xhci.c revision 1.141 1 /* $NetBSD: xhci.c,v 1.141 2021/05/26 22:37:21 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2013 Jonathan A. Kollasch
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
25 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
26 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * USB rev 2.0 and rev 3.1 specification
31 * http://www.usb.org/developers/docs/
32 * xHCI rev 1.1 specification
33 * http://www.intel.com/technology/usb/spec.htm
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.141 2021/05/26 22:37:21 riastradh Exp $");
38
39 #ifdef _KERNEL_OPT
40 #include "opt_usb.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/device.h>
48 #include <sys/select.h>
49 #include <sys/proc.h>
50 #include <sys/queue.h>
51 #include <sys/mutex.h>
52 #include <sys/condvar.h>
53 #include <sys/bus.h>
54 #include <sys/cpu.h>
55 #include <sys/sysctl.h>
56
57 #include <machine/endian.h>
58
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdivar.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbhist.h>
64 #include <dev/usb/usb_mem.h>
65 #include <dev/usb/usb_quirks.h>
66
67 #include <dev/usb/xhcireg.h>
68 #include <dev/usb/xhcivar.h>
69 #include <dev/usb/usbroothub.h>
70
71
72 #ifdef USB_DEBUG
73 #ifndef XHCI_DEBUG
74 #define xhcidebug 0
75 #else /* !XHCI_DEBUG */
76 #define HEXDUMP(a, b, c) \
77 do { \
78 if (xhcidebug > 0) \
79 hexdump(printf, a, b, c); \
80 } while (/*CONSTCOND*/0)
81 static int xhcidebug = 0;
82
83 SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup")
84 {
85 int err;
86 const struct sysctlnode *rnode;
87 const struct sysctlnode *cnode;
88
89 err = sysctl_createv(clog, 0, NULL, &rnode,
90 CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci",
91 SYSCTL_DESCR("xhci global controls"),
92 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
93
94 if (err)
95 goto fail;
96
97 /* control debugging printfs */
98 err = sysctl_createv(clog, 0, &rnode, &cnode,
99 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
100 "debug", SYSCTL_DESCR("Enable debugging output"),
101 NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL);
102 if (err)
103 goto fail;
104
105 return;
106 fail:
107 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
108 }
109
110 #endif /* !XHCI_DEBUG */
111 #endif /* USB_DEBUG */
112
113 #ifndef HEXDUMP
114 #define HEXDUMP(a, b, c)
115 #endif
116
117 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(xhcidebug,FMT,A,B,C,D)
118 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D)
119 #define XHCIHIST_FUNC() USBHIST_FUNC()
120 #define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug)
121 #define XHCIHIST_CALLARGS(FMT,A,B,C,D) \
122 USBHIST_CALLARGS(xhcidebug,FMT,A,B,C,D)
123
124 #define XHCI_DCI_SLOT 0
125 #define XHCI_DCI_EP_CONTROL 1
126
127 #define XHCI_ICI_INPUT_CONTROL 0
128
129 struct xhci_pipe {
130 struct usbd_pipe xp_pipe;
131 struct usb_task xp_async_task;
132 int16_t xp_isoc_next; /* next frame */
133 uint8_t xp_maxb; /* max burst */
134 uint8_t xp_mult;
135 };
136
137 #define XHCI_COMMAND_RING_TRBS 256
138 #define XHCI_EVENT_RING_TRBS 256
139 #define XHCI_EVENT_RING_SEGMENTS 1
140 #define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT
141
142 static usbd_status xhci_open(struct usbd_pipe *);
143 static void xhci_close_pipe(struct usbd_pipe *);
144 static int xhci_intr1(struct xhci_softc * const);
145 static void xhci_softintr(void *);
146 static void xhci_poll(struct usbd_bus *);
147 static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int);
148 static void xhci_freex(struct usbd_bus *, struct usbd_xfer *);
149 static void xhci_abortx(struct usbd_xfer *);
150 static bool xhci_dying(struct usbd_bus *);
151 static void xhci_get_lock(struct usbd_bus *, kmutex_t **);
152 static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int,
153 struct usbd_port *);
154 static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
155 void *, int);
156
157 static usbd_status xhci_configure_endpoint(struct usbd_pipe *);
158 //static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *);
159 static usbd_status xhci_reset_endpoint(struct usbd_pipe *);
160 static usbd_status xhci_stop_endpoint_cmd(struct xhci_softc *,
161 struct xhci_slot *, u_int, uint32_t);
162 static usbd_status xhci_stop_endpoint(struct usbd_pipe *);
163
164 static void xhci_host_dequeue(struct xhci_ring * const);
165 static usbd_status xhci_set_dequeue(struct usbd_pipe *);
166
167 static usbd_status xhci_do_command(struct xhci_softc * const,
168 struct xhci_soft_trb * const, int);
169 static usbd_status xhci_do_command_locked(struct xhci_softc * const,
170 struct xhci_soft_trb * const, int);
171 static usbd_status xhci_init_slot(struct usbd_device *, uint32_t);
172 static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *);
173 static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool);
174 static usbd_status xhci_enable_slot(struct xhci_softc * const,
175 uint8_t * const);
176 static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t);
177 static usbd_status xhci_address_device(struct xhci_softc * const,
178 uint64_t, uint8_t, bool);
179 static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int);
180 static usbd_status xhci_update_ep0_mps(struct xhci_softc * const,
181 struct xhci_slot * const, u_int);
182 static usbd_status xhci_ring_init(struct xhci_softc * const,
183 struct xhci_ring **, size_t, size_t);
184 static void xhci_ring_free(struct xhci_softc * const,
185 struct xhci_ring ** const);
186
187 static void xhci_setup_ctx(struct usbd_pipe *);
188 static void xhci_setup_route(struct usbd_pipe *, uint32_t *);
189 static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *);
190 static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *);
191 static uint32_t xhci_bival2ival(uint32_t, uint32_t);
192
193 static void xhci_noop(struct usbd_pipe *);
194
195 static usbd_status xhci_root_intr_transfer(struct usbd_xfer *);
196 static usbd_status xhci_root_intr_start(struct usbd_xfer *);
197 static void xhci_root_intr_abort(struct usbd_xfer *);
198 static void xhci_root_intr_close(struct usbd_pipe *);
199 static void xhci_root_intr_done(struct usbd_xfer *);
200
201 static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *);
202 static usbd_status xhci_device_ctrl_start(struct usbd_xfer *);
203 static void xhci_device_ctrl_abort(struct usbd_xfer *);
204 static void xhci_device_ctrl_close(struct usbd_pipe *);
205 static void xhci_device_ctrl_done(struct usbd_xfer *);
206
207 static usbd_status xhci_device_isoc_transfer(struct usbd_xfer *);
208 static usbd_status xhci_device_isoc_enter(struct usbd_xfer *);
209 static void xhci_device_isoc_abort(struct usbd_xfer *);
210 static void xhci_device_isoc_close(struct usbd_pipe *);
211 static void xhci_device_isoc_done(struct usbd_xfer *);
212
213 static usbd_status xhci_device_intr_transfer(struct usbd_xfer *);
214 static usbd_status xhci_device_intr_start(struct usbd_xfer *);
215 static void xhci_device_intr_abort(struct usbd_xfer *);
216 static void xhci_device_intr_close(struct usbd_pipe *);
217 static void xhci_device_intr_done(struct usbd_xfer *);
218
219 static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *);
220 static usbd_status xhci_device_bulk_start(struct usbd_xfer *);
221 static void xhci_device_bulk_abort(struct usbd_xfer *);
222 static void xhci_device_bulk_close(struct usbd_pipe *);
223 static void xhci_device_bulk_done(struct usbd_xfer *);
224
225 static const struct usbd_bus_methods xhci_bus_methods = {
226 .ubm_open = xhci_open,
227 .ubm_softint = xhci_softintr,
228 .ubm_dopoll = xhci_poll,
229 .ubm_allocx = xhci_allocx,
230 .ubm_freex = xhci_freex,
231 .ubm_abortx = xhci_abortx,
232 .ubm_dying = xhci_dying,
233 .ubm_getlock = xhci_get_lock,
234 .ubm_newdev = xhci_new_device,
235 .ubm_rhctrl = xhci_roothub_ctrl,
236 };
237
238 static const struct usbd_pipe_methods xhci_root_intr_methods = {
239 .upm_transfer = xhci_root_intr_transfer,
240 .upm_start = xhci_root_intr_start,
241 .upm_abort = xhci_root_intr_abort,
242 .upm_close = xhci_root_intr_close,
243 .upm_cleartoggle = xhci_noop,
244 .upm_done = xhci_root_intr_done,
245 };
246
247
248 static const struct usbd_pipe_methods xhci_device_ctrl_methods = {
249 .upm_transfer = xhci_device_ctrl_transfer,
250 .upm_start = xhci_device_ctrl_start,
251 .upm_abort = xhci_device_ctrl_abort,
252 .upm_close = xhci_device_ctrl_close,
253 .upm_cleartoggle = xhci_noop,
254 .upm_done = xhci_device_ctrl_done,
255 };
256
257 static const struct usbd_pipe_methods xhci_device_isoc_methods = {
258 .upm_transfer = xhci_device_isoc_transfer,
259 .upm_abort = xhci_device_isoc_abort,
260 .upm_close = xhci_device_isoc_close,
261 .upm_cleartoggle = xhci_noop,
262 .upm_done = xhci_device_isoc_done,
263 };
264
265 static const struct usbd_pipe_methods xhci_device_bulk_methods = {
266 .upm_transfer = xhci_device_bulk_transfer,
267 .upm_start = xhci_device_bulk_start,
268 .upm_abort = xhci_device_bulk_abort,
269 .upm_close = xhci_device_bulk_close,
270 .upm_cleartoggle = xhci_noop,
271 .upm_done = xhci_device_bulk_done,
272 };
273
274 static const struct usbd_pipe_methods xhci_device_intr_methods = {
275 .upm_transfer = xhci_device_intr_transfer,
276 .upm_start = xhci_device_intr_start,
277 .upm_abort = xhci_device_intr_abort,
278 .upm_close = xhci_device_intr_close,
279 .upm_cleartoggle = xhci_noop,
280 .upm_done = xhci_device_intr_done,
281 };
282
283 static inline uint32_t
284 xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset)
285 {
286 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
287 }
288
289 static inline uint32_t
290 xhci_read_2(const struct xhci_softc * const sc, bus_size_t offset)
291 {
292 return bus_space_read_2(sc->sc_iot, sc->sc_ioh, offset);
293 }
294
295 static inline uint32_t
296 xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset)
297 {
298 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset);
299 }
300
301 static inline void
302 xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset,
303 uint32_t value)
304 {
305 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value);
306 }
307
308 #if 0 /* unused */
309 static inline void
310 xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset,
311 uint32_t value)
312 {
313 bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value);
314 }
315 #endif /* unused */
316
317 static inline void
318 xhci_barrier(const struct xhci_softc * const sc, int flags)
319 {
320 bus_space_barrier(sc->sc_iot, sc->sc_ioh, 0, sc->sc_ios, flags);
321 }
322
323 static inline uint32_t
324 xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset)
325 {
326 return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset);
327 }
328
329 static inline uint32_t
330 xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset)
331 {
332 return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
333 }
334
335 static inline void
