xhci.c revision 1.131 1 /* $NetBSD: xhci.c,v 1.131 2020/06/04 20:54:37 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2013 Jonathan A. Kollasch
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
25 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
26 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * USB rev 2.0 and rev 3.1 specification
31 * http://www.usb.org/developers/docs/
32 * xHCI rev 1.1 specification
33 * http://www.intel.com/technology/usb/spec.htm
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.131 2020/06/04 20:54:37 skrll Exp $");
38
39 #ifdef _KERNEL_OPT
40 #include "opt_usb.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/device.h>
48 #include <sys/select.h>
49 #include <sys/proc.h>
50 #include <sys/queue.h>
51 #include <sys/mutex.h>
52 #include <sys/condvar.h>
53 #include <sys/bus.h>
54 #include <sys/cpu.h>
55 #include <sys/sysctl.h>
56
57 #include <machine/endian.h>
58
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdivar.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbhist.h>
64 #include <dev/usb/usb_mem.h>
65 #include <dev/usb/usb_quirks.h>
66
67 #include <dev/usb/xhcireg.h>
68 #include <dev/usb/xhcivar.h>
69 #include <dev/usb/usbroothub.h>
70
71
72 #ifdef USB_DEBUG
73 #ifndef XHCI_DEBUG
74 #define xhcidebug 0
75 #else /* !XHCI_DEBUG */
76 #define HEXDUMP(a, b, c) \
77 do { \
78 if (xhcidebug > 0) \
79 hexdump(printf, a, b, c); \
80 } while (/*CONSTCOND*/0)
81 static int xhcidebug = 0;
82
83 SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup")
84 {
85 int err;
86 const struct sysctlnode *rnode;
87 const struct sysctlnode *cnode;
88
89 err = sysctl_createv(clog, 0, NULL, &rnode,
90 CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci",
91 SYSCTL_DESCR("xhci global controls"),
92 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
93
94 if (err)
95 goto fail;
96
97 /* control debugging printfs */
98 err = sysctl_createv(clog, 0, &rnode, &cnode,
99 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
100 "debug", SYSCTL_DESCR("Enable debugging output"),
101 NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL);
102 if (err)
103 goto fail;
104
105 return;
106 fail:
107 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
108 }
109
110 #endif /* !XHCI_DEBUG */
111 #endif /* USB_DEBUG */
112
113 #ifndef HEXDUMP
114 #define HEXDUMP(a, b, c)
115 #endif
116
117 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(xhcidebug,FMT,A,B,C,D)
118 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D)
119 #define XHCIHIST_FUNC() USBHIST_FUNC()
120 #define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug)
121 #define XHCIHIST_CALLARGS(FMT,A,B,C,D) \
122 USBHIST_CALLARGS(xhcidebug,FMT,A,B,C,D)
123
124 #define XHCI_DCI_SLOT 0
125 #define XHCI_DCI_EP_CONTROL 1
126
127 #define XHCI_ICI_INPUT_CONTROL 0
128
129 struct xhci_pipe {
130 struct usbd_pipe xp_pipe;
131 struct usb_task xp_async_task;
132 };
133
134 #define XHCI_COMMAND_RING_TRBS 256
135 #define XHCI_EVENT_RING_TRBS 256
136 #define XHCI_EVENT_RING_SEGMENTS 1
137 #define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT
138
139 static usbd_status xhci_open(struct usbd_pipe *);
140 static void xhci_close_pipe(struct usbd_pipe *);
141 static int xhci_intr1(struct xhci_softc * const);
142 static void xhci_softintr(void *);
143 static void xhci_poll(struct usbd_bus *);
144 static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int);
145 static void xhci_freex(struct usbd_bus *, struct usbd_xfer *);
146 static void xhci_abortx(struct usbd_xfer *);
147 static bool xhci_dying(struct usbd_bus *);
148 static void xhci_get_lock(struct usbd_bus *, kmutex_t **);
149 static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int,
150 struct usbd_port *);
151 static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
152 void *, int);
153
154 static usbd_status xhci_configure_endpoint(struct usbd_pipe *);
155 //static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *);
156 static usbd_status xhci_reset_endpoint(struct usbd_pipe *);
157 static usbd_status xhci_stop_endpoint(struct usbd_pipe *);
158
159 static void xhci_host_dequeue(struct xhci_ring * const);
160 static usbd_status xhci_set_dequeue(struct usbd_pipe *);
161
162 static usbd_status xhci_do_command(struct xhci_softc * const,
163 struct xhci_soft_trb * const, int);
164 static usbd_status xhci_do_command_locked(struct xhci_softc * const,
165 struct xhci_soft_trb * const, int);
166 static usbd_status xhci_init_slot(struct usbd_device *, uint32_t);
167 static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *);
168 static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool);
169 static usbd_status xhci_enable_slot(struct xhci_softc * const,
170 uint8_t * const);
171 static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t);
172 static usbd_status xhci_address_device(struct xhci_softc * const,
173 uint64_t, uint8_t, bool);
174 static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int);
175 static usbd_status xhci_update_ep0_mps(struct xhci_softc * const,
176 struct xhci_slot * const, u_int);
177 static usbd_status xhci_ring_init(struct xhci_softc * const,
178 struct xhci_ring **, size_t, size_t);
179 static void xhci_ring_free(struct xhci_softc * const,
180 struct xhci_ring ** const);
181
182 static void xhci_setup_ctx(struct usbd_pipe *);
183 static void xhci_setup_route(struct usbd_pipe *, uint32_t *);
184 static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *);
185 static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *);
186 static uint32_t xhci_bival2ival(uint32_t, uint32_t);
187
188 static void xhci_noop(struct usbd_pipe *);
189
190 static usbd_status xhci_root_intr_transfer(struct usbd_xfer *);
191 static usbd_status xhci_root_intr_start(struct usbd_xfer *);
192 static void xhci_root_intr_abort(struct usbd_xfer *);
193 static void xhci_root_intr_close(struct usbd_pipe *);
194 static void xhci_root_intr_done(struct usbd_xfer *);
195
196 static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *);
197 static usbd_status xhci_device_ctrl_start(struct usbd_xfer *);
198 static void xhci_device_ctrl_abort(struct usbd_xfer *);
199 static void xhci_device_ctrl_close(struct usbd_pipe *);
200 static void xhci_device_ctrl_done(struct usbd_xfer *);
201
202 static usbd_status xhci_device_intr_transfer(struct usbd_xfer *);
203 static usbd_status xhci_device_intr_start(struct usbd_xfer *);
204 static void xhci_device_intr_abort(struct usbd_xfer *);
205 static void xhci_device_intr_close(struct usbd_pipe *);
206 static void xhci_device_intr_done(struct usbd_xfer *);
207
208 static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *);
209 static usbd_status xhci_device_bulk_start(struct usbd_xfer *);
210 static void xhci_device_bulk_abort(struct usbd_xfer *);
211 static void xhci_device_bulk_close(struct usbd_pipe *);
212 static void xhci_device_bulk_done(struct usbd_xfer *);
213
214 static const struct usbd_bus_methods xhci_bus_methods = {
215 .ubm_open = xhci_open,
216 .ubm_softint = xhci_softintr,
217 .ubm_dopoll = xhci_poll,
218 .ubm_allocx = xhci_allocx,
219 .ubm_freex = xhci_freex,
220 .ubm_abortx = xhci_abortx,
221 .ubm_dying = xhci_dying,
222 .ubm_getlock = xhci_get_lock,
223 .ubm_newdev = xhci_new_device,
224 .ubm_rhctrl = xhci_roothub_ctrl,
225 };
226
227 static const struct usbd_pipe_methods xhci_root_intr_methods = {
228 .upm_transfer = xhci_root_intr_transfer,
229 .upm_start = xhci_root_intr_start,
230 .upm_abort = xhci_root_intr_abort,
231 .upm_close = xhci_root_intr_close,
232 .upm_cleartoggle = xhci_noop,
233 .upm_done = xhci_root_intr_done,
234 };
235
236
237 static const struct usbd_pipe_methods xhci_device_ctrl_methods = {
238 .upm_transfer = xhci_device_ctrl_transfer,
239 .upm_start = xhci_device_ctrl_start,
240 .upm_abort = xhci_device_ctrl_abort,
241 .upm_close = xhci_device_ctrl_close,
242 .upm_cleartoggle = xhci_noop,
243 .upm_done = xhci_device_ctrl_done,
244 };
245
246 static const struct usbd_pipe_methods xhci_device_isoc_methods = {
247 .upm_cleartoggle = xhci_noop,
248 };
249
250 static const struct usbd_pipe_methods xhci_device_bulk_methods = {
251 .upm_transfer = xhci_device_bulk_transfer,
252 .upm_start = xhci_device_bulk_start,
253 .upm_abort = xhci_device_bulk_abort,
254 .upm_close = xhci_device_bulk_close,
255 .upm_cleartoggle = xhci_noop,
256 .upm_done = xhci_device_bulk_done,
257 };
258
259 static const struct usbd_pipe_methods xhci_device_intr_methods = {
260 .upm_transfer = xhci_device_intr_transfer,
261 .upm_start = xhci_device_intr_start,
262 .upm_abort = xhci_device_intr_abort,
263 .upm_close = xhci_device_intr_close,
264 .upm_cleartoggle = xhci_noop,
265 .upm_done = xhci_device_intr_done,
266 };
267
268 static inline uint32_t
269 xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset)
270 {
271 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
272 }
273
274 static inline uint32_t
275 xhci_read_2(const struct xhci_softc * const sc, bus_size_t offset)
276 {
277 return bus_space_read_2(sc->sc_iot, sc->sc_ioh, offset);
278 }
279
280 static inline uint32_t
281 xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset)
282 {
283 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset);
284 }
285
286 static inline void
287 xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset,
288 uint32_t value)
289 {
290 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value);
291 }
292
293 #if 0 /* unused */
294 static inline void
295 xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset,
296 uint32_t value)
297 {
298 bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value);
299 }
300 #endif /* unused */
301
302 static inline uint32_t
303 xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset)
304 {
305 return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset);
306 }
307
308 static inline uint32_t
309 xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset)
310 {
311 return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
312 }
313
314 static inline void
315 xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset,
316 uint32_t value)
317 {
318 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
319 }
320
321 static inline uint64_t
322 xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset)
323 {
324 uint64_t value;
325
326 if (sc->sc_ac64) {
327 #ifdef XHCI_USE_BUS_SPACE_8
328 value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset);
329 #else
330 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
331 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh,
332 offset + 4) << 32;
333 #endif
334 } else {
335 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
336 }
337
338 return value;
339 }
340
341 static inline void
342 xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset,
343 uint64_t value)
344 {
345 if (sc->sc_ac64) {
346 #ifdef XHCI_USE_BUS_SPACE_8
347 bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value);
348 #else
349 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0,
350 (value >> 0) & 0xffffffff);
351 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4,
352 (value >> 32) & 0xffffffff);
353 #endif
354 } else {
355 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
356 }
357 }
358
359 static inline void
360 xhci_op_barrier(const struct xhci_softc * const sc, bus_size_t offset,
361 bus_size_t len, int flags)
362 {
363 bus_space_barrier(sc->sc_iot, sc->sc_obh, offset, len, flags);
364 }
365
366 static inline uint32_t
367 xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset)
368 {
369 return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
370 }
371
372 static inline void
373 xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset,
374 uint32_t value)
375 {
376 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
377 }
378
379 #if 0 /* unused */
380 static inline uint64_t
381 xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset)
382 {
383 uint64_t value;
384
385 if (sc->sc_ac64) {
386 #ifdef XHCI_USE_BUS_SPACE_8
387 value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset);
388 #else
389 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
390 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh,
391 offset + 4) << 32;
392 #endif
393 } else {
394 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
395 }
396
397 return value;
398 }
399 #endif /* unused */
400
401 static inline void
402 xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset,
403 uint64_t value)
404 {
405 if (sc->sc_ac64) {
406 #ifdef XHCI_USE_BUS_SPACE_8
407 bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value);
408 #else
409 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0,
410 (value >> 0) & 0xffffffff);
411 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4,
412 (value >> 32) & 0xffffffff);
413 #endif
414 } else {
415 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
416 }
417 }
418
419 #if 0 /* unused */
420 static inline uint32_t
421 xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset)
422 {
423 return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset);
424 }
425 #endif /* unused */
426
427 static inline void
428 xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset,
429 uint32_t value)
430 {
431 bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value);
432 }
433
434 /* --- */
435
436 static inline uint8_t
437 xhci_ep_get_type(usb_endpoint_descriptor_t * const ed)
438 {
439 u_int eptype = 0;
440
441 switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
442 case UE_CONTROL:
443 eptype = 0x0;
444 break;
445 case UE_ISOCHRONOUS:
446 eptype = 0x1;
447 break;
448 case UE_BULK:
449 eptype = 0x2;
450 break;
451 case UE_INTERRUPT:
452 eptype = 0x3;
453 break;
454 }
455
456 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
457 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
458 return eptype | 0x4;
459 else
460 return eptype;
461 }
462
463 static u_int
464 xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed)
465 {
466 /* xHCI 1.0 section 4.5.1 */
467 u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress);
468 u_int in = 0;
469
470 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
471 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
472 in = 1;
473
474 return epaddr * 2 + in;
475 }
476
477 static inline u_int
478 xhci_dci_to_ici(const u_int i)
479 {
480 return i + 1;
481 }
482
483 static inline void *
484 xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs,
485 const u_int dci)
486 {
487 return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
488 }
489
490 #if 0 /* unused */
491 static inline bus_addr_t
492 xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs,
493 const u_int dci)
494 {
495 return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
496 }
497 #endif /* unused */
498
499 static inline void *
500 xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs,
501 const u_int ici)
502 {
503 return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
504 }
505
506 static inline bus_addr_t
507 xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs,
508 const u_int ici)
509 {
510 return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
511 }
512
513 static inline struct xhci_trb *
514 xhci_ring_trbv(struct xhci_ring * const xr, u_int idx)
515 {
516 return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
517 }
518
519 static inline bus_addr_t
520 xhci_ring_trbp(struct xhci_ring * const xr, u_int idx)
521 {
522 return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
523 }
524
525 static inline void
526 xhci_xfer_put_trb(struct xhci_xfer * const xx, u_int idx,
527 uint64_t parameter, uint32_t status, uint32_t control)
528 {
529 KASSERTMSG(idx < xx->xx_ntrb, "idx=%u xx_ntrb=%u", idx, xx->xx_ntrb);
530 xx->xx_trb[idx].trb_0 = parameter;
531 xx->xx_trb[idx].trb_2 = status;
532 xx->xx_trb[idx].trb_3 = control;
533 }
534
535 static inline void
536 xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status,
537 uint32_t control)
538 {
539 trb->trb_0 = htole64(parameter);
540 trb->trb_2 = htole32(status);
541 trb->trb_3 = htole32(control);
542 }
543
544 static int
545 xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx)
546 {
547 /* base address of TRBs */
548 bus_addr_t trbp = xhci_ring_trbp(xr, 0);
549
550 /* trb_0 range sanity check */
551 if (trb_0 == 0 || trb_0 < trbp ||
552 (trb_0 - trbp) % sizeof(struct xhci_trb) != 0 ||
553 (trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) {
554 return 1;
555 }
556 *idx = (trb_0 - trbp) / sizeof(struct xhci_trb);
557 return 0;
558 }
559
560 static unsigned int
561 xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs,
562 u_int dci)
563 {
564 uint32_t *cp;
565
566 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
567 cp = xhci_slot_get_dcv(sc, xs, dci);
568 return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0]));
569 }
570
571 static inline unsigned int
572 xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport)
573 {
574 const unsigned int port = ctlrport - 1;
575 const uint8_t bit = __BIT(port % NBBY);
576
577 return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit);
578 }
579
580 /*
581 * Return the roothub port for a controller port. Both are 1..n.
582 */
583 static inline unsigned int
584 xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport)
585 {
586
587 return sc->sc_ctlrportmap[ctrlport - 1];
588 }
589
590 /*
591 * Return the controller port for a bus roothub port. Both are 1..n.
