = NULL;
1618 }
1619
1620 if (sc->sc_slots) {
1621 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) *
1622 sc->sc_maxslots);
1623 sc->sc_slots = NULL;
1624 }
1625
1626 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
1627 bad4:
1628 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
1629 bad3:
1630 xhci_ring_free(sc, &sc->sc_er);
1631 bad2:
1632 xhci_ring_free(sc, &sc->sc_cr);
1633 i = sc->sc_maxspbuf;
1634 bad1:
1635 for (int j = 0; j < i; j++)
1636 usb_freemem(&sc->sc_bus, &sc->sc_spbuf_dma[j]);
1637 usb_freemem(&sc->sc_bus, &sc->sc_spbufarray_dma);
1638
1639 return rv;
1640 }
1641
1642 static inline bool
1643 xhci_polling_p(struct xhci_softc * const sc)
1644 {
1645 return sc->sc_bus.ub_usepolling || sc->sc_bus2.ub_usepolling;
1646 }
1647
1648 int
1649 xhci_intr(void *v)
1650 {
1651 struct xhci_softc * const sc = v;
1652 int ret = 0;
1653
1654 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1655
1656 if (sc == NULL)
1657 return 0;
1658
1659 mutex_spin_enter(&sc->sc_intr_lock);
1660
1661 if (sc->sc_dying || !device_has_power(sc->sc_dev))
1662 goto done;
1663
1664 /* If we get an interrupt while polling, then just ignore it. */
1665 if (xhci_polling_p(sc)) {
1666 #ifdef DIAGNOSTIC
1667 DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
1668 #endif
1669 goto done;
1670 }
1671
1672 ret = xhci_intr1(sc);
1673 if (ret) {
1674 KASSERT(sc->sc_child || sc->sc_child2);
1675
1676 /*
1677 * One of child busses could be already detached. It doesn't
1678 * matter on which of the two the softintr is scheduled.
1679 */
1680 if (sc->sc_child)
1681 usb_schedsoftintr(&sc->sc_bus);
1682 else
1683 usb_schedsoftintr(&sc->sc_bus2);
1684 }
1685 done:
1686 mutex_spin_exit(&sc->sc_intr_lock);
1687 return ret;
1688 }
1689
1690 int
1691 xhci_intr1(struct xhci_softc * const sc)
1692 {
1693 uint32_t usbsts;
1694 uint32_t iman;
1695
1696 XHCIHIST_FUNC();
1697
1698 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1699 XHCIHIST_CALLARGS("USBSTS %08jx", usbsts, 0, 0, 0);
1700 if ((usbsts & (XHCI_STS_HSE | XHCI_STS_EINT | XHCI_STS_PCD |
1701 XHCI_STS_HCE)) == 0) {
1702 DPRINTFN(16, "ignored intr not for %s",
1703 (uintptr_t)device_xname(sc->sc_dev), 0, 0, 0);
1704 return 0;
1705 }
1706
1707 /*
1708 * Clear EINT and other transient flags, to not misenterpret
1709 * next shared interrupt. Also, to avoid race, EINT must be cleared
1710 * before XHCI_IMAN_INTR_PEND is cleared.
1711 */
1712 xhci_op_write_4(sc, XHCI_USBSTS, usbsts & XHCI_STS_RSVDP0);
1713
1714 #ifdef XHCI_DEBUG
1715 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1716 DPRINTFN(16, "USBSTS %08jx", usbsts, 0, 0, 0);
1717 #endif
1718
1719 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1720 DPRINTFN(16, "IMAN0 %08jx", iman, 0, 0, 0);
1721 iman |= XHCI_IMAN_INTR_PEND;
1722 xhci_rt_write_4(sc, XHCI_IMAN(0), iman);
1723
1724 #ifdef XHCI_DEBUG
1725 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1726 DPRINTFN(16, "IMAN0 %08jx", iman, 0, 0, 0);
1727 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1728 DPRINTFN(16, "USBSTS %08jx", usbsts, 0, 0, 0);
1729 #endif
1730
1731 return 1;
1732 }
1733
1734 /*
1735 * 3 port speed types used in USB stack
1736 *
1737 * usbdi speed
1738 * definition: USB_SPEED_* in usb.h
1739 * They are used in struct usbd_device in USB stack.
1740 * ioctl interface uses these values too.
1741 * port_status speed
1742 * definition: UPS_*_SPEED in usb.h
1743 * They are used in usb_port_status_t and valid only for USB 2.0.
1744 * Speed value is always 0 for Super Speed or more, and dwExtPortStatus
1745 * of usb_port_status_ext_t indicates port speed.
1746 * Note that some 3.0 values overlap with 2.0 values.
1747 * (e.g. 0x200 means UPS_POER_POWER_SS in SS and
1748 * means UPS_LOW_SPEED in HS.)
1749 * port status returned from hub also uses these values.
1750 * On NetBSD UPS_OTHER_SPEED indicates port speed is super speed
1751 * or more.
1752 * xspeed:
1753 * definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1)
1754 * They are used in only slot context and PORTSC reg of xhci.
1755 * The difference between usbdi speed and xspeed is
1756 * that FS and LS values are swapped.
1757 */
1758
1759 /* convert usbdi speed to xspeed */
1760 static int
1761 xhci_speed2xspeed(int speed)
1762 {
1763 switch (speed) {
1764 case USB_SPEED_LOW: return 2;
1765 case USB_SPEED_FULL: return 1;
1766 default: return speed;
1767 }
1768 }
1769
1770 #if 0
1771 /* convert xspeed to usbdi speed */
1772 static int
1773 xhci_xspeed2speed(int xspeed)
1774 {
1775 switch (xspeed) {
1776 case 1: return USB_SPEED_FULL;
1777 case 2: return USB_SPEED_LOW;
1778 default: return xspeed;
1779 }
1780 }
1781 #endif
1782
1783 /* convert xspeed to port status speed */
1784 static int
1785 xhci_xspeed2psspeed(int xspeed)
1786 {
1787 switch (xspeed) {
1788 case 0: return 0;
1789 case 1: return UPS_FULL_SPEED;
1790 case 2: return UPS_LOW_SPEED;
1791 case 3: return UPS_HIGH_SPEED;
1792 default: return UPS_OTHER_SPEED;
1793 }
1794 }
1795
1796 /*
1797 * Construct input contexts and issue TRB to open pipe.
1798 */
1799 static usbd_status
1800 xhci_configure_endpoint(struct usbd_pipe *pipe)
1801 {
1802 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1803 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1804 #ifdef USB_DEBUG
1805 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1806 #endif
1807 struct xhci_soft_trb trb;
1808 usbd_status err;
1809
1810 XHCIHIST_FUNC();
1811 XHCIHIST_CALLARGS("slot %ju dci %ju epaddr 0x%02jx attr 0x%02jx",
1812 xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress,
1813 pipe->up_endpoint->ue_edesc->bmAttributes);
1814
1815 /* XXX ensure input context is available? */
1816
1817 memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz);
1818
1819 /* set up context */
1820 xhci_setup_ctx(pipe);
1821
1822 HEXDUMP("input control context", xhci_slot_get_icv(sc, xs, 0),
1823 sc->sc_ctxsz * 1);
1824 HEXDUMP("input endpoint context", xhci_slot_get_icv(sc, xs,
1825 xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1);
1826
1827 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1828 trb.trb_2 = 0;
1829 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1830 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1831
1832 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
1833
1834 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1835 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, dci),
1836 sc->sc_ctxsz * 1);
1837
1838 return err;
1839 }
1840
1841 #if 0
1842 static usbd_status
1843 xhci_unconfigure_endpoint(struct usbd_pipe *pipe)
1844 {
1845 #ifdef USB_DEBUG
1846 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1847 #endif
1848
1849 XHCIHIST_FUNC();
1850 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
1851
1852 return USBD_NORMAL_COMPLETION;
1853 }
1854 #endif
1855
1856 /* 4.6.8, 6.4.3.7 */
1857 static usbd_status
1858 xhci_reset_endpoint_locked(struct usbd_pipe *pipe)
1859 {
1860 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1861 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1862 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1863 struct xhci_soft_trb trb;
1864 usbd_status err;
1865
1866 XHCIHIST_FUNC();
1867 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1868
1869 KASSERT(mutex_owned(&sc->sc_lock));
1870
1871 trb.trb_0 = 0;
1872 trb.trb_2 = 0;
1873 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1874 XHCI_TRB_3_EP_SET(dci) |
1875 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP);
1876
1877 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1878
1879 return err;
1880 }
1881
1882 static usbd_status
1883 xhci_reset_endpoint(struct usbd_pipe *pipe)
1884 {
1885 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1886
1887 mutex_enter(&sc->sc_lock);
1888 usbd_status ret = xhci_reset_endpoint_locked(pipe);
1889 mutex_exit(&sc->sc_lock);
1890
1891 return ret;
1892 }
1893
1894 /*
1895 * 4.6.9, 6.4.3.8
1896 * Stop execution of TDs on xfer ring.
1897 * Should be called with sc_lock held.
1898 */
1899 static usbd_status
1900 xhci_stop_endpoint_cmd(struct xhci_softc *sc, struct xhci_slot *xs, u_int dci,
1901 uint32_t trb3flags)
1902 {
1903 struct xhci_soft_trb trb;
1904 usbd_status err;
1905
1906 XHCIHIST_FUNC();
1907 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1908
1909 KASSERT(mutex_owned(&sc->sc_lock));
1910
1911 trb.trb_0 = 0;
1912 trb.trb_2 = 0;
1913 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1914 XHCI_TRB_3_EP_SET(dci) |
1915 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP) |
1916 trb3flags;
1917
1918 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1919
1920 return err;
1921 }
1922
1923 static usbd_status
1924 xhci_stop_endpoint(struct usbd_pipe *pipe)
1925 {
1926 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1927 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1928 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1929
1930 XHCIHIST_FUNC();
1931 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1932
1933 KASSERT(mutex_owned(&sc->sc_lock));
1934
1935 return xhci_stop_endpoint_cmd(sc, xs, dci, 0);
1936 }
1937
1938 /*
1939 * Set TR Dequeue Pointer.
1940 * xHCI 1.1 4.6.10 6.4.3.9
1941 * Purge all of the TRBs on ring and reinitialize ring.
1942 * Set TR dequeue Pointr to 0 and Cycle State to 1.
1943 * EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE
1944 * error will be generated.
1945 */
1946 static usbd_status
1947 xhci_set_dequeue_locked(struct usbd_pipe *pipe)
1948 {
1949 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1950 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1951 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1952 struct xhci_ring * const xr = &xs->xs_ep[dci].xe_tr;
1953 struct xhci_soft_trb trb;
1954 usbd_status err;
1955
1956 XHCIHIST_FUNC();
1957 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1958
1959 KASSERT(mutex_owned(&sc->sc_lock));
1960
1961 xhci_host_dequeue(xr);
1962
1963 /* set DCS */
1964 trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */
1965 trb.trb_2 = 0;
1966 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1967 XHCI_TRB_3_EP_SET(dci) |
1968 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE);
1969
1970 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1971
1972 return err;
1973 }
1974
1975 static usbd_status
1976 xhci_set_dequeue(struct usbd_pipe *pipe)
1977 {
1978 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1979
1980 mutex_enter(&sc->sc_lock);
1981 usbd_status ret = xhci_set_dequeue_locked(pipe);
1982 mutex_exit(&sc->sc_lock);
1983
1984 return ret;
1985 }
1986
1987 /*
1988 * Open new pipe: called from usbd_setup_pipe_flags.
1989 * Fills methods of pipe.
1990 * If pipe is not for ep0, calls configure_endpoint.