336 xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset,
337 uint32_t value)
338 {
339 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
340 }
341
342 static inline uint64_t
343 xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset)
344 {
345 uint64_t value;
346
347 if (XHCI_HCC_AC64(sc->sc_hcc)) {
348 #ifdef XHCI_USE_BUS_SPACE_8
349 value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset);
350 #else
351 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
352 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh,
353 offset + 4) << 32;
354 #endif
355 } else {
356 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
357 }
358
359 return value;
360 }
361
362 static inline void
363 xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset,
364 uint64_t value)
365 {
366 if (XHCI_HCC_AC64(sc->sc_hcc)) {
367 #ifdef XHCI_USE_BUS_SPACE_8
368 bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value);
369 #else
370 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0,
371 (value >> 0) & 0xffffffff);
372 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4,
373 (value >> 32) & 0xffffffff);
374 #endif
375 } else {
376 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
377 }
378 }
379
380 static inline uint32_t
381 xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset)
382 {
383 return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
384 }
385
386 static inline void
387 xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset,
388 uint32_t value)
389 {
390 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
391 }
392
393 static inline uint64_t
394 xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset)
395 {
396 uint64_t value;
397
398 if (XHCI_HCC_AC64(sc->sc_hcc)) {
399 #ifdef XHCI_USE_BUS_SPACE_8
400 value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset);
401 #else
402 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
403 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh,
404 offset + 4) << 32;
405 #endif
406 } else {
407 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
408 }
409
410 return value;
411 }
412
413 static inline void
414 xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset,
415 uint64_t value)
416 {
417 if (XHCI_HCC_AC64(sc->sc_hcc)) {
418 #ifdef XHCI_USE_BUS_SPACE_8
419 bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value);
420 #else
421 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0,
422 (value >> 0) & 0xffffffff);
423 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4,
424 (value >> 32) & 0xffffffff);
425 #endif
426 } else {
427 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
428 }
429 }
430
431 #if 0 /* unused */
432 static inline uint32_t
433 xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset)
434 {
435 return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset);
436 }
437 #endif /* unused */
438
439 static inline void
440 xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset,
441 uint32_t value)
442 {
443 bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value);
444 }
445
446 /* --- */
447
448 static inline uint8_t
449 xhci_ep_get_type(usb_endpoint_descriptor_t * const ed)
450 {
451 u_int eptype = 0;
452
453 switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
454 case UE_CONTROL:
455 eptype = 0x0;
456 break;
457 case UE_ISOCHRONOUS:
458 eptype = 0x1;
459 break;
460 case UE_BULK:
461 eptype = 0x2;
462 break;
463 case UE_INTERRUPT:
464 eptype = 0x3;
465 break;
466 }
467
468 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
469 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
470 return eptype | 0x4;
471 else
472 return eptype;
473 }
474
475 static u_int
476 xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed)
477 {
478 /* xHCI 1.0 section 4.5.1 */
479 u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress);
480 u_int in = 0;
481
482 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
483 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
484 in = 1;
485
486 return epaddr * 2 + in;
487 }
488
489 static inline u_int
490 xhci_dci_to_ici(const u_int i)
491 {
492 return i + 1;
493 }
494
495 static inline void *
496 xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs,
497 const u_int dci)
498 {
499 return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
500 }
501
502 #if 0 /* unused */
503 static inline bus_addr_t
504 xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs,
505 const u_int dci)
506 {
507 return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
508 }
509 #endif /* unused */
510
511 static inline void *
512 xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs,
513 const u_int ici)
514 {
515 return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
516 }
517
518 static inline bus_addr_t
519 xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs,
520 const u_int ici)
521 {
522 return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
523 }
524
525 static inline struct xhci_trb *
526 xhci_ring_trbv(struct xhci_ring * const xr, u_int idx)
527 {
528 return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
529 }
530
531 static inline bus_addr_t
532 xhci_ring_trbp(struct xhci_ring * const xr, u_int idx)
533 {
534 return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
535 }
536
537 static inline void
538 xhci_xfer_put_trb(struct xhci_xfer * const xx, u_int idx,
539 uint64_t parameter, uint32_t status, uint32_t control)
540 {
541 KASSERTMSG(idx < xx->xx_ntrb, "idx=%u xx_ntrb=%u", idx, xx->xx_ntrb);
542 xx->xx_trb[idx].trb_0 = parameter;
543 xx->xx_trb[idx].trb_2 = status;
544 xx->xx_trb[idx].trb_3 = control;
545 }
546
547 static inline void
548 xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status,
549 uint32_t control)
550 {
551 trb->trb_0 = htole64(parameter);
552 trb->trb_2 = htole32(status);
553 trb->trb_3 = htole32(control);
554 }
555
556 static int
557 xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx)
558 {
559 /* base address of TRBs */
560 bus_addr_t trbp = xhci_ring_trbp(xr, 0);
561
562 /* trb_0 range sanity check */
563 if (trb_0 == 0 || trb_0 < trbp ||
564 (trb_0 - trbp) % sizeof(struct xhci_trb) != 0 ||
565 (trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) {
566 return 1;
567 }
568 *idx = (trb_0 - trbp) / sizeof(struct xhci_trb);
569 return 0;
570 }
571
572 static unsigned int
573 xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs,
574 u_int dci)
575 {
576 uint32_t *cp;
577
578 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
579 cp = xhci_slot_get_dcv(sc, xs, dci);
580 return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0]));
581 }
582
583 static inline unsigned int
584 xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport)
585 {
586 const unsigned int port = ctlrport - 1;
587 const uint8_t bit = __BIT(port % NBBY);
588
589 return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit);
590 }
591
592 /*
593 * Return the roothub port for a controller port. Both are 1..n.
594 */
595 static inline unsigned int
596 xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport)
597 {
598
599 return sc->sc_ctlrportmap[ctrlport - 1];
600 }
601
602 /*
603 * Return the controller port for a bus roothub port. Both are 1..n.
604 */
605 static inline unsigned int
606 xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn,
607 unsigned int rhport)
608 {
609
610 return sc->sc_rhportmap[bn][rhport - 1];
611 }
612
613 /* --- */
614
615 void
616 xhci_childdet(device_t self, device_t child)
617 {
618 struct xhci_softc * const sc = device_private(self);
619
620 KASSERT((sc->sc_child == child) || (sc->sc_child2 == child));
621 if (child == sc->sc_child2)
622 sc->sc_child2 = NULL;
623 else if (child == sc->sc_child)
624 sc->sc_child = NULL;
625 }
626
627 int
628 xhci_detach(struct xhci_softc *sc, int flags)
629 {
630 int rv = 0;
631
632 if (sc->sc_child2 != NULL) {
633 rv = config_detach(sc->sc_child2, flags);
634 if (rv != 0)
635 return rv;
636 KASSERT(sc->sc_child2 == NULL);
637 }
638
639 if (sc->sc_child != NULL) {
640 rv = config_detach(sc->sc_child, flags);
641 if (rv != 0)
642 return rv;
643 KASSERT(sc->sc_child == NULL);
644 }
645
646 /* XXX unconfigure/free slots */
647
648 /* verify: */
649 xhci_rt_write_4(sc, XHCI_IMAN(0), 0);
650 xhci_op_write_4(sc, XHCI_USBCMD, 0);
651 /* do we need to wait for stop? */
652
653 xhci_op_write_8(sc, XHCI_CRCR, 0);
654 xhci_ring_free(sc, &sc->sc_cr);
655 cv_destroy(&sc->sc_command_cv);
656 cv_destroy(&sc->sc_cmdbusy_cv);
657
658 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0);
659 xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0);
660 xhci_rt_write_8(sc, XHCI_ERDP(0), 0 | XHCI_ERDP_BUSY);
661 xhci_ring_free(sc, &sc->sc_er);
662
663 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
664
665 xhci_op_write_8(sc, XHCI_DCBAAP, 0);
666 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
667
668 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots);
669
670 kmem_free(sc->sc_ctlrportbus,
671 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY));
672 kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int));
673
674 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
675 kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int));
676 }
677
678 mutex_destroy(&sc->sc_lock);
679 mutex_destroy(&sc->sc_intr_lock);
680
681 pool_cache_destroy(sc->sc_xferpool);
682
683 return rv;
684 }
685
686 int
687 xhci_activate(device_t self, enum devact act)
688 {
689 struct xhci_softc * const sc = device_private(self);
690
691 switch (act) {
692 case DVACT_DEACTIVATE:
693 sc->sc_dying = true;
694 return 0;
695 default:
696 return EOPNOTSUPP;
697 }
698 }
699
700 bool
701 xhci_suspend(device_t self, const pmf_qual_t *qual)
702 {
703 struct xhci_softc * const sc = device_private(self);
704 size_t i, j, bn, dci;
705 int port;
706 uint32_t v;
707 usbd_status err;
708 bool ok = false;
709
710 XHCIHIST_FUNC(); XHCIHIST_CALLED();
711
712 mutex_enter(&sc->sc_lock);
713
714 /*
715 * Block issuance of new commands, and wait for all pending
716 * commands to complete.
717 */
718 KASSERT(sc->sc_suspender == NULL);
719 sc->sc_suspender = curlwp;
720 while (sc->sc_command_addr != 0)
721 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
722
723 /*
724 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.23.2:
725 * xHCI Power Management, p. 342
726 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=342
727 */
728
729 /*
730 * `1. Stop all USB activity by issuing Stop Endpoint Commands
731 * for Busy endpoints in the Running state. If the Force
732 * Save Context Capability (FSC = ``0'') is not supported,
733 * then Stop Endpoint Commands shall be issued for all idle
734 * endpoints in the Running state as well. The Stop
735 * Endpoint Command causes the xHC to update the respective
736 * Endpoint or Stream Contexts in system memory, e.g. the
737 * TR Dequeue Pointer, DCS, etc. fields. Refer to
738 * Implementation Note "0".'