592 */
593 static inline unsigned int
594 xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn,
595 unsigned int rhport)
596 {
597
598 return sc->sc_rhportmap[bn][rhport - 1];
599 }
600
601 /* --- */
602
603 void
604 xhci_childdet(device_t self, device_t child)
605 {
606 struct xhci_softc * const sc = device_private(self);
607
608 KASSERT((sc->sc_child == child) || (sc->sc_child2 == child));
609 if (child == sc->sc_child2)
610 sc->sc_child2 = NULL;
611 else if (child == sc->sc_child)
612 sc->sc_child = NULL;
613 }
614
615 int
616 xhci_detach(struct xhci_softc *sc, int flags)
617 {
618 int rv = 0;
619
620 if (sc->sc_child2 != NULL) {
621 rv = config_detach(sc->sc_child2, flags);
622 if (rv != 0)
623 return rv;
624 KASSERT(sc->sc_child2 == NULL);
625 }
626
627 if (sc->sc_child != NULL) {
628 rv = config_detach(sc->sc_child, flags);
629 if (rv != 0)
630 return rv;
631 KASSERT(sc->sc_child == NULL);
632 }
633
634 /* XXX unconfigure/free slots */
635
636 /* verify: */
637 xhci_rt_write_4(sc, XHCI_IMAN(0), 0);
638 xhci_op_write_4(sc, XHCI_USBCMD, 0);
639 /* do we need to wait for stop? */
640
641 xhci_op_write_8(sc, XHCI_CRCR, 0);
642 xhci_ring_free(sc, &sc->sc_cr);
643 cv_destroy(&sc->sc_command_cv);
644 cv_destroy(&sc->sc_cmdbusy_cv);
645
646 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0);
647 xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0);
648 xhci_rt_write_8(sc, XHCI_ERDP(0), 0|XHCI_ERDP_LO_BUSY);
649 xhci_ring_free(sc, &sc->sc_er);
650
651 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
652
653 xhci_op_write_8(sc, XHCI_DCBAAP, 0);
654 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
655
656 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots);
657
658 kmem_free(sc->sc_ctlrportbus,
659 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY));
660 kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int));
661
662 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
663 kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int));
664 }
665
666 mutex_destroy(&sc->sc_lock);
667 mutex_destroy(&sc->sc_intr_lock);
668
669 pool_cache_destroy(sc->sc_xferpool);
670
671 return rv;
672 }
673
674 int
675 xhci_activate(device_t self, enum devact act)
676 {
677 struct xhci_softc * const sc = device_private(self);
678
679 switch (act) {
680 case DVACT_DEACTIVATE:
681 sc->sc_dying = true;
682 return 0;
683 default:
684 return EOPNOTSUPP;
685 }
686 }
687
688 bool
689 xhci_suspend(device_t dv, const pmf_qual_t *qual)
690 {
691 return false;
692 }
693
694 bool
695 xhci_resume(device_t dv, const pmf_qual_t *qual)
696 {
697 return false;
698 }
699
700 bool
701 xhci_shutdown(device_t self, int flags)
702 {
703 return false;
704 }
705
706 static int
707 xhci_hc_reset(struct xhci_softc * const sc)
708 {
709 uint32_t usbcmd, usbsts;
710 int i;
711
712 /* Check controller not ready */
713 for (i = 0; i < XHCI_WAIT_CNR; i++) {
714 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
715 if ((usbsts & XHCI_STS_CNR) == 0)
716 break;
717 usb_delay_ms(&sc->sc_bus, 1);
718 }
719 if (i >= XHCI_WAIT_CNR) {
720 aprint_error_dev(sc->sc_dev, "controller not ready timeout\n");
721 return EIO;
722 }
723
724 /* Halt controller */
725 usbcmd = 0;
726 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
727 usb_delay_ms(&sc->sc_bus, 1);
728
729 /* Reset controller */
730 usbcmd = XHCI_CMD_HCRST;
731 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
732 for (i = 0; i < XHCI_WAIT_HCRST; i++) {
733 /*
734 * Wait 1ms first. Existing Intel xHCI requies 1ms delay to
735 * prevent system hang (Errata).
736 */
737 usb_delay_ms(&sc->sc_bus, 1);
738 usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
739 if ((usbcmd & XHCI_CMD_HCRST) == 0)
740 break;
741 }
742 if (i >= XHCI_WAIT_HCRST) {
743 aprint_error_dev(sc->sc_dev, "host controller reset timeout\n");
744 return EIO;
745 }
746
747 /* Check controller not ready */
748 for (i = 0; i < XHCI_WAIT_CNR; i++) {
749 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
750 if ((usbsts & XHCI_STS_CNR) == 0)
751 break;
752 usb_delay_ms(&sc->sc_bus, 1);
753 }
754 if (i >= XHCI_WAIT_CNR) {
755 aprint_error_dev(sc->sc_dev,
756 "controller not ready timeout after reset\n");
757 return EIO;
758 }
759
760 return 0;
761 }
762
763
764 /* 7.2 xHCI Support Protocol Capability */
765 static void
766 xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp)
767 {
768 XHCIHIST_FUNC(); XHCIHIST_CALLED();
769
770 /* XXX Cache this lot */
771
772 const uint32_t w0 = xhci_read_4(sc, ecp);
773 const uint32_t w4 = xhci_read_4(sc, ecp + 4);
774 const uint32_t w8 = xhci_read_4(sc, ecp + 8);
775 const uint32_t wc = xhci_read_4(sc, ecp + 0xc);
776
777 aprint_debug_dev(sc->sc_dev,
778 " SP: 0x%08x 0x%08x 0x%08x 0x%08x\n", w0, w4, w8, wc);
779
780 if (w4 != XHCI_XECP_USBID)
781 return;
782
783 const int major = XHCI_XECP_SP_W0_MAJOR(w0);
784 const int minor = XHCI_XECP_SP_W0_MINOR(w0);
785 const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8);
786 const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8);
787
788 const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16));
789 switch (mm) {
790 case 0x0200:
791 case 0x0300:
792 case 0x0301:
793 case 0x0310:
794 aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n",
795 major == 3 ? "ss" : "hs", cpo, cpo + cpc -1);
796 break;
797 default:
798 aprint_error_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n",
799 major, minor);
800 return;
801 }
802
803 const size_t bus = (major == 3) ? 0 : 1;
804
805 /* Index arrays with 0..n-1 where ports are numbered 1..n */
806 for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) {
807 if (sc->sc_ctlrportmap[cp] != 0) {
808 aprint_error_dev(sc->sc_dev, "controller port %zu "
809 "already assigned", cp);
810 continue;
811 }
812
813 sc->sc_ctlrportbus[cp / NBBY] |=
814 bus == 0 ? 0 : __BIT(cp % NBBY);
815
816 const size_t rhp = sc->sc_rhportcount[bus]++;
817
818 KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0,
819 "bus %zu rhp %zu is %d", bus, rhp,
820 sc->sc_rhportmap[bus][rhp]);
821
822 sc->sc_rhportmap[bus][rhp] = cp + 1;
823 sc->sc_ctlrportmap[cp] = rhp + 1;
824 }
825 }
826
827 /* Process extended capabilities */
828 static void
829 xhci_ecp(struct xhci_softc *sc, uint32_t hcc)
830 {
831 XHCIHIST_FUNC(); XHCIHIST_CALLED();
832
833 bus_size_t ecp = XHCI_HCC_XECP(hcc) * 4;
834 while (ecp != 0) {
835 uint32_t ecr = xhci_read_4(sc, ecp);
836 aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr);
837 switch (XHCI_XECP_ID(ecr)) {
838 case XHCI_ID_PROTOCOLS: {
839 xhci_id_protocols(sc, ecp);
840 break;
841 }
842 case XHCI_ID_USB_LEGACY: {
843 uint8_t bios_sem;
844
845 /* Take host controller ownership from BIOS */
846 bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM);
847 if (bios_sem) {
848 /* sets xHCI to be owned by OS */
849 xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1);
850 aprint_debug_dev(sc->sc_dev,
851 "waiting for BIOS to give up control\n");
852 for (int i = 0; i < 5000; i++) {
853 bios_sem = xhci_read_1(sc, ecp +
854 XHCI_XECP_BIOS_SEM);
855 if (bios_sem == 0)
856 break;
857 DELAY(1000);
858 }
859 if (bios_sem) {
860 aprint_error_dev(sc->sc_dev,
861 "timed out waiting for BIOS\n");
862 }
863 }
864 break;
865 }
866 default:
867 break;
868 }
869 ecr = xhci_read_4(sc, ecp);
870 if (XHCI_XECP_NEXT(ecr) == 0) {
871 ecp = 0;
872 } else {
873 ecp += XHCI_XECP_NEXT(ecr) * 4;
874 }
875 }
876 }
877
878 #define XHCI_HCCPREV1_BITS \
879 "\177\020" /* New bitmask */ \
880 "f\020\020XECP\0" \
881 "f\014\4MAXPSA\0" \
882 "b\013CFC\0" \
883 "b\012SEC\0" \
884 "b\011SBD\0" \
885 "b\010FSE\0" \
886 "b\7NSS\0" \
887 "b\6LTC\0" \
888 "b\5LHRC\0" \
889 "b\4PIND\0" \
890 "b\3PPC\0" \
891 "b\2CZC\0" \
892 "b\1BNC\0" \
893 "b\0AC64\0" \
894 "\0"
895 #define XHCI_HCCV1_x_BITS \
896 "\177\020" /* New bitmask */ \
897 "f\020\020XECP\0" \
898 "f\014\4MAXPSA\0" \
899 "b\013CFC\0" \
900 "b\012SEC\0" \
901 "b\011SPC\0" \
902 "b\010PAE\0" \
903 "b\7NSS\0" \
904 "b\6LTC\0" \
905 "b\5LHRC\0" \
906 "b\4PIND\0" \
907 "b\3PPC\0" \
908 "b\2CSZ\0" \
909 "b\1BNC\0" \
910 "b\0AC64\0" \
911 "\0"
912
913 #define XHCI_HCC2_BITS \
914 "\177\020" /* New bitmask */ \
915 "b\7ETC_TSC\0" \
916 "b\6ETC\0" \
917 "b\5CIC\0" \
918 "b\4LEC\0" \
919 "b\3CTC\0" \
920 "b\2FSC\0" \
921 "b\1CMC\0" \
922 "b\0U3C\0" \
923 "\0"
924
925 void
926 xhci_start(struct xhci_softc *sc)
927 {
928 xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA);
929 if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0)
930 /* Intel xhci needs interrupt rate moderated. */
931 xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP);
932 else
933 xhci_rt_write_4(sc, XHCI_IMOD(0), 0);
934 aprint_debug_dev(sc->sc_dev, "current IMOD %u\n",
935 xhci_rt_read_4(sc, XHCI_IMOD(0)));
936
937 /* Go! */
938 xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS);
939 aprint_debug_dev(sc->sc_dev, "USBCMD 0x%08"PRIx32"\n",
940 xhci_op_read_4(sc, XHCI_USBCMD));
941 }
942
943 int
944 xhci_init(struct xhci_softc *sc)
945 {
946 bus_size_t bsz;
947 uint32_t hcs1, hcs2, hcs3, hcc, dboff, rtsoff, hcc2;
948 uint32_t pagesize, config;
949 int i = 0;
950 uint16_t hciversion;
951 uint8_t caplength;
952
953 XHCIHIST_FUNC(); XHCIHIST_CALLED();
954
955 /* Set up the bus struct for the usb 3 and usb 2 buses */
956 sc->sc_bus.ub_methods = &xhci_bus_methods;
957 sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe);
958 sc->sc_bus.ub_usedma = true;
959 sc->sc_bus.ub_hcpriv = sc;
960
961 sc->sc_bus2.ub_methods = &xhci_bus_methods;
962 sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe);
963 sc->sc_bus2.ub_revision = USBREV_2_0;
964 sc->sc_bus2.ub_usedma = true;
965 sc->sc_bus2.ub_hcpriv = sc;
966 sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag;
967
968 caplength = xhci_read_1(sc, XHCI_CAPLENGTH);
969 hciversion = xhci_read_2(sc, XHCI_HCIVERSION);
970
971 if (hciversion < XHCI_HCIVERSION_0_96 ||
972 hciversion >= 0x0200) {
973 aprint_normal_dev(sc->sc_dev,
974 "xHCI version %x.%x not known to be supported\n",
975 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
976 } else {
977 aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n",
978 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
979 }
980
981 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength,
982 &sc->sc_cbh) != 0) {
983 aprint_error_dev(sc->sc_dev, "capability subregion failure\n");
984 return ENOMEM;
985 }
986
987 hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1);
988 sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1);
989 sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1);
990 sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1);
991 hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2);
992 hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3);
993 aprint_debug_dev(sc->sc_dev,
994 "hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3);
995
996 hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS);
997 sc->sc_ac64 = XHCI_HCC_AC64(hcc);
998 sc->sc_ctxsz = XHCI_HCC_CSZ(hcc) ? 64 : 32;
999
1000 char sbuf[128];
1001 if (hciversion < XHCI_HCIVERSION_1_0)
1002 snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, hcc);
1003 else
1004 snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, hcc);
1005 aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf);
1006 aprint_debug_dev(sc->sc_dev, "xECP %" __PRIxBITS "\n",
1007 XHCI_HCC_XECP(hcc) * 4);
1008 if (hciversion >= XHCI_HCIVERSION_1_1) {
1009 hcc2 = xhci_cap_read_4(sc, XHCI_HCCPARAMS2);
1010 snprintb(sbuf, sizeof(sbuf), XHCI_HCC2_BITS, hcc2);
1011 aprint_debug_dev(sc->sc_dev, "hcc2=%s\n", sbuf);
1012 }
1013
1014 /* default all ports to bus 0, i.e. usb 3 */
1015 sc->sc_ctlrportbus = kmem_zalloc(
1016 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP);
1017 sc->sc_ctlrportmap = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1018
1019 /* controller port to bus roothub port map */
1020 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
1021 sc->sc_rhportmap[j] = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1022 }
1023
1024 /*
1025 * Process all Extended Capabilities
1026 */
1027 xhci_ecp(sc, hcc);
1028
1029 bsz = XHCI_PORTSC(sc->sc_maxports);
1030 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz,
1031 &sc->sc_obh) != 0) {
1032 aprint_error_dev(sc->sc_dev, "operational subregion failure\n");
1033 return ENOMEM;
1034 }
1035
1036 dboff = xhci_cap_read_4(sc, XHCI_DBOFF);
1037 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff,
1038 sc->sc_maxslots * 4, &sc->sc_dbh) != 0) {
1039 aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n");
1040 return ENOMEM;
1041 }
1042
1043 rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF);
1044 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff,
1045 sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) {
1046 aprint_error_dev(sc->sc_dev, "runtime subregion failure\n");
1047 return ENOMEM;
1048 }
1049
1050 int rv;
1051 rv = xhci_hc_reset(sc);
1052 if (rv != 0) {
1053 return rv;
1054 }
1055
1056 if (sc->sc_vendor_init)
1057 sc->sc_vendor_init(sc);
1058
1059 pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE);
1060 aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize);
1061 pagesize = ffs(pagesize);
1062 if (pagesize == 0) {
1063 aprint_error_dev(sc->sc_dev, "pagesize is 0\n");
1064 return EIO;
1065 }
1066 sc->sc_pgsz = 1 << (12 + (pagesize - 1));
1067 aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz);
1068 aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n",
1069 (uint32_t)sc->sc_maxslots);
1070 aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports);
1071
1072 usbd_status err;
1073
1074 sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2);
1075 aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf);
1076 if (sc->sc_maxspbuf != 0) {
1077 err = usb_allocmem(&sc->sc_bus,
1078 sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t),
1079 USBMALLOC_COHERENT, &sc->sc_spbufarray_dma);
1080 if (err) {
1081 aprint_error_dev(sc->sc_dev,
1082 "spbufarray init fail, err %d\n", err);
1083 return ENOMEM;
1084 }
1085
1086 sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) *
1087 sc->sc_maxspbuf, KM_SLEEP);
1088 uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0);
1089 for (i = 0; i < sc->sc_maxspbuf; i++) {
1090 usb_dma_t * const dma = &sc->sc_spbuf_dma[i];
1091 /* allocate contexts */
1092 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz,
1093 sc->sc_pgsz, USBMALLOC_COHERENT, dma);
1094 if (err) {
1095 aprint_error_dev(sc->sc_dev,
1096 "spbufarray_dma init fail, err %d\n", err);
1097 rv = ENOMEM;
1098 goto bad1;
1099 }
1100 spbufarray[i] = htole64(DMAADDR(dma, 0));
1101 usb_syncmem(dma, 0, sc->sc_pgsz,
1102 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1103 }
1104
1105 usb_syncmem(&sc->sc_spbufarray_dma, 0,
1106 sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE);
1107 }
1108
1109 config = xhci_op_read_4(sc, XHCI_CONFIG);
1110 config &= ~0xFF;
1111 config |= sc->sc_maxslots & 0xFF;
1112 xhci_op_write_4(sc, XHCI_CONFIG, config);
1113
1114 err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS,
1115 XHCI_COMMAND_RING_SEGMENTS_ALIGN);
1116 if (err) {
1117 aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n",
1118 err);
1119 rv = ENOMEM;
1120 goto bad1;
1121 }
1122
1123 err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS,
1124 XHCI_EVENT_RING_SEGMENTS_ALIGN);
1125 if (err) {
1126 aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n",
1127 err);
1128 rv = ENOMEM;
1129 goto bad2;
1130 }
1131
1132 usb_dma_t *dma;
1133 size_t size;
1134 size_t align;
1135
1136 dma = &sc->sc_eventst_dma;
1137 size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE,
1138 XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN);
1139 KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size);
1140 align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN;
1141 err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT, dma);
1142 if (err) {
1143 aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n",
1144 err);
1145 rv = ENOMEM;
1146 goto bad3;
1147 }
1148
1149 memset(KERNADDR(dma, 0), 0, size);
1150 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1151 aprint_debug_dev(sc->sc_dev, "eventst: 0x%016jx %p %zx\n",
1152 (uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0),
1153 KERNADDR(&sc->sc_eventst_dma, 0),
1154 sc->sc_eventst_dma.udma_block->size);
1155
1156 dma = &sc->sc_dcbaa_dma;
1157 size = (1 + sc->sc_maxslots) * sizeof(uint64_t);
1158 KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size);
1159 align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN;
1160 err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT, dma);
1161 if (err) {
1162 aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err);
1163 rv = ENOMEM;
1164 goto bad4;
1165 }
1166 aprint_debug_dev(sc->sc_dev, "dcbaa: 0x%016jx %p %zx\n",
1167 (uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0),
1168 KERNADDR(&sc->sc_dcbaa_dma, 0),
1169 sc->sc_dcbaa_dma.udma_block->size);
1170
1171 memset(KERNADDR(dma, 0), 0, size);
1172 if (sc->sc_maxspbuf != 0) {
1173 /*
1174 * DCBA entry 0 hold the scratchbuf array pointer.