1991 */
1992 static usbd_status
1993 xhci_open(struct usbd_pipe *pipe)
1994 {
1995 struct usbd_device * const dev = pipe->up_dev;
1996 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
1997 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
1998 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
1999
2000 XHCIHIST_FUNC();
2001 XHCIHIST_CALLARGS("addr %jd depth %jd port %jd speed %jd", dev->ud_addr,
2002 dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed);
2003 DPRINTFN(1, " dci %ju type 0x%02jx epaddr 0x%02jx attr 0x%02jx",
2004 xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress,
2005 ed->bmAttributes);
2006 DPRINTFN(1, " mps %ju ival %ju", UGETW(ed->wMaxPacketSize),
2007 ed->bInterval, 0, 0);
2008
2009 if (sc->sc_dying)
2010 return USBD_IOERROR;
2011
2012 /* Root Hub */
2013 if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) {
2014 switch (ed->bEndpointAddress) {
2015 case USB_CONTROL_ENDPOINT:
2016 pipe->up_methods = &roothub_ctrl_methods;
2017 break;
2018 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
2019 pipe->up_methods = &xhci_root_intr_methods;
2020 break;
2021 default:
2022 pipe->up_methods = NULL;
2023 DPRINTFN(0, "bad bEndpointAddress 0x%02jx",
2024 ed->bEndpointAddress, 0, 0, 0);
2025 return USBD_INVAL;
2026 }
2027 return USBD_NORMAL_COMPLETION;
2028 }
2029
2030 switch (xfertype) {
2031 case UE_CONTROL:
2032 pipe->up_methods = &xhci_device_ctrl_methods;
2033 break;
2034 case UE_ISOCHRONOUS:
2035 pipe->up_methods = &xhci_device_isoc_methods;
2036 return USBD_INVAL;
2037 break;
2038 case UE_BULK:
2039 pipe->up_methods = &xhci_device_bulk_methods;
2040 break;
2041 case UE_INTERRUPT:
2042 pipe->up_methods = &xhci_device_intr_methods;
2043 break;
2044 default:
2045 return USBD_IOERROR;
2046 break;
2047 }
2048
2049 if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT)
2050 return xhci_configure_endpoint(pipe);
2051
2052 return USBD_NORMAL_COMPLETION;
2053 }
2054
2055 /*
2056 * Closes pipe, called from usbd_kill_pipe via close methods.
2057 * If the endpoint to be closed is ep0, disable_slot.
2058 * Should be called with sc_lock held.
2059 */
2060 static void
2061 xhci_close_pipe(struct usbd_pipe *pipe)
2062 {
2063 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
2064 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2065 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
2066 const u_int dci = xhci_ep_get_dci(ed);
2067 struct xhci_soft_trb trb;
2068 uint32_t *cp;
2069
2070 XHCIHIST_FUNC();
2071
2072 if (sc->sc_dying)
2073 return;
2074
2075 /* xs is uninitialized before xhci_init_slot */
2076 if (xs == NULL || xs->xs_idx == 0)
2077 return;
2078
2079 XHCIHIST_CALLARGS("pipe %#jx slot %ju dci %ju",
2080 (uintptr_t)pipe, xs->xs_idx, dci, 0);
2081
2082 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
2083 KASSERT(mutex_owned(&sc->sc_lock));
2084
2085 if (pipe->up_dev->ud_depth == 0)
2086 return;
2087
2088 if (dci == XHCI_DCI_EP_CONTROL) {
2089 DPRINTFN(4, "closing ep0", 0, 0, 0, 0);
2090 xhci_disable_slot(sc, xs->xs_idx);
2091 return;
2092 }
2093
2094 if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED)
2095 (void)xhci_stop_endpoint(pipe);
2096
2097 /*
2098 * set appropriate bit to be dropped.
2099 * don't set DC bit to 1, otherwise all endpoints
2100 * would be deconfigured.
2101 */
2102 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
2103 cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci));
2104 cp[1] = htole32(0);
2105
2106 /* XXX should be most significant one, not dci? */
2107 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
2108 cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci));
2109
2110 /* configure ep context performs an implicit dequeue */
2111 xhci_host_dequeue(&xs->xs_ep[dci].xe_tr);
2112
2113 /* sync input contexts before they are read from memory */
2114 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
2115
2116 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
2117 trb.trb_2 = 0;
2118 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
2119 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
2120
2121 (void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
2122 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2123 }
2124
2125 /*
2126 * Abort transfer.
2127 * Should be called with sc_lock held.
2128 */
2129 static void
2130 xhci_abortx(struct usbd_xfer *xfer)
2131 {
2132 XHCIHIST_FUNC();
2133 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2134 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
2135 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
2136
2137 XHCIHIST_CALLARGS("xfer %#jx pipe %#jx",
2138 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0, 0);
2139
2140 KASSERT(mutex_owned(&sc->sc_lock));
2141 ASSERT_SLEEPABLE();
2142
2143 KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
2144 xfer->ux_status == USBD_TIMEOUT),
2145 "bad abort status: %d", xfer->ux_status);
2146
2147 /*
2148 * If we're dying, skip the hardware action and just notify the
2149 * software that we're done.
2150 */
2151 if (sc->sc_dying) {
2152 DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer,
2153 xfer->ux_status, 0, 0);
2154 goto dying;
2155 }
2156
2157 /*
2158 * HC Step 1: Stop execution of TD on the ring.
2159 */
2160 switch (xhci_get_epstate(sc, xs, dci)) {
2161 case XHCI_EPSTATE_HALTED:
2162 (void)xhci_reset_endpoint_locked(xfer->ux_pipe);
2163 break;
2164 case XHCI_EPSTATE_STOPPED:
2165 break;
2166 default:
2167 (void)xhci_stop_endpoint(xfer->ux_pipe);
2168 break;
2169 }
2170 #ifdef DIAGNOSTIC
2171 uint32_t epst = xhci_get_epstate(sc, xs, dci);
2172 if (epst != XHCI_EPSTATE_STOPPED)
2173 DPRINTFN(4, "dci %ju not stopped %ju", dci, epst, 0, 0);
2174 #endif
2175
2176 /*
2177 * HC Step 2: Remove any vestiges of the xfer from the ring.
2178 */
2179 xhci_set_dequeue_locked(xfer->ux_pipe);
2180
2181 /*
2182 * Final Step: Notify completion to waiting xfers.
2183 */
2184 dying:
2185 usb_transfer_complete(xfer);
2186 DPRINTFN(14, "end", 0, 0, 0, 0);
2187
2188 KASSERT(mutex_owned(&sc->sc_lock));
2189 }
2190
2191 static void
2192 xhci_host_dequeue(struct xhci_ring * const xr)
2193 {
2194 /* When dequeueing the controller, update our struct copy too */
2195 memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE);
2196 usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE,
2197 BUS_DMASYNC_PREWRITE);
2198 memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies));
2199
2200 xr->xr_ep = 0;
2201 xr->xr_cs = 1;
2202 }
2203
2204 /*
2205 * Recover STALLed endpoint.
2206 * xHCI 1.1 sect 4.10.2.1
2207 * Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove
2208 * all transfers on transfer ring.
2209 * These are done in thread context asynchronously.
2210 */
2211 static void
2212 xhci_clear_endpoint_stall_async_task(void *cookie)
2213 {
2214 struct usbd_xfer * const xfer = cookie;
2215 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2216 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
2217 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
2218 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
2219
2220 XHCIHIST_FUNC();
2221 XHCIHIST_CALLARGS("xfer %#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx,
2222 dci, 0);
2223
2224 /*
2225 * XXXMRG: Stall task can run after slot is disabled when yanked.
2226 * This hack notices that the xs has been memset() in
2227 * xhci_disable_slot() and returns. Both xhci_reset_endpoint()
2228 * and xhci_set_dequeue() rely upon a valid ring setup for correct
2229 * operation, and the latter will fault, as would
2230 * usb_transfer_complete() if it got that far.
2231 */
2232 if (xs->xs_idx == 0) {
2233 DPRINTFN(4, "ends xs_idx is 0", 0, 0, 0, 0);
2234 return;
2235 }
2236
2237 xhci_reset_endpoint(xfer->ux_pipe);
2238 xhci_set_dequeue(xfer->ux_pipe);
2239
2240 mutex_enter(&sc->sc_lock);
2241 tr->is_halted = false;
2242 usb_transfer_complete(xfer);
2243 mutex_exit(&sc->sc_lock);
2244 DPRINTFN(4, "ends", 0, 0, 0, 0);
2245 }
2246
2247 static usbd_status
2248 xhci_clear_endpoint_stall_async(struct usbd_xfer *xfer)
2249 {
2250 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2251 struct xhci_pipe * const xp = (struct xhci_pipe *)xfer->ux_pipe;
2252
2253 XHCIHIST_FUNC();
2254 XHCIHIST_CALLARGS("xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
2255
2256 if (sc->sc_dying) {
2257 return USBD_IOERROR;
2258 }
2259
2260 usb_init_task(&xp->xp_async_task,
2261 xhci_clear_endpoint_stall_async_task, xfer, USB_TASKQ_MPSAFE);
2262 usb_add_task(xfer->ux_pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC);
2263 DPRINTFN(4, "ends", 0, 0, 0, 0);
2264
2265 return USBD_NORMAL_COMPLETION;
2266 }
2267
2268 /* Process roothub port status/change events and notify to uhub_intr. */
2269 static void
2270 xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport)
2271 {
2272 XHCIHIST_FUNC();
2273 XHCIHIST_CALLARGS("xhci%jd: port %ju status change",
2274 device_unit(sc->sc_dev), ctlrport, 0, 0);
2275
2276 if (ctlrport > sc->sc_maxports)
2277 return;
2278
2279 const size_t bn = xhci_ctlrport2bus(sc, ctlrport);
2280 const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport);
2281 struct usbd_xfer * const xfer = sc->sc_intrxfer[bn];
2282
2283 DPRINTFN(4, "xhci%jd: bus %jd bp %ju xfer %#jx status change",
2284 device_unit(sc->sc_dev), bn, rhp, (uintptr_t)xfer);
2285
2286 if (xfer == NULL)
2287 return;
2288 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
2289
2290 uint8_t *p = xfer->ux_buf;
2291 memset(p, 0, xfer->ux_length);
2292 p[rhp / NBBY] |= 1 << (rhp % NBBY);
2293 xfer->ux_actlen = xfer->ux_length;
2294 xfer->ux_status = USBD_NORMAL_COMPLETION;
2295 usb_transfer_complete(xfer);
2296 }
2297
2298 /* Process Transfer Events */
2299 static void
2300 xhci_event_transfer(struct xhci_softc * const sc,
2301 const struct xhci_trb * const trb)
2302 {
2303 uint64_t trb_0;
2304 uint32_t trb_2, trb_3;
2305 uint8_t trbcode;
2306 u_int slot, dci;
2307 struct xhci_slot *xs;
2308 struct xhci_ring *xr;
2309 struct xhci_xfer *xx;
2310 struct usbd_xfer *xfer;
2311 usbd_status err;
2312
2313 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2314
2315 trb_0 = le64toh(trb->trb_0);
2316 trb_2 = le32toh(trb->trb_2);
2317 trb_3 = le32toh(trb->trb_3);
2318 trbcode = XHCI_TRB_2_ERROR_GET(trb_2);
2319 slot = XHCI_TRB_3_SLOT_GET(trb_3);
2320 dci = XHCI_TRB_3_EP_GET(trb_3);
2321 xs = &sc->sc_slots[slot];
2322 xr = &xs->xs_ep[dci].xe_tr;
2323
2324 /* sanity check */
2325 KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots,
2326 "invalid xs_idx %u slot %u", xs->xs_idx, slot);
2327
2328 int idx = 0;
2329 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
2330 if (xhci_trb_get_idx(xr, trb_0, &idx)) {
2331 DPRINTFN(0, "invalid trb_0 0x%jx", trb_0, 0, 0, 0);
2332 return;
2333 }
2334 xx = xr->xr_cookies[idx];
2335
2336 /* clear cookie of consumed TRB */
2337 xr->xr_cookies[idx] = NULL;
2338
2339 /*
2340 * xx is NULL if pipe is opened but xfer is not started.
2341 * It happens when stopping idle pipe.