739 */
740 for (i = 0; i < sc->sc_maxslots; i++) {
741 struct xhci_slot *xs = &sc->sc_slots[i];
742
743 /* Skip if the slot is not in use. */
744 if (xs->xs_idx == 0)
745 continue;
746
747 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
748 /* Skip if the endpoint is not Running. */
749 /* XXX What about Busy? */
750 if (xhci_get_epstate(sc, xs, dci) !=
751 XHCI_EPSTATE_RUNNING)
752 continue;
753
754 /* Stop endpoint. */
755 err = xhci_stop_endpoint_cmd(sc, xs, dci,
756 XHCI_TRB_3_SUSP_EP_BIT);
757 if (err) {
758 device_printf(self, "failed to stop endpoint"
759 " slot %zu dci %zu err %d\n",
760 i, dci, err);
761 goto out;
762 }
763 }
764 }
765
766 /*
767 * Next, suspend all the ports:
768 *
769 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.15:
770 * Suspend-Resume, pp. 276-283
771 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=276
772 */
773 for (bn = 0; bn < 2; bn++) {
774 for (i = 1; i <= sc->sc_rhportcount[bn]; i++) {
775 /* 4.15.1: Port Suspend. */
776 port = XHCI_PORTSC(xhci_rhport2ctlrport(sc, bn, i));
777
778 /*
779 * `System software places individual ports
780 * into suspend mode by writing a ``3'' into
781 * the appropriate PORTSC register Port Link
782 * State (PLS) field (refer to Section 5.4.8).
783 * Software should only set the PLS field to
784 * ``3'' when the port is in the Enabled
785 * state.'
786 *
787 * `Software should not attempt to suspend a
788 * port unless the port reports that it is in
789 * the enabled (PED = ``1''; PLS < ``3'')
790 * state (refer to Section 5.4.8 for more
791 * information about PED and PLS).'
792 */
793 v = xhci_op_read_4(sc, port);
794 if (((v & XHCI_PS_PED) == 0) ||
795 XHCI_PS_PLS_GET(v) >= XHCI_PS_PLS_U3)
796 continue;
797 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
798 v |= XHCI_PS_LWS | XHCI_PS_PLS_SET(XHCI_PS_PLS_SETU3);
799 xhci_op_write_4(sc, port, v);
800
801 /*
802 * `When the PLS field is written with U3
803 * (``3''), the status of the PLS bit will not
804 * change to the target U state U3 until the
805 * suspend signaling has completed to the
806 * attached device (which may be as long as
807 * 10ms.).'
808 *
809 * `Software is required to wait for U3
810 * transitions to complete before it puts the
811 * xHC into a low power state, and before
812 * resuming the port.'
813 *
814 * XXX Take advantage of the technique to
815 * reduce polling on host controllers that
816 * support the U3C capability.
817 */
818 for (j = 0; j < XHCI_WAIT_PLS_U3; j++) {
819 v = xhci_op_read_4(sc, port);
820 if (XHCI_PS_PLS_GET(v) == XHCI_PS_PLS_U3)
821 break;
822 usb_delay_ms(&sc->sc_bus, 1);
823 }
824 if (j == XHCI_WAIT_PLS_U3) {
825 device_printf(self,
826 "suspend timeout on bus %zu port %zu\n",
827 bn, i);
828 goto out;
829 }
830 }
831 }
832
833 /*
834 * `2. Ensure that the Command Ring is in the Stopped state
835 * (CRR = ``0'') or Idle (i.e. the Command Transfer Ring is
836 * empty), and all Command Completion Events associated
837 * with them have been received.'
838 *
839 * XXX
840 */
841
842 /* `3. Stop the controller by setting Run/Stop (R/S) = ``0''.' */
843 xhci_op_write_4(sc, XHCI_USBCMD,
844 xhci_op_read_4(sc, XHCI_USBCMD) & ~XHCI_CMD_RS);
845
846 /*
847 * `4. Read the Operational Runtime, and VTIO registers in the
848 * following order: USBCMD, DNCTRL, DCBAAP, CONFIG, ERSTSZ,
849 * ERSTBA, ERDP, IMAN, IMOD, and VTIO and save their
850 * state.'
851 *
852 * (We don't use VTIO here (XXX for now?).)
853 */
854 sc->sc_regs.usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
855 sc->sc_regs.dnctrl = xhci_op_read_4(sc, XHCI_DNCTRL);
856 sc->sc_regs.dcbaap = xhci_op_read_8(sc, XHCI_DCBAAP);
857 sc->sc_regs.config = xhci_op_read_4(sc, XHCI_CONFIG);
858 sc->sc_regs.erstsz0 = xhci_rt_read_4(sc, XHCI_ERSTSZ(0));
859 sc->sc_regs.erstba0 = xhci_rt_read_8(sc, XHCI_ERSTBA(0));
860 sc->sc_regs.erdp0 = xhci_rt_read_8(sc, XHCI_ERDP(0));
861 sc->sc_regs.iman0 = xhci_rt_read_4(sc, XHCI_IMAN(0));
862 sc->sc_regs.imod0 = xhci_rt_read_4(sc, XHCI_IMOD(0));
863
864 /*
865 * `5. Set the Controller Save State (CSS) flag in the USBCMD
866 * register (5.4.1)...'
867 */
868 xhci_op_write_4(sc, XHCI_USBCMD,
869 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_CSS);
870
871 /*
872 * `...and wait for the Save State Status (SSS) flag in the
873 * USBSTS register (5.4.2) to transition to ``0''.'
874 */
875 for (i = 0; i < XHCI_WAIT_SSS; i++) {
876 if ((xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SSS) == 0)
877 break;
878 usb_delay_ms(&sc->sc_bus, 1);
879 }
880 if (i >= XHCI_WAIT_SSS) {
881 device_printf(self, "suspend timeout, USBSTS.SSS\n");
882 /*
883 * Just optimistically go on and check SRE anyway --
884 * what's the worst that could happen?
885 */
886 }
887
888 /*
889 * `Note: After a Save or Restore operation completes, the
890 * Save/Restore Error (SRE) flag in the USBSTS register should
891 * be checked to ensure that the operation completed
892 * successfully.'
893 */
894 if (xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SRE) {
895 device_printf(self, "suspend error, USBSTS.SRE\n");
896 goto out;
897 }
898
899 /* Success! */
900 ok = true;
901
902 out: mutex_exit(&sc->sc_lock);
903 return ok;
904 }
905
906 bool
907 xhci_resume(device_t self, const pmf_qual_t *qual)
908 {
909 struct xhci_softc * const sc = device_private(self);
910 size_t i, j, bn, dci;
911 int port;
912 uint32_t v;
913 bool ok = false;
914
915 XHCIHIST_FUNC(); XHCIHIST_CALLED();
916
917 mutex_enter(&sc->sc_lock);
918 KASSERT(sc->sc_suspender);
919
920 /*
921 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.23.2:
922 * xHCI Power Management, p. 343
923 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=343
924 */
925
926 /*
927 * `4. Restore the Operational Runtime, and VTIO registers with
928 * their previously saved state in the following order:
929 * DNCTRL, DCBAAP, CONFIG, ERSTSZ, ERSTBA, ERDP, IMAN,
930 * IMOD, and VTIO.'
931 *
932 * (We don't use VTIO here (for now?).)
933 */
934 xhci_op_write_4(sc, XHCI_USBCMD, sc->sc_regs.usbcmd);
935 xhci_op_write_4(sc, XHCI_DNCTRL, sc->sc_regs.dnctrl);
936 xhci_op_write_8(sc, XHCI_DCBAAP, sc->sc_regs.dcbaap);
937 xhci_op_write_4(sc, XHCI_CONFIG, sc->sc_regs.config);
938 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), sc->sc_regs.erstsz0);
939 xhci_rt_write_8(sc, XHCI_ERSTBA(0), sc->sc_regs.erstba0);
940 xhci_rt_write_8(sc, XHCI_ERDP(0), sc->sc_regs.erdp0);
941 xhci_rt_write_4(sc, XHCI_IMAN(0), sc->sc_regs.iman0);
942 xhci_rt_write_4(sc, XHCI_IMOD(0), sc->sc_regs.imod0);
943
944 memset(&sc->sc_regs, 0, sizeof(sc->sc_regs)); /* paranoia */
945
946 /*
947 * `5. Set the Controller Restore State (CRS) flag in the
948 * USBCMD register (5.4.1) to ``1''...'
949 */
950 xhci_op_write_4(sc, XHCI_USBCMD,
951 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_CRS);
952
953 /*
954 * `...and wait for the Restore State Status (RSS) in the
955 * USBSTS register (5.4.2) to transition to ``0''.'
956 */
957 for (i = 0; i < XHCI_WAIT_RSS; i++) {
958 if ((xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_RSS) == 0)
959 break;
960 usb_delay_ms(&sc->sc_bus, 1);
961 }
962 if (i >= XHCI_WAIT_RSS) {
963 device_printf(self, "suspend timeout, USBSTS.RSS\n");
964 goto out;
965 }
966
967 /*
968 * `6. Reinitialize the Command Ring, i.e. so its Cycle bits
969 * are consistent with the RCS values to be written to the
970 * CRCR.'
971 *
972 * XXX Hope just zeroing it is good enough!
973 */
974 xhci_host_dequeue(sc->sc_cr);
975
976 /*
977 * `7. Write the CRCR with the address and RCS value of the
978 * reinitialized Command Ring. Note that this write will
979 * cause the Command Ring to restart at the address
980 * specified by the CRCR.'
981 */
982 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) |
983 sc->sc_cr->xr_cs);
984
985 /*
986 * `8. Enable the controller by setting Run/Stop (R/S) =
987 * ``1''.'
988 */
989 xhci_op_write_4(sc, XHCI_USBCMD,
990 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_RS);
991
992 /*
993 * `9. Software shall walk the USB topology and initialize each
994 * of the xHC PORTSC, PORTPMSC, and PORTLI registers, and
995 * external hub ports attached to USB devices.'
996 *
997 * This follows the procedure in 4.15 `Suspend-Resume', 4.15.2
998 * `Port Resume', 4.15.2.1 `Host Initiated'.
999 *
1000 * XXX We should maybe batch up initiating the state
1001 * transitions, and then wait for them to complete all at once.
1002 */
1003 for (bn = 0; bn < 2; bn++) {
1004 for (i = 1; i <= sc->sc_rhportcount[bn]; i++) {
1005 port = XHCI_PORTSC(xhci_rhport2ctlrport(sc, bn, i));
1006
1007 /* `When a port is in the U3 state: ...' */
1008 v = xhci_op_read_4(sc, port);
1009 if (XHCI_PS_PLS_GET(v) != XHCI_PS_PLS_U3)
1010 continue;
1011
1012 /*
1013 * `For a USB2 protocol port, software shall
1014 * write a ``15'' (Resume) to the PLS field to
1015 * initiate resume signaling. The port shall
1016 * transition to the Resume substate and the
1017 * xHC shall transmit the resume signaling
1018 * within 1ms (T_URSM). Software shall ensure
1019 * that resume is signaled for at least 20ms
1020 * (T_DRSMDN). Software shall start timing
1021 * T_DRSMDN from the write of ``15'' (Resume)
1022 * to PLS.'