1175 */
1176 *(uint64_t *)KERNADDR(dma, 0) =
1177 htole64(DMAADDR(&sc->sc_spbufarray_dma, 0));
1178 }
1179 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1180
1181 sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots,
1182 KM_SLEEP);
1183 if (sc->sc_slots == NULL) {
1184 aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err);
1185 rv = ENOMEM;
1186 goto bad;
1187 }
1188
1189 sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0,
1190 "xhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
1191 if (sc->sc_xferpool == NULL) {
1192 aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n",
1193 err);
1194 rv = ENOMEM;
1195 goto bad;
1196 }
1197
1198 cv_init(&sc->sc_command_cv, "xhcicmd");
1199 cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq");
1200 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1201 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1202
1203 struct xhci_erste *erst;
1204 erst = KERNADDR(&sc->sc_eventst_dma, 0);
1205 erst[0].erste_0 = htole64(xhci_ring_trbp(sc->sc_er, 0));
1206 erst[0].erste_2 = htole32(sc->sc_er->xr_ntrb);
1207 erst[0].erste_3 = htole32(0);
1208 usb_syncmem(&sc->sc_eventst_dma, 0,
1209 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE);
1210
1211 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS);
1212 xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0));
1213 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(sc->sc_er, 0) |
1214 XHCI_ERDP_LO_BUSY);
1215
1216 xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0));
1217 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) |
1218 sc->sc_cr->xr_cs);
1219
1220 xhci_op_barrier(sc, 0, 4, BUS_SPACE_BARRIER_WRITE);
1221
1222 HEXDUMP("eventst", KERNADDR(&sc->sc_eventst_dma, 0),
1223 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS);
1224
1225 if ((sc->sc_quirks & XHCI_DEFERRED_START) == 0)
1226 xhci_start(sc);
1227
1228 return 0;
1229
1230 bad:
1231 if (sc->sc_xferpool) {
1232 pool_cache_destroy(sc->sc_xferpool);
1233 sc->sc_xferpool = NULL;
1234 }
1235
1236 if (sc->sc_slots) {
1237 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) *
1238 sc->sc_maxslots);
1239 sc->sc_slots = NULL;
1240 }
1241
1242 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
1243 bad4:
1244 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
1245 bad3:
1246 xhci_ring_free(sc, &sc->sc_er);
1247 bad2:
1248 xhci_ring_free(sc, &sc->sc_cr);
1249 i = sc->sc_maxspbuf;
1250 bad1:
1251 for (int j = 0; j < i; j++)
1252 usb_freemem(&sc->sc_bus, &sc->sc_spbuf_dma[j]);
1253 usb_freemem(&sc->sc_bus, &sc->sc_spbufarray_dma);
1254
1255 return rv;
1256 }
1257
1258 static inline bool
1259 xhci_polling_p(struct xhci_softc * const sc)
1260 {
1261 return sc->sc_bus.ub_usepolling || sc->sc_bus2.ub_usepolling;
1262 }
1263
1264 int
1265 xhci_intr(void *v)
1266 {
1267 struct xhci_softc * const sc = v;
1268 int ret = 0;
1269
1270 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1271
1272 if (sc == NULL)
1273 return 0;
1274
1275 mutex_spin_enter(&sc->sc_intr_lock);
1276
1277 if (sc->sc_dying || !device_has_power(sc->sc_dev))
1278 goto done;
1279
1280 /* If we get an interrupt while polling, then just ignore it. */
1281 if (xhci_polling_p(sc)) {
1282 #ifdef DIAGNOSTIC
1283 DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
1284 #endif
1285 goto done;
1286 }
1287
1288 ret = xhci_intr1(sc);
1289 if (ret) {
1290 KASSERT(sc->sc_child || sc->sc_child2);
1291
1292 /*
1293 * One of child busses could be already detached. It doesn't
1294 * matter on which of the two the softintr is scheduled.
1295 */
1296 if (sc->sc_child)
1297 usb_schedsoftintr(&sc->sc_bus);
1298 else
1299 usb_schedsoftintr(&sc->sc_bus2);
1300 }
1301 done:
1302 mutex_spin_exit(&sc->sc_intr_lock);
1303 return ret;
1304 }
1305
1306 int
1307 xhci_intr1(struct xhci_softc * const sc)
1308 {
1309 uint32_t usbsts;
1310 uint32_t iman;
1311
1312 XHCIHIST_FUNC();
1313
1314 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1315 XHCIHIST_CALLARGS("USBSTS 0x%08jx", usbsts, 0, 0, 0);
1316 if ((usbsts & (XHCI_STS_HSE | XHCI_STS_EINT | XHCI_STS_PCD |
1317 XHCI_STS_HCE)) == 0) {
1318 DPRINTFN(16, "ignored intr not for %jd",
1319 device_unit(sc->sc_dev), 0, 0, 0);
1320 return 0;
1321 }
1322
1323 /*
1324 * Clear EINT and other transient flags, to not misenterpret
1325 * next shared interrupt. Also, to avoid race, EINT must be cleared
1326 * before XHCI_IMAN_INTR_PEND is cleared.
1327 */
1328 xhci_op_write_4(sc, XHCI_USBSTS, usbsts & XHCI_STS_RSVDP0);
1329
1330 #ifdef XHCI_DEBUG
1331 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1332 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
1333 #endif
1334
1335 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1336 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
1337 iman |= XHCI_IMAN_INTR_PEND;
1338 xhci_rt_write_4(sc, XHCI_IMAN(0), iman);
1339
1340 #ifdef XHCI_DEBUG
1341 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1342 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
1343 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1344 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
1345 #endif
1346
1347 return 1;
1348 }
1349
1350 /*
1351 * 3 port speed types used in USB stack
1352 *
1353 * usbdi speed
1354 * definition: USB_SPEED_* in usb.h
1355 * They are used in struct usbd_device in USB stack.
1356 * ioctl interface uses these values too.
1357 * port_status speed
1358 * definition: UPS_*_SPEED in usb.h
1359 * They are used in usb_port_status_t and valid only for USB 2.0.
1360 * Speed value is always 0 for Super Speed or more, and dwExtPortStatus
1361 * of usb_port_status_ext_t indicates port speed.
1362 * Note that some 3.0 values overlap with 2.0 values.
1363 * (e.g. 0x200 means UPS_POER_POWER_SS in SS and
1364 * means UPS_LOW_SPEED in HS.)
1365 * port status returned from hub also uses these values.
1366 * On NetBSD UPS_OTHER_SPEED indicates port speed is super speed
1367 * or more.
1368 * xspeed:
1369 * definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1)
1370 * They are used in only slot context and PORTSC reg of xhci.
1371 * The difference between usbdi speed and xspeed is
1372 * that FS and LS values are swapped.
1373 */
1374
1375 /* convert usbdi speed to xspeed */
1376 static int
1377 xhci_speed2xspeed(int speed)
1378 {
1379 switch (speed) {
1380 case USB_SPEED_LOW: return 2;
1381 case USB_SPEED_FULL: return 1;
1382 default: return speed;
1383 }
1384 }
1385
1386 #if 0
1387 /* convert xspeed to usbdi speed */
1388 static int
1389 xhci_xspeed2speed(int xspeed)
1390 {
1391 switch (xspeed) {
1392 case 1: return USB_SPEED_FULL;
1393 case 2: return USB_SPEED_LOW;
1394 default: return xspeed;
1395 }
1396 }
1397 #endif
1398
1399 /* convert xspeed to port status speed */
1400 static int
1401 xhci_xspeed2psspeed(int xspeed)
1402 {
1403 switch (xspeed) {
1404 case 0: return 0;
1405 case 1: return UPS_FULL_SPEED;
1406 case 2: return UPS_LOW_SPEED;
1407 case 3: return UPS_HIGH_SPEED;
1408 default: return UPS_OTHER_SPEED;
1409 }
1410 }
1411
1412 /*
1413 * Construct input contexts and issue TRB to open pipe.
1414 */
1415 static usbd_status
1416 xhci_configure_endpoint(struct usbd_pipe *pipe)
1417 {
1418 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1419 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1420 #ifdef USB_DEBUG
1421 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1422 #endif
1423 struct xhci_soft_trb trb;
1424 usbd_status err;
1425
1426 XHCIHIST_FUNC();
1427 XHCIHIST_CALLARGS("slot %ju dci %ju epaddr 0x%02jx attr 0x%02jx",
1428 xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress,
1429 pipe->up_endpoint->ue_edesc->bmAttributes);
1430
1431 /* XXX ensure input context is available? */
1432
1433 memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz);
1434
1435 /* set up context */
1436 xhci_setup_ctx(pipe);
1437
1438 HEXDUMP("input control context", xhci_slot_get_icv(sc, xs, 0),
1439 sc->sc_ctxsz * 1);
1440 HEXDUMP("input endpoint context", xhci_slot_get_icv(sc, xs,
1441 xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1);
1442
1443 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1444 trb.trb_2 = 0;
1445 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1446 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1447
1448 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
1449
1450 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1451 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, dci),
1452 sc->sc_ctxsz * 1);
1453
1454 return err;
1455 }
1456
1457 #if 0
1458 static usbd_status
1459 xhci_unconfigure_endpoint(struct usbd_pipe *pipe)
1460 {
1461 #ifdef USB_DEBUG
1462 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1463 #endif
1464
1465 XHCIHIST_FUNC();
1466 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
1467
1468 return USBD_NORMAL_COMPLETION;
1469 }
1470 #endif
1471
1472 /* 4.6.8, 6.4.3.7 */
1473 static usbd_status
1474 xhci_reset_endpoint_locked(struct usbd_pipe *pipe)
1475 {
1476 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1477 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1478 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1479 struct xhci_soft_trb trb;
1480 usbd_status err;
1481
1482 XHCIHIST_FUNC();
1483 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1484
1485 KASSERT(mutex_owned(&sc->sc_lock));
1486
1487 trb.trb_0 = 0;
1488 trb.trb_2 = 0;
1489 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1490 XHCI_TRB_3_EP_SET(dci) |
1491 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP);
1492
1493 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1494
1495 return err;
1496 }
1497
1498 static usbd_status
1499 xhci_reset_endpoint(struct usbd_pipe *pipe)
1500 {
1501 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1502
1503 mutex_enter(&sc->sc_lock);
1504 usbd_status ret = xhci_reset_endpoint_locked(pipe);
1505 mutex_exit(&sc->sc_lock);
1506
1507 return ret;
1508 }
1509
1510 /*
1511 * 4.6.9, 6.4.3.8
1512 * Stop execution of TDs on xfer ring.
1513 * Should be called with sc_lock held.
1514 */
1515 static usbd_status
1516 xhci_stop_endpoint(struct usbd_pipe *pipe)
1517 {
1518 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1519 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1520 struct xhci_soft_trb trb;
1521 usbd_status err;
1522 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1523
1524 XHCIHIST_FUNC();
1525 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1526
1527 KASSERT(mutex_owned(&sc->sc_lock));
1528
1529 trb.trb_0 = 0;
1530 trb.trb_2 = 0;
1531 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1532 XHCI_TRB_3_EP_SET(dci) |
1533 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP);
1534
1535 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1536
1537 return err;
1538 }
1539
1540 /*
1541 * Set TR Dequeue Pointer.
1542 * xHCI 1.1 4.6.10 6.4.3.9
1543 * Purge all of the TRBs on ring and reinitialize ring.
1544 * Set TR dequeue Pointr to 0 and Cycle State to 1.
1545 * EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE
1546 * error will be generated.
1547 */
1548 static usbd_status
1549 xhci_set_dequeue_locked(struct usbd_pipe *pipe)
1550 {
1551 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1552 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1553 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1554 struct xhci_ring * const xr = xs->xs_xr[dci];
1555 struct xhci_soft_trb trb;
1556 usbd_status err;
1557
1558 XHCIHIST_FUNC();
1559 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1560
1561 KASSERT(mutex_owned(&sc->sc_lock));
1562 KASSERT(xr != NULL);
1563
1564 xhci_host_dequeue(xr);
1565
1566 /* set DCS */
1567 trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */
1568 trb.trb_2 = 0;
1569 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1570 XHCI_TRB_3_EP_SET(dci) |
1571 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE);
1572
1573 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1574
1575 return err;
1576 }
1577
1578 static usbd_status
1579 xhci_set_dequeue(struct usbd_pipe *pipe)
1580 {
1581 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1582
1583 mutex_enter(&sc->sc_lock);
1584 usbd_status ret = xhci_set_dequeue_locked(pipe);
1585 mutex_exit(&sc->sc_lock);
1586
1587 return ret;
1588 }
1589
1590 /*
1591 * Open new pipe: called from usbd_setup_pipe_flags.
1592 * Fills methods of pipe.
1593 * If pipe is not for ep0, calls configure_endpoint.
1594 */
1595 static usbd_status
1596 xhci_open(struct usbd_pipe *pipe)
1597 {
1598 struct usbd_device * const dev = pipe->up_dev;
1599 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
1600 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1601 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
1602 const u_int dci = xhci_ep_get_dci(ed);
1603 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
1604 usbd_status err;
1605
1606 XHCIHIST_FUNC();
1607 XHCIHIST_CALLARGS("addr %jd depth %jd port %jd speed %jd", dev->ud_addr,
1608 dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed);
1609 DPRINTFN(1, " dci %ju type 0x%02jx epaddr 0x%02jx attr 0x%02jx",
1610 xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress,
1611 ed->bmAttributes);
1612 DPRINTFN(1, " mps %ju ival %ju", UGETW(ed->wMaxPacketSize),
1613 ed->bInterval, 0, 0);
1614
1615 if (sc->sc_dying)
1616 return USBD_IOERROR;
1617
1618 /* Root Hub */
1619 if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) {
1620 switch (ed->bEndpointAddress) {
1621 case USB_CONTROL_ENDPOINT:
1622 pipe->up_methods = &roothub_ctrl_methods;
1623 break;
1624 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
1625 pipe->up_methods = &xhci_root_intr_methods;
1626 break;
1627 default:
1628 pipe->up_methods = NULL;
1629 DPRINTFN(0, "bad bEndpointAddress 0x%02jx",
1630 ed->bEndpointAddress, 0, 0, 0);
1631 return USBD_INVAL;
1632 }
1633 return USBD_NORMAL_COMPLETION;
1634 }
1635
1636 switch (xfertype) {
1637 case UE_CONTROL:
1638 pipe->up_methods = &xhci_device_ctrl_methods;
1639 break;
1640 case UE_ISOCHRONOUS:
1641 pipe->up_methods = &xhci_device_isoc_methods;
1642 return USBD_INVAL;
1643 break;
1644 case UE_BULK:
1645 pipe->up_methods = &xhci_device_bulk_methods;
1646 break;
1647 case UE_INTERRUPT:
1648 pipe->up_methods = &xhci_device_intr_methods;
1649 break;
1650 default:
1651 return USBD_IOERROR;
1652 break;
1653 }
1654
1655 KASSERT(xs != NULL);
1656 KASSERT(xs->xs_xr[dci] == NULL);
1657
1658 /* allocate transfer ring */
1659 err = xhci_ring_init(sc, &xs->xs_xr[dci], XHCI_TRANSFER_RING_TRBS,
1660 XHCI_TRB_ALIGN);
1661 if (err) {
1662 DPRINTFN(1, "ring alloc failed %jd", err, 0, 0, 0);
1663 return err;
1664 }
1665
1666 if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT)
1667 return xhci_configure_endpoint(pipe);
1668
1669 return USBD_NORMAL_COMPLETION;
1670 }
1671
1672 /*
1673 * Closes pipe, called from usbd_kill_pipe via close methods.
1674 * If the endpoint to be closed is ep0, disable_slot.
1675 * Should be called with sc_lock held.