2342 */
2343 if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) {
2344 DPRINTFN(1, "Ignore #%ju: cookie %#jx cc %ju dci %ju",
2345 idx, (uintptr_t)xx, trbcode, dci);
2346 DPRINTFN(1, " orig TRB %jx type %ju", trb_0,
2347 XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)),
2348 0, 0);
2349 return;
2350 }
2351 } else {
2352 /* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */
2353 xx = (void *)(uintptr_t)(trb_0 & ~0x3);
2354 }
2355 /* XXX this may not happen */
2356 if (xx == NULL) {
2357 DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0);
2358 return;
2359 }
2360 xfer = &xx->xx_xfer;
2361 /* XXX this may happen when detaching */
2362 if (xfer == NULL) {
2363 DPRINTFN(1, "xx(%#jx)->xx_xfer is NULL trb_0 %#jx",
2364 (uintptr_t)xx, trb_0, 0, 0);
2365 return;
2366 }
2367 DPRINTFN(14, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
2368 /* XXX I dunno why this happens */
2369 KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer);
2370
2371 if (!xfer->ux_pipe->up_repeat &&
2372 SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) {
2373 DPRINTFN(1, "xfer(%#jx)->pipe not queued", (uintptr_t)xfer,
2374 0, 0, 0);
2375 return;
2376 }
2377
2378 /* 4.11.5.2 Event Data TRB */
2379 if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
2380 DPRINTFN(14, "transfer Event Data: 0x%016jx 0x%08jx"
2381 " %02jx", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0);
2382 if ((trb_0 & 0x3) == 0x3) {
2383 xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2);
2384 }
2385 }
2386
2387 switch (trbcode) {
2388 case XHCI_TRB_ERROR_SHORT_PKT:
2389 case XHCI_TRB_ERROR_SUCCESS:
2390 /*
2391 * A ctrl transfer can generate two events if it has a Data
2392 * stage. A short data stage can be OK and should not
2393 * complete the transfer as the status stage needs to be
2394 * performed.
2395 *
2396 * Note: Data and Status stage events point at same xfer.
2397 * ux_actlen and ux_dmabuf will be passed to
2398 * usb_transfer_complete after the Status stage event.
2399 *
2400 * It can be distingished which stage generates the event:
2401 * + by checking least 3 bits of trb_0 if ED==1.
2402 * (see xhci_device_ctrl_start).
2403 * + by checking the type of original TRB if ED==0.
2404 *
2405 * In addition, intr, bulk, and isoc transfer currently
2406 * consists of single TD, so the "skip" is not needed.
2407 * ctrl xfer uses EVENT_DATA, and others do not.
2408 * Thus driver can switch the flow by checking ED bit.
2409 */
2410 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
2411 if (xfer->ux_actlen == 0)
2412 xfer->ux_actlen = xfer->ux_length -
2413 XHCI_TRB_2_REM_GET(trb_2);
2414 if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3))
2415 == XHCI_TRB_TYPE_DATA_STAGE) {
2416 return;
2417 }
2418 } else if ((trb_0 & 0x3) == 0x3) {
2419 return;
2420 }
2421 err = USBD_NORMAL_COMPLETION;
2422 break;
2423 case XHCI_TRB_ERROR_STOPPED:
2424 case XHCI_TRB_ERROR_LENGTH:
2425 case XHCI_TRB_ERROR_STOPPED_SHORT:
2426 err = USBD_IOERROR;
2427 break;
2428 case XHCI_TRB_ERROR_STALL:
2429 case XHCI_TRB_ERROR_BABBLE:
2430 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2431 xr->is_halted = true;
2432 /*
2433 * Try to claim this xfer for completion. If it has already
2434 * completed or aborted, drop it on the floor.
2435 */
2436 if (!usbd_xfer_trycomplete(xfer))
2437 return;
2438
2439 /*
2440 * Stalled endpoints can be recoverd by issuing
2441 * command TRB TYPE_RESET_EP on xHCI instead of
2442 * issuing request CLEAR_FEATURE UF_ENDPOINT_HALT
2443 * on the endpoint. However, this function may be
2444 * called from softint context (e.g. from umass),
2445 * in that case driver gets KASSERT in cv_timedwait
2446 * in xhci_do_command.
2447 * To avoid this, this runs reset_endpoint and
2448 * usb_transfer_complete in usb task thread
2449 * asynchronously (and then umass issues clear
2450 * UF_ENDPOINT_HALT).
2451 */
2452
2453 /* Override the status. */
2454 xfer->ux_status = USBD_STALLED;
2455
2456 xhci_clear_endpoint_stall_async(xfer);
2457 return;
2458 default:
2459 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2460 err = USBD_IOERROR;
2461 break;
2462 }
2463
2464 /*
2465 * Try to claim this xfer for completion. If it has already
2466 * completed or aborted, drop it on the floor.
2467 */
2468 if (!usbd_xfer_trycomplete(xfer))
2469 return;
2470
2471 /* Set the status. */
2472 xfer->ux_status = err;
2473
2474 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0 ||
2475 (trb_0 & 0x3) == 0x0) {
2476 usb_transfer_complete(xfer);
2477 }
2478 }
2479
2480 /* Process Command complete events */
2481 static void
2482 xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb)
2483 {
2484 uint64_t trb_0;
2485 uint32_t trb_2, trb_3;
2486
2487 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2488
2489 KASSERT(mutex_owned(&sc->sc_lock));
2490
2491 trb_0 = le64toh(trb->trb_0);
2492 trb_2 = le32toh(trb->trb_2);
2493 trb_3 = le32toh(trb->trb_3);
2494
2495 if (trb_0 == sc->sc_command_addr) {
2496 sc->sc_resultpending = false;
2497
2498 sc->sc_result_trb.trb_0 = trb_0;
2499 sc->sc_result_trb.trb_2 = trb_2;
2500 sc->sc_result_trb.trb_3 = trb_3;
2501 if (XHCI_TRB_2_ERROR_GET(trb_2) !=
2502 XHCI_TRB_ERROR_SUCCESS) {
2503 DPRINTFN(1, "command completion "
2504 "failure: 0x%016jx 0x%08jx 0x%08jx",
2505 trb_0, trb_2, trb_3, 0);
2506 }
2507 cv_signal(&sc->sc_command_cv);
2508 } else {
2509 DPRINTFN(1, "spurious event: %#jx 0x%016jx "
2510 "0x%08jx 0x%08jx", (uintptr_t)trb, trb_0, trb_2, trb_3);
2511 }
2512 }
2513
2514 /*
2515 * Process events.
2516 * called from xhci_softintr
2517 */
2518 static void
2519 xhci_handle_event(struct xhci_softc * const sc,
2520 const struct xhci_trb * const trb)
2521 {
2522 uint64_t trb_0;
2523 uint32_t trb_2, trb_3;
2524
2525 XHCIHIST_FUNC();
2526
2527 trb_0 = le64toh(trb->trb_0);
2528 trb_2 = le32toh(trb->trb_2);
2529 trb_3 = le32toh(trb->trb_3);
2530
2531 XHCIHIST_CALLARGS("event: %#jx 0x%016jx 0x%08jx 0x%08jx",
2532 (uintptr_t)trb, trb_0, trb_2, trb_3);
2533
2534 /*
2535 * 4.11.3.1, 6.4.2.1
2536 * TRB Pointer is invalid for these completion codes.
2537 */
2538 switch (XHCI_TRB_2_ERROR_GET(trb_2)) {
2539 case XHCI_TRB_ERROR_RING_UNDERRUN:
2540 case XHCI_TRB_ERROR_RING_OVERRUN:
2541 case XHCI_TRB_ERROR_VF_RING_FULL:
2542 return;
2543 default:
2544 if (trb_0 == 0) {
2545 return;
2546 }
2547 break;
2548 }
2549
2550 switch (XHCI_TRB_3_TYPE_GET(trb_3)) {
2551 case XHCI_TRB_EVENT_TRANSFER:
2552 xhci_event_transfer(sc, trb);
2553 break;
2554 case XHCI_TRB_EVENT_CMD_COMPLETE:
2555 xhci_event_cmd(sc, trb);
2556 break;
2557 case XHCI_TRB_EVENT_PORT_STS_CHANGE:
2558 xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff));
2559 break;
2560 default:
2561 break;
2562 }
2563 }
2564
2565 static void
2566 xhci_softintr(void *v)
2567 {
2568 struct usbd_bus * const bus = v;
2569 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2570 struct xhci_ring * const er = &sc->sc_er;
2571 struct xhci_trb *trb;
2572 int i, j, k;
2573
2574 XHCIHIST_FUNC();
2575
2576 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
2577
2578 i = er->xr_ep;
2579 j = er->xr_cs;
2580
2581 XHCIHIST_CALLARGS("er: xr_ep %jd xr_cs %jd", i, j, 0, 0);
2582
2583 while (1) {
2584 usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE,
2585 BUS_DMASYNC_POSTREAD);
2586 trb = &er->xr_trb[i];
2587 k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
2588
2589 if (j != k)
2590 break;
2591
2592 xhci_handle_event(sc, trb);
2593
2594 i++;
2595 if (i == er->xr_ntrb) {
2596 i = 0;
2597 j ^= 1;
2598 }
2599 }
2600
2601 er->xr_ep = i;
2602 er->xr_cs = j;
2603
2604 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) |
2605 XHCI_ERDP_LO_BUSY);
2606
2607 DPRINTFN(16, "ends", 0, 0, 0, 0);
2608
2609 return;
2610 }
2611
2612 static void
2613 xhci_poll(struct usbd_bus *bus)
2614 {
2615 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2616
2617 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2618
2619 mutex_enter(&sc->sc_intr_lock);
2620 int ret = xhci_intr1(sc);
2621 if (ret) {
2622 xhci_softintr(bus);
2623 }
2624 mutex_exit(&sc->sc_intr_lock);
2625
2626 return;
2627 }
2628
2629 static struct usbd_xfer *
2630 xhci_allocx(struct usbd_bus *bus, unsigned int nframes)
2631 {
2632 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2633 struct usbd_xfer *xfer;
2634
2635 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2636
2637 xfer = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
2638 if (xfer != NULL) {
2639 memset(xfer, 0, sizeof(struct xhci_xfer));
2640 #ifdef DIAGNOSTIC
2641 xfer->ux_state = XFER_BUSY;
2642 #endif
2643 }
2644
2645 return xfer;
2646 }
2647
2648 static void
2649 xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
2650 {
2651 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2652
2653 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2654
2655 #ifdef DIAGNOSTIC
2656 if (xfer->ux_state != XFER_BUSY &&
2657 xfer->ux_status != USBD_NOT_STARTED) {
2658 DPRINTFN(0, "xfer=%#jx not busy, 0x%08jx",
2659 (uintptr_t)xfer, xfer->ux_state, 0, 0);
2660 }
2661 xfer->ux_state = XFER_FREE;
2662 #endif
2663 pool_cache_put(sc->sc_xferpool, xfer);
2664 }
2665
2666 static bool
2667 xhci_dying(struct usbd_bus *bus)
2668 {
2669 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2670
2671 return sc->sc_dying;
2672 }
2673
2674 static void
2675 xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
2676 {
2677 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2678
2679 *lock = &sc->sc_lock;
2680 }
2681
2682 extern uint32_t usb_cookie_no;
2683
2684 /*
2685 * xHCI 4.3
2686 * Called when uhub_explore finds a new device (via usbd_new_device).
2687 * Port initialization and speed detection (4.3.1) are already done in uhub.c.
2688 * This function does:
2689 * Allocate and construct dev structure of default endpoint (ep0).
2690 * Allocate and open pipe of ep0.
2691 * Enable slot and initialize slot context.
2692 * Set Address.
2693 * Read initial device descriptor.
2694 * Determine initial MaxPacketSize (mps) by speed.
2695 * Read full device descriptor.
2696 * Register this device.
2697 * Finally state of device transitions ADDRESSED.