1023 */
1024 if (bn == 1) {
1025 KASSERT(sc->sc_bus2.ub_revision == USBREV_2_0);
1026 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
1027 v |= XHCI_PS_LWS;
1028 v |= XHCI_PS_PLS_SET(XHCI_PS_PLS_SETRESUME);
1029 xhci_op_write_4(sc, port, v);
1030 usb_delay_ms(&sc->sc_bus, 20);
1031 } else {
1032 KASSERT(sc->sc_bus.ub_revision > USBREV_2_0);
1033 }
1034
1035 /*
1036 * `For a USB3 protocol port [and a USB2
1037 * protocol port after transitioning to
1038 * Resume], software shall write a ``0'' (U0)
1039 * to the PLS field...'
1040 */
1041 v = xhci_op_read_4(sc, port);
1042 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
1043 v |= XHCI_PS_LWS | XHCI_PS_PLS_SET(XHCI_PS_PLS_SETU0);
1044 xhci_op_write_4(sc, port, v);
1045
1046 for (j = 0; j < XHCI_WAIT_PLS_U0; j++) {
1047 v = xhci_op_read_4(sc, port);
1048 if (XHCI_PS_PLS_GET(v) == XHCI_PS_PLS_U0)
1049 break;
1050 usb_delay_ms(&sc->sc_bus, 1);
1051 }
1052 if (j == XHCI_WAIT_PLS_U0) {
1053 device_printf(self,
1054 "resume timeout on bus %zu port %zu\n",
1055 bn, i);
1056 goto out;
1057 }
1058 }
1059 }
1060
1061 /*
1062 * `10. Restart each of the previously Running endpoints by
1063 * ringing their doorbells.'
1064 */
1065 for (i = 0; i < sc->sc_maxslots; i++) {
1066 struct xhci_slot *xs = &sc->sc_slots[i];
1067
1068 /* Skip if the slot is not in use. */
1069 if (xs->xs_idx == 0)
1070 continue;
1071
1072 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
1073 /* Skip if the endpoint is not Running. */
1074 if (xhci_get_epstate(sc, xs, dci) !=
1075 XHCI_EPSTATE_RUNNING)
1076 continue;
1077
1078 /* Ring the doorbell. */
1079 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
1080 }
1081 }
1082
1083 /*
1084 * `Note: After a Save or Restore operation completes, the
1085 * Save/Restore Error (SRE) flag in the USBSTS register should
1086 * be checked to ensure that the operation completed
1087 * successfully.'
1088 */
1089 if (xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SRE) {
1090 device_printf(self, "resume error, USBSTS.SRE\n");
1091 goto out;
1092 }
1093
1094 /* Resume command issuance. */
1095 sc->sc_suspender = NULL;
1096 cv_broadcast(&sc->sc_cmdbusy_cv);
1097
1098 /* Success! */
1099 ok = true;
1100
1101 out: mutex_exit(&sc->sc_lock);
1102 return ok;
1103 }
1104
1105 bool
1106 xhci_shutdown(device_t self, int flags)
1107 {
1108 return false;
1109 }
1110
1111 static int
1112 xhci_hc_reset(struct xhci_softc * const sc)
1113 {
1114 uint32_t usbcmd, usbsts;
1115 int i;
1116
1117 /* Check controller not ready */
1118 for (i = 0; i < XHCI_WAIT_CNR; i++) {
1119 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1120 if ((usbsts & XHCI_STS_CNR) == 0)
1121 break;
1122 usb_delay_ms(&sc->sc_bus, 1);
1123 }
1124 if (i >= XHCI_WAIT_CNR) {
1125 aprint_error_dev(sc->sc_dev, "controller not ready timeout\n");
1126 return EIO;
1127 }
1128
1129 /* Halt controller */
1130 usbcmd = 0;
1131 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
1132 usb_delay_ms(&sc->sc_bus, 1);
1133
1134 /* Reset controller */
1135 usbcmd = XHCI_CMD_HCRST;
1136 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
1137 for (i = 0; i < XHCI_WAIT_HCRST; i++) {
1138 /*
1139 * Wait 1ms first. Existing Intel xHCI requies 1ms delay to
1140 * prevent system hang (Errata).
1141 */
1142 usb_delay_ms(&sc->sc_bus, 1);
1143 usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
1144 if ((usbcmd & XHCI_CMD_HCRST) == 0)
1145 break;
1146 }
1147 if (i >= XHCI_WAIT_HCRST) {
1148 aprint_error_dev(sc->sc_dev, "host controller reset timeout\n");
1149 return EIO;
1150 }
1151
1152 /* Check controller not ready */
1153 for (i = 0; i < XHCI_WAIT_CNR; i++) {
1154 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1155 if ((usbsts & XHCI_STS_CNR) == 0)
1156 break;
1157 usb_delay_ms(&sc->sc_bus, 1);
1158 }
1159 if (i >= XHCI_WAIT_CNR) {
1160 aprint_error_dev(sc->sc_dev,
1161 "controller not ready timeout after reset\n");
1162 return EIO;
1163 }
1164
1165 return 0;
1166 }
1167
1168 /* 7.2 xHCI Support Protocol Capability */
1169 static void
1170 xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp)
1171 {
1172 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1173
1174 /* XXX Cache this lot */
1175
1176 const uint32_t w0 = xhci_read_4(sc, ecp);
1177 const uint32_t w4 = xhci_read_4(sc, ecp + 4);
1178 const uint32_t w8 = xhci_read_4(sc, ecp + 8);
1179 const uint32_t wc = xhci_read_4(sc, ecp + 0xc);
1180
1181 aprint_debug_dev(sc->sc_dev,
1182 " SP: 0x%08x 0x%08x 0x%08x 0x%08x\n", w0, w4, w8, wc);
1183
1184 if (w4 != XHCI_XECP_USBID)
1185 return;
1186
1187 const int major = XHCI_XECP_SP_W0_MAJOR(w0);
1188 const int minor = XHCI_XECP_SP_W0_MINOR(w0);
1189 const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8);
1190 const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8);
1191
1192 const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16));
1193 switch (mm) {
1194 case 0x0200:
1195 case 0x0300:
1196 case 0x0301:
1197 case 0x0310:
1198 aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n",
1199 major == 3 ? "ss" : "hs", cpo, cpo + cpc -1);
1200 break;
1201 default:
1202 aprint_error_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n",
1203 major, minor);
1204 return;
1205 }
1206
1207 const size_t bus = (major == 3) ? 0 : 1;
1208
1209 /* Index arrays with 0..n-1 where ports are numbered 1..n */
1210 for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) {
1211 if (sc->sc_ctlrportmap[cp] != 0) {
1212 aprint_error_dev(sc->sc_dev, "controller port %zu "
1213 "already assigned", cp);
1214 continue;
1215 }
1216
1217 sc->sc_ctlrportbus[cp / NBBY] |=
1218 bus == 0 ? 0 : __BIT(cp % NBBY);
1219
1220 const size_t rhp = sc->sc_rhportcount[bus]++;
1221
1222 KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0,
1223 "bus %zu rhp %zu is %d", bus, rhp,
1224 sc->sc_rhportmap[bus][rhp]);
1225
1226 sc->sc_rhportmap[bus][rhp] = cp + 1;
1227 sc->sc_ctlrportmap[cp] = rhp + 1;
1228 }
1229 }
1230
1231 /* Process extended capabilities */
1232 static void
1233 xhci_ecp(struct xhci_softc *sc)
1234 {
1235 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1236
1237 bus_size_t ecp = XHCI_HCC_XECP(sc->sc_hcc) * 4;
1238 while (ecp != 0) {
1239 uint32_t ecr = xhci_read_4(sc, ecp);
1240 aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr);
1241 switch (XHCI_XECP_ID(ecr)) {
1242 case XHCI_ID_PROTOCOLS: {
1243 xhci_id_protocols(sc, ecp);
1244 break;
1245 }
1246 case XHCI_ID_USB_LEGACY: {
1247 uint8_t bios_sem;
1248
1249 /* Take host controller ownership from BIOS */
1250 bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM);
1251 if (bios_sem) {
1252 /* sets xHCI to be owned by OS */
1253 xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1);
1254 aprint_debug_dev(sc->sc_dev,
1255 "waiting for BIOS to give up control\n");
1256 for (int i = 0; i < 5000; i++) {
1257 bios_sem = xhci_read_1(sc, ecp +
1258 XHCI_XECP_BIOS_SEM);
1259 if (bios_sem == 0)
1260 break;
1261 DELAY(1000);
1262 }
1263 if (bios_sem) {
1264 aprint_error_dev(sc->sc_dev,
1265 "timed out waiting for BIOS\n");
1266 }
1267 }
1268 break;
1269 }
1270 default:
1271 break;
1272 }
1273 ecr = xhci_read_4(sc, ecp);
1274 if (XHCI_XECP_NEXT(ecr) == 0) {
1275 ecp = 0;
1276 } else {
1277 ecp += XHCI_XECP_NEXT(ecr) * 4;
1278 }
1279 }
1280 }
1281
1282 #define XHCI_HCCPREV1_BITS \
1283 "\177\020" /* New bitmask */ \
1284 "f\020\020XECP\0" \
1285 "f\014\4MAXPSA\0" \
1286 "b\013CFC\0" \
1287 "b\012SEC\0" \
1288 "b\011SBD\0" \
1289 "b\010FSE\0" \
1290 "b\7NSS\0" \
1291 "b\6LTC\0" \
1292 "b\5LHRC\0" \
1293 "b\4PIND\0" \
1294 "b\3PPC\0" \
1295 "b\2CZC\0" \
1296 "b\1BNC\0" \
1297 "b\0AC64\0" \
1298 "\0"
1299 #define XHCI_HCCV1_x_BITS \
1300 "\177\020" /* New bitmask */ \
1301 "f\020\020XECP\0" \
1302 "f\014\4MAXPSA\0" \
1303 "b\013CFC\0" \
1304 "b\012SEC\0" \
1305 "b\011SPC\0" \
1306 "b\010PAE\0" \
1307 "b\7NSS\0" \
1308 "b\6LTC\0" \
1309 "b\5LHRC\0" \
1310 "b\4PIND\0" \
1311 "b\3PPC\0" \
1312 "b\2CSZ\0" \
1313 "b\1BNC\0" \
1314 "b\0AC64\0" \
1315 "\0"
1316
1317 #define XHCI_HCC2_BITS \
1318 "\177\020" /* New bitmask */ \
1319 "b\7ETC_TSC\0" \
1320 "b\6ETC\0" \
1321 "b\5CIC\0" \
1322 "b\4LEC\0" \
1323 "b\3CTC\0" \
1324 "b\2FSC\0" \
1325 "b\1CMC\0" \
1326 "b\0U3C\0" \
1327 "\0"
1328
1329 void
1330 xhci_start(struct xhci_softc *sc)
1331 {
1332 xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA);
1333 if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0)
1334 /* Intel xhci needs interrupt rate moderated. */
1335 xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP);
1336 else