1676 */
1677 static void
1678 xhci_close_pipe(struct usbd_pipe *pipe)
1679 {
1680 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1681 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1682 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
1683 const u_int dci = xhci_ep_get_dci(ed);
1684 struct xhci_soft_trb trb;
1685 uint32_t *cp;
1686
1687 XHCIHIST_FUNC();
1688
1689 if (sc->sc_dying)
1690 return;
1691
1692 /* xs is uninitialized before xhci_init_slot */
1693 if (xs == NULL || xs->xs_idx == 0)
1694 return;
1695
1696 XHCIHIST_CALLARGS("pipe %#jx slot %ju dci %ju",
1697 (uintptr_t)pipe, xs->xs_idx, dci, 0);
1698
1699 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
1700 KASSERT(mutex_owned(&sc->sc_lock));
1701
1702 if (pipe->up_dev->ud_depth == 0)
1703 return;
1704
1705 if (dci == XHCI_DCI_EP_CONTROL) {
1706 DPRINTFN(4, "closing ep0", 0, 0, 0, 0);
1707 /* This frees all rings */
1708 xhci_disable_slot(sc, xs->xs_idx);
1709 return;
1710 }
1711
1712 if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED)
1713 (void)xhci_stop_endpoint(pipe);
1714
1715 /*
1716 * set appropriate bit to be dropped.
1717 * don't set DC bit to 1, otherwise all endpoints
1718 * would be deconfigured.
1719 */
1720 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
1721 cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci));
1722 cp[1] = htole32(0);
1723
1724 /* XXX should be most significant one, not dci? */
1725 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
1726 cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci));
1727
1728 /* configure ep context performs an implicit dequeue */
1729 xhci_host_dequeue(xs->xs_xr[dci]);
1730
1731 /* sync input contexts before they are read from memory */
1732 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
1733
1734 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1735 trb.trb_2 = 0;
1736 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1737 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1738
1739 (void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1740 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1741
1742 xhci_ring_free(sc, &xs->xs_xr[dci]);
1743 }
1744
1745 /*
1746 * Abort transfer.
1747 * Should be called with sc_lock held.
1748 */
1749 static void
1750 xhci_abortx(struct usbd_xfer *xfer)
1751 {
1752 XHCIHIST_FUNC();
1753 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
1754 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
1755 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
1756
1757 XHCIHIST_CALLARGS("xfer %#jx pipe %#jx",
1758 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0, 0);
1759
1760 KASSERT(mutex_owned(&sc->sc_lock));
1761 ASSERT_SLEEPABLE();
1762
1763 KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
1764 xfer->ux_status == USBD_TIMEOUT),
1765 "bad abort status: %d", xfer->ux_status);
1766
1767 /*
1768 * If we're dying, skip the hardware action and just notify the
1769 * software that we're done.
1770 */
1771 if (sc->sc_dying) {
1772 DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer,
1773 xfer->ux_status, 0, 0);
1774 goto dying;
1775 }
1776
1777 /*
1778 * HC Step 1: Stop execution of TD on the ring.
1779 */
1780 switch (xhci_get_epstate(sc, xs, dci)) {
1781 case XHCI_EPSTATE_HALTED:
1782 (void)xhci_reset_endpoint_locked(xfer->ux_pipe);
1783 break;
1784 case XHCI_EPSTATE_STOPPED:
1785 break;
1786 default:
1787 (void)xhci_stop_endpoint(xfer->ux_pipe);
1788 break;
1789 }
1790 #ifdef DIAGNOSTIC
1791 uint32_t epst = xhci_get_epstate(sc, xs, dci);
1792 if (epst != XHCI_EPSTATE_STOPPED)
1793 DPRINTFN(4, "dci %ju not stopped %ju", dci, epst, 0, 0);
1794 #endif
1795
1796 /*
1797 * HC Step 2: Remove any vestiges of the xfer from the ring.
1798 */
1799 xhci_set_dequeue_locked(xfer->ux_pipe);
1800
1801 /*
1802 * Final Step: Notify completion to waiting xfers.
1803 */
1804 dying:
1805 usb_transfer_complete(xfer);
1806 DPRINTFN(14, "end", 0, 0, 0, 0);
1807
1808 KASSERT(mutex_owned(&sc->sc_lock));
1809 }
1810
1811 static void
1812 xhci_host_dequeue(struct xhci_ring * const xr)
1813 {
1814 /* When dequeueing the controller, update our struct copy too */
1815 memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE);
1816 usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE,
1817 BUS_DMASYNC_PREWRITE);
1818 memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies));
1819
1820 xr->xr_ep = 0;
1821 xr->xr_cs = 1;
1822 }
1823
1824 /*
1825 * Recover STALLed endpoint.
1826 * xHCI 1.1 sect 4.10.2.1
1827 * Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove
1828 * all transfers on transfer ring.
1829 * These are done in thread context asynchronously.
1830 */
1831 static void
1832 xhci_clear_endpoint_stall_async_task(void *cookie)
1833 {
1834 struct usbd_xfer * const xfer = cookie;
1835 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
1836 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
1837 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
1838 struct xhci_ring * const tr = xs->xs_xr[dci];
1839
1840 XHCIHIST_FUNC();
1841 XHCIHIST_CALLARGS("xfer %#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx,
1842 dci, 0);
1843
1844 /*
1845 * XXXMRG: Stall task can run after slot is disabled when yanked.
1846 * This hack notices that the xs has been memset() in
1847 * xhci_disable_slot() and returns. Both xhci_reset_endpoint()
1848 * and xhci_set_dequeue() rely upon a valid ring setup for correct
1849 * operation, and the latter will fault, as would
1850 * usb_transfer_complete() if it got that far.
1851 */
1852 if (xs->xs_idx == 0) {
1853 DPRINTFN(4, "ends xs_idx is 0", 0, 0, 0, 0);
1854 return;
1855 }
1856
1857 KASSERT(tr != NULL);
1858
1859 xhci_reset_endpoint(xfer->ux_pipe);
1860 xhci_set_dequeue(xfer->ux_pipe);
1861
1862 mutex_enter(&sc->sc_lock);
1863 tr->is_halted = false;
1864 usb_transfer_complete(xfer);
1865 mutex_exit(&sc->sc_lock);
1866 DPRINTFN(4, "ends", 0, 0, 0, 0);
1867 }
1868
1869 static usbd_status
1870 xhci_clear_endpoint_stall_async(struct usbd_xfer *xfer)
1871 {
1872 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
1873 struct xhci_pipe * const xp = (struct xhci_pipe *)xfer->ux_pipe;
1874
1875 XHCIHIST_FUNC();
1876 XHCIHIST_CALLARGS("xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
1877
1878 if (sc->sc_dying) {
1879 return USBD_IOERROR;
1880 }
1881
1882 usb_init_task(&xp->xp_async_task,
1883 xhci_clear_endpoint_stall_async_task, xfer, USB_TASKQ_MPSAFE);
1884 usb_add_task(xfer->ux_pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC);
1885 DPRINTFN(4, "ends", 0, 0, 0, 0);
1886
1887 return USBD_NORMAL_COMPLETION;
1888 }
1889
1890 /* Process roothub port status/change events and notify to uhub_intr. */
1891 static void
1892 xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport)
1893 {
1894 XHCIHIST_FUNC();
1895 XHCIHIST_CALLARGS("xhci%jd: port %ju status change",
1896 device_unit(sc->sc_dev), ctlrport, 0, 0);
1897
1898 if (ctlrport > sc->sc_maxports)
1899 return;
1900
1901 const size_t bn = xhci_ctlrport2bus(sc, ctlrport);
1902 const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport);
1903 struct usbd_xfer * const xfer = sc->sc_intrxfer[bn];
1904
1905 DPRINTFN(4, "xhci%jd: bus %jd bp %ju xfer %#jx status change",
1906 device_unit(sc->sc_dev), bn, rhp, (uintptr_t)xfer);
1907
1908 if (xfer == NULL)
1909 return;
1910 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
1911
1912 uint8_t *p = xfer->ux_buf;
1913 memset(p, 0, xfer->ux_length);
1914 p[rhp / NBBY] |= 1 << (rhp % NBBY);
1915 xfer->ux_actlen = xfer->ux_length;
1916 xfer->ux_status = USBD_NORMAL_COMPLETION;
1917 usb_transfer_complete(xfer);
1918 }
1919
1920 /* Process Transfer Events */
1921 static void
1922 xhci_event_transfer(struct xhci_softc * const sc,
1923 const struct xhci_trb * const trb)
1924 {
1925 uint64_t trb_0;
1926 uint32_t trb_2, trb_3;
1927 uint8_t trbcode;
1928 u_int slot, dci;
1929 struct xhci_slot *xs;
1930 struct xhci_ring *xr;
1931 struct xhci_xfer *xx;
1932 struct usbd_xfer *xfer;
1933 usbd_status err;
1934
1935 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1936
1937 trb_0 = le64toh(trb->trb_0);
1938 trb_2 = le32toh(trb->trb_2);
1939 trb_3 = le32toh(trb->trb_3);
1940 trbcode = XHCI_TRB_2_ERROR_GET(trb_2);
1941 slot = XHCI_TRB_3_SLOT_GET(trb_3);
1942 dci = XHCI_TRB_3_EP_GET(trb_3);
1943 xs = &sc->sc_slots[slot];
1944 xr = xs->xs_xr[dci];
1945
1946 /* sanity check */
1947 KASSERT(xr != NULL);
1948 KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots,
1949 "invalid xs_idx %u slot %u", xs->xs_idx, slot);
1950
1951 int idx = 0;
1952 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
1953 if (xhci_trb_get_idx(xr, trb_0, &idx)) {
1954 DPRINTFN(0, "invalid trb_0 %#jx", trb_0, 0, 0, 0);
1955 return;
1956 }
1957 xx = xr->xr_cookies[idx];
1958
1959 /* clear cookie of consumed TRB */
1960 xr->xr_cookies[idx] = NULL;
1961
1962 /*
1963 * xx is NULL if pipe is opened but xfer is not started.
1964 * It happens when stopping idle pipe.
1965 */
1966 if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) {
1967 DPRINTFN(1, "Ignore #%ju: cookie %#jx cc %ju dci %ju",
1968 idx, (uintptr_t)xx, trbcode, dci);
1969 DPRINTFN(1, " orig TRB %#jx type %ju", trb_0,
1970 XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)),
1971 0, 0);
1972 return;
1973 }
1974 } else {
1975 /* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */
1976 xx = (void *)(uintptr_t)(trb_0 & ~0x3);
1977 }
1978 /* XXX this may not happen */
1979 if (xx == NULL) {
1980 DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0);
1981 return;
1982 }
1983 xfer = &xx->xx_xfer;
1984 /* XXX this may happen when detaching */
1985 if (xfer == NULL) {
1986 DPRINTFN(1, "xx(%#jx)->xx_xfer is NULL trb_0 %#jx",
1987 (uintptr_t)xx, trb_0, 0, 0);
1988 return;
1989 }
1990 DPRINTFN(14, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
1991 /* XXX I dunno why this happens */
1992 KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer);
1993
1994 if (!xfer->ux_pipe->up_repeat &&
1995 SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) {
1996 DPRINTFN(1, "xfer(%#jx)->pipe not queued", (uintptr_t)xfer,
1997 0, 0, 0);
1998 return;
1999 }
2000
2001 /* 4.11.5.2 Event Data TRB */
2002 if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
2003 DPRINTFN(14, "transfer Event Data: 0x%016jx 0x%08jx"
2004 " %02jx", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0);
2005 if ((trb_0 & 0x3) == 0x3) {
2006 xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2);
2007 }
2008 }
2009
2010 switch (trbcode) {
2011 case XHCI_TRB_ERROR_SHORT_PKT:
2012 case XHCI_TRB_ERROR_SUCCESS:
2013 /*
2014 * A ctrl transfer can generate two events if it has a Data
2015 * stage. A short data stage can be OK and should not
2016 * complete the transfer as the status stage needs to be
2017 * performed.
2018 *
2019 * Note: Data and Status stage events point at same xfer.
2020 * ux_actlen and ux_dmabuf will be passed to
2021 * usb_transfer_complete after the Status stage event.
2022 *
2023 * It can be distingished which stage generates the event:
2024 * + by checking least 3 bits of trb_0 if ED==1.
2025 * (see xhci_device_ctrl_start).
2026 * + by checking the type of original TRB if ED==0.
2027 *
2028 * In addition, intr, bulk, and isoc transfer currently
2029 * consists of single TD, so the "skip" is not needed.
2030 * ctrl xfer uses EVENT_DATA, and others do not.
2031 * Thus driver can switch the flow by checking ED bit.
2032 */
2033 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
2034 if (xfer->ux_actlen == 0)
2035 xfer->ux_actlen = xfer->ux_length -
2036 XHCI_TRB_2_REM_GET(trb_2);
2037 if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3))
2038 == XHCI_TRB_TYPE_DATA_STAGE) {
2039 return;
2040 }
2041 } else if ((trb_0 & 0x3) == 0x3) {
2042 return;
2043 }
2044 err = USBD_NORMAL_COMPLETION;
2045 break;
2046 case XHCI_TRB_ERROR_STOPPED:
2047 case XHCI_TRB_ERROR_LENGTH:
2048 case XHCI_TRB_ERROR_STOPPED_SHORT:
2049 err = USBD_IOERROR;
2050 break;
2051 case XHCI_TRB_ERROR_STALL:
2052 case XHCI_TRB_ERROR_BABBLE:
2053 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2054 xr->is_halted = true;
2055 /*
2056 * Try to claim this xfer for completion. If it has already
2057 * completed or aborted, drop it on the floor.
2058 */
2059 if (!usbd_xfer_trycomplete(xfer))
2060 return;
2061
2062 /*
2063 * Stalled endpoints can be recoverd by issuing
2064 * command TRB TYPE_RESET_EP on xHCI instead of
2065 * issuing request CLEAR_FEATURE UF_ENDPOINT_HALT
2066 * on the endpoint. However, this function may be
2067 * called from softint context (e.g. from umass),
2068 * in that case driver gets KASSERT in cv_timedwait
2069 * in xhci_do_command.
2070 * To avoid this, this runs reset_endpoint and
2071 * usb_transfer_complete in usb task thread
2072 * asynchronously (and then umass issues clear
2073 * UF_ENDPOINT_HALT).
2074 */
2075
2076 /* Override the status. */
2077 xfer->ux_status = USBD_STALLED;
2078
2079 xhci_clear_endpoint_stall_async(xfer);
2080 return;
2081 default:
2082 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2083 err = USBD_IOERROR;
2084 break;
2085 }
2086
2087 /*
2088 * Try to claim this xfer for completion. If it has already
2089 * completed or aborted, drop it on the floor.
2090 */
2091 if (!usbd_xfer_trycomplete(xfer))
2092 return;
2093
2094 /* Set the status. */
2095 xfer->ux_status = err;
2096
2097 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0 ||
2098 (trb_0 & 0x3) == 0x0) {
2099 usb_transfer_complete(xfer);
2100 }
2101 }
2102
2103 /* Process Command complete events */
2104 static void
2105 xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb)
2106 {
2107 uint64_t trb_0;
2108 uint32_t trb_2, trb_3;
2109
2110 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2111
2112 KASSERT(mutex_owned(&sc->sc_lock));
2113
2114 trb_0 = le64toh(trb->trb_0);
2115 trb_2 = le32toh(trb->trb_2);
2116 trb_3 = le32toh(trb->trb_3);
2117
2118 if (trb_0 == sc->sc_command_addr) {
2119 sc->sc_resultpending = false;
2120
2121 sc->sc_result_trb.trb_0 = trb_0;
2122 sc->sc_result_trb.trb_2 = trb_2;
2123 sc->sc_result_trb.trb_3 = trb_3;
2124 if (XHCI_TRB_2_ERROR_GET(trb_2) !=
2125 XHCI_TRB_ERROR_SUCCESS) {
2126 DPRINTFN(1, "command completion "
2127 "failure: 0x%016jx 0x%08jx 0x%08jx",
2128 trb_0, trb_2, trb_3, 0);
2129 }
2130 cv_signal(&sc->sc_command_cv);
2131 } else {
2132 DPRINTFN(1, "spurious event: %#jx 0x%016jx "
2133 "0x%08jx 0x%08jx", (uintptr_t)trb, trb_0, trb_2, trb_3);
2134 }
2135 }
2136
2137 /*
2138 * Process events.
2139 * called from xhci_softintr
2140 */
2141 static void
2142 xhci_handle_event(struct xhci_softc * const sc,
2143 const struct xhci_trb * const trb)
2144 {
2145 uint64_t trb_0;
2146 uint32_t trb_2, trb_3;
2147
2148 XHCIHIST_FUNC();
2149
2150 trb_0 = le64toh(trb->trb_0);
2151 trb_2 = le32toh(trb->trb_2);
2152 trb_3 = le32toh(trb->trb_3);
2153
2154 XHCIHIST_CALLARGS("event: %#jx 0x%016jx 0x%08jx 0x%08jx",
2155 (uintptr_t)trb, trb_0, trb_2, trb_3);
2156
2157 /*
2158 * 4.11.3.1, 6.4.2.1
2159 * TRB Pointer is invalid for these completion codes.