2698 */
2699 static usbd_status
2700 xhci_new_device(device_t parent, struct usbd_bus *bus, int depth,
2701 int speed, int port, struct usbd_port *up)
2702 {
2703 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2704 struct usbd_device *dev;
2705 usbd_status err;
2706 usb_device_descriptor_t *dd;
2707 struct xhci_slot *xs;
2708 uint32_t *cp;
2709
2710 XHCIHIST_FUNC();
2711 XHCIHIST_CALLARGS("port %ju depth %ju speed %ju up %#jx",
2712 port, depth, speed, (uintptr_t)up);
2713
2714 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
2715 dev->ud_bus = bus;
2716 dev->ud_quirks = &usbd_no_quirk;
2717 dev->ud_addr = 0;
2718 dev->ud_ddesc.bMaxPacketSize = 0;
2719 dev->ud_depth = depth;
2720 dev->ud_powersrc = up;
2721 dev->ud_myhub = up->up_parent;
2722 dev->ud_speed = speed;
2723 dev->ud_langid = USBD_NOLANG;
2724 dev->ud_cookie.cookie = ++usb_cookie_no;
2725
2726 /* Set up default endpoint handle. */
2727 dev->ud_ep0.ue_edesc = &dev->ud_ep0desc;
2728 /* doesn't matter, just don't let it uninitialized */
2729 dev->ud_ep0.ue_toggle = 0;
2730
2731 /* Set up default endpoint descriptor. */
2732 dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE;
2733 dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT;
2734 dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
2735 dev->ud_ep0desc.bmAttributes = UE_CONTROL;
2736 dev->ud_ep0desc.bInterval = 0;
2737
2738 /* 4.3, 4.8.2.1 */
2739 switch (speed) {
2740 case USB_SPEED_SUPER:
2741 case USB_SPEED_SUPER_PLUS:
2742 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET);
2743 break;
2744 case USB_SPEED_FULL:
2745 /* XXX using 64 as initial mps of ep0 in FS */
2746 case USB_SPEED_HIGH:
2747 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET);
2748 break;
2749 case USB_SPEED_LOW:
2750 default:
2751 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET);
2752 break;
2753 }
2754
2755 up->up_dev = dev;
2756
2757 /* Establish the default pipe. */
2758 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0, USBD_DEFAULT_INTERVAL,
2759 &dev->ud_pipe0);
2760 if (err) {
2761 goto bad;
2762 }
2763
2764 dd = &dev->ud_ddesc;
2765
2766 if (depth == 0 && port == 0) {
2767 KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL);
2768 bus->ub_devices[USB_ROOTHUB_INDEX] = dev;
2769 err = usbd_get_initial_ddesc(dev, dd);
2770 if (err) {
2771 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2772 goto bad;
2773 }
2774
2775 err = usbd_reload_device_desc(dev);
2776 if (err) {
2777 DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
2778 goto bad;
2779 }
2780 } else {
2781 uint8_t slot = 0;
2782
2783 /* 4.3.2 */
2784 err = xhci_enable_slot(sc, &slot);
2785 if (err) {
2786 DPRINTFN(1, "enable slot %ju", err, 0, 0, 0);
2787 goto bad;
2788 }
2789
2790 xs = &sc->sc_slots[slot];
2791 dev->ud_hcpriv = xs;
2792
2793 /* 4.3.3 initialize slot structure */
2794 err = xhci_init_slot(dev, slot);
2795 if (err) {
2796 DPRINTFN(1, "init slot %ju", err, 0, 0, 0);
2797 dev->ud_hcpriv = NULL;
2798 /*
2799 * We have to disable_slot here because
2800 * xs->xs_idx == 0 when xhci_init_slot fails,
2801 * in that case usbd_remove_dev won't work.
2802 */
2803 mutex_enter(&sc->sc_lock);
2804 xhci_disable_slot(sc, slot);
2805 mutex_exit(&sc->sc_lock);
2806 goto bad;
2807 }
2808
2809 /* 4.3.4 Address Assignment */
2810 err = xhci_set_address(dev, slot, false);
2811 if (err) {
2812 DPRINTFN(1, "failed! to set address: %ju", err, 0, 0, 0);
2813 goto bad;
2814 }
2815
2816 /* Allow device time to set new address */
2817 usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE);
2818
2819 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2820 cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT);
2821 HEXDUMP("slot context", cp, sc->sc_ctxsz);
2822 uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3]));
2823 DPRINTFN(4, "device address %ju", addr, 0, 0, 0);
2824 /*
2825 * XXX ensure we know when the hardware does something
2826 * we can't yet cope with
2827 */
2828 KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr);
2829 dev->ud_addr = addr;
2830
2831 KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL,
2832 "addr %d already allocated", dev->ud_addr);
2833 /*
2834 * The root hub is given its own slot
2835 */
2836 bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev;
2837
2838 err = usbd_get_initial_ddesc(dev, dd);
2839 if (err) {
2840 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2841 goto bad;
2842 }
2843
2844 /* 4.8.2.1 */
2845 if (USB_IS_SS(speed)) {
2846 if (dd->bMaxPacketSize != 9) {
2847 printf("%s: invalid mps 2^%u for SS ep0,"
2848 " using 512\n",
2849 device_xname(sc->sc_dev),
2850 dd->bMaxPacketSize);
2851 dd->bMaxPacketSize = 9;
2852 }
2853 USETW(dev->ud_ep0desc.wMaxPacketSize,
2854 (1 << dd->bMaxPacketSize));
2855 } else
2856 USETW(dev->ud_ep0desc.wMaxPacketSize,
2857 dd->bMaxPacketSize);
2858 DPRINTFN(4, "bMaxPacketSize %ju", dd->bMaxPacketSize, 0, 0, 0);
2859 err = xhci_update_ep0_mps(sc, xs,
2860 UGETW(dev->ud_ep0desc.wMaxPacketSize));
2861 if (err) {
2862 DPRINTFN(1, "update mps of ep0 %ju", err, 0, 0, 0);
2863 goto bad;
2864 }
2865
2866 err = usbd_reload_device_desc(dev);
2867 if (err) {
2868 DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
2869 goto bad;
2870 }
2871 }
2872
2873 DPRINTFN(1, "adding unit addr=%jd, rev=%02jx,",
2874 dev->ud_addr, UGETW(dd->bcdUSB), 0, 0);
2875 DPRINTFN(1, " class=%jd, subclass=%jd, protocol=%jd,",
2876 dd->bDeviceClass, dd->bDeviceSubClass,
2877 dd->bDeviceProtocol, 0);
2878 DPRINTFN(1, " mps=%jd, len=%jd, noconf=%jd, speed=%jd",
2879 dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations,
2880 dev->ud_speed);
2881
2882 usbd_get_device_strings(dev);
2883
2884 usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev);
2885
2886 if (depth == 0 && port == 0) {
2887 usbd_attach_roothub(parent, dev);
2888 DPRINTFN(1, "root hub %#jx", (uintptr_t)dev, 0, 0, 0);
2889 return USBD_NORMAL_COMPLETION;
2890 }
2891
2892 err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr);
2893 bad:
2894 if (err != USBD_NORMAL_COMPLETION) {
2895 usbd_remove_device(dev, up);
2896 }
2897
2898 return err;
2899 }
2900
2901 static usbd_status
2902 xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring * const xr,
2903 size_t ntrb, size_t align)
2904 {
2905 usbd_status err;
2906 size_t size = ntrb * XHCI_TRB_SIZE;
2907
2908 XHCIHIST_FUNC();
2909 XHCIHIST_CALLARGS("xr %#jx ntrb %#jx align %#jx",
2910 (uintptr_t)xr, ntrb, align, 0);
2911
2912 err = usb_allocmem(&sc->sc_bus, size, align, &xr->xr_dma);
2913 if (err)
2914 return err;
2915 mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
2916 xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP);
2917 xr->xr_trb = xhci_ring_trbv(xr, 0);
2918 xr->xr_ntrb = ntrb;
2919 xr->is_halted = false;
2920 xhci_host_dequeue(xr);
2921
2922 return USBD_NORMAL_COMPLETION;
2923 }
2924
2925 static void
2926 xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring * const xr)
2927 {
2928 usb_freemem(&sc->sc_bus, &xr->xr_dma);
2929 mutex_destroy(&xr->xr_lock);
2930 kmem_free(xr->xr_cookies, sizeof(*xr->xr_cookies) * xr->xr_ntrb);
2931 }
2932
2933 static void
2934 xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr,
2935 void *cookie, struct xhci_soft_trb * const trbs, size_t ntrbs)
2936 {
2937 size_t i;
2938 u_int ri;
2939 u_int cs;
2940 uint64_t parameter;
2941 uint32_t status;
2942 uint32_t control;
2943
2944 XHCIHIST_FUNC();
2945 XHCIHIST_CALLARGS("%#jx xr_ep 0x%jx xr_cs %ju",
2946 (uintptr_t)xr, xr->xr_ep, xr->xr_cs, 0);
2947
2948 KASSERTMSG(ntrbs <= XHCI_XFER_NTRB, "ntrbs %zu", ntrbs);
2949 for (i = 0; i < ntrbs; i++) {
2950 DPRINTFN(12, "xr %#jx trbs %#jx num %ju", (uintptr_t)xr,
2951 (uintptr_t)trbs, i, 0);
2952 DPRINTFN(12, " %016jx %08jx %08jx",
2953 trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0);
2954 KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) !=
2955 XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3);
2956 }
2957
2958 ri = xr->xr_ep;
2959 cs = xr->xr_cs;
2960
2961 /*
2962 * Although the xhci hardware can do scatter/gather dma from
2963 * arbitrary sized buffers, there is a non-obvious restriction
2964 * that a LINK trb is only allowed at the end of a burst of
2965 * transfers - which might be 16kB.
2966 * Arbitrary aligned LINK trb definitely fail on Ivy bridge.
2967 * The simple solution is not to allow a LINK trb in the middle
2968 * of anything - as here.
2969 * XXX: (dsl) There are xhci controllers out there (eg some made by
2970 * ASMedia) that seem to lock up if they process a LINK trb but
2971 * cannot process the linked-to trb yet.
2972 * The code should write the 'cycle' bit on the link trb AFTER
2973 * adding the other trb.
2974 */
2975 u_int firstep = xr->xr_ep;
2976 u_int firstcs = xr->xr_cs;
2977
2978 for (i = 0; i < ntrbs; ) {
2979 u_int oldri = ri;
2980 u_int oldcs = cs;
2981
2982 if (ri >= (xr->xr_ntrb - 1)) {
2983 /* Put Link TD at the end of ring */
2984 parameter = xhci_ring_trbp(xr, 0);
2985 status = 0;
2986 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
2987 XHCI_TRB_3_TC_BIT;
2988 xr->xr_cookies[ri] = NULL;
2989 xr->xr_ep = 0;
2990 xr->xr_cs ^= 1;
2991 ri = xr->xr_ep;
2992 cs = xr->xr_cs;
2993 } else {
2994 parameter = trbs[i].trb_0;
2995 status = trbs[i].trb_2;
2996 control = trbs[i].trb_3;
2997
2998 xr->xr_cookies[ri] = cookie;
2999 ri++;
3000 i++;
3001 }
3002 /*
3003 * If this is a first TRB, mark it invalid to prevent
3004 * xHC from running it immediately.
3005 */
3006 if (oldri == firstep) {
3007 if (oldcs) {
3008 control &= ~XHCI_TRB_3_CYCLE_BIT;
3009 } else {
3010 control |= XHCI_TRB_3_CYCLE_BIT;
3011 }
3012 } else {
3013 if (oldcs) {
3014 control |= XHCI_TRB_3_CYCLE_BIT;
3015 } else {
3016 control &= ~XHCI_TRB_3_CYCLE_BIT;
3017 }
3018 }
3019 xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control);
3020 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri,
3021 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
3022 }
3023
3024 /* Now invert cycle bit of first TRB */
3025 if (firstcs) {
3026 xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
3027 } else {
3028 xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
3029 }
3030 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep,
3031 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
3032
3033 xr->xr_ep = ri;
3034 xr->xr_cs = cs;
3035
3036 DPRINTFN(12, "%#jx xr_ep 0x%jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep,
3037 xr->xr_cs, 0);
3038 }
3039
3040 /*
3041 * Stop execution commands, purge all commands on command ring, and
3042 * rewind dequeue pointer.
3043 */
3044 static void
3045 xhci_abort_command(struct xhci_softc *sc)
3046 {
3047 struct xhci_ring * const cr = &sc->sc_cr;
3048 uint64_t crcr;
3049 int i;
3050
3051 XHCIHIST_FUNC();
3052 XHCIHIST_CALLARGS("command %#jx timeout, aborting",
3053 sc->sc_command_addr, 0, 0, 0);
3054
3055 mutex_enter(&cr->xr_lock);
3056
3057 /* 4.6.1.2 Aborting a Command */
3058 crcr = xhci_op_read_8(sc, XHCI_CRCR);
3059 xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA);
3060
3061 for (i = 0; i < 500; i++) {
3062 crcr = xhci_op_read_8(sc, XHCI_CRCR);
3063 if ((crcr & XHCI_CRCR_LO_CRR) == 0)
3064 break;
3065 usb_delay_ms(&sc->sc_bus, 1);
3066 }
3067 if ((crcr & XHCI_CRCR_LO_CRR) != 0) {
3068 DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0);
3069 /* reset HC here? */
3070 }
3071
3072 /* reset command ring dequeue pointer */
3073 cr->xr_ep = 0;
3074 cr->xr_cs = 1;
3075 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs);
3076
3077 mutex_exit(&cr->xr_lock);
3078 }
3079
3080 /*
3081 * Put a command on command ring, ring bell, set timer, and cv_timedwait.