1337 xhci_rt_write_4(sc, XHCI_IMOD(0), 0);
1338 aprint_debug_dev(sc->sc_dev, "current IMOD %u\n",
1339 xhci_rt_read_4(sc, XHCI_IMOD(0)));
1340
1341 /* Go! */
1342 xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS);
1343 aprint_debug_dev(sc->sc_dev, "USBCMD 0x%08"PRIx32"\n",
1344 xhci_op_read_4(sc, XHCI_USBCMD));
1345 }
1346
1347 int
1348 xhci_init(struct xhci_softc *sc)
1349 {
1350 bus_size_t bsz;
1351 uint32_t hcs1, hcs2, hcs3, dboff, rtsoff;
1352 uint32_t pagesize, config;
1353 int i = 0;
1354 uint16_t hciversion;
1355 uint8_t caplength;
1356
1357 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1358
1359 /* Set up the bus struct for the usb 3 and usb 2 buses */
1360 sc->sc_bus.ub_methods = &xhci_bus_methods;
1361 sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe);
1362 sc->sc_bus.ub_usedma = true;
1363 sc->sc_bus.ub_hcpriv = sc;
1364
1365 sc->sc_bus2.ub_methods = &xhci_bus_methods;
1366 sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe);
1367 sc->sc_bus2.ub_revision = USBREV_2_0;
1368 sc->sc_bus2.ub_usedma = true;
1369 sc->sc_bus2.ub_hcpriv = sc;
1370 sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag;
1371
1372 caplength = xhci_read_1(sc, XHCI_CAPLENGTH);
1373 hciversion = xhci_read_2(sc, XHCI_HCIVERSION);
1374
1375 if (hciversion < XHCI_HCIVERSION_0_96 ||
1376 hciversion >= 0x0200) {
1377 aprint_normal_dev(sc->sc_dev,
1378 "xHCI version %x.%x not known to be supported\n",
1379 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
1380 } else {
1381 aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n",
1382 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
1383 }
1384
1385 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength,
1386 &sc->sc_cbh) != 0) {
1387 aprint_error_dev(sc->sc_dev, "capability subregion failure\n");
1388 return ENOMEM;
1389 }
1390
1391 hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1);
1392 sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1);
1393 sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1);
1394 sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1);
1395 hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2);
1396 hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3);
1397 aprint_debug_dev(sc->sc_dev,
1398 "hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3);
1399
1400 sc->sc_hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS);
1401 sc->sc_ctxsz = XHCI_HCC_CSZ(sc->sc_hcc) ? 64 : 32;
1402
1403 char sbuf[128];
1404 if (hciversion < XHCI_HCIVERSION_1_0)
1405 snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, sc->sc_hcc);
1406 else
1407 snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, sc->sc_hcc);
1408 aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf);
1409 aprint_debug_dev(sc->sc_dev, "xECP %" __PRIxBITS "\n",
1410 XHCI_HCC_XECP(sc->sc_hcc) * 4);
1411 if (hciversion >= XHCI_HCIVERSION_1_1) {
1412 sc->sc_hcc2 = xhci_cap_read_4(sc, XHCI_HCCPARAMS2);
1413 snprintb(sbuf, sizeof(sbuf), XHCI_HCC2_BITS, sc->sc_hcc2);
1414 aprint_debug_dev(sc->sc_dev, "hcc2=%s\n", sbuf);
1415 }
1416
1417 /* default all ports to bus 0, i.e. usb 3 */
1418 sc->sc_ctlrportbus = kmem_zalloc(
1419 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP);
1420 sc->sc_ctlrportmap = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1421
1422 /* controller port to bus roothub port map */
1423 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
1424 sc->sc_rhportmap[j] = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1425 }
1426
1427 /*
1428 * Process all Extended Capabilities
1429 */
1430 xhci_ecp(sc);
1431
1432 bsz = XHCI_PORTSC(sc->sc_maxports);
1433 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz,
1434 &sc->sc_obh) != 0) {
1435 aprint_error_dev(sc->sc_dev, "operational subregion failure\n");
1436 return ENOMEM;
1437 }
1438
1439 dboff = xhci_cap_read_4(sc, XHCI_DBOFF);
1440 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff,
1441 sc->sc_maxslots * 4, &sc->sc_dbh) != 0) {
1442 aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n");
1443 return ENOMEM;
1444 }
1445
1446 rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF);
1447 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff,
1448 sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) {
1449 aprint_error_dev(sc->sc_dev, "runtime subregion failure\n");
1450 return ENOMEM;
1451 }
1452
1453 int rv;
1454 rv = xhci_hc_reset(sc);
1455 if (rv != 0) {
1456 return rv;
1457 }
1458
1459 if (sc->sc_vendor_init)
1460 sc->sc_vendor_init(sc);
1461
1462 pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE);
1463 aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize);
1464 pagesize = ffs(pagesize);
1465 if (pagesize == 0) {
1466 aprint_error_dev(sc->sc_dev, "pagesize is 0\n");
1467 return EIO;
1468 }
1469 sc->sc_pgsz = 1 << (12 + (pagesize - 1));
1470 aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz);
1471 aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n",
1472 (uint32_t)sc->sc_maxslots);
1473 aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports);
1474
1475 int err;
1476 sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2);
1477 aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf);
1478 if (sc->sc_maxspbuf != 0) {
1479 err = usb_allocmem(&sc->sc_bus,
1480 sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t),
1481 USBMALLOC_COHERENT | USBMALLOC_ZERO,
1482 &sc->sc_spbufarray_dma);
1483 if (err) {
1484 aprint_error_dev(sc->sc_dev,
1485 "spbufarray init fail, err %d\n", err);
1486 return ENOMEM;
1487 }
1488
1489 sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) *
1490 sc->sc_maxspbuf, KM_SLEEP);
1491 uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0);
1492 for (i = 0; i < sc->sc_maxspbuf; i++) {
1493 usb_dma_t * const dma = &sc->sc_spbuf_dma[i];
1494 /* allocate contexts */
1495 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz,
1496 sc->sc_pgsz, USBMALLOC_COHERENT | USBMALLOC_ZERO,
1497 dma);
1498 if (err) {
1499 aprint_error_dev(sc->sc_dev,
1500 "spbufarray_dma init fail, err %d\n", err);
1501 rv = ENOMEM;
1502 goto bad1;
1503 }
1504 spbufarray[i] = htole64(DMAADDR(dma, 0));
1505 usb_syncmem(dma, 0, sc->sc_pgsz,
1506 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1507 }
1508
1509 usb_syncmem(&sc->sc_spbufarray_dma, 0,
1510 sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE);
1511 }
1512
1513 config = xhci_op_read_4(sc, XHCI_CONFIG);
1514 config &= ~0xFF;
1515 config |= sc->sc_maxslots & 0xFF;
1516 xhci_op_write_4(sc, XHCI_CONFIG, config);
1517
1518 err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS,
1519 XHCI_COMMAND_RING_SEGMENTS_ALIGN);
1520 if (err) {
1521 aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n",
1522 err);
1523 rv = ENOMEM;
1524 goto bad1;
1525 }
1526
1527 err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS,
1528 XHCI_EVENT_RING_SEGMENTS_ALIGN);
1529 if (err) {
1530 aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n",
1531 err);
1532 rv = ENOMEM;
1533 goto bad2;
1534 }
1535
1536 usb_dma_t *dma;
1537 size_t size;
1538 size_t align;
1539
1540 dma = &sc->sc_eventst_dma;
1541 size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE,
1542 XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN);
1543 KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size);
1544 align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN;
1545 err = usb_allocmem(&sc->sc_bus, size, align,
1546 USBMALLOC_COHERENT | USBMALLOC_ZERO, dma);
1547 if (err) {
1548 aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n",
1549 err);
1550 rv = ENOMEM;
1551 goto bad3;
1552 }
1553
1554 aprint_debug_dev(sc->sc_dev, "eventst: 0x%016jx %p %zx\n",
1555 (uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0),
1556 KERNADDR(&sc->sc_eventst_dma, 0),
1557 sc->sc_eventst_dma.udma_block->size);
1558
1559 dma = &sc->sc_dcbaa_dma;
1560 size = (1 + sc->sc_maxslots) * sizeof(uint64_t);
1561 KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size);
1562 align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN;
1563 err = usb_allocmem(&sc->sc_bus, size, align,
1564 USBMALLOC_COHERENT | USBMALLOC_ZERO, dma);
1565 if (err) {
1566 aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err);
1567 rv = ENOMEM;
1568 goto bad4;
1569 }
1570 aprint_debug_dev(sc->sc_dev, "dcbaa: 0x%016jx %p %zx\n",
1571 (uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0),
1572 KERNADDR(&sc->sc_dcbaa_dma, 0),
1573 sc->sc_dcbaa_dma.udma_block->size);
1574
1575 if (sc->sc_maxspbuf != 0) {
1576 /*
1577 * DCBA entry 0 hold the scratchbuf array pointer.