2160 */
2161 switch (XHCI_TRB_2_ERROR_GET(trb_2)) {
2162 case XHCI_TRB_ERROR_RING_UNDERRUN:
2163 case XHCI_TRB_ERROR_RING_OVERRUN:
2164 case XHCI_TRB_ERROR_VF_RING_FULL:
2165 return;
2166 default:
2167 if (trb_0 == 0) {
2168 return;
2169 }
2170 break;
2171 }
2172
2173 switch (XHCI_TRB_3_TYPE_GET(trb_3)) {
2174 case XHCI_TRB_EVENT_TRANSFER:
2175 xhci_event_transfer(sc, trb);
2176 break;
2177 case XHCI_TRB_EVENT_CMD_COMPLETE:
2178 xhci_event_cmd(sc, trb);
2179 break;
2180 case XHCI_TRB_EVENT_PORT_STS_CHANGE:
2181 xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff));
2182 break;
2183 default:
2184 break;
2185 }
2186 }
2187
2188 static void
2189 xhci_softintr(void *v)
2190 {
2191 struct usbd_bus * const bus = v;
2192 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2193 struct xhci_ring * const er = sc->sc_er;
2194 struct xhci_trb *trb;
2195 int i, j, k;
2196
2197 XHCIHIST_FUNC();
2198
2199 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
2200
2201 i = er->xr_ep;
2202 j = er->xr_cs;
2203
2204 XHCIHIST_CALLARGS("er: xr_ep %jd xr_cs %jd", i, j, 0, 0);
2205
2206 while (1) {
2207 usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE,
2208 BUS_DMASYNC_POSTREAD);
2209 trb = &er->xr_trb[i];
2210 k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
2211
2212 if (j != k)
2213 break;
2214
2215 xhci_handle_event(sc, trb);
2216
2217 i++;
2218 if (i == er->xr_ntrb) {
2219 i = 0;
2220 j ^= 1;
2221 }
2222 }
2223
2224 er->xr_ep = i;
2225 er->xr_cs = j;
2226
2227 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) |
2228 XHCI_ERDP_LO_BUSY);
2229
2230 DPRINTFN(16, "ends", 0, 0, 0, 0);
2231
2232 return;
2233 }
2234
2235 static void
2236 xhci_poll(struct usbd_bus *bus)
2237 {
2238 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2239
2240 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2241
2242 mutex_enter(&sc->sc_intr_lock);
2243 int ret = xhci_intr1(sc);
2244 if (ret) {
2245 xhci_softintr(bus);
2246 }
2247 mutex_exit(&sc->sc_intr_lock);
2248
2249 return;
2250 }
2251
2252 static struct usbd_xfer *
2253 xhci_allocx(struct usbd_bus *bus, unsigned int nframes)
2254 {
2255 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2256 struct xhci_xfer *xx;
2257 u_int ntrbs;
2258
2259 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2260
2261 ntrbs = XHCI_XFER_NTRB;
2262 const size_t trbsz = sizeof(*xx->xx_trb) * ntrbs;
2263
2264 xx = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
2265 if (xx != NULL) {
2266 memset(xx, 0, sizeof(*xx));
2267 if (ntrbs > 0) {
2268 xx->xx_trb = kmem_alloc(trbsz, KM_SLEEP);
2269 xx->xx_ntrb = ntrbs;
2270 }
2271 #ifdef DIAGNOSTIC
2272 xx->xx_xfer.ux_state = XFER_BUSY;
2273 #endif
2274 }
2275
2276 return &xx->xx_xfer;
2277 }
2278
2279 static void
2280 xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
2281 {
2282 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2283 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
2284
2285 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2286
2287 #ifdef DIAGNOSTIC
2288 if (xfer->ux_state != XFER_BUSY &&
2289 xfer->ux_status != USBD_NOT_STARTED) {
2290 DPRINTFN(0, "xfer=%#jx not busy, 0x%08jx",
2291 (uintptr_t)xfer, xfer->ux_state, 0, 0);
2292 }
2293 xfer->ux_state = XFER_FREE;
2294 #endif
2295 if (xx->xx_ntrb > 0) {
2296 kmem_free(xx->xx_trb, xx->xx_ntrb * sizeof(*xx->xx_trb));
2297 xx->xx_trb = NULL;
2298 xx->xx_ntrb = 0;
2299 }
2300 pool_cache_put(sc->sc_xferpool, xx);
2301 }
2302
2303 static bool
2304 xhci_dying(struct usbd_bus *bus)
2305 {
2306 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2307
2308 return sc->sc_dying;
2309 }
2310
2311 static void
2312 xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
2313 {
2314 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2315
2316 *lock = &sc->sc_lock;
2317 }
2318
2319 extern uint32_t usb_cookie_no;
2320
2321 /*
2322 * xHCI 4.3
2323 * Called when uhub_explore finds a new device (via usbd_new_device).
2324 * Port initialization and speed detection (4.3.1) are already done in uhub.c.
2325 * This function does:
2326 * Allocate and construct dev structure of default endpoint (ep0).
2327 * Allocate and open pipe of ep0.
2328 * Enable slot and initialize slot context.
2329 * Set Address.
2330 * Read initial device descriptor.
2331 * Determine initial MaxPacketSize (mps) by speed.
2332 * Read full device descriptor.
2333 * Register this device.
2334 * Finally state of device transitions ADDRESSED.
2335 */
2336 static usbd_status
2337 xhci_new_device(device_t parent, struct usbd_bus *bus, int depth,
2338 int speed, int port, struct usbd_port *up)
2339 {
2340 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2341 struct usbd_device *dev;
2342 usbd_status err;
2343 usb_device_descriptor_t *dd;
2344 struct xhci_slot *xs;
2345 uint32_t *cp;
2346
2347 XHCIHIST_FUNC();
2348 XHCIHIST_CALLARGS("port %ju depth %ju speed %ju up %#jx",
2349 port, depth, speed, (uintptr_t)up);
2350
2351 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
2352 dev->ud_bus = bus;
2353 dev->ud_quirks = &usbd_no_quirk;
2354 dev->ud_addr = 0;
2355 dev->ud_ddesc.bMaxPacketSize = 0;
2356 dev->ud_depth = depth;
2357 dev->ud_powersrc = up;
2358 dev->ud_myhub = up->up_parent;
2359 dev->ud_speed = speed;
2360 dev->ud_langid = USBD_NOLANG;
2361 dev->ud_cookie.cookie = ++usb_cookie_no;
2362
2363 /* Set up default endpoint handle. */
2364 dev->ud_ep0.ue_edesc = &dev->ud_ep0desc;
2365 /* doesn't matter, just don't let it uninitialized */
2366 dev->ud_ep0.ue_toggle = 0;
2367
2368 /* Set up default endpoint descriptor. */
2369 dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE;
2370 dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT;
2371 dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
2372 dev->ud_ep0desc.bmAttributes = UE_CONTROL;
2373 dev->ud_ep0desc.bInterval = 0;
2374
2375 /* 4.3, 4.8.2.1 */
2376 switch (speed) {
2377 case USB_SPEED_SUPER:
2378 case USB_SPEED_SUPER_PLUS:
2379 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET);
2380 break;
2381 case USB_SPEED_FULL:
2382 /* XXX using 64 as initial mps of ep0 in FS */
2383 case USB_SPEED_HIGH:
2384 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET);
2385 break;
2386 case USB_SPEED_LOW:
2387 default:
2388 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET);
2389 break;
2390 }
2391
2392 up->up_dev = dev;
2393
2394 dd = &dev->ud_ddesc;
2395
2396 if (depth == 0 && port == 0) {
2397 KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL);
2398 bus->ub_devices[USB_ROOTHUB_INDEX] = dev;
2399
2400 /* Establish the default pipe. */
2401 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
2402 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
2403 if (err) {
2404 DPRINTFN(1, "setup default pipe failed %jd", err,0,0,0);
2405 goto bad;
2406 }
2407 err = usbd_get_initial_ddesc(dev, dd);
2408 if (err) {
2409 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2410 goto bad;
2411 }
2412 } else {
2413 uint8_t slot = 0;
2414
2415 /* 4.3.2 */
2416 err = xhci_enable_slot(sc, &slot);
2417 if (err) {
2418 DPRINTFN(1, "enable slot %ju", err, 0, 0, 0);
2419 goto bad;
2420 }
2421
2422 xs = &sc->sc_slots[slot];
2423 dev->ud_hcpriv = xs;
2424
2425 /* 4.3.3 initialize slot structure */
2426 err = xhci_init_slot(dev, slot);
2427 if (err) {
2428 DPRINTFN(1, "init slot %ju", err, 0, 0, 0);
2429 dev->ud_hcpriv = NULL;
2430 /*
2431 * We have to disable_slot here because
2432 * xs->xs_idx == 0 when xhci_init_slot fails,
2433 * in that case usbd_remove_dev won't work.
2434 */
2435 mutex_enter(&sc->sc_lock);
2436 xhci_disable_slot(sc, slot);
2437 mutex_exit(&sc->sc_lock);
2438 goto bad;
2439 }
2440
2441 /*
2442 * We have to establish the default pipe _after_ slot
2443 * structure has been prepared.
2444 */
2445 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
2446 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
2447 if (err) {
2448 DPRINTFN(1, "setup default pipe failed %jd", err, 0, 0,
2449 0);
2450 goto bad;
2451 }
2452
2453 /* 4.3.4 Address Assignment */
2454 err = xhci_set_address(dev, slot, false);
2455 if (err) {
2456 DPRINTFN(1, "failed! to set address: %ju", err, 0, 0, 0);
2457 goto bad;
2458 }
2459
2460 /* Allow device time to set new address */
2461 usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE);
2462
2463 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2464 cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT);
2465 HEXDUMP("slot context", cp, sc->sc_ctxsz);
2466 uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3]));
2467 DPRINTFN(4, "device address %ju", addr, 0, 0, 0);
2468 /*
2469 * XXX ensure we know when the hardware does something
2470 * we can't yet cope with
2471 */
2472 KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr);
2473 dev->ud_addr = addr;
2474
2475 KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL,
2476 "addr %d already allocated", dev->ud_addr);
2477 /*
2478 * The root hub is given its own slot
2479 */
2480 bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev;
2481
2482 err = usbd_get_initial_ddesc(dev, dd);
2483 if (err) {
2484 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2485 goto bad;
2486 }
2487
2488 /* 4.8.2.1 */
2489 if (USB_IS_SS(speed)) {
2490 if (dd->bMaxPacketSize != 9) {
2491 printf("%s: invalid mps 2^%u for SS ep0,"
2492 " using 512\n",
2493 device_xname(sc->sc_dev),
2494 dd->bMaxPacketSize);
2495 dd->bMaxPacketSize = 9;
2496 }
2497 USETW(dev->ud_ep0desc.wMaxPacketSize,
2498 (1 << dd->bMaxPacketSize));
2499 } else
2500 USETW(dev->ud_ep0desc.wMaxPacketSize,
2501 dd->bMaxPacketSize);
2502 DPRINTFN(4, "bMaxPacketSize %ju", dd->bMaxPacketSize, 0, 0, 0);
2503 err = xhci_update_ep0_mps(sc, xs,
2504 UGETW(dev->ud_ep0desc.wMaxPacketSize));
2505 if (err) {
2506 DPRINTFN(1, "update mps of ep0 %ju", err, 0, 0, 0);
2507 goto bad;
2508 }
2509 }
2510
2511 err = usbd_reload_device_desc(dev);
2512 if (err) {
2513 DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
2514 goto bad;
2515 }
2516
2517 DPRINTFN(1, "adding unit addr=%jd, rev=%02jx,",
2518 dev->ud_addr, UGETW(dd->bcdUSB), 0, 0);
2519 DPRINTFN(1, " class=%jd, subclass=%jd, protocol=%jd,",
2520 dd->bDeviceClass, dd->bDeviceSubClass,
2521 dd->bDeviceProtocol, 0);
2522 DPRINTFN(1, " mps=%jd, len=%jd, noconf=%jd, speed=%jd",
2523 dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations,
2524 dev->ud_speed);
2525
2526 usbd_get_device_strings(dev);
2527
2528 usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev);
2529
2530 if (depth == 0 && port == 0) {
2531 usbd_attach_roothub(parent, dev);
2532 DPRINTFN(1, "root hub %#jx", (uintptr_t)dev, 0, 0, 0);
2533 return USBD_NORMAL_COMPLETION;
2534 }
2535
2536 err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr);
2537 bad:
2538 if (err != USBD_NORMAL_COMPLETION) {
2539 usbd_remove_device(dev, up);
2540 }
2541
2542 return err;
2543 }
2544
2545 static usbd_status
2546 xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring **xrp,
2547 size_t ntrb, size_t align)
2548 {
2549 usbd_status err;
2550 size_t size = ntrb * XHCI_TRB_SIZE;
2551 struct xhci_ring *xr;
2552
2553 XHCIHIST_FUNC();
2554 XHCIHIST_CALLARGS("xr %#jx ntrb %#jx align %#jx",
2555 (uintptr_t)*xrp, ntrb, align, 0);
2556
2557 xr = kmem_zalloc(sizeof(struct xhci_ring), KM_SLEEP);
2558 DPRINTFN(1, "ring %#jx", (uintptr_t)xr, 0, 0, 0);
2559
2560 err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT,
2561 &xr->xr_dma);
2562 if (err) {
2563 kmem_free(xr, sizeof(struct xhci_ring));
2564 DPRINTFN(1, "alloc xr_dma failed %jd", err, 0, 0, 0);
2565 return err;
2566 }
2567 mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
2568 xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP);
2569 xr->xr_trb = xhci_ring_trbv(xr, 0);
2570 xr->xr_ntrb = ntrb;
2571 xr->is_halted = false;
2572 xhci_host_dequeue(xr);
2573 *xrp = xr;
2574
2575 return USBD_NORMAL_COMPLETION;
2576 }
2577
2578 static void
2579 xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring ** const xr)
2580 {
2581 if (*xr == NULL)
2582 return;
2583
2584 usb_freemem(&sc->sc_bus, &(*xr)->xr_dma);
2585 mutex_destroy(&(*xr)->xr_lock);
2586 kmem_free((*xr)->xr_cookies,
2587 sizeof(*(*xr)->xr_cookies) * (*xr)->xr_ntrb);
2588 kmem_free(*xr, sizeof(struct xhci_ring));
2589 *xr = NULL;
2590 }
2591
2592 static void
2593 xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr,
2594 void *cookie, struct xhci_soft_trb * const trbs, size_t ntrbs)
2595 {
2596 size_t i;
2597 u_int ri;
2598 u_int cs;
2599 uint64_t parameter;
2600 uint32_t status;
2601 uint32_t control;
2602
2603 XHCIHIST_FUNC();
2604 XHCIHIST_CALLARGS("%#jx xr_ep %#jx xr_cs %ju",
2605 (uintptr_t)xr, xr->xr_ep, xr->xr_cs, 0);
2606
2607 KASSERTMSG(ntrbs < xr->xr_ntrb, "ntrbs %zu, xr->xr_ntrb %u",
2608 ntrbs, xr->xr_ntrb);
2609 for (i = 0; i < ntrbs; i++) {
2610 DPRINTFN(12, "xr %#jx trbs %#jx num %ju", (uintptr_t)xr,
2611 (uintptr_t)trbs, i, 0);
2612 DPRINTFN(12, " 0x%016jx 0x%08jx 0x%08jx",
2613 trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0);
2614 KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) !=
2615 XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3);
2616 }
2617
2618 ri = xr->xr_ep;
2619 cs = xr->xr_cs;
2620
2621 /*
2622 * Although the xhci hardware can do scatter/gather dma from
2623 * arbitrary sized buffers, there is a non-obvious restriction
2624 * that a LINK trb is only allowed at the end of a burst of
2625 * transfers - which might be 16kB.
2626 * Arbitrary aligned LINK trb definitely fail on Ivy bridge.
2627 * The simple solution is not to allow a LINK trb in the middle
2628 * of anything - as here.
2629 * XXX: (dsl) There are xhci controllers out there (eg some made by
2630 * ASMedia) that seem to lock up if they process a LINK trb but
2631 * cannot process the linked-to trb yet.
2632 * The code should write the 'cycle' bit on the link trb AFTER
2633 * adding the other trb.
2634 */
2635 u_int firstep = xr->xr_ep;
2636 u_int firstcs = xr->xr_cs;
2637
2638 for (i = 0; i < ntrbs; ) {
2639 u_int oldri = ri;
2640 u_int oldcs = cs;
2641
2642 if (ri >= (xr->xr_ntrb - 1)) {
2643 /* Put Link TD at the end of ring */
2644 parameter = xhci_ring_trbp(xr, 0);
2645 status = 0;
2646 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
2647 XHCI_TRB_3_TC_BIT;
2648 xr->xr_cookies[ri] = NULL;
2649 xr->xr_ep = 0;
2650 xr->xr_cs ^= 1;
2651 ri = xr->xr_ep;
2652 cs = xr->xr_cs;
2653 } else {
2654 parameter = trbs[i].trb_0;
2655 status = trbs[i].trb_2;
2656 control = trbs[i].trb_3;
2657
2658 xr->xr_cookies[ri] = cookie;
2659 ri++;
2660 i++;
2661 }
2662 /*
2663 * If this is a first TRB, mark it invalid to prevent
2664 * xHC from running it immediately.