3082 * Command completion is notified by cv_signal from xhci_event_cmd()
3083 * (called from xhci_softint), or timed-out.
3084 * The completion code is copied to sc->sc_result_trb in xhci_event_cmd(),
3085 * then do_command examines it.
3086 */
3087 static usbd_status
3088 xhci_do_command_locked(struct xhci_softc * const sc,
3089 struct xhci_soft_trb * const trb, int timeout)
3090 {
3091 struct xhci_ring * const cr = &sc->sc_cr;
3092 usbd_status err;
3093
3094 XHCIHIST_FUNC();
3095 XHCIHIST_CALLARGS("input: 0x%016jx 0x%08jx 0x%08jx",
3096 trb->trb_0, trb->trb_2, trb->trb_3, 0);
3097
3098 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
3099 KASSERT(mutex_owned(&sc->sc_lock));
3100
3101 while (sc->sc_command_addr != 0 ||
3102 (sc->sc_suspender != NULL && sc->sc_suspender != curlwp))
3103 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
3104
3105 /*
3106 * If enqueue pointer points at last of ring, it's Link TRB,
3107 * command TRB will be stored in 0th TRB.
3108 */
3109 if (cr->xr_ep == cr->xr_ntrb - 1)
3110 sc->sc_command_addr = xhci_ring_trbp(cr, 0);
3111 else
3112 sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep);
3113
3114 sc->sc_resultpending = true;
3115
3116 mutex_enter(&cr->xr_lock);
3117 xhci_ring_put(sc, cr, NULL, trb, 1);
3118 mutex_exit(&cr->xr_lock);
3119
3120 xhci_db_write_4(sc, XHCI_DOORBELL(0), 0);
3121
3122 while (sc->sc_resultpending) {
3123 if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock,
3124 MAX(1, mstohz(timeout))) == EWOULDBLOCK) {
3125 xhci_abort_command(sc);
3126 err = USBD_TIMEOUT;
3127 goto timedout;
3128 }
3129 }
3130
3131 trb->trb_0 = sc->sc_result_trb.trb_0;
3132 trb->trb_2 = sc->sc_result_trb.trb_2;
3133 trb->trb_3 = sc->sc_result_trb.trb_3;
3134
3135 DPRINTFN(12, "output: 0x%016jx 0x%08jx 0x%08jx",
3136 trb->trb_0, trb->trb_2, trb->trb_3, 0);
3137
3138 switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) {
3139 case XHCI_TRB_ERROR_SUCCESS:
3140 err = USBD_NORMAL_COMPLETION;
3141 break;
3142 default:
3143 case 192 ... 223:
3144 DPRINTFN(5, "error %x",
3145 XHCI_TRB_2_ERROR_GET(trb->trb_2), 0, 0, 0);
3146 err = USBD_IOERROR;
3147 break;
3148 case 224 ... 255:
3149 err = USBD_NORMAL_COMPLETION;
3150 break;
3151 }
3152
3153 timedout:
3154 sc->sc_resultpending = false;
3155 sc->sc_command_addr = 0;
3156 cv_broadcast(&sc->sc_cmdbusy_cv);
3157
3158 return err;
3159 }
3160
3161 static usbd_status
3162 xhci_do_command(struct xhci_softc * const sc, struct xhci_soft_trb * const trb,
3163 int timeout)
3164 {
3165
3166 mutex_enter(&sc->sc_lock);
3167 usbd_status ret = xhci_do_command_locked(sc, trb, timeout);
3168 mutex_exit(&sc->sc_lock);
3169
3170 return ret;
3171 }
3172
3173 static usbd_status
3174 xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp)
3175 {
3176 struct xhci_soft_trb trb;
3177 usbd_status err;
3178
3179 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3180
3181 trb.trb_0 = 0;
3182 trb.trb_2 = 0;
3183 trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT);
3184
3185 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3186 if (err != USBD_NORMAL_COMPLETION) {
3187 return err;
3188 }
3189
3190 *slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3);
3191
3192 return err;
3193 }
3194
3195 /*
3196 * xHCI 4.6.4
3197 * Deallocate ring and device/input context DMA buffers, and disable_slot.
3198 * All endpoints in the slot should be stopped.
3199 * Should be called with sc_lock held.
3200 */
3201 static usbd_status
3202 xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot)
3203 {
3204 struct xhci_soft_trb trb;
3205 struct xhci_slot *xs;
3206 usbd_status err;
3207
3208 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3209
3210 if (sc->sc_dying)
3211 return USBD_IOERROR;
3212
3213 trb.trb_0 = 0;
3214 trb.trb_2 = 0;
3215 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot) |
3216 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT);
3217
3218 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
3219
3220 if (!err) {
3221 xs = &sc->sc_slots[slot];
3222 if (xs->xs_idx != 0) {
3223 xhci_free_slot(sc, xs, XHCI_DCI_SLOT + 1, 32);
3224 xhci_set_dcba(sc, 0, slot);
3225 memset(xs, 0, sizeof(*xs));
3226 }
3227 }
3228
3229 return err;
3230 }
3231
3232 /*
3233 * Set address of device and transition slot state from ENABLED to ADDRESSED
3234 * if Block Setaddress Request (BSR) is false.
3235 * If BSR==true, transition slot state from ENABLED to DEFAULT.
3236 * see xHCI 1.1 4.5.3, 3.3.4
3237 * Should be called without sc_lock held.
3238 */
3239 static usbd_status
3240 xhci_address_device(struct xhci_softc * const sc,
3241 uint64_t icp, uint8_t slot_id, bool bsr)
3242 {
3243 struct xhci_soft_trb trb;
3244 usbd_status err;
3245
3246 XHCIHIST_FUNC();
3247 if (bsr) {
3248 XHCIHIST_CALLARGS("icp %jx slot %jx with bsr",
3249 icp, slot_id, 0, 0);
3250 } else {
3251 XHCIHIST_CALLARGS("icp %jx slot %jx nobsr",
3252 icp, slot_id, 0, 0);
3253 }
3254
3255 trb.trb_0 = icp;
3256 trb.trb_2 = 0;
3257 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) |
3258 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
3259 (bsr ? XHCI_TRB_3_BSR_BIT : 0);
3260
3261 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3262
3263 if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS)
3264 err = USBD_NO_ADDR;
3265
3266 return err;
3267 }
3268
3269 static usbd_status
3270 xhci_update_ep0_mps(struct xhci_softc * const sc,
3271 struct xhci_slot * const xs, u_int mps)
3272 {
3273 struct xhci_soft_trb trb;
3274 usbd_status err;
3275 uint32_t * cp;
3276
3277 XHCIHIST_FUNC();
3278 XHCIHIST_CALLARGS("slot %ju mps %ju", xs->xs_idx, mps, 0, 0);
3279
3280 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3281 cp[0] = htole32(0);
3282 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL));
3283
3284 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL));
3285 cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps));
3286
3287 /* sync input contexts before they are read from memory */
3288 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3289 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
3290 sc->sc_ctxsz * 4);
3291
3292 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
3293 trb.trb_2 = 0;
3294 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
3295 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX);
3296
3297 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3298 return err;
3299 }
3300
3301 static void
3302 xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si)
3303 {
3304 uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0);
3305
3306 XHCIHIST_FUNC();
3307 XHCIHIST_CALLARGS("dcbaa %#jx dc %016jx slot %jd",
3308 (uintptr_t)&dcbaa[si], dcba, si, 0);
3309
3310 dcbaa[si] = htole64(dcba);
3311 usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t),
3312 BUS_DMASYNC_PREWRITE);
3313 }
3314
3315 /*
3316 * Allocate device and input context DMA buffer, and
3317 * TRB DMA buffer for each endpoint.
3318 */
3319 static usbd_status
3320 xhci_init_slot(struct usbd_device *dev, uint32_t slot)
3321 {
3322 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
3323 struct xhci_slot *xs;
3324 usbd_status err;
3325 u_int dci;
3326
3327 XHCIHIST_FUNC();
3328 XHCIHIST_CALLARGS("slot %ju", slot, 0, 0, 0);
3329
3330 xs = &sc->sc_slots[slot];
3331
3332 /* allocate contexts */
3333 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
3334 &xs->xs_dc_dma);
3335 if (err)
3336 return err;
3337 memset(KERNADDR(&xs->xs_dc_dma, 0), 0, sc->sc_pgsz);
3338
3339 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
3340 &xs->xs_ic_dma);
3341 if (err)
3342 goto bad1;
3343 memset(KERNADDR(&xs->xs_ic_dma, 0), 0, sc->sc_pgsz);
3344
3345 for (dci = 0; dci < 32; dci++) {
3346 //CTASSERT(sizeof(xs->xs_ep[dci]) == sizeof(struct xhci_endpoint));
3347 memset(&xs->xs_ep[dci], 0, sizeof(xs->xs_ep[dci]));
3348 if (dci == XHCI_DCI_SLOT)
3349 continue;
3350 err = xhci_ring_init(sc, &xs->xs_ep[dci].xe_tr,
3351 XHCI_TRANSFER_RING_TRBS, XHCI_TRB_ALIGN);
3352 if (err) {
3353 DPRINTFN(0, "ring init failure", 0, 0, 0, 0);
3354 goto bad2;
3355 }
3356 }
3357
3358 bad2:
3359 if (err == USBD_NORMAL_COMPLETION) {
3360 xs->xs_idx = slot;
3361 } else {
3362 xhci_free_slot(sc, xs, XHCI_DCI_SLOT + 1, dci);
3363 }
3364
3365 return err;
3366
3367 bad1:
3368 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
3369 xs->xs_idx = 0;
3370 return err;
3371 }
3372
3373 static void
3374 xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs, int start_dci,
3375 int end_dci)
3376 {
3377 u_int dci;
3378
3379 XHCIHIST_FUNC();
3380 XHCIHIST_CALLARGS("slot %ju start %ju end %ju",
3381 xs->xs_idx, start_dci, end_dci, 0);
3382
3383 for (dci = start_dci; dci < end_dci; dci++) {
3384 xhci_ring_free(sc, &xs->xs_ep[dci].xe_tr);
3385 memset(&xs->xs_ep[dci], 0, sizeof(xs->xs_ep[dci]));
3386 }
3387 usb_freemem(&sc->sc_bus, &xs->xs_ic_dma);
3388 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
3389 xs->xs_idx = 0;
3390 }
3391
3392 /*
3393 * Setup slot context, set Device Context Base Address, and issue
3394 * Set Address Device command.