1578 */
1579 *(uint64_t *)KERNADDR(dma, 0) =
1580 htole64(DMAADDR(&sc->sc_spbufarray_dma, 0));
1581 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1582 }
1583
1584 sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots,
1585 KM_SLEEP);
1586 if (sc->sc_slots == NULL) {
1587 aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err);
1588 rv = ENOMEM;
1589 goto bad;
1590 }
1591
1592 sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0,
1593 "xhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
1594 if (sc->sc_xferpool == NULL) {
1595 aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n",
1596 err);
1597 rv = ENOMEM;
1598 goto bad;
1599 }
1600
1601 cv_init(&sc->sc_command_cv, "xhcicmd");
1602 cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq");
1603 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1604 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1605
1606 struct xhci_erste *erst;
1607 erst = KERNADDR(&sc->sc_eventst_dma, 0);
1608 erst[0].erste_0 = htole64(xhci_ring_trbp(sc->sc_er, 0));
1609 erst[0].erste_2 = htole32(sc->sc_er->xr_ntrb);
1610 erst[0].erste_3 = htole32(0);
1611 usb_syncmem(&sc->sc_eventst_dma, 0,
1612 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE);
1613
1614 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS);
1615 xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0));
1616 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(sc->sc_er, 0) |
1617 XHCI_ERDP_BUSY);
1618
1619 xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0));
1620 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) |
1621 sc->sc_cr->xr_cs);
1622
1623 xhci_barrier(sc, BUS_SPACE_BARRIER_WRITE);
1624
1625 HEXDUMP("eventst", KERNADDR(&sc->sc_eventst_dma, 0),
1626 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS);
1627
1628 if ((sc->sc_quirks & XHCI_DEFERRED_START) == 0)
1629 xhci_start(sc);
1630
1631 return 0;
1632
1633 bad:
1634 if (sc->sc_xferpool) {
1635 pool_cache_destroy(sc->sc_xferpool);
1636 sc->sc_xferpool = NULL;
1637 }
1638
1639 if (sc->sc_slots) {
1640 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) *
1641 sc->sc_maxslots);
1642 sc->sc_slots = NULL;
1643 }
1644
1645 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
1646 bad4:
1647 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
1648 bad3:
1649 xhci_ring_free(sc, &sc->sc_er);
1650 bad2:
1651 xhci_ring_free(sc, &sc->sc_cr);
1652 i = sc->sc_maxspbuf;
1653 bad1:
1654 for (int j = 0; j < i; j++)
1655 usb_freemem(&sc->sc_bus, &sc->sc_spbuf_dma[j]);
1656 usb_freemem(&sc->sc_bus, &sc->sc_spbufarray_dma);
1657
1658 return rv;
1659 }
1660
1661 static inline bool
1662 xhci_polling_p(struct xhci_softc * const sc)
1663 {
1664 return sc->sc_bus.ub_usepolling || sc->sc_bus2.ub_usepolling;
1665 }
1666
1667 int
1668 xhci_intr(void *v)
1669 {
1670 struct xhci_softc * const sc = v;
1671 int ret = 0;
1672
1673 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1674
1675 if (sc == NULL)
1676 return 0;
1677
1678 mutex_spin_enter(&sc->sc_intr_lock);
1679
1680 if (sc->sc_dying || !device_has_power(sc->sc_dev))
1681 goto done;
1682
1683 /* If we get an interrupt while polling, then just ignore it. */
1684 if (xhci_polling_p(sc)) {
1685 #ifdef DIAGNOSTIC
1686 DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
1687 #endif
1688 goto done;
1689 }
1690
1691 ret = xhci_intr1(sc);
1692 if (ret) {
1693 KASSERT(sc->sc_child || sc->sc_child2);
1694
1695 /*
1696 * One of child busses could be already detached. It doesn't
1697 * matter on which of the two the softintr is scheduled.
1698 */
1699 if (sc->sc_child)
1700 usb_schedsoftintr(&sc->sc_bus);
1701 else
1702 usb_schedsoftintr(&sc->sc_bus2);
1703 }
1704 done:
1705 mutex_spin_exit(&sc->sc_intr_lock);
1706 return ret;
1707 }
1708
1709 int
1710 xhci_intr1(struct xhci_softc * const sc)
1711 {
1712 uint32_t usbsts;
1713 uint32_t iman;
1714
1715 XHCIHIST_FUNC();
1716
1717 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1718 XHCIHIST_CALLARGS("USBSTS 0x%08jx", usbsts, 0, 0, 0);
1719 if ((usbsts & (XHCI_STS_HSE | XHCI_STS_EINT | XHCI_STS_PCD |
1720 XHCI_STS_HCE)) == 0) {
1721 DPRINTFN(16, "ignored intr not for %jd",
1722 device_unit(sc->sc_dev), 0, 0, 0);
1723 return 0;
1724 }
1725
1726 /*
1727 * Clear EINT and other transient flags, to not misenterpret
1728 * next shared interrupt. Also, to avoid race, EINT must be cleared
1729 * before XHCI_IMAN_INTR_PEND is cleared.
1730 */
1731 xhci_op_write_4(sc, XHCI_USBSTS, usbsts & XHCI_STS_RSVDP0);
1732
1733 #ifdef XHCI_DEBUG
1734 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1735 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
1736 #endif
1737
1738 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1739 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
1740 iman |= XHCI_IMAN_INTR_PEND;
1741 xhci_rt_write_4(sc, XHCI_IMAN(0), iman);
1742
1743 #ifdef XHCI_DEBUG
1744 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1745 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
1746 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1747 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
1748 #endif
1749
1750 return 1;
1751 }
1752
1753 /*
1754 * 3 port speed types used in USB stack
1755 *
1756 * usbdi speed
1757 * definition: USB_SPEED_* in usb.h
1758 * They are used in struct usbd_device in USB stack.
1759 * ioctl interface uses these values too.
1760 * port_status speed
1761 * definition: UPS_*_SPEED in usb.h
1762 * They are used in usb_port_status_t and valid only for USB 2.0.
1763 * Speed value is always 0 for Super Speed or more, and dwExtPortStatus
1764 * of usb_port_status_ext_t indicates port speed.
1765 * Note that some 3.0 values overlap with 2.0 values.
1766 * (e.g. 0x200 means UPS_POER_POWER_SS in SS and
1767 * means UPS_LOW_SPEED in HS.)
1768 * port status returned from hub also uses these values.
1769 * On NetBSD UPS_OTHER_SPEED indicates port speed is super speed
1770 * or more.
1771 * xspeed:
1772 * definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1)
1773 * They are used in only slot context and PORTSC reg of xhci.
1774 * The difference between usbdi speed and xspeed is
1775 * that FS and LS values are swapped.
1776 */
1777
1778 /* convert usbdi speed to xspeed */
1779 static int
1780 xhci_speed2xspeed(int speed)
1781 {
1782 switch (speed) {
1783 case USB_SPEED_LOW: return 2;
1784 case USB_SPEED_FULL: return 1;
1785 default: return speed;
1786 }
1787 }
1788
1789 #if 0
1790 /* convert xspeed to usbdi speed */
1791 static int
1792 xhci_xspeed2speed(int xspeed)
1793 {
1794 switch (xspeed) {
1795 case 1: return USB_SPEED_FULL;
1796 case 2: return USB_SPEED_LOW;
1797 default: return xspeed;
1798 }
1799 }
1800 #endif
1801
1802 /* convert xspeed to port status speed */
1803 static int
1804 xhci_xspeed2psspeed(int xspeed)
1805 {
1806 switch (xspeed) {
1807 case 0: return 0;
1808 case 1: return UPS_FULL_SPEED;
1809 case 2: return UPS_LOW_SPEED;
1810 case 3: return UPS_HIGH_SPEED;
1811 default: return UPS_OTHER_SPEED;
1812 }
1813 }
1814
1815 /*
1816 * Construct input contexts and issue TRB to open pipe.
1817 */
1818 static usbd_status
1819 xhci_configure_endpoint(struct usbd_pipe *pipe)
1820 {
1821 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1822 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1823 #ifdef USB_DEBUG
1824 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1825 #endif
1826 struct xhci_soft_trb trb;
1827 usbd_status err;
1828
1829 XHCIHIST_FUNC();
1830 XHCIHIST_CALLARGS("slot %ju dci %ju epaddr 0x%02jx attr 0x%02jx",
1831 xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress,
1832 pipe->up_endpoint->ue_edesc->bmAttributes);
1833
1834 /* XXX ensure input context is available? */
1835
1836 memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz);
1837
1838 /* set up context */
1839 xhci_setup_ctx(pipe);
1840
1841 HEXDUMP("input control context", xhci_slot_get_icv(sc, xs, 0),
1842 sc->sc_ctxsz * 1);
1843 HEXDUMP("input endpoint context", xhci_slot_get_icv(sc, xs,
1844 xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1);
1845
1846 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1847 trb.trb_2 = 0;
1848 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1849 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1850
1851 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
1852
1853 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1854 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, dci),
1855 sc->sc_ctxsz * 1);
1856
1857 return err;
1858 }
1859
1860 #if 0
1861 static usbd_status
1862 xhci_unconfigure_endpoint(struct usbd_pipe *pipe)
1863 {
1864 #ifdef USB_DEBUG
1865 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1866 #endif
1867
1868 XHCIHIST_FUNC();
1869 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
1870
1871 return USBD_NORMAL_COMPLETION;
1872 }
1873 #endif
1874
1875 /* 4.6.8, 6.4.3.7 */
1876 static usbd_status
1877 xhci_reset_endpoint_locked(struct usbd_pipe *pipe)
1878 {
1879 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1880 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1881 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1882 struct xhci_soft_trb trb;
1883 usbd_status err;
1884
1885 XHCIHIST_FUNC();
1886 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1887
1888 KASSERT(mutex_owned(&sc->sc_lock));
1889
1890 trb.trb_0 = 0;
1891 trb.trb_2 = 0;
1892 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1893 XHCI_TRB_3_EP_SET(dci) |
1894 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP);
1895
1896 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1897
1898 return err;
1899 }
1900
1901 static usbd_status
1902 xhci_reset_endpoint(struct usbd_pipe *pipe)
1903 {
1904 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1905
1906 mutex_enter(&sc->sc_lock);
1907 usbd_status ret = xhci_reset_endpoint_locked(pipe);
1908 mutex_exit(&sc->sc_lock);
1909
1910 return ret;
1911 }
1912
1913 /*
1914 * 4.6.9, 6.4.3.8
1915 * Stop execution of TDs on xfer ring.
1916 * Should be called with sc_lock held.
1917 */
1918 static usbd_status
1919 xhci_stop_endpoint_cmd(struct xhci_softc *sc, struct xhci_slot *xs, u_int dci,
1920 uint32_t trb3flags)
1921 {
1922 struct xhci_soft_trb trb;
1923 usbd_status err;
1924
1925 XHCIHIST_FUNC();
1926 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1927
1928 KASSERT(mutex_owned(&sc->sc_lock));
1929
1930 trb.trb_0 = 0;
1931 trb.trb_2 = 0;
1932 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1933 XHCI_TRB_3_EP_SET(dci) |
1934 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP) |
1935 trb3flags;
1936
1937 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1938
1939 return err;
1940 }
1941
1942 static usbd_status
1943 xhci_stop_endpoint(struct usbd_pipe *pipe)
1944 {
1945 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1946 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1947 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1948
1949 XHCIHIST_FUNC();
1950 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1951
1952 KASSERT(mutex_owned(&sc->sc_lock));
1953
1954 return xhci_stop_endpoint_cmd(sc, xs, dci, 0);
1955 }
1956
1957 /*
1958 * Set TR Dequeue Pointer.
1959 * xHCI 1.1 4.6.10 6.4.3.9
1960 * Purge all of the TRBs on ring and reinitialize ring.
1961 * Set TR dequeue Pointr to 0 and Cycle State to 1.
1962 * EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE
1963 * error will be generated.