2665 */
2666 if (oldri == firstep) {
2667 if (oldcs) {
2668 control &= ~XHCI_TRB_3_CYCLE_BIT;
2669 } else {
2670 control |= XHCI_TRB_3_CYCLE_BIT;
2671 }
2672 } else {
2673 if (oldcs) {
2674 control |= XHCI_TRB_3_CYCLE_BIT;
2675 } else {
2676 control &= ~XHCI_TRB_3_CYCLE_BIT;
2677 }
2678 }
2679 xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control);
2680 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri,
2681 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
2682 }
2683
2684 /* Now invert cycle bit of first TRB */
2685 if (firstcs) {
2686 xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
2687 } else {
2688 xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
2689 }
2690 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep,
2691 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
2692
2693 xr->xr_ep = ri;
2694 xr->xr_cs = cs;
2695
2696 DPRINTFN(12, "%#jx xr_ep %#jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep,
2697 xr->xr_cs, 0);
2698 }
2699
2700 static inline void
2701 xhci_ring_put_xfer(struct xhci_softc * const sc, struct xhci_ring * const tr,
2702 struct xhci_xfer *xx, u_int ntrb)
2703 {
2704 KASSERT(ntrb <= xx->xx_ntrb);
2705 xhci_ring_put(sc, tr, xx, xx->xx_trb, ntrb);
2706 }
2707
2708 /*
2709 * Stop execution commands, purge all commands on command ring, and
2710 * rewind dequeue pointer.
2711 */
2712 static void
2713 xhci_abort_command(struct xhci_softc *sc)
2714 {
2715 struct xhci_ring * const cr = sc->sc_cr;
2716 uint64_t crcr;
2717 int i;
2718
2719 XHCIHIST_FUNC();
2720 XHCIHIST_CALLARGS("command %#jx timeout, aborting",
2721 sc->sc_command_addr, 0, 0, 0);
2722
2723 mutex_enter(&cr->xr_lock);
2724
2725 /* 4.6.1.2 Aborting a Command */
2726 crcr = xhci_op_read_8(sc, XHCI_CRCR);
2727 xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA);
2728
2729 for (i = 0; i < 500; i++) {
2730 crcr = xhci_op_read_8(sc, XHCI_CRCR);
2731 if ((crcr & XHCI_CRCR_LO_CRR) == 0)
2732 break;
2733 usb_delay_ms(&sc->sc_bus, 1);
2734 }
2735 if ((crcr & XHCI_CRCR_LO_CRR) != 0) {
2736 DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0);
2737 /* reset HC here? */
2738 }
2739
2740 /* reset command ring dequeue pointer */
2741 cr->xr_ep = 0;
2742 cr->xr_cs = 1;
2743 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs);
2744
2745 mutex_exit(&cr->xr_lock);
2746 }
2747
2748 /*
2749 * Put a command on command ring, ring bell, set timer, and cv_timedwait.
2750 * Command completion is notified by cv_signal from xhci_event_cmd()
2751 * (called from xhci_softint), or timed-out.
2752 * The completion code is copied to sc->sc_result_trb in xhci_event_cmd(),
2753 * then do_command examines it.
2754 */
2755 static usbd_status
2756 xhci_do_command_locked(struct xhci_softc * const sc,
2757 struct xhci_soft_trb * const trb, int timeout)
2758 {
2759 struct xhci_ring * const cr = sc->sc_cr;
2760 usbd_status err;
2761
2762 XHCIHIST_FUNC();
2763 XHCIHIST_CALLARGS("input: 0x%016jx 0x%08jx 0x%08jx",
2764 trb->trb_0, trb->trb_2, trb->trb_3, 0);
2765
2766 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
2767 KASSERT(mutex_owned(&sc->sc_lock));
2768
2769 while (sc->sc_command_addr != 0)
2770 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
2771
2772 /*
2773 * If enqueue pointer points at last of ring, it's Link TRB,
2774 * command TRB will be stored in 0th TRB.
2775 */
2776 if (cr->xr_ep == cr->xr_ntrb - 1)
2777 sc->sc_command_addr = xhci_ring_trbp(cr, 0);
2778 else
2779 sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep);
2780
2781 sc->sc_resultpending = true;
2782
2783 mutex_enter(&cr->xr_lock);
2784 xhci_ring_put(sc, cr, NULL, trb, 1);
2785 mutex_exit(&cr->xr_lock);
2786
2787 xhci_db_write_4(sc, XHCI_DOORBELL(0), 0);
2788
2789 while (sc->sc_resultpending) {
2790 if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock,
2791 MAX(1, mstohz(timeout))) == EWOULDBLOCK) {
2792 xhci_abort_command(sc);
2793 err = USBD_TIMEOUT;
2794 goto timedout;
2795 }
2796 }
2797
2798 trb->trb_0 = sc->sc_result_trb.trb_0;
2799 trb->trb_2 = sc->sc_result_trb.trb_2;
2800 trb->trb_3 = sc->sc_result_trb.trb_3;
2801
2802 DPRINTFN(12, "output: 0x%016jx 0x%08jx 0x%08jx",
2803 trb->trb_0, trb->trb_2, trb->trb_3, 0);
2804
2805 switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) {
2806 case XHCI_TRB_ERROR_SUCCESS:
2807 err = USBD_NORMAL_COMPLETION;
2808 break;
2809 default:
2810 case 192 ... 223:
2811 DPRINTFN(5, "error %#jx",
2812 XHCI_TRB_2_ERROR_GET(trb->trb_2), 0, 0, 0);
2813 err = USBD_IOERROR;
2814 break;
2815 case 224 ... 255:
2816 err = USBD_NORMAL_COMPLETION;
2817 break;
2818 }
2819
2820 timedout:
2821 sc->sc_resultpending = false;
2822 sc->sc_command_addr = 0;
2823 cv_broadcast(&sc->sc_cmdbusy_cv);
2824
2825 return err;
2826 }
2827
2828 static usbd_status
2829 xhci_do_command(struct xhci_softc * const sc, struct xhci_soft_trb * const trb,
2830 int timeout)
2831 {
2832
2833 mutex_enter(&sc->sc_lock);
2834 usbd_status ret = xhci_do_command_locked(sc, trb, timeout);
2835 mutex_exit(&sc->sc_lock);
2836
2837 return ret;
2838 }
2839
2840 static usbd_status
2841 xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp)
2842 {
2843 struct xhci_soft_trb trb;
2844 usbd_status err;
2845
2846 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2847
2848 trb.trb_0 = 0;
2849 trb.trb_2 = 0;
2850 trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT);
2851
2852 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
2853 if (err != USBD_NORMAL_COMPLETION) {
2854 return err;
2855 }
2856
2857 *slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3);
2858
2859 return err;
2860 }
2861
2862 /*
2863 * xHCI 4.6.4
2864 * Deallocate ring and device/input context DMA buffers, and disable_slot.
2865 * All endpoints in the slot should be stopped.
2866 * Should be called with sc_lock held.
2867 */
2868 static usbd_status
2869 xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot)
2870 {
2871 struct xhci_soft_trb trb;
2872 struct xhci_slot *xs;
2873 usbd_status err;
2874
2875 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2876
2877 if (sc->sc_dying)
2878 return USBD_IOERROR;
2879
2880 trb.trb_0 = 0;
2881 trb.trb_2 = 0;
2882 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot) |
2883 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT);
2884
2885 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
2886
2887 if (!err) {
2888 xs = &sc->sc_slots[slot];
2889 if (xs->xs_idx != 0) {
2890 xhci_free_slot(sc, xs);
2891 xhci_set_dcba(sc, 0, slot);
2892 memset(xs, 0, sizeof(*xs));
2893 }
2894 }
2895
2896 return err;
2897 }
2898
2899 /*
2900 * Set address of device and transition slot state from ENABLED to ADDRESSED
2901 * if Block Setaddress Request (BSR) is false.
2902 * If BSR==true, transition slot state from ENABLED to DEFAULT.
2903 * see xHCI 1.1 4.5.3, 3.3.4
2904 * Should be called without sc_lock held.
2905 */
2906 static usbd_status
2907 xhci_address_device(struct xhci_softc * const sc,
2908 uint64_t icp, uint8_t slot_id, bool bsr)
2909 {
2910 struct xhci_soft_trb trb;
2911 usbd_status err;
2912
2913 XHCIHIST_FUNC();
2914 if (bsr) {
2915 XHCIHIST_CALLARGS("icp %#jx slot %#jx with bsr",
2916 icp, slot_id, 0, 0);
2917 } else {
2918 XHCIHIST_CALLARGS("icp %#jx slot %#jx nobsr",
2919 icp, slot_id, 0, 0);
2920 }
2921
2922 trb.trb_0 = icp;
2923 trb.trb_2 = 0;
2924 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) |
2925 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
2926 (bsr ? XHCI_TRB_3_BSR_BIT : 0);
2927
2928 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
2929
2930 if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS)
2931 err = USBD_NO_ADDR;
2932
2933 return err;
2934 }
2935
2936 static usbd_status
2937 xhci_update_ep0_mps(struct xhci_softc * const sc,
2938 struct xhci_slot * const xs, u_int mps)
2939 {
2940 struct xhci_soft_trb trb;
2941 usbd_status err;
2942 uint32_t * cp;
2943
2944 XHCIHIST_FUNC();
2945 XHCIHIST_CALLARGS("slot %ju mps %ju", xs->xs_idx, mps, 0, 0);
2946
2947 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
2948 cp[0] = htole32(0);
2949 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL));
2950
2951 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL));
2952 cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps));
2953
2954 /* sync input contexts before they are read from memory */
2955 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
2956 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
2957 sc->sc_ctxsz * 4);
2958
2959 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
2960 trb.trb_2 = 0;
2961 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
2962 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX);
2963
2964 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
2965 return err;
2966 }
2967
2968 static void
2969 xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si)
2970 {
2971 uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0);
2972
2973 XHCIHIST_FUNC();
2974 XHCIHIST_CALLARGS("dcbaa %#jx dc 0x%016jx slot %jd",
2975 (uintptr_t)&dcbaa[si], dcba, si, 0);
2976
2977 dcbaa[si] = htole64(dcba);
2978 usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t),
2979 BUS_DMASYNC_PREWRITE);
2980 }
2981
2982 /*
2983 * Allocate device and input context DMA buffer, and
2984 * TRB DMA buffer for each endpoint.
2985 */
2986 static usbd_status
2987 xhci_init_slot(struct usbd_device *dev, uint32_t slot)
2988 {
2989 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
2990 struct xhci_slot *xs;
2991 usbd_status err;
2992
2993 XHCIHIST_FUNC();
2994 XHCIHIST_CALLARGS("slot %ju", slot, 0, 0, 0);
2995
2996 xs = &sc->sc_slots[slot];
2997
2998 /* allocate contexts */
2999 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
3000 USBMALLOC_COHERENT, &xs->xs_dc_dma);
3001 if (err) {
3002 DPRINTFN(1, "failed to allocmem output device context %jd",
3003 err, 0, 0, 0);
3004 return err;
3005 }
3006 memset(KERNADDR(&xs->xs_dc_dma, 0), 0, sc->sc_pgsz);
3007
3008 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
3009 USBMALLOC_COHERENT, &xs->xs_ic_dma);
3010 if (err) {
3011 DPRINTFN(1, "failed to allocmem input device context %jd",
3012 err, 0, 0, 0);
3013 goto bad1;
3014 }
3015 memset(KERNADDR(&xs->xs_ic_dma, 0), 0, sc->sc_pgsz);
3016
3017 memset(&xs->xs_xr[0], 0, sizeof(xs->xs_xr));
3018 xs->xs_idx = slot;
3019
3020 return USBD_NORMAL_COMPLETION;
3021
3022 bad1:
3023 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
3024 xs->xs_idx = 0;
3025 return err;
3026 }
3027
3028 static void
3029 xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs)
3030 {
3031 u_int dci;
3032
3033 XHCIHIST_FUNC();
3034 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
3035
3036 /* deallocate all allocated rings in the slot */
3037 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
3038 if (xs->xs_xr[dci] != NULL)
3039 xhci_ring_free(sc, &xs->xs_xr[dci]);
3040 }
3041 usb_freemem(&sc->sc_bus, &xs->xs_ic_dma);
3042 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
3043 xs->xs_idx = 0;
3044 }
3045
3046 /*
3047 * Setup slot context, set Device Context Base Address, and issue
3048 * Set Address Device command.
3049 */
3050 static usbd_status
3051 xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr)
3052 {
3053 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
3054 struct xhci_slot *xs;
3055 usbd_status err;
3056
3057 XHCIHIST_FUNC();
3058 XHCIHIST_CALLARGS("slot %ju bsr %ju", slot, bsr, 0, 0);
3059
3060 xs = &sc->sc_slots[slot];
3061
3062 xhci_setup_ctx(dev->ud_pipe0);
3063
3064 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
3065 sc->sc_ctxsz * 3);
3066
3067 xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot);
3068
3069 err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr);
3070
3071 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
3072 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, 0),
3073 sc->sc_ctxsz * 2);
3074
3075 return err;
3076 }
3077
3078 /*
3079 * 4.8.2, 6.2.3.2
3080 * construct slot/endpoint context parameters and do syncmem
3081 */
3082 static void
3083 xhci_setup_ctx(struct usbd_pipe *pipe)
3084 {
3085 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3086 struct usbd_device *dev = pipe->up_dev;
3087 struct xhci_slot * const xs = dev->ud_hcpriv;
3088 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3089 const u_int dci = xhci_ep_get_dci(ed);
3090 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3091 uint32_t *cp;
3092 uint16_t mps = UGETW(ed->wMaxPacketSize);
3093 uint8_t speed = dev->ud_speed;
3094 uint8_t ival = ed->bInterval;
3095
3096 XHCIHIST_FUNC();
3097 XHCIHIST_CALLARGS("pipe %#jx: slot %ju dci %ju speed %ju",
3098 (uintptr_t)pipe, xs->xs_idx, dci, speed);
3099
3100 /* set up initial input control context */
3101 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3102 cp[0] = htole32(0);
3103 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci));
3104 cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT));
3105 cp[7] = htole32(0);
3106
3107 /* set up input slot context */
3108 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
3109 cp[0] =
3110 XHCI_SCTX_0_CTX_NUM_SET(dci) |
3111 XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed));
3112 cp[1] = 0;
3113 cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0);
3114 cp[3] = 0;
3115 xhci_setup_route(pipe, cp);
3116 xhci_setup_tthub(pipe, cp);
3117
3118 cp[0] = htole32(cp[0]);
3119 cp[1] = htole32(cp[1]);
3120 cp[2] = htole32(cp[2]);
3121 cp[3] = htole32(cp[3]);
3122
3123 /* set up input endpoint context */
3124 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci));
3125 cp[0] =
3126 XHCI_EPCTX_0_EPSTATE_SET(0) |
3127 XHCI_EPCTX_0_MULT_SET(0) |
3128 XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
3129 XHCI_EPCTX_0_LSA_SET(0) |
3130 XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0);
3131 cp[1] =
3132 XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) |
3133 XHCI_EPCTX_1_HID_SET(0) |
3134 XHCI_EPCTX_1_MAXB_SET(0);
3135
3136 if (xfertype != UE_ISOCHRONOUS)
3137 cp[1] |= XHCI_EPCTX_1_CERR_SET(3);
3138
3139 if (xfertype == UE_CONTROL)
3140 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); /* 6.2.3 */
3141 else if (USB_IS_SS(speed))
3142 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(mps);
3143 else
3144 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(UE_GET_SIZE(mps));
3145
3146 xhci_setup_maxburst(pipe, cp);
3147
3148 switch (xfertype) {
3149 case UE_CONTROL:
3150 break;
3151 case UE_BULK:
3152 /* XXX Set MaxPStreams, HID, and LSA if streams enabled */
3153 break;
3154 case UE_INTERRUPT:
3155 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3156 ival = pipe->up_interval;
3157
3158 ival = xhci_bival2ival(ival, speed);
3159 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3160 break;
3161 case UE_ISOCHRONOUS:
3162 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3163 ival = pipe->up_interval;
3164
3165 /* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 */
3166 if (speed == USB_SPEED_FULL)
3167 ival += 3; /* 1ms -> 125us */
3168 ival--;
3169 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3170 break;
3171 default:
3172 break;
3173 }
3174 DPRINTFN(4, "setting ival %ju MaxBurst %#jx",
3175 XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_1_MAXB_GET(cp[1]), 0, 0);
3176
3177 /* rewind TR dequeue pointer in xHC */
3178 /* can't use xhci_ep_get_dci() yet? */
3179 *(uint64_t *)(&cp[2]) = htole64(
3180 xhci_ring_trbp(xs->xs_xr[dci], 0) |
3181 XHCI_EPCTX_2_DCS_SET(1));
3182
3183 cp[0] = htole32(cp[0]);
3184 cp[1] = htole32(cp[1]);
3185 cp[4] = htole32(cp[4]);
3186
3187 /* rewind TR dequeue pointer in driver */
3188 struct xhci_ring *xr = xs->xs_xr[dci];
3189 mutex_enter(&xr->xr_lock);
3190 xhci_host_dequeue(xr);
3191 mutex_exit(&xr->xr_lock);
3192
3193 /* sync input contexts before they are read from memory */
3194 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3195 }
3196
3197 /*
3198 * Setup route string and roothub port of given device for slot context
3199 */
3200 static void
3201 xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp)
3202 {
3203 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3204 struct usbd_device *dev = pipe->up_dev;
3205 struct usbd_port *up = dev->ud_powersrc;
3206 struct usbd_device *hub;
3207 struct usbd_device *adev;
3208 uint8_t rhport = 0;
3209 uint32_t route = 0;
3210
3211 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3212
3213 /* Locate root hub port and Determine route string */
3214 /* 4.3.3 route string does not include roothub port */
3215 for (hub = dev; hub != NULL; hub = hub->ud_myhub) {
3216 uint32_t dep;
3217
3218 DPRINTFN(4, "hub %#jx depth %jd upport %#jx upportno %jd",
3219 (uintptr_t)hub, hub->ud_depth, (uintptr_t)hub->ud_powersrc,
3220 hub->ud_powersrc ? (uintptr_t)hub->ud_powersrc->up_portno :
3221 -1);
3222
3223 if (hub->ud_powersrc == NULL)
3224 break;
3225 dep = hub->ud_depth;
3226 if (dep == 0)
3227 break;
3228 rhport = hub->ud_powersrc->up_portno;
3229 if (dep > USB_HUB_MAX_DEPTH)
3230 continue;
3231
3232 route |=
3233 (rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport)
3234 << ((dep - 1) * 4);
3235 }
3236 route = route >> 4;
3237 size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1;
3238
3239 /* Locate port on upstream high speed hub */
3240 for (adev = dev, hub = up->up_parent;
3241 hub != NULL && hub->ud_speed != USB_SPEED_HIGH;
3242 adev = hub, hub = hub->ud_myhub)
3243 ;
3244 if (hub) {
3245 int p;
3246 for (p = 1; p <= hub->ud_hub->uh_hubdesc.bNbrPorts; p++) {
3247 if (hub->ud_hub->uh_ports[p - 1].up_dev == adev) {
3248 dev->ud_myhsport = &hub->ud_hub->uh_ports[p - 1];
3249 goto found;
3250 }
3251 }
3252 panic("%s: cannot find HS port", __func__);
3253 found:
3254 DPRINTFN(4, "high speed port %jd", p, 0, 0, 0);
3255 } else {
3256 dev->ud_myhsport = NULL;
3257 }
3258
3259 const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport);
3260
3261 DPRINTFN(4, "rhport %ju ctlrport %ju Route %05jx hub %#jx", rhport,
3262 ctlrport, route, (uintptr_t)hub);
3263
3264 cp[0] |= XHCI_SCTX_0_ROUTE_SET(route);
3265 cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport);
3266 }
3267
3268 /*
3269 * Setup whether device is hub, whether device uses MTT, and
3270 * TT informations if it uses MTT.