3395 */
3396 static usbd_status
3397 xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr)
3398 {
3399 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
3400 struct xhci_slot *xs;
3401 usbd_status err;
3402
3403 XHCIHIST_FUNC();
3404 XHCIHIST_CALLARGS("slot %ju bsr %ju", slot, bsr, 0, 0);
3405
3406 xs = &sc->sc_slots[slot];
3407
3408 xhci_setup_ctx(dev->ud_pipe0);
3409
3410 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
3411 sc->sc_ctxsz * 3);
3412
3413 xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot);
3414
3415 err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr);
3416
3417 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
3418 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, 0),
3419 sc->sc_ctxsz * 2);
3420
3421 return err;
3422 }
3423
3424 /*
3425 * 4.8.2, 6.2.3.2
3426 * construct slot/endpoint context parameters and do syncmem
3427 */
3428 static void
3429 xhci_setup_ctx(struct usbd_pipe *pipe)
3430 {
3431 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3432 struct usbd_device *dev = pipe->up_dev;
3433 struct xhci_slot * const xs = dev->ud_hcpriv;
3434 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3435 const u_int dci = xhci_ep_get_dci(ed);
3436 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3437 uint32_t *cp;
3438 uint16_t mps = UGETW(ed->wMaxPacketSize);
3439 uint8_t speed = dev->ud_speed;
3440 uint8_t ival = ed->bInterval;
3441
3442 XHCIHIST_FUNC();
3443 XHCIHIST_CALLARGS("pipe %#jx: slot %ju dci %ju speed %ju",
3444 (uintptr_t)pipe, xs->xs_idx, dci, speed);
3445
3446 /* set up initial input control context */
3447 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3448 cp[0] = htole32(0);
3449 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci));
3450 cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT));
3451 cp[7] = htole32(0);
3452
3453 /* set up input slot context */
3454 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
3455 cp[0] =
3456 XHCI_SCTX_0_CTX_NUM_SET(dci) |
3457 XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed));
3458 cp[1] = 0;
3459 cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0);
3460 cp[3] = 0;
3461 xhci_setup_route(pipe, cp);
3462 xhci_setup_tthub(pipe, cp);
3463
3464 cp[0] = htole32(cp[0]);
3465 cp[1] = htole32(cp[1]);
3466 cp[2] = htole32(cp[2]);
3467 cp[3] = htole32(cp[3]);
3468
3469 /* set up input endpoint context */
3470 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci));
3471 cp[0] =
3472 XHCI_EPCTX_0_EPSTATE_SET(0) |
3473 XHCI_EPCTX_0_MULT_SET(0) |
3474 XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
3475 XHCI_EPCTX_0_LSA_SET(0) |
3476 XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0);
3477 cp[1] =
3478 XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) |
3479 XHCI_EPCTX_1_HID_SET(0) |
3480 XHCI_EPCTX_1_MAXB_SET(0);
3481
3482 if (xfertype != UE_ISOCHRONOUS)
3483 cp[1] |= XHCI_EPCTX_1_CERR_SET(3);
3484
3485 if (xfertype == UE_CONTROL)
3486 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); /* 6.2.3 */
3487 else if (USB_IS_SS(speed))
3488 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(mps);
3489 else
3490 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(UE_GET_SIZE(mps));
3491
3492 xhci_setup_maxburst(pipe, cp);
3493
3494 switch (xfertype) {
3495 case UE_CONTROL:
3496 break;
3497 case UE_BULK:
3498 /* XXX Set MaxPStreams, HID, and LSA if streams enabled */
3499 break;
3500 case UE_INTERRUPT:
3501 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3502 ival = pipe->up_interval;
3503
3504 ival = xhci_bival2ival(ival, speed);
3505 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3506 break;
3507 case UE_ISOCHRONOUS:
3508 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3509 ival = pipe->up_interval;
3510
3511 /* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 */
3512 if (speed == USB_SPEED_FULL)
3513 ival += 3; /* 1ms -> 125us */
3514 ival--;
3515 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3516 break;
3517 default:
3518 break;
3519 }
3520 DPRINTFN(4, "setting ival %ju MaxBurst %#jx",
3521 XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_1_MAXB_GET(cp[1]), 0, 0);
3522
3523 /* rewind TR dequeue pointer in xHC */
3524 /* can't use xhci_ep_get_dci() yet? */
3525 *(uint64_t *)(&cp[2]) = htole64(
3526 xhci_ring_trbp(&xs->xs_ep[dci].xe_tr, 0) |
3527 XHCI_EPCTX_2_DCS_SET(1));
3528
3529 cp[0] = htole32(cp[0]);
3530 cp[1] = htole32(cp[1]);
3531 cp[4] = htole32(cp[4]);
3532
3533 /* rewind TR dequeue pointer in driver */
3534 struct xhci_ring *xr = &xs->xs_ep[dci].xe_tr;
3535 mutex_enter(&xr->xr_lock);
3536 xhci_host_dequeue(xr);
3537 mutex_exit(&xr->xr_lock);
3538
3539 /* sync input contexts before they are read from memory */
3540 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3541 }
3542
3543 /*
3544 * Setup route string and roothub port of given device for slot context
3545 */
3546 static void
3547 xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp)
3548 {
3549 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3550 struct usbd_device *dev = pipe->up_dev;
3551 struct usbd_port *up = dev->ud_powersrc;
3552 struct usbd_device *hub;
3553 struct usbd_device *adev;
3554 uint8_t rhport = 0;
3555 uint32_t route = 0;
3556
3557 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3558
3559 /* Locate root hub port and Determine route string */
3560 /* 4.3.3 route string does not include roothub port */
3561 for (hub = dev; hub != NULL; hub = hub->ud_myhub) {
3562 uint32_t dep;
3563
3564 DPRINTFN(4, "hub %#jx depth %jd upport %jp upportno %jd",
3565 (uintptr_t)hub, hub->ud_depth, (uintptr_t)hub->ud_powersrc,
3566 hub->ud_powersrc ? (uintptr_t)hub->ud_powersrc->up_portno :
3567 -1);
3568
3569 if (hub->ud_powersrc == NULL)
3570 break;
3571 dep = hub->ud_depth;
3572 if (dep == 0)
3573 break;
3574 rhport = hub->ud_powersrc->up_portno;
3575 if (dep > USB_HUB_MAX_DEPTH)
3576 continue;
3577
3578 route |=
3579 (rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport)
3580 << ((dep - 1) * 4);
3581 }
3582 route = route >> 4;
3583 size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1;
3584
3585 /* Locate port on upstream high speed hub */
3586 for (adev = dev, hub = up->up_parent;
3587 hub != NULL && hub->ud_speed != USB_SPEED_HIGH;
3588 adev = hub, hub = hub->ud_myhub)
3589 ;
3590 if (hub) {
3591 int p;
3592 for (p = 0; p < hub->ud_hub->uh_hubdesc.bNbrPorts; p++) {
3593 if (hub->ud_hub->uh_ports[p].up_dev == adev) {
3594 dev->ud_myhsport = &hub->ud_hub->uh_ports[p];
3595 goto found;
3596 }
3597 }
3598 panic("%s: cannot find HS port", __func__);
3599 found:
3600 DPRINTFN(4, "high speed port %jd", p, 0, 0, 0);
3601 } else {
3602 dev->ud_myhsport = NULL;
3603 }
3604
3605 const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport);
3606
3607 DPRINTFN(4, "rhport %ju ctlrport %ju Route %05jx hub %#jx", rhport,
3608 ctlrport, route, (uintptr_t)hub);
3609
3610 cp[0] |= XHCI_SCTX_0_ROUTE_SET(route);
3611 cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport);
3612 }
3613
3614 /*
3615 * Setup whether device is hub, whether device uses MTT, and
3616 * TT informations if it uses MTT.
3617 */
3618 static void
3619 xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp)
3620 {
3621 struct usbd_device *dev = pipe->up_dev;
3622 struct usbd_port *myhsport = dev->ud_myhsport;
3623 usb_device_descriptor_t * const dd = &dev->ud_ddesc;
3624 uint32_t speed = dev->ud_speed;
3625 uint8_t rhaddr = dev->ud_bus->ub_rhaddr;
3626 uint8_t tthubslot, ttportnum;
3627 bool ishub;
3628 bool usemtt;
3629
3630 XHCIHIST_FUNC();
3631
3632 /*
3633 * 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2
3634 * tthubslot:
3635 * This is the slot ID of parent HS hub
3636 * if LS/FS device is connected && connected through HS hub.
3637 * This is 0 if device is not LS/FS device ||
3638 * parent hub is not HS hub ||
3639 * attached to root hub.
3640 * ttportnum:
3641 * This is the downstream facing port of parent HS hub
3642 * if LS/FS device is connected.
3643 * This is 0 if device is not LS/FS device ||
3644 * parent hub is not HS hub ||
3645 * attached to root hub.
3646 */
3647 if (myhsport &&
3648 myhsport->up_parent->ud_addr != rhaddr &&
3649 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
3650 ttportnum = myhsport->up_portno;
3651 tthubslot = myhsport->up_parent->ud_addr;
3652 } else {
3653 ttportnum = 0;
3654 tthubslot = 0;
3655 }
3656 XHCIHIST_CALLARGS("myhsport %#jx ttportnum=%jd tthubslot=%jd",
3657 (uintptr_t)myhsport, ttportnum, tthubslot, 0);
3658
3659 /* ishub is valid after reading UDESC_DEVICE */
3660 ishub = (dd->bDeviceClass == UDCLASS_HUB);
3661
3662 /* dev->ud_hub is valid after reading UDESC_HUB */
3663 if (ishub && dev->ud_hub) {
3664 usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc;
3665 uint8_t ttt =
3666 __SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK);
3667
3668 cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts);
3669 cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt);
3670 DPRINTFN(4, "nports=%jd ttt=%jd", hd->bNbrPorts, ttt, 0, 0);
3671 }
3672
3673 #define IS_MTTHUB(dd) \
3674 ((dd)->bDeviceProtocol == UDPROTO_HSHUBMTT)
3675
3676 /*
3677 * MTT flag is set if
3678 * 1. this is HS hub && MTTs are supported and enabled; or
3679 * 2. this is LS or FS device && there is a parent HS hub where MTTs
3680 * are supported and enabled.
3681 *
3682 * XXX enabled is not tested yet
3683 */
3684 if (ishub && speed == USB_SPEED_HIGH && IS_MTTHUB(dd))
3685 usemtt = true;
3686 else if ((speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) &&
3687 myhsport &&
3688 myhsport->up_parent->ud_addr != rhaddr &&
3689 IS_MTTHUB(&myhsport->up_parent->ud_ddesc))
3690 usemtt = true;
3691 else
3692 usemtt = false;
3693 DPRINTFN(4, "class %ju proto %ju ishub %jd usemtt %jd",
3694 dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt);
3695
3696 #undef IS_MTTHUB
3697
3698 cp[0] |=
3699 XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) |
3700 XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0);
3701 cp[2] |=
3702 XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) |
3703 XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum);
3704 }
3705
3706 /* set up params for periodic endpoint */
3707 static void
3708 xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp)
3709 {
3710 struct usbd_device *dev = pipe->up_dev;
3711 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3712 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3713 usbd_desc_iter_t iter;
3714 const usb_cdc_descriptor_t *cdcd;
3715 uint32_t maxb = 0;
3716 uint16_t mps = UGETW(ed->wMaxPacketSize);
3717 uint8_t speed = dev->ud_speed;
3718 uint8_t ep;
3719
3720 /* config desc is NULL when opening ep0 */
3721 if (dev == NULL || dev->ud_cdesc == NULL)
3722 goto no_cdcd;
3723 cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev,
3724 UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY);
3725 if (cdcd == NULL)
3726 goto no_cdcd;
3727 usb_desc_iter_init(dev, &iter);
3728 iter.cur = (const void *)cdcd;
3729
3730 /* find endpoint_ss_comp desc for ep of this pipe */
3731 for (ep = 0;;) {
3732 cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter);
3733 if (cdcd == NULL)
3734 break;
3735 if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) {
3736 ep = ((const usb_endpoint_descriptor_t *)cdcd)->
3737 bEndpointAddress;
3738 if (UE_GET_ADDR(ep) ==
3739 UE_GET_ADDR(ed->bEndpointAddress)) {
3740 cdcd = (const usb_cdc_descriptor_t *)
3741 usb_desc_iter_next(&iter);
3742 break;
3743 }
3744 ep = 0;
3745 }
3746 }
3747 if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) {
3748 const usb_endpoint_ss_comp_descriptor_t * esscd =
3749 (const usb_endpoint_ss_comp_descriptor_t *)cdcd;
3750 maxb = esscd->bMaxBurst;
3751 }
3752
3753 no_cdcd:
3754 /* 6.2.3.4, 4.8.2.4 */
3755 if (USB_IS_SS(speed)) {
3756 /* USB 3.1 9.6.6 */
3757 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps);
3758 /* USB 3.1 9.6.7 */
3759 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3760 #ifdef notyet
3761 if (xfertype == UE_ISOCHRONOUS) {
3762 }
3763 if (XHCI_HCC2_LEC(sc->sc_hcc2) != 0) {
3764 /* use ESIT */
3765 cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(x);
3766 cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(x);
3767
3768 /* XXX if LEC = 1, set ESIT instead */
3769 cp[0] |= XHCI_EPCTX_0_MULT_SET(0);
3770 } else {
3771 /* use ival */
3772 }
3773 #endif
3774 } else {
3775 /* USB 2.0 9.6.6 */
3776 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(UE_GET_SIZE(mps));
3777
3778 /* 6.2.3.4 */
3779 if (speed == USB_SPEED_HIGH &&
3780 (xfertype == UE_ISOCHRONOUS || xfertype == UE_INTERRUPT)) {
3781 maxb = UE_GET_TRANS(mps);
3782 } else {
3783 /* LS/FS or HS CTRL or HS BULK */
3784 maxb = 0;
3785 }
3786 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3787 }
3788 }
3789
3790 /*
3791 * Convert endpoint bInterval value to endpoint context interval value
3792 * for Interrupt pipe.
3793 * xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6
3794 */
3795 static uint32_t
3796 xhci_bival2ival(uint32_t ival, uint32_t speed)
3797 {
3798 if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
3799 int i;
3800
3801 /*
3802 * round ival down to "the nearest base 2 multiple of
3803 * bInterval * 8".