1964 */
1965 static usbd_status
1966 xhci_set_dequeue_locked(struct usbd_pipe *pipe)
1967 {
1968 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1969 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1970 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1971 struct xhci_ring * const xr = xs->xs_xr[dci];
1972 struct xhci_soft_trb trb;
1973 usbd_status err;
1974
1975 XHCIHIST_FUNC();
1976 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1977
1978 KASSERT(mutex_owned(&sc->sc_lock));
1979 KASSERT(xr != NULL);
1980
1981 xhci_host_dequeue(xr);
1982
1983 /* set DCS */
1984 trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */
1985 trb.trb_2 = 0;
1986 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1987 XHCI_TRB_3_EP_SET(dci) |
1988 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE);
1989
1990 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1991
1992 return err;
1993 }
1994
1995 static usbd_status
1996 xhci_set_dequeue(struct usbd_pipe *pipe)
1997 {
1998 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1999
2000 mutex_enter(&sc->sc_lock);
2001 usbd_status ret = xhci_set_dequeue_locked(pipe);
2002 mutex_exit(&sc->sc_lock);
2003
2004 return ret;
2005 }
2006
2007 /*
2008 * Open new pipe: called from usbd_setup_pipe_flags.
2009 * Fills methods of pipe.
2010 * If pipe is not for ep0, calls configure_endpoint.
2011 */
2012 static usbd_status
2013 xhci_open(struct usbd_pipe *pipe)
2014 {
2015 struct usbd_device * const dev = pipe->up_dev;
2016 struct xhci_pipe * const xpipe = (struct xhci_pipe *)pipe;
2017 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
2018 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2019 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
2020 const u_int dci = xhci_ep_get_dci(ed);
2021 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
2022 usbd_status err;
2023
2024 XHCIHIST_FUNC();
2025 XHCIHIST_CALLARGS("addr %jd depth %jd port %jd speed %jd", dev->ud_addr,
2026 dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed);
2027 DPRINTFN(1, " dci %ju type 0x%02jx epaddr 0x%02jx attr 0x%02jx",
2028 xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress,
2029 ed->bmAttributes);
2030 DPRINTFN(1, " mps %ju ival %ju", UGETW(ed->wMaxPacketSize),
2031 ed->bInterval, 0, 0);
2032
2033 if (sc->sc_dying)
2034 return USBD_IOERROR;
2035
2036 /* Root Hub */
2037 if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) {
2038 switch (ed->bEndpointAddress) {
2039 case USB_CONTROL_ENDPOINT:
2040 pipe->up_methods = &roothub_ctrl_methods;
2041 break;
2042 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
2043 pipe->up_methods = &xhci_root_intr_methods;
2044 break;
2045 default:
2046 pipe->up_methods = NULL;
2047 DPRINTFN(0, "bad bEndpointAddress 0x%02jx",
2048 ed->bEndpointAddress, 0, 0, 0);
2049 return USBD_INVAL;
2050 }
2051 return USBD_NORMAL_COMPLETION;
2052 }
2053
2054 switch (xfertype) {
2055 case UE_CONTROL:
2056 pipe->up_methods = &xhci_device_ctrl_methods;
2057 break;
2058 case UE_ISOCHRONOUS:
2059 pipe->up_methods = &xhci_device_isoc_methods;
2060 pipe->up_serialise = false;
2061 xpipe->xp_isoc_next = -1;
2062 break;
2063 case UE_BULK:
2064 pipe->up_methods = &xhci_device_bulk_methods;
2065 break;
2066 case UE_INTERRUPT:
2067 pipe->up_methods = &xhci_device_intr_methods;
2068 break;
2069 default:
2070 return USBD_IOERROR;
2071 break;
2072 }
2073
2074 KASSERT(xs != NULL);
2075 KASSERT(xs->xs_xr[dci] == NULL);
2076
2077 /* allocate transfer ring */
2078 err = xhci_ring_init(sc, &xs->xs_xr[dci], XHCI_TRANSFER_RING_TRBS,
2079 XHCI_TRB_ALIGN);
2080 if (err) {
2081 DPRINTFN(1, "ring alloc failed %jd", err, 0, 0, 0);
2082 return err;
2083 }
2084
2085 if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT)
2086 return xhci_configure_endpoint(pipe);
2087
2088 return USBD_NORMAL_COMPLETION;
2089 }
2090
2091 /*
2092 * Closes pipe, called from usbd_kill_pipe via close methods.
2093 * If the endpoint to be closed is ep0, disable_slot.
2094 * Should be called with sc_lock held.
2095 */
2096 static void
2097 xhci_close_pipe(struct usbd_pipe *pipe)
2098 {
2099 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
2100 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2101 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
2102 const u_int dci = xhci_ep_get_dci(ed);
2103 struct xhci_soft_trb trb;
2104 uint32_t *cp;
2105
2106 XHCIHIST_FUNC();
2107
2108 if (sc->sc_dying)
2109 return;
2110
2111 /* xs is uninitialized before xhci_init_slot */
2112 if (xs == NULL || xs->xs_idx == 0)
2113 return;
2114
2115 XHCIHIST_CALLARGS("pipe %#jx slot %ju dci %ju",
2116 (uintptr_t)pipe, xs->xs_idx, dci, 0);
2117
2118 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
2119 KASSERT(mutex_owned(&sc->sc_lock));
2120
2121 if (pipe->up_dev->ud_depth == 0)
2122 return;
2123
2124 if (dci == XHCI_DCI_EP_CONTROL) {
2125 DPRINTFN(4, "closing ep0", 0, 0, 0, 0);
2126 /* This frees all rings */
2127 xhci_disable_slot(sc, xs->xs_idx);
2128 return;
2129 }
2130
2131 if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED)
2132 (void)xhci_stop_endpoint(pipe);
2133
2134 /*
2135 * set appropriate bit to be dropped.
2136 * don't set DC bit to 1, otherwise all endpoints
2137 * would be deconfigured.
2138 */
2139 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
2140 cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci));
2141 cp[1] = htole32(0);
2142
2143 /* XXX should be most significant one, not dci? */
2144 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
2145 cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci));
2146
2147 /* configure ep context performs an implicit dequeue */
2148 xhci_host_dequeue(xs->xs_xr[dci]);
2149
2150 /* sync input contexts before they are read from memory */
2151 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
2152
2153 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
2154 trb.trb_2 = 0;
2155 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
2156 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
2157
2158 (void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
2159 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2160
2161 xhci_ring_free(sc, &xs->xs_xr[dci]);
2162 }
2163
2164 /*
2165 * Abort transfer.
2166 * Should be called with sc_lock held.
2167 */
2168 static void
2169 xhci_abortx(struct usbd_xfer *xfer)
2170 {
2171 XHCIHIST_FUNC();
2172 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2173 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
2174 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
2175
2176 XHCIHIST_CALLARGS("xfer %#jx pipe %#jx",
2177 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0, 0);
2178
2179 KASSERT(mutex_owned(&sc->sc_lock));
2180 ASSERT_SLEEPABLE();
2181
2182 KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
2183 xfer->ux_status == USBD_TIMEOUT),
2184 "bad abort status: %d", xfer->ux_status);
2185
2186 /*
2187 * If we're dying, skip the hardware action and just notify the
2188 * software that we're done.
2189 */
2190 if (sc->sc_dying) {
2191 DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer,
2192 xfer->ux_status, 0, 0);
2193 goto dying;
2194 }
2195
2196 /*
2197 * HC Step 1: Stop execution of TD on the ring.
2198 */
2199 switch (xhci_get_epstate(sc, xs, dci)) {
2200 case XHCI_EPSTATE_HALTED:
2201 (void)xhci_reset_endpoint_locked(xfer->ux_pipe);
2202 break;
2203 case XHCI_EPSTATE_STOPPED:
2204 break;
2205 default:
2206 (void)xhci_stop_endpoint(xfer->ux_pipe);
2207 break;
2208 }
2209 #ifdef DIAGNOSTIC
2210 uint32_t epst = xhci_get_epstate(sc, xs, dci);
2211 if (epst != XHCI_EPSTATE_STOPPED)
2212 DPRINTFN(4, "dci %ju not stopped %ju", dci, epst, 0, 0);
2213 #endif
2214
2215 /*
2216 * HC Step 2: Remove any vestiges of the xfer from the ring.
2217 */
2218 xhci_set_dequeue_locked(xfer->ux_pipe);
2219
2220 /*
2221 * Final Step: Notify completion to waiting xfers.
2222 */
2223 dying:
2224 usb_transfer_complete(xfer);
2225 DPRINTFN(14, "end", 0, 0, 0, 0);
2226
2227 KASSERT(mutex_owned(&sc->sc_lock));
2228 }
2229
2230 static void
2231 xhci_host_dequeue(struct xhci_ring * const xr)
2232 {
2233 /* When dequeueing the controller, update our struct copy too */
2234 memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE);
2235 usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE,
2236 BUS_DMASYNC_PREWRITE);
2237 memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies));
2238
2239 xr->xr_ep = 0;
2240 xr->xr_cs = 1;
2241 }
2242
2243 /*
2244 * Recover STALLed endpoint.
2245 * xHCI 1.1 sect 4.10.2.1
2246 * Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove
2247 * all transfers on transfer ring.
2248 * These are done in thread context asynchronously.
2249 */
2250 static void
2251 xhci_clear_endpoint_stall_async_task(void *cookie)
2252 {
2253 struct usbd_xfer * const xfer = cookie;
2254 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2255 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
2256 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
2257 struct xhci_ring * const tr = xs->xs_xr[dci];
2258
2259 XHCIHIST_FUNC();
2260 XHCIHIST_CALLARGS("xfer %#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx,
2261 dci, 0);
2262
2263 /*
2264 * XXXMRG: Stall task can run after slot is disabled when yanked.
2265 * This hack notices that the xs has been memset() in
2266 * xhci_disable_slot() and returns. Both xhci_reset_endpoint()
2267 * and xhci_set_dequeue() rely upon a valid ring setup for correct
2268 * operation, and the latter will fault, as would
2269 * usb_transfer_complete() if it got that far.