3271 */
3272 static void
3273 xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp)
3274 {
3275 struct usbd_device *dev = pipe->up_dev;
3276 struct usbd_port *myhsport = dev->ud_myhsport;
3277 usb_device_descriptor_t * const dd = &dev->ud_ddesc;
3278 uint32_t speed = dev->ud_speed;
3279 uint8_t rhaddr = dev->ud_bus->ub_rhaddr;
3280 uint8_t tthubslot, ttportnum;
3281 bool ishub;
3282 bool usemtt;
3283
3284 XHCIHIST_FUNC();
3285
3286 /*
3287 * 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2
3288 * tthubslot:
3289 * This is the slot ID of parent HS hub
3290 * if LS/FS device is connected && connected through HS hub.
3291 * This is 0 if device is not LS/FS device ||
3292 * parent hub is not HS hub ||
3293 * attached to root hub.
3294 * ttportnum:
3295 * This is the downstream facing port of parent HS hub
3296 * if LS/FS device is connected.
3297 * This is 0 if device is not LS/FS device ||
3298 * parent hub is not HS hub ||
3299 * attached to root hub.
3300 */
3301 if (myhsport &&
3302 myhsport->up_parent->ud_addr != rhaddr &&
3303 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
3304 ttportnum = myhsport->up_portno;
3305 tthubslot = myhsport->up_parent->ud_addr;
3306 } else {
3307 ttportnum = 0;
3308 tthubslot = 0;
3309 }
3310 XHCIHIST_CALLARGS("myhsport %#jx ttportnum=%jd tthubslot=%jd",
3311 (uintptr_t)myhsport, ttportnum, tthubslot, 0);
3312
3313 /* ishub is valid after reading UDESC_DEVICE */
3314 ishub = (dd->bDeviceClass == UDCLASS_HUB);
3315
3316 /* dev->ud_hub is valid after reading UDESC_HUB */
3317 if (ishub && dev->ud_hub) {
3318 usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc;
3319 uint8_t ttt =
3320 __SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK);
3321
3322 cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts);
3323 cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt);
3324 DPRINTFN(4, "nports=%jd ttt=%jd", hd->bNbrPorts, ttt, 0, 0);
3325 }
3326
3327 #define IS_MTTHUB(dd) \
3328 ((dd)->bDeviceProtocol == UDPROTO_HSHUBMTT)
3329
3330 /*
3331 * MTT flag is set if
3332 * 1. this is HS hub && MTTs are supported and enabled; or
3333 * 2. this is LS or FS device && there is a parent HS hub where MTTs
3334 * are supported and enabled.
3335 *
3336 * XXX enabled is not tested yet
3337 */
3338 if (ishub && speed == USB_SPEED_HIGH && IS_MTTHUB(dd))
3339 usemtt = true;
3340 else if ((speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) &&
3341 myhsport &&
3342 myhsport->up_parent->ud_addr != rhaddr &&
3343 IS_MTTHUB(&myhsport->up_parent->ud_ddesc))
3344 usemtt = true;
3345 else
3346 usemtt = false;
3347 DPRINTFN(4, "class %ju proto %ju ishub %jd usemtt %jd",
3348 dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt);
3349
3350 #undef IS_MTTHUB
3351
3352 cp[0] |=
3353 XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) |
3354 XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0);
3355 cp[2] |=
3356 XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) |
3357 XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum);
3358 }
3359
3360 /* set up params for periodic endpoint */
3361 static void
3362 xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp)
3363 {
3364 struct usbd_device *dev = pipe->up_dev;
3365 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3366 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3367 usbd_desc_iter_t iter;
3368 const usb_cdc_descriptor_t *cdcd;
3369 uint32_t maxb = 0;
3370 uint16_t mps = UGETW(ed->wMaxPacketSize);
3371 uint8_t speed = dev->ud_speed;
3372 uint8_t ep;
3373
3374 /* config desc is NULL when opening ep0 */
3375 if (dev == NULL || dev->ud_cdesc == NULL)
3376 goto no_cdcd;
3377 cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev,
3378 UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY);
3379 if (cdcd == NULL)
3380 goto no_cdcd;
3381 usb_desc_iter_init(dev, &iter);
3382 iter.cur = (const void *)cdcd;
3383
3384 /* find endpoint_ss_comp desc for ep of this pipe */
3385 for (ep = 0;;) {
3386 cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter);
3387 if (cdcd == NULL)
3388 break;
3389 if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) {
3390 ep = ((const usb_endpoint_descriptor_t *)cdcd)->
3391 bEndpointAddress;
3392 if (UE_GET_ADDR(ep) ==
3393 UE_GET_ADDR(ed->bEndpointAddress)) {
3394 cdcd = (const usb_cdc_descriptor_t *)
3395 usb_desc_iter_next(&iter);
3396 break;
3397 }
3398 ep = 0;
3399 }
3400 }
3401 if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) {
3402 const usb_endpoint_ss_comp_descriptor_t * esscd =
3403 (const usb_endpoint_ss_comp_descriptor_t *)cdcd;
3404 maxb = esscd->bMaxBurst;
3405 }
3406
3407 no_cdcd:
3408 /* 6.2.3.4, 4.8.2.4 */
3409 if (USB_IS_SS(speed)) {
3410 /* USB 3.1 9.6.6 */
3411 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps);
3412 /* USB 3.1 9.6.7 */
3413 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3414 #ifdef notyet
3415 if (xfertype == UE_ISOCHRONOUS) {
3416 }
3417 if (XHCI_HCC2_LEC(sc->sc_hcc2) != 0) {
3418 /* use ESIT */
3419 cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(x);
3420 cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(x);
3421
3422 /* XXX if LEC = 1, set ESIT instead */
3423 cp[0] |= XHCI_EPCTX_0_MULT_SET(0);
3424 } else {
3425 /* use ival */
3426 }
3427 #endif
3428 } else {
3429 /* USB 2.0 9.6.6 */
3430 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(UE_GET_SIZE(mps));
3431
3432 /* 6.2.3.4 */
3433 if (speed == USB_SPEED_HIGH &&
3434 (xfertype == UE_ISOCHRONOUS || xfertype == UE_INTERRUPT)) {
3435 maxb = UE_GET_TRANS(mps);
3436 } else {
3437 /* LS/FS or HS CTRL or HS BULK */
3438 maxb = 0;
3439 }
3440 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3441 }
3442 }
3443
3444 /*
3445 * Convert endpoint bInterval value to endpoint context interval value
3446 * for Interrupt pipe.
3447 * xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6
3448 */
3449 static uint32_t
3450 xhci_bival2ival(uint32_t ival, uint32_t speed)
3451 {
3452 if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
3453 int i;
3454
3455 /*
3456 * round ival down to "the nearest base 2 multiple of
3457 * bInterval * 8".
3458 * bInterval is at most 255 as its type is uByte.
3459 * 255(ms) = 2040(x 125us) < 2^11, so start with 10.
3460 */
3461 for (i = 10; i > 0; i--) {
3462 if ((ival * 8) >= (1 << i))
3463 break;
3464 }
3465 ival = i;
3466 } else {
3467 /* Interval = bInterval-1 for SS/HS */
3468 ival--;
3469 }
3470
3471 return ival;
3472 }
3473
3474 /* ----- */
3475
3476 static void
3477 xhci_noop(struct usbd_pipe *pipe)
3478 {
3479 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3480 }
3481
3482 /*
3483 * Process root hub request.
3484 */
3485 static int
3486 xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3487 void *buf, int buflen)
3488 {
3489 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
3490 usb_port_status_t ps;
3491 int l, totlen = 0;
3492 uint16_t len, value, index;
3493 int port, i;
3494 uint32_t v;
3495
3496 XHCIHIST_FUNC();
3497
3498 if (sc->sc_dying)
3499 return -1;
3500
3501 size_t bn = bus == &sc->sc_bus ? 0 : 1;
3502
3503 len = UGETW(req->wLength);
3504 value = UGETW(req->wValue);
3505 index = UGETW(req->wIndex);
3506
3507 XHCIHIST_CALLARGS("rhreq: %04jx %04jx %04jx %04jx",
3508 req->bmRequestType | (req->bRequest << 8), value, index, len);
3509
3510 #define C(x,y) ((x) | ((y) << 8))
3511 switch (C(req->bRequest, req->bmRequestType)) {
3512 case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
3513 DPRINTFN(8, "getdesc: wValue=0x%04jx", value, 0, 0, 0);
3514 if (len == 0)
3515 break;
3516 switch (value) {
3517 #define sd ((usb_string_descriptor_t *)buf)
3518 case C(2, UDESC_STRING):
3519 /* Product */
3520 totlen = usb_makestrdesc(sd, len, "xHCI root hub");
3521 break;
3522 #undef sd
3523 default:
3524 /* default from usbroothub */
3525 return buflen;
3526 }
3527 break;
3528
3529 /* Hub requests */
3530 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
3531 break;
3532 /* Clear Port Feature request */
3533 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): {
3534 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3535
3536 DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%jd feat=%jd bus=%jd cp=%jd",
3537 index, value, bn, cp);
3538 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3539 return -1;
3540 }
3541 port = XHCI_PORTSC(cp);
3542 v = xhci_op_read_4(sc, port);
3543 DPRINTFN(4, "portsc=0x%08jx", v, 0, 0, 0);
3544 v &= ~XHCI_PS_CLEAR;
3545 switch (value) {
3546 case UHF_PORT_ENABLE:
3547 xhci_op_write_4(sc, port, v & ~XHCI_PS_PED);
3548 break;
3549 case UHF_PORT_SUSPEND:
3550 return -1;
3551 case UHF_PORT_POWER:
3552 break;
3553 case UHF_PORT_TEST:
3554 case UHF_PORT_INDICATOR:
3555 return -1;
3556 case UHF_C_PORT_CONNECTION:
3557 xhci_op_write_4(sc, port, v | XHCI_PS_CSC);
3558 break;
3559 case UHF_C_PORT_ENABLE:
3560 case UHF_C_PORT_SUSPEND:
3561 case UHF_C_PORT_OVER_CURRENT:
3562 return -1;
3563 case UHF_C_BH_PORT_RESET:
3564 xhci_op_write_4(sc, port, v | XHCI_PS_WRC);
3565 break;
3566 case UHF_C_PORT_RESET:
3567 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
3568 break;
3569 case UHF_C_PORT_LINK_STATE:
3570 xhci_op_write_4(sc, port, v | XHCI_PS_PLC);
3571 break;
3572 case UHF_C_PORT_CONFIG_ERROR:
3573 xhci_op_write_4(sc, port, v | XHCI_PS_CEC);
3574 break;
3575 default:
3576 return -1;
3577 }
3578 break;
3579 }
3580 case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
3581 if (len == 0)
3582 break;
3583 if ((value & 0xff) != 0) {
3584 return -1;
3585 }
3586 usb_hub_descriptor_t hubd;
3587
3588 totlen = uimin(buflen, sizeof(hubd));
3589 memcpy(&hubd, buf, totlen);
3590 hubd.bNbrPorts = sc->sc_rhportcount[bn];
3591 USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH);
3592 hubd.bPwrOn2PwrGood = 200;
3593 for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) {
3594 /* XXX can't find out? */
3595 hubd.DeviceRemovable[i++] = 0;
3596 }
3597 hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
3598 totlen = uimin(totlen, hubd.bDescLength);
3599 memcpy(buf, &hubd, totlen);
3600 break;
3601 case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
3602 if (len != 4) {
3603 return -1;
3604 }
3605 memset(buf, 0, len); /* ? XXX */
3606 totlen = len;
3607 break;
3608 /* Get Port Status request */
3609 case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
3610 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3611
3612 DPRINTFN(8, "get port status bn=%jd i=%jd cp=%ju",
3613 bn, index, cp, 0);
3614 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3615 DPRINTFN(5, "bad get port status: index=%jd bn=%jd "
3616 "portcount=%jd",
3617 index, bn, sc->sc_rhportcount[bn], 0);
3618 return -1;
3619 }
3620 if (len != 4) {
3621 DPRINTFN(5, "bad get port status: len %jd != 4",
3622 len, 0, 0, 0);
3623 return -1;
3624 }
3625 v = xhci_op_read_4(sc, XHCI_PORTSC(cp));
3626 DPRINTFN(4, "getrhportsc %jd 0x%08jx", cp, v, 0, 0);
3627 i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v));
3628 if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS;
3629 if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED;
3630 if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR;
3631 //if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND;
3632 if (v & XHCI_PS_PR) i |= UPS_RESET;
3633 if (v & XHCI_PS_PP) {
3634 if (i & UPS_OTHER_SPEED)
3635 i |= UPS_PORT_POWER_SS;
3636 else
3637 i |= UPS_PORT_POWER;
3638 }
3639 if (i & UPS_OTHER_SPEED)
3640 i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v));
3641 if (sc->sc_vendor_port_status)
3642 i = sc->sc_vendor_port_status(sc, v, i);
3643 USETW(ps.wPortStatus, i);
3644 i = 0;
3645 if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS;
3646 if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED;
3647 if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR;
3648 if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET;
3649 if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET;
3650 if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE;
3651 if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR;
3652 USETW(ps.wPortChange, i);
3653 totlen = uimin(len, sizeof(ps));
3654 memcpy(buf, &ps, totlen);
3655 DPRINTFN(5, "get port status: wPortStatus %#jx wPortChange %#jx"
3656 " totlen %jd",
3657 UGETW(ps.wPortStatus), UGETW(ps.wPortChange), totlen, 0);
3658 break;
3659 }
3660 case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
3661 return -1;
3662 case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE):
3663 break;
3664 case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
3665 break;
3666 /* Set Port Feature request */
3667 case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): {
3668 int optval = (index >> 8) & 0xff;
3669 index &= 0xff;
3670 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3671 return -1;
3672 }
3673
3674 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3675
3676 port = XHCI_PORTSC(cp);
3677 v = xhci_op_read_4(sc, port);
3678 DPRINTFN(4, "index %jd cp %jd portsc=0x%08jx", index, cp, v, 0);
3679 v &= ~XHCI_PS_CLEAR;
3680 switch (value) {
3681 case UHF_PORT_ENABLE:
3682 xhci_op_write_4(sc, port, v | XHCI_PS_PED);
3683 break;
3684 case UHF_PORT_SUSPEND:
3685 /* XXX suspend */
3686 break;
3687 case UHF_PORT_RESET:
3688 v &= ~(XHCI_PS_PED | XHCI_PS_PR);
3689 xhci_op_write_4(sc, port, v | XHCI_PS_PR);
3690 /* Wait for reset to complete. */
3691 usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
3692 if (sc->sc_dying) {
3693 return -1;
3694 }
3695 v = xhci_op_read_4(sc, port);
3696 if (v & XHCI_PS_PR) {
3697 xhci_op_write_4(sc, port, v & ~XHCI_PS_PR);
3698 usb_delay_ms(&sc->sc_bus, 10);
3699 /* XXX */
3700 }
3701 break;
3702 case UHF_PORT_POWER:
3703 /* XXX power control */
3704 break;
3705 /* XXX more */
3706 case UHF_C_PORT_RESET:
3707 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
3708 break;
3709 case UHF_PORT_U1_TIMEOUT:
3710 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
3711 return -1;
3712 }
3713 port = XHCI_PORTPMSC(cp);
3714 v = xhci_op_read_4(sc, port);
3715 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
3716 index, cp, v, 0);
3717 v &= ~XHCI_PM3_U1TO_SET(0xff);
3718 v |= XHCI_PM3_U1TO_SET(optval);
3719 xhci_op_write_4(sc, port, v);
3720 break;
3721 case UHF_PORT_U2_TIMEOUT:
3722 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
3723 return -1;
3724 }
3725 port = XHCI_PORTPMSC(cp);
3726 v = xhci_op_read_4(sc, port);
3727 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
3728 index, cp, v, 0);
3729 v &= ~XHCI_PM3_U2TO_SET(0xff);
3730 v |= XHCI_PM3_U2TO_SET(optval);
3731 xhci_op_write_4(sc, port, v);
3732 break;
3733 default:
3734 return -1;
3735 }
3736 }
3737 break;
3738 case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
3739 case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
3740 case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
3741 case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
3742 break;
3743 default:
3744 /* default from usbroothub */
3745 return buflen;
3746 }
3747
3748 return totlen;
3749 }
3750
3751 /* root hub interrupt */
3752
3753 static usbd_status
3754 xhci_root_intr_transfer(struct usbd_xfer *xfer)
3755 {
3756 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3757 usbd_status err;
3758
3759 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3760
3761 /* Insert last in queue. */
3762 mutex_enter(&sc->sc_lock);
3763 err = usb_insert_transfer(xfer);
3764 mutex_exit(&sc->sc_lock);
3765 if (err)
3766 return err;
3767
3768 /* Pipe isn't running, start first */
3769 return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
3770 }
3771
3772 /* Wait for roothub port status/change */
3773 static usbd_status
3774 xhci_root_intr_start(struct usbd_xfer *xfer)
3775 {
3776 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3777 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3778 const bool polling = xhci_polling_p(sc);
3779
3780 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3781
3782 if (sc->sc_dying)
3783 return USBD_IOERROR;
3784
3785 if (!polling)
3786 mutex_enter(&sc->sc_lock);
3787 KASSERT(sc->sc_intrxfer[bn] == NULL);
3788 sc->sc_intrxfer[bn] = xfer;
3789 xfer->ux_status = USBD_IN_PROGRESS;
3790 if (!polling)
3791 mutex_exit(&sc->sc_lock);
3792
3793 return USBD_IN_PROGRESS;
3794 }
3795
3796 static void
3797 xhci_root_intr_abort(struct usbd_xfer *xfer)
3798 {
3799 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3800 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3801
3802 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3803
3804 KASSERT(mutex_owned(&sc->sc_lock));
3805 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
3806
3807 /* If xfer has already completed, nothing to do here. */
3808 if (sc->sc_intrxfer[bn] == NULL)
3809 return;
3810
3811 /*
3812 * Otherwise, sc->sc_intrxfer[bn] had better be this transfer.