3804 * bInterval is at most 255 as its type is uByte.
3805 * 255(ms) = 2040(x 125us) < 2^11, so start with 10.
3806 */
3807 for (i = 10; i > 0; i--) {
3808 if ((ival * 8) >= (1 << i))
3809 break;
3810 }
3811 ival = i;
3812 } else {
3813 /* Interval = bInterval-1 for SS/HS */
3814 ival--;
3815 }
3816
3817 return ival;
3818 }
3819
3820 /* ----- */
3821
3822 static void
3823 xhci_noop(struct usbd_pipe *pipe)
3824 {
3825 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3826 }
3827
3828 /*
3829 * Process root hub request.
3830 */
3831 static int
3832 xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3833 void *buf, int buflen)
3834 {
3835 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
3836 usb_port_status_t ps;
3837 int l, totlen = 0;
3838 uint16_t len, value, index;
3839 int port, i;
3840 uint32_t v;
3841
3842 XHCIHIST_FUNC();
3843
3844 if (sc->sc_dying)
3845 return -1;
3846
3847 size_t bn = bus == &sc->sc_bus ? 0 : 1;
3848
3849 len = UGETW(req->wLength);
3850 value = UGETW(req->wValue);
3851 index = UGETW(req->wIndex);
3852
3853 XHCIHIST_CALLARGS("rhreq: %04jx %04jx %04jx %04jx",
3854 req->bmRequestType | (req->bRequest << 8), value, index, len);
3855
3856 #define C(x,y) ((x) | ((y) << 8))
3857 switch (C(req->bRequest, req->bmRequestType)) {
3858 case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
3859 DPRINTFN(8, "getdesc: wValue=0x%04jx", value, 0, 0, 0);
3860 if (len == 0)
3861 break;
3862 switch (value) {
3863 #define sd ((usb_string_descriptor_t *)buf)
3864 case C(2, UDESC_STRING):
3865 /* Product */
3866 totlen = usb_makestrdesc(sd, len, "xHCI root hub");
3867 break;
3868 #undef sd
3869 default:
3870 /* default from usbroothub */
3871 return buflen;
3872 }
3873 break;
3874
3875 /* Hub requests */
3876 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
3877 break;
3878 /* Clear Port Feature request */
3879 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): {
3880 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3881
3882 DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%jd feat=%jd bus=%jd cp=%jd",
3883 index, value, bn, cp);
3884 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3885 return -1;
3886 }
3887 port = XHCI_PORTSC(cp);
3888 v = xhci_op_read_4(sc, port);
3889 DPRINTFN(4, "portsc=0x%08jx", v, 0, 0, 0);
3890 v &= ~XHCI_PS_CLEAR;
3891 switch (value) {
3892 case UHF_PORT_ENABLE:
3893 xhci_op_write_4(sc, port, v & ~XHCI_PS_PED);
3894 break;
3895 case UHF_PORT_SUSPEND:
3896 return -1;
3897 case UHF_PORT_POWER:
3898 break;
3899 case UHF_PORT_TEST:
3900 case UHF_PORT_INDICATOR:
3901 return -1;
3902 case UHF_C_PORT_CONNECTION:
3903 xhci_op_write_4(sc, port, v | XHCI_PS_CSC);
3904 break;
3905 case UHF_C_PORT_ENABLE:
3906 case UHF_C_PORT_SUSPEND:
3907 case UHF_C_PORT_OVER_CURRENT:
3908 return -1;
3909 case UHF_C_BH_PORT_RESET:
3910 xhci_op_write_4(sc, port, v | XHCI_PS_WRC);
3911 break;
3912 case UHF_C_PORT_RESET:
3913 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
3914 break;
3915 case UHF_C_PORT_LINK_STATE:
3916 xhci_op_write_4(sc, port, v | XHCI_PS_PLC);
3917 break;
3918 case UHF_C_PORT_CONFIG_ERROR:
3919 xhci_op_write_4(sc, port, v | XHCI_PS_CEC);
3920 break;
3921 default:
3922 return -1;
3923 }
3924 break;
3925 }
3926 case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
3927 if (len == 0)
3928 break;
3929 if ((value & 0xff) != 0) {
3930 return -1;
3931 }
3932 usb_hub_descriptor_t hubd;
3933
3934 totlen = uimin(buflen, sizeof(hubd));
3935 memcpy(&hubd, buf, totlen);
3936 hubd.bNbrPorts = sc->sc_rhportcount[bn];
3937 USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH);
3938 hubd.bPwrOn2PwrGood = 200;
3939 for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) {
3940 /* XXX can't find out? */
3941 hubd.DeviceRemovable[i++] = 0;
3942 }
3943 hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
3944 totlen = uimin(totlen, hubd.bDescLength);
3945 memcpy(buf, &hubd, totlen);
3946 break;
3947 case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
3948 if (len != 4) {
3949 return -1;
3950 }
3951 memset(buf, 0, len); /* ? XXX */
3952 totlen = len;
3953 break;
3954 /* Get Port Status request */
3955 case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
3956 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3957
3958 DPRINTFN(8, "get port status bn=%jd i=%jd cp=%ju",
3959 bn, index, cp, 0);
3960 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3961 DPRINTFN(5, "bad get port status: index=%jd bn=%jd "
3962 "portcount=%jd",
3963 index, bn, sc->sc_rhportcount[bn], 0);
3964 return -1;
3965 }
3966 if (len != 4) {
3967 DPRINTFN(5, "bad get port status: len %d != 4",
3968 len, 0, 0, 0);
3969 return -1;
3970 }
3971 v = xhci_op_read_4(sc, XHCI_PORTSC(cp));
3972 DPRINTFN(4, "getrhportsc %jd %08jx", cp, v, 0, 0);
3973 i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v));
3974 if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS;
3975 if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED;
3976 if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR;
3977 //if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND;
3978 if (v & XHCI_PS_PR) i |= UPS_RESET;
3979 if (v & XHCI_PS_PP) {
3980 if (i & UPS_OTHER_SPEED)
3981 i |= UPS_PORT_POWER_SS;
3982 else
3983 i |= UPS_PORT_POWER;
3984 }
3985 if (i & UPS_OTHER_SPEED)
3986 i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v));
3987 if (sc->sc_vendor_port_status)
3988 i = sc->sc_vendor_port_status(sc, v, i);
3989 USETW(ps.wPortStatus, i);
3990 i = 0;
3991 if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS;
3992 if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED;
3993 if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR;
3994 if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET;
3995 if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET;
3996 if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE;
3997 if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR;
3998 USETW(ps.wPortChange, i);
3999 totlen = uimin(len, sizeof(ps));
4000 memcpy(buf, &ps, totlen);
4001 DPRINTFN(5, "get port status: wPortStatus %x wPortChange %x "
4002 "totlen %d",
4003 UGETW(ps.wPortStatus), UGETW(ps.wPortChange), totlen, 0);
4004 break;
4005 }
4006 case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
4007 return -1;
4008 case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE):
4009 break;
4010 case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
4011 break;
4012 /* Set Port Feature request */
4013 case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): {
4014 int optval = (index >> 8) & 0xff;
4015 index &= 0xff;
4016 if (index < 1 || index > sc->sc_rhportcount[bn]) {
4017 return -1;
4018 }
4019
4020 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
4021
4022 port = XHCI_PORTSC(cp);
4023 v = xhci_op_read_4(sc, port);
4024 DPRINTFN(4, "index %jd cp %jd portsc=0x%08jx", index, cp, v, 0);
4025 v &= ~XHCI_PS_CLEAR;
4026 switch (value) {
4027 case UHF_PORT_ENABLE:
4028 xhci_op_write_4(sc, port, v | XHCI_PS_PED);
4029 break;
4030 case UHF_PORT_SUSPEND:
4031 /* XXX suspend */
4032 break;
4033 case UHF_PORT_RESET:
4034 v &= ~(XHCI_PS_PED | XHCI_PS_PR);
4035 xhci_op_write_4(sc, port, v | XHCI_PS_PR);
4036 /* Wait for reset to complete. */
4037 usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
4038 if (sc->sc_dying) {
4039 return -1;
4040 }
4041 v = xhci_op_read_4(sc, port);
4042 if (v & XHCI_PS_PR) {
4043 xhci_op_write_4(sc, port, v & ~XHCI_PS_PR);
4044 usb_delay_ms(&sc->sc_bus, 10);
4045 /* XXX */
4046 }
4047 break;
4048 case UHF_PORT_POWER:
4049 /* XXX power control */
4050 break;
4051 /* XXX more */
4052 case UHF_C_PORT_RESET:
4053 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
4054 break;
4055 case UHF_PORT_U1_TIMEOUT:
4056 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
4057 return -1;
4058 }
4059 port = XHCI_PORTPMSC(cp);
4060 v = xhci_op_read_4(sc, port);
4061 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
4062 index, cp, v, 0);
4063 v &= ~XHCI_PM3_U1TO_SET(0xff);
4064 v |= XHCI_PM3_U1TO_SET(optval);
4065 xhci_op_write_4(sc, port, v);
4066 break;
4067 case UHF_PORT_U2_TIMEOUT:
4068 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
4069 return -1;
4070 }
4071 port = XHCI_PORTPMSC(cp);
4072 v = xhci_op_read_4(sc, port);
4073 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
4074 index, cp, v, 0);
4075 v &= ~XHCI_PM3_U2TO_SET(0xff);
4076 v |= XHCI_PM3_U2TO_SET(optval);
4077 xhci_op_write_4(sc, port, v);
4078 break;
4079 default:
4080 return -1;
4081 }
4082 }
4083 break;
4084 case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
4085 case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
4086 case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
4087 case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
4088 break;
4089 default:
4090 /* default from usbroothub */
4091 return buflen;
4092 }
4093
4094 return totlen;
4095 }
4096
4097 /* root hub interrupt */
4098
4099 static usbd_status
4100 xhci_root_intr_transfer(struct usbd_xfer *xfer)
4101 {
4102 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4103 usbd_status err;
4104
4105 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4106
4107 /* Insert last in queue. */
4108 mutex_enter(&sc->sc_lock);
4109 err = usb_insert_transfer(xfer);
4110 mutex_exit(&sc->sc_lock);
4111 if (err)
4112 return err;
4113
4114 /* Pipe isn't running, start first */
4115 return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4116 }
4117
4118 /* Wait for roothub port status/change */
4119 static usbd_status
4120 xhci_root_intr_start(struct usbd_xfer *xfer)
4121 {
4122 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4123 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4124 const bool polling = xhci_polling_p(sc);
4125
4126 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4127
4128 if (sc->sc_dying)
4129 return USBD_IOERROR;
4130
4131 if (!polling)
4132 mutex_enter(&sc->sc_lock);
4133 KASSERT(sc->sc_intrxfer[bn] == NULL);
4134 sc->sc_intrxfer[bn] = xfer;
4135 xfer->ux_status = USBD_IN_PROGRESS;
4136 if (!polling)
4137 mutex_exit(&sc->sc_lock);
4138
4139 return USBD_IN_PROGRESS;
4140 }
4141
4142 static void
4143 xhci_root_intr_abort(struct usbd_xfer *xfer)
4144 {
4145 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4146 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4147
4148 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4149
4150 KASSERT(mutex_owned(&sc->sc_lock));
4151 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
4152
4153 /* If xfer has already completed, nothing to do here. */
4154 if (sc->sc_intrxfer[bn] == NULL)
4155 return;
4156
4157 /*
4158 * Otherwise, sc->sc_intrxfer[bn] had better be this transfer.
4159 * Cancel it.
4160 */
4161 KASSERT(sc->sc_intrxfer[bn] == xfer);
4162 xfer->ux_status = USBD_CANCELLED;
4163 usb_transfer_complete(xfer);
4164 }
4165
4166 static void
4167 xhci_root_intr_close(struct usbd_pipe *pipe)
4168 {
4169 struct xhci_softc * const sc __diagused = XHCI_PIPE2SC(pipe);
4170 const struct usbd_xfer *xfer __diagused = pipe->up_intrxfer;
4171 const size_t bn __diagused = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4172
4173 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4174
4175 KASSERT(mutex_owned(&sc->sc_lock));
4176
4177 /*
4178 * Caller must guarantee the xfer has completed first, by
4179 * closing the pipe only after normal completion or an abort.