3813 * Cancel it.
3814 */
3815 KASSERT(sc->sc_intrxfer[bn] == xfer);
3816 xfer->ux_status = USBD_CANCELLED;
3817 usb_transfer_complete(xfer);
3818 }
3819
3820 static void
3821 xhci_root_intr_close(struct usbd_pipe *pipe)
3822 {
3823 struct xhci_softc * const sc __diagused = XHCI_PIPE2SC(pipe);
3824 const struct usbd_xfer *xfer __diagused = pipe->up_intrxfer;
3825 const size_t bn __diagused = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3826
3827 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3828
3829 KASSERT(mutex_owned(&sc->sc_lock));
3830
3831 /*
3832 * Caller must guarantee the xfer has completed first, by
3833 * closing the pipe only after normal completion or an abort.
3834 */
3835 KASSERT(sc->sc_intrxfer[bn] == NULL);
3836 }
3837
3838 static void
3839 xhci_root_intr_done(struct usbd_xfer *xfer)
3840 {
3841 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3842 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3843
3844 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3845
3846 KASSERT(mutex_owned(&sc->sc_lock));
3847
3848 /* Claim the xfer so it doesn't get completed again. */
3849 KASSERT(sc->sc_intrxfer[bn] == xfer);
3850 KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
3851 sc->sc_intrxfer[bn] = NULL;
3852 }
3853
3854 /* -------------- */
3855 /* device control */
3856
3857 static usbd_status
3858 xhci_device_ctrl_transfer(struct usbd_xfer *xfer)
3859 {
3860 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3861 usbd_status err;
3862
3863 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3864
3865 /* Insert last in queue. */
3866 mutex_enter(&sc->sc_lock);
3867 err = usb_insert_transfer(xfer);
3868 mutex_exit(&sc->sc_lock);
3869 if (err)
3870 return err;
3871
3872 /* Pipe isn't running, start first */
3873 return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
3874 }
3875
3876 static usbd_status
3877 xhci_device_ctrl_start(struct usbd_xfer *xfer)
3878 {
3879 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3880 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
3881 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
3882 struct xhci_ring * const tr = xs->xs_xr[dci];
3883 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
3884 usb_device_request_t * const req = &xfer->ux_request;
3885 const bool isread = usbd_xfer_isread(xfer);
3886 const uint32_t len = UGETW(req->wLength);
3887 usb_dma_t * const dma = &xfer->ux_dmabuf;
3888 uint64_t parameter;
3889 uint32_t status;
3890 uint32_t control;
3891 u_int i;
3892 const bool polling = xhci_polling_p(sc);
3893
3894 XHCIHIST_FUNC();
3895 XHCIHIST_CALLARGS("req: %04jx %04jx %04jx %04jx",
3896 req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue),
3897 UGETW(req->wIndex), UGETW(req->wLength));
3898
3899 /* we rely on the bottom bits for extra info */
3900 KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %zx",
3901 (uintptr_t) xfer);
3902
3903 KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0);
3904
3905 i = 0;
3906
3907 /* setup phase */
3908 parameter = le64dec(req); /* to keep USB endian after xhci_trb_put() */
3909 status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req));
3910 control = ((len == 0) ? XHCI_TRB_3_TRT_NONE :
3911 (isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) |
3912 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
3913 XHCI_TRB_3_IDT_BIT;
3914 xhci_xfer_put_trb(xx, i++, parameter, status, control);
3915
3916 if (len != 0) {
3917 /* data phase */
3918 parameter = DMAADDR(dma, 0);
3919 KASSERTMSG(len <= 0x10000, "len %d", len);
3920 status = XHCI_TRB_2_IRQ_SET(0) |
3921 XHCI_TRB_2_TDSZ_SET(0) |
3922 XHCI_TRB_2_BYTES_SET(len);
3923 control = (isread ? XHCI_TRB_3_DIR_IN : 0) |
3924 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) |
3925 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
3926 XHCI_TRB_3_IOC_BIT;
3927 xhci_xfer_put_trb(xx, i++, parameter, status, control);
3928
3929 usb_syncmem(dma, 0, len,
3930 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
3931 }
3932
3933 parameter = 0;
3934 status = XHCI_TRB_2_IRQ_SET(0);
3935 /* the status stage has inverted direction */
3936 control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) |
3937 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) |
3938 XHCI_TRB_3_IOC_BIT;
3939 xhci_xfer_put_trb(xx, i++, parameter, status, control);
3940
3941 if (!polling)
3942 mutex_enter(&tr->xr_lock);
3943 xhci_ring_put_xfer(sc, tr, xx, i);
3944 if (!polling)
3945 mutex_exit(&tr->xr_lock);
3946
3947 if (!polling)
3948 mutex_enter(&sc->sc_lock);
3949 xfer->ux_status = USBD_IN_PROGRESS;
3950 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
3951 usbd_xfer_schedule_timeout(xfer);
3952 if (!polling)
3953 mutex_exit(&sc->sc_lock);
3954
3955 return USBD_IN_PROGRESS;
3956 }
3957
3958 static void
3959 xhci_device_ctrl_done(struct usbd_xfer *xfer)
3960 {
3961 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3962 usb_device_request_t *req = &xfer->ux_request;
3963 int len = UGETW(req->wLength);
3964 int rd = req->bmRequestType & UT_READ;
3965
3966 if (len)
3967 usb_syncmem(&xfer->ux_dmabuf, 0, len,
3968 rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
3969 }
3970
3971 static void
3972 xhci_device_ctrl_abort(struct usbd_xfer *xfer)
3973 {
3974 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3975
3976 usbd_xfer_abort(xfer);
3977 }
3978
3979 static void
3980 xhci_device_ctrl_close(struct usbd_pipe *pipe)
3981 {
3982 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3983
3984 xhci_close_pipe(pipe);
3985 }
3986
3987 /* ------------------ */
3988 /* device isochronous */
3989
3990 /* ----------- */
3991 /* device bulk */
3992
3993 static usbd_status
3994 xhci_device_bulk_transfer(struct usbd_xfer *xfer)
3995 {
3996 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3997 usbd_status err;
3998
3999 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4000
4001 /* Insert last in queue. */
4002 mutex_enter(&sc->sc_lock);
4003 err = usb_insert_transfer(xfer);
4004 mutex_exit(&sc->sc_lock);
4005 if (err)
4006 return err;
4007
4008 /*
4009 * Pipe isn't running (otherwise err would be USBD_INPROG),
4010 * so start it first.
4011 */
4012 return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4013 }
4014
4015 static usbd_status
4016 xhci_device_bulk_start(struct usbd_xfer *xfer)
4017 {
4018 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4019 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4020 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4021 struct xhci_ring * const tr = xs->xs_xr[dci];
4022 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4023 const uint32_t len = xfer->ux_length;
4024 usb_dma_t * const dma = &xfer->ux_dmabuf;
4025 uint64_t parameter;
4026 uint32_t status;
4027 uint32_t control;
4028 u_int i = 0;
4029 const bool polling = xhci_polling_p(sc);
4030
4031 XHCIHIST_FUNC();
4032 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4033 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4034
4035 if (sc->sc_dying)
4036 return USBD_IOERROR;
4037
4038 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4039
4040 parameter = DMAADDR(dma, 0);
4041 const bool isread = usbd_xfer_isread(xfer);
4042 if (len)
4043 usb_syncmem(dma, 0, len,
4044 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4045
4046 /*
4047 * XXX: (dsl) The physical buffer must not cross a 64k boundary.
4048 * If the user supplied buffer crosses such a boundary then 2
4049 * (or more) TRB should be used.
4050 * If multiple TRB are used the td_size field must be set correctly.
4051 * For v1.0 devices (like ivy bridge) this is the number of usb data
4052 * blocks needed to complete the transfer.
4053 * Setting it to 1 in the last TRB causes an extra zero-length
4054 * data block be sent.
4055 * The earlier documentation differs, I don't know how it behaves.
4056 */
4057 KASSERTMSG(len <= 0x10000, "len %d", len);
4058 status = XHCI_TRB_2_IRQ_SET(0) |
4059 XHCI_TRB_2_TDSZ_SET(0) |
4060 XHCI_TRB_2_BYTES_SET(len);
4061 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4062 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4063 XHCI_TRB_3_IOC_BIT;
4064 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4065
4066 if (!polling)
4067 mutex_enter(&tr->xr_lock);
4068 xhci_ring_put_xfer(sc, tr, xx, i);
4069 if (!polling)
4070 mutex_exit(&tr->xr_lock);
4071
4072 if (!polling)
4073 mutex_enter(&sc->sc_lock);
4074 xfer->ux_status = USBD_IN_PROGRESS;
4075 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4076 usbd_xfer_schedule_timeout(xfer);
4077 if (!polling)
4078 mutex_exit(&sc->sc_lock);
4079
4080 return USBD_IN_PROGRESS;
4081 }
4082
4083 static void
4084 xhci_device_bulk_done(struct usbd_xfer *xfer)
4085 {
4086 #ifdef USB_DEBUG
4087 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4088 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4089 #endif
4090 const bool isread = usbd_xfer_isread(xfer);
4091
4092 XHCIHIST_FUNC();
4093 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4094 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4095
4096 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4097 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4098 }
4099
4100 static void
4101 xhci_device_bulk_abort(struct usbd_xfer *xfer)
4102 {
4103 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4104
4105 usbd_xfer_abort(xfer);
4106 }
4107
4108 static void
4109 xhci_device_bulk_close(struct usbd_pipe *pipe)
4110 {
4111 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4112
4113 xhci_close_pipe(pipe);
4114 }
4115
4116 /* ---------------- */
4117 /* device interrupt */
4118
4119 static usbd_status
4120 xhci_device_intr_transfer(struct usbd_xfer *xfer)
4121 {
4122 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4123 usbd_status err;
4124
4125 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4126
4127 /* Insert last in queue. */
4128 mutex_enter(&sc->sc_lock);
4129 err = usb_insert_transfer(xfer);
4130 mutex_exit(&sc->sc_lock);
4131 if (err)
4132 return err;
4133
4134 /*
4135 * Pipe isn't running (otherwise err would be USBD_INPROG),
4136 * so start it first.
4137 */
4138 return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4139 }
4140
4141 static usbd_status
4142 xhci_device_intr_start(struct usbd_xfer *xfer)
4143 {
4144 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4145 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4146 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4147 struct xhci_ring * const tr = xs->xs_xr[dci];
4148 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4149 const uint32_t len = xfer->ux_length;
4150 const bool polling = xhci_polling_p(sc);
4151 usb_dma_t * const dma = &xfer->ux_dmabuf;
4152 uint64_t parameter;
4153 uint32_t status;
4154 uint32_t control;
4155 u_int i = 0;
4156
4157 XHCIHIST_FUNC();
4158 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4159 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4160
4161 if (sc->sc_dying)
4162 return USBD_IOERROR;
4163
4164 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4165
4166 const bool isread = usbd_xfer_isread(xfer);
4167 if (len)
4168 usb_syncmem(dma, 0, len,
4169 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4170
4171 parameter = DMAADDR(dma, 0);
4172 KASSERTMSG(len <= 0x10000, "len %d", len);
4173 status = XHCI_TRB_2_IRQ_SET(0) |
4174 XHCI_TRB_2_TDSZ_SET(0) |
4175 XHCI_TRB_2_BYTES_SET(len);
4176 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4177 (isread ? XHCI_TRB_3_ISP_BIT : 0) | XHCI_TRB_3_IOC_BIT;
4178 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4179
4180 if (!polling)
4181 mutex_enter(&tr->xr_lock);
4182 xhci_ring_put_xfer(sc, tr, xx, i);
4183 if (!polling)
4184 mutex_exit(&tr->xr_lock);
4185
4186 if (!polling)
4187 mutex_enter(&sc->sc_lock);
4188 xfer->ux_status = USBD_IN_PROGRESS;
4189 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4190 usbd_xfer_schedule_timeout(xfer);
4191 if (!polling)
4192 mutex_exit(&sc->sc_lock);
4193
4194 return USBD_IN_PROGRESS;
4195 }
4196
4197 static void
4198 xhci_device_intr_done(struct usbd_xfer *xfer)
4199 {
4200 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4201 #ifdef USB_DEBUG
4202 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4203 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4204 #endif
4205 const bool isread = usbd_xfer_isread(xfer);
4206
4207 XHCIHIST_FUNC();
4208 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4209 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4210
4211 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
4212
4213 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4214 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4215 }
4216
4217 static void
4218 xhci_device_intr_abort(struct usbd_xfer *xfer)
4219 {
4220 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4221
4222 XHCIHIST_FUNC();
4223 XHCIHIST_CALLARGS("%#jx", (uintptr_t)xfer, 0, 0, 0);
4224
4225 KASSERT(mutex_owned(&sc->sc_lock));
4226 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
4227 usbd_xfer_abort(xfer);
4228 }
4229
4230 static void
4231 xhci_device_intr_close(struct usbd_pipe *pipe)
4232 {
4233 //struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
4234
4235 XHCIHIST_FUNC();
4236 XHCIHIST_CALLARGS("%#jx", (uintptr_t)pipe, 0, 0, 0);
4237
4238 xhci_close_pipe(pipe);
4239 }
4240