4180 */
4181 KASSERT(sc->sc_intrxfer[bn] == NULL);
4182 }
4183
4184 static void
4185 xhci_root_intr_done(struct usbd_xfer *xfer)
4186 {
4187 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4188 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4189
4190 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4191
4192 KASSERT(mutex_owned(&sc->sc_lock));
4193
4194 /* Claim the xfer so it doesn't get completed again. */
4195 KASSERT(sc->sc_intrxfer[bn] == xfer);
4196 KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
4197 sc->sc_intrxfer[bn] = NULL;
4198 }
4199
4200 /* -------------- */
4201 /* device control */
4202
4203 static usbd_status
4204 xhci_device_ctrl_transfer(struct usbd_xfer *xfer)
4205 {
4206 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4207 usbd_status err;
4208
4209 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4210
4211 /* Insert last in queue. */
4212 mutex_enter(&sc->sc_lock);
4213 err = usb_insert_transfer(xfer);
4214 mutex_exit(&sc->sc_lock);
4215 if (err)
4216 return err;
4217
4218 /* Pipe isn't running, start first */
4219 return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4220 }
4221
4222 static usbd_status
4223 xhci_device_ctrl_start(struct usbd_xfer *xfer)
4224 {
4225 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4226 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4227 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4228 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
4229 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4230 usb_device_request_t * const req = &xfer->ux_request;
4231 const int isread = usbd_xfer_isread(xfer);
4232 const uint32_t len = UGETW(req->wLength);
4233 usb_dma_t * const dma = &xfer->ux_dmabuf;
4234 uint64_t parameter;
4235 uint32_t status;
4236 uint32_t control;
4237 u_int i;
4238 const bool polling = xhci_polling_p(sc);
4239
4240 XHCIHIST_FUNC();
4241 XHCIHIST_CALLARGS("req: %04jx %04jx %04jx %04jx",
4242 req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue),
4243 UGETW(req->wIndex), UGETW(req->wLength));
4244
4245 /* we rely on the bottom bits for extra info */
4246 KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %zx",
4247 (uintptr_t) xfer);
4248
4249 KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0);
4250
4251 i = 0;
4252
4253 /* setup phase */
4254 memcpy(¶meter, req, sizeof(parameter));
4255 status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req));
4256 control = ((len == 0) ? XHCI_TRB_3_TRT_NONE :
4257 (isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) |
4258 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
4259 XHCI_TRB_3_IDT_BIT;
4260 /* we need parameter un-swapped on big endian, so pre-swap it here */
4261 xhci_soft_trb_put(&xx->xx_trb[i++], htole64(parameter), status, control);
4262
4263 if (len != 0) {
4264 /* data phase */
4265 parameter = DMAADDR(dma, 0);
4266 KASSERTMSG(len <= 0x10000, "len %d", len);
4267 status = XHCI_TRB_2_IRQ_SET(0) |
4268 XHCI_TRB_2_TDSZ_SET(0) |
4269 XHCI_TRB_2_BYTES_SET(len);
4270 control = (isread ? XHCI_TRB_3_DIR_IN : 0) |
4271 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) |
4272 (usbd_xfer_isread(xfer) ? XHCI_TRB_3_ISP_BIT : 0) |
4273 XHCI_TRB_3_IOC_BIT;
4274 xhci_soft_trb_put(&xx->xx_trb[i++], parameter, status, control);
4275 }
4276
4277 parameter = 0;
4278 status = XHCI_TRB_2_IRQ_SET(0);
4279 /* the status stage has inverted direction */
4280 control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) |
4281 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) |
4282 XHCI_TRB_3_IOC_BIT;
4283 xhci_soft_trb_put(&xx->xx_trb[i++], parameter, status, control);
4284
4285 if (!polling)
4286 mutex_enter(&tr->xr_lock);
4287 xhci_ring_put(sc, tr, xfer, xx->xx_trb, i);
4288 if (!polling)
4289 mutex_exit(&tr->xr_lock);
4290
4291 if (!polling)
4292 mutex_enter(&sc->sc_lock);
4293 xfer->ux_status = USBD_IN_PROGRESS;
4294 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4295 usbd_xfer_schedule_timeout(xfer);
4296 if (!polling)
4297 mutex_exit(&sc->sc_lock);
4298
4299 return USBD_IN_PROGRESS;
4300 }
4301
4302 static void
4303 xhci_device_ctrl_done(struct usbd_xfer *xfer)
4304 {
4305 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4306 usb_device_request_t *req = &xfer->ux_request;
4307 int len = UGETW(req->wLength);
4308 int rd = req->bmRequestType & UT_READ;
4309
4310 if (len)
4311 usb_syncmem(&xfer->ux_dmabuf, 0, len,
4312 rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4313 }
4314
4315 static void
4316 xhci_device_ctrl_abort(struct usbd_xfer *xfer)
4317 {
4318 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4319
4320 usbd_xfer_abort(xfer);
4321 }
4322
4323 static void
4324 xhci_device_ctrl_close(struct usbd_pipe *pipe)
4325 {
4326 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4327
4328 xhci_close_pipe(pipe);
4329 }
4330
4331 /* ------------------ */
4332 /* device isochronous */
4333
4334 /* ----------- */
4335 /* device bulk */
4336
4337 static usbd_status
4338 xhci_device_bulk_transfer(struct usbd_xfer *xfer)
4339 {
4340 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4341 usbd_status err;
4342
4343 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4344
4345 /* Insert last in queue. */
4346 mutex_enter(&sc->sc_lock);
4347 err = usb_insert_transfer(xfer);
4348 mutex_exit(&sc->sc_lock);
4349 if (err)
4350 return err;
4351
4352 /*
4353 * Pipe isn't running (otherwise err would be USBD_INPROG),
4354 * so start it first.
4355 */
4356 return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4357 }
4358
4359 static usbd_status
4360 xhci_device_bulk_start(struct usbd_xfer *xfer)
4361 {
4362 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4363 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4364 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4365 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
4366 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4367 const uint32_t len = xfer->ux_length;
4368 usb_dma_t * const dma = &xfer->ux_dmabuf;
4369 uint64_t parameter;
4370 uint32_t status;
4371 uint32_t control;
4372 u_int i = 0;
4373 const bool polling = xhci_polling_p(sc);
4374
4375 XHCIHIST_FUNC();
4376 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4377 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4378
4379 if (sc->sc_dying)
4380 return USBD_IOERROR;
4381
4382 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4383
4384 parameter = DMAADDR(dma, 0);
4385 /*
4386 * XXX: (dsl) The physical buffer must not cross a 64k boundary.
4387 * If the user supplied buffer crosses such a boundary then 2
4388 * (or more) TRB should be used.
4389 * If multiple TRB are used the td_size field must be set correctly.
4390 * For v1.0 devices (like ivy bridge) this is the number of usb data
4391 * blocks needed to complete the transfer.
4392 * Setting it to 1 in the last TRB causes an extra zero-length
4393 * data block be sent.
4394 * The earlier documentation differs, I don't know how it behaves.
4395 */
4396 KASSERTMSG(len <= 0x10000, "len %d", len);
4397 status = XHCI_TRB_2_IRQ_SET(0) |
4398 XHCI_TRB_2_TDSZ_SET(0) |
4399 XHCI_TRB_2_BYTES_SET(len);
4400 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4401 (usbd_xfer_isread(xfer) ? XHCI_TRB_3_ISP_BIT : 0) |
4402 XHCI_TRB_3_IOC_BIT;
4403 xhci_soft_trb_put(&xx->xx_trb[i++], parameter, status, control);
4404
4405 if (!polling)
4406 mutex_enter(&tr->xr_lock);
4407 xhci_ring_put(sc, tr, xfer, xx->xx_trb, i);
4408 if (!polling)
4409 mutex_exit(&tr->xr_lock);
4410
4411 if (!polling)
4412 mutex_enter(&sc->sc_lock);
4413 xfer->ux_status = USBD_IN_PROGRESS;
4414 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4415 usbd_xfer_schedule_timeout(xfer);
4416 if (!polling)
4417 mutex_exit(&sc->sc_lock);
4418
4419 return USBD_IN_PROGRESS;
4420 }
4421
4422 static void
4423 xhci_device_bulk_done(struct usbd_xfer *xfer)
4424 {
4425 #ifdef USB_DEBUG
4426 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4427 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4428 #endif
4429 const int isread = usbd_xfer_isread(xfer);
4430
4431 XHCIHIST_FUNC();
4432 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4433 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4434
4435 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4436 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4437 }
4438
4439 static void
4440 xhci_device_bulk_abort(struct usbd_xfer *xfer)
4441 {
4442 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4443
4444 usbd_xfer_abort(xfer);
4445 }
4446
4447 static void
4448 xhci_device_bulk_close(struct usbd_pipe *pipe)
4449 {
4450 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4451
4452 xhci_close_pipe(pipe);
4453 }
4454
4455 /* ---------------- */
4456 /* device interrupt */
4457
4458 static usbd_status
4459 xhci_device_intr_transfer(struct usbd_xfer *xfer)
4460 {
4461 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4462 usbd_status err;
4463
4464 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4465
4466 /* Insert last in queue. */
4467 mutex_enter(&sc->sc_lock);
4468 err = usb_insert_transfer(xfer);
4469 mutex_exit(&sc->sc_lock);
4470 if (err)
4471 return err;
4472
4473 /*
4474 * Pipe isn't running (otherwise err would be USBD_INPROG),
4475 * so start it first.
4476 */
4477 return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4478 }
4479
4480 static usbd_status
4481 xhci_device_intr_start(struct usbd_xfer *xfer)
4482 {
4483 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4484 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4485 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4486 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
4487 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4488 const uint32_t len = xfer->ux_length;
4489 const bool polling = xhci_polling_p(sc);
4490 usb_dma_t * const dma = &xfer->ux_dmabuf;
4491 uint64_t parameter;
4492 uint32_t status;
4493 uint32_t control;
4494 u_int i = 0;
4495
4496 XHCIHIST_FUNC();
4497 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4498 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4499
4500 if (sc->sc_dying)
4501 return USBD_IOERROR;
4502
4503 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4504
4505 parameter = DMAADDR(dma, 0);
4506 KASSERTMSG(len <= 0x10000, "len %d", len);
4507 status = XHCI_TRB_2_IRQ_SET(0) |
4508 XHCI_TRB_2_TDSZ_SET(0) |
4509 XHCI_TRB_2_BYTES_SET(len);
4510 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4511 (usbd_xfer_isread(xfer) ? XHCI_TRB_3_ISP_BIT : 0) |
4512 XHCI_TRB_3_IOC_BIT;
4513 xhci_soft_trb_put(&xx->xx_trb[i++], parameter, status, control);
4514
4515 if (!polling)
4516 mutex_enter(&tr->xr_lock);
4517 xhci_ring_put(sc, tr, xfer, xx->xx_trb, i);
4518 if (!polling)
4519 mutex_exit(&tr->xr_lock);
4520
4521 if (!polling)
4522 mutex_enter(&sc->sc_lock);
4523 xfer->ux_status = USBD_IN_PROGRESS;
4524 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4525 usbd_xfer_schedule_timeout(xfer);
4526 if (!polling)
4527 mutex_exit(&sc->sc_lock);
4528
4529 return USBD_IN_PROGRESS;
4530 }
4531
4532 static void
4533 xhci_device_intr_done(struct usbd_xfer *xfer)
4534 {
4535 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4536 #ifdef USB_DEBUG
4537 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4538 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4539 #endif
4540 const int isread = usbd_xfer_isread(xfer);
4541
4542 XHCIHIST_FUNC();
4543 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4544 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4545
4546 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
4547
4548 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4549 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4550 }
4551
4552 static void
4553 xhci_device_intr_abort(struct usbd_xfer *xfer)
4554 {
4555 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4556
4557 XHCIHIST_FUNC();
4558 XHCIHIST_CALLARGS("%#jx", (uintptr_t)xfer, 0, 0, 0);
4559
4560 KASSERT(mutex_owned(&sc->sc_lock));
4561 usbd_xfer_abort(xfer);
4562 }
4563
4564 static void
4565 xhci_device_intr_close(struct usbd_pipe *pipe)
4566 {
4567 //struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
4568
4569 XHCIHIST_FUNC();
4570 XHCIHIST_CALLARGS("%#jx", (uintptr_t)pipe, 0, 0, 0);
4571
4572 xhci_close_pipe(pipe);
4573 }
4574