2270 */
2271 if (xs->xs_idx == 0) {
2272 DPRINTFN(4, "ends xs_idx is 0", 0, 0, 0, 0);
2273 return;
2274 }
2275
2276 KASSERT(tr != NULL);
2277
2278 xhci_reset_endpoint(xfer->ux_pipe);
2279 xhci_set_dequeue(xfer->ux_pipe);
2280
2281 mutex_enter(&sc->sc_lock);
2282 tr->is_halted = false;
2283 usb_transfer_complete(xfer);
2284 mutex_exit(&sc->sc_lock);
2285 DPRINTFN(4, "ends", 0, 0, 0, 0);
2286 }
2287
2288 static usbd_status
2289 xhci_clear_endpoint_stall_async(struct usbd_xfer *xfer)
2290 {
2291 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2292 struct xhci_pipe * const xp = (struct xhci_pipe *)xfer->ux_pipe;
2293
2294 XHCIHIST_FUNC();
2295 XHCIHIST_CALLARGS("xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
2296
2297 if (sc->sc_dying) {
2298 return USBD_IOERROR;
2299 }
2300
2301 usb_init_task(&xp->xp_async_task,
2302 xhci_clear_endpoint_stall_async_task, xfer, USB_TASKQ_MPSAFE);
2303 usb_add_task(xfer->ux_pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC);
2304 DPRINTFN(4, "ends", 0, 0, 0, 0);
2305
2306 return USBD_NORMAL_COMPLETION;
2307 }
2308
2309 /* Process roothub port status/change events and notify to uhub_intr. */
2310 static void
2311 xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport)
2312 {
2313 XHCIHIST_FUNC();
2314 XHCIHIST_CALLARGS("xhci%jd: port %ju status change",
2315 device_unit(sc->sc_dev), ctlrport, 0, 0);
2316
2317 if (ctlrport > sc->sc_maxports)
2318 return;
2319
2320 const size_t bn = xhci_ctlrport2bus(sc, ctlrport);
2321 const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport);
2322 struct usbd_xfer * const xfer = sc->sc_intrxfer[bn];
2323
2324 DPRINTFN(4, "xhci%jd: bus %jd bp %ju xfer %#jx status change",
2325 device_unit(sc->sc_dev), bn, rhp, (uintptr_t)xfer);
2326
2327 if (xfer == NULL)
2328 return;
2329 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
2330
2331 uint8_t *p = xfer->ux_buf;
2332 memset(p, 0, xfer->ux_length);
2333 p[rhp / NBBY] |= 1 << (rhp % NBBY);
2334 xfer->ux_actlen = xfer->ux_length;
2335 xfer->ux_status = USBD_NORMAL_COMPLETION;
2336 usb_transfer_complete(xfer);
2337 }
2338
2339 /* Process Transfer Events */
2340 static void
2341 xhci_event_transfer(struct xhci_softc * const sc,
2342 const struct xhci_trb * const trb)
2343 {
2344 uint64_t trb_0;
2345 uint32_t trb_2, trb_3;
2346 uint8_t trbcode;
2347 u_int slot, dci;
2348 struct xhci_slot *xs;
2349 struct xhci_ring *xr;
2350 struct xhci_xfer *xx;
2351 struct usbd_xfer *xfer;
2352 usbd_status err;
2353
2354 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2355
2356 trb_0 = le64toh(trb->trb_0);
2357 trb_2 = le32toh(trb->trb_2);
2358 trb_3 = le32toh(trb->trb_3);
2359 trbcode = XHCI_TRB_2_ERROR_GET(trb_2);
2360 slot = XHCI_TRB_3_SLOT_GET(trb_3);
2361 dci = XHCI_TRB_3_EP_GET(trb_3);
2362 xs = &sc->sc_slots[slot];
2363 xr = xs->xs_xr[dci];
2364
2365 /* sanity check */
2366 KASSERT(xr != NULL);
2367 KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots,
2368 "invalid xs_idx %u slot %u", xs->xs_idx, slot);
2369
2370 int idx = 0;
2371 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
2372 if (xhci_trb_get_idx(xr, trb_0, &idx)) {
2373 DPRINTFN(0, "invalid trb_0 %#jx", trb_0, 0, 0, 0);
2374 return;
2375 }
2376 xx = xr->xr_cookies[idx];
2377
2378 /* clear cookie of consumed TRB */
2379 xr->xr_cookies[idx] = NULL;
2380
2381 /*
2382 * xx is NULL if pipe is opened but xfer is not started.
2383 * It happens when stopping idle pipe.
2384 */
2385 if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) {
2386 DPRINTFN(1, "Ignore #%ju: cookie %#jx cc %ju dci %ju",
2387 idx, (uintptr_t)xx, trbcode, dci);
2388 DPRINTFN(1, " orig TRB %#jx type %ju", trb_0,
2389 XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)),
2390 0, 0);
2391 return;
2392 }
2393 } else {
2394 /* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */
2395 xx = (void *)(uintptr_t)(trb_0 & ~0x3);
2396 }
2397 /* XXX this may not happen */
2398 if (xx == NULL) {
2399 DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0);
2400 return;
2401 }
2402 xfer = &xx->xx_xfer;
2403 /* XXX this may happen when detaching */
2404 if (xfer == NULL) {
2405 DPRINTFN(1, "xx(%#jx)->xx_xfer is NULL trb_0 %#jx",
2406 (uintptr_t)xx, trb_0, 0, 0);
2407 return;
2408 }
2409 DPRINTFN(14, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
2410 /* XXX I dunno why this happens */
2411 KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer);
2412
2413 if (!xfer->ux_pipe->up_repeat &&
2414 SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) {
2415 DPRINTFN(1, "xfer(%#jx)->pipe not queued", (uintptr_t)xfer,
2416 0, 0, 0);
2417 return;
2418 }
2419
2420 const uint8_t xfertype =
2421 UE_GET_XFERTYPE(xfer->ux_pipe->up_endpoint->ue_edesc->bmAttributes);
2422
2423 /* 4.11.5.2 Event Data TRB */
2424 if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
2425 DPRINTFN(14, "transfer Event Data: 0x%016jx 0x%08jx"
2426 " %02jx", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0);
2427 if ((trb_0 & 0x3) == 0x3) {
2428 xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2);
2429 }
2430 }
2431
2432 switch (trbcode) {
2433 case XHCI_TRB_ERROR_SHORT_PKT:
2434 case XHCI_TRB_ERROR_SUCCESS:
2435 /*
2436 * A ctrl transfer can generate two events if it has a Data
2437 * stage. A short data stage can be OK and should not
2438 * complete the transfer as the status stage needs to be
2439 * performed.
2440 *
2441 * Note: Data and Status stage events point at same xfer.
2442 * ux_actlen and ux_dmabuf will be passed to
2443 * usb_transfer_complete after the Status stage event.
2444 *
2445 * It can be distingished which stage generates the event:
2446 * + by checking least 3 bits of trb_0 if ED==1.
2447 * (see xhci_device_ctrl_start).
2448 * + by checking the type of original TRB if ED==0.
2449 *
2450 * In addition, intr, bulk, and isoc transfer currently
2451 * consists of single TD, so the "skip" is not needed.
2452 * ctrl xfer uses EVENT_DATA, and others do not.
2453 * Thus driver can switch the flow by checking ED bit.
2454 */
2455 if (xfertype == UE_ISOCHRONOUS) {
2456 xfer->ux_frlengths[xx->xx_isoc_done] -=
2457 XHCI_TRB_2_REM_GET(trb_2);
2458 xfer->ux_actlen += xfer->ux_frlengths[xx->xx_isoc_done];
2459 if (++xx->xx_isoc_done < xfer->ux_nframes)
2460 return;
2461 } else
2462 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
2463 if (xfer->ux_actlen == 0)
2464 xfer->ux_actlen = xfer->ux_length -
2465 XHCI_TRB_2_REM_GET(trb_2);
2466 if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3))
2467 == XHCI_TRB_TYPE_DATA_STAGE) {
2468 return;
2469 }
2470 } else if ((trb_0 & 0x3) == 0x3) {
2471 return;
2472 }
2473 err = USBD_NORMAL_COMPLETION;
2474 break;
2475 case XHCI_TRB_ERROR_STOPPED:
2476 case XHCI_TRB_ERROR_LENGTH:
2477 case XHCI_TRB_ERROR_STOPPED_SHORT:
2478 err = USBD_IOERROR;
2479 break;
2480 case XHCI_TRB_ERROR_STALL:
2481 case XHCI_TRB_ERROR_BABBLE:
2482 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2483 xr->is_halted = true;
2484 /*
2485 * Try to claim this xfer for completion. If it has already
2486 * completed or aborted, drop it on the floor.
2487 */
2488 if (!usbd_xfer_trycomplete(xfer))
2489 return;
2490
2491 /*
2492 * Stalled endpoints can be recoverd by issuing
2493 * command TRB TYPE_RESET_EP on xHCI instead of
2494 * issuing request CLEAR_FEATURE UF_ENDPOINT_HALT
2495 * on the endpoint. However, this function may be
2496 * called from softint context (e.g. from umass),
2497 * in that case driver gets KASSERT in cv_timedwait
2498 * in xhci_do_command.
2499 * To avoid this, this runs reset_endpoint and
2500 * usb_transfer_complete in usb task thread
2501 * asynchronously (and then umass issues clear
2502 * UF_ENDPOINT_HALT).
2503 */
2504
2505 /* Override the status. */
2506 xfer->ux_status = USBD_STALLED;
2507
2508 xhci_clear_endpoint_stall_async(xfer);
2509 return;
2510 default:
2511 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2512 err = USBD_IOERROR;
2513 break;
2514 }
2515
2516 /*
2517 * Try to claim this xfer for completion. If it has already
2518 * completed or aborted, drop it on the floor.
2519 */
2520 if (!usbd_xfer_trycomplete(xfer))
2521 return;
2522
2523 /* Set the status. */
2524 xfer->ux_status = err;
2525
2526 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0 ||
2527 (trb_0 & 0x3) == 0x0) {
2528 usb_transfer_complete(xfer);
2529 }
2530 }
2531
2532 /* Process Command complete events */
2533 static void
2534 xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb)
2535 {
2536 uint64_t trb_0;
2537 uint32_t trb_2, trb_3;
2538
2539 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2540
2541 KASSERT(mutex_owned(&sc->sc_lock));
2542
2543 trb_0 = le64toh(trb->trb_0);
2544 trb_2 = le32toh(trb->trb_2);
2545 trb_3 = le32toh(trb->trb_3);
2546
2547 if (trb_0 == sc->sc_command_addr) {
2548 sc->sc_resultpending = false;
2549
2550 sc->sc_result_trb.trb_0 = trb_0;
2551 sc->sc_result_trb.trb_2 = trb_2;
2552 sc->sc_result_trb.trb_3 = trb_3;
2553 if (XHCI_TRB_2_ERROR_GET(trb_2) !=
2554 XHCI_TRB_ERROR_SUCCESS) {
2555 DPRINTFN(1, "command completion "
2556 "failure: 0x%016jx 0x%08jx 0x%08jx",
2557 trb_0, trb_2, trb_3, 0);
2558 }
2559 cv_signal(&sc->sc_command_cv);
2560 } else {
2561 DPRINTFN(1, "spurious event: %#jx 0x%016jx "
2562 "0x%08jx 0x%08jx", (uintptr_t)trb, trb_0, trb_2, trb_3);
2563 }
2564 }
2565
2566 /*
2567 * Process events.
2568 * called from xhci_softintr
2569 */
2570 static void
2571 xhci_handle_event(struct xhci_softc * const sc,
2572 const struct xhci_trb * const trb)
2573 {
2574 uint64_t trb_0;
2575 uint32_t trb_2, trb_3;
2576
2577 XHCIHIST_FUNC();
2578
2579 trb_0 = le64toh(trb->trb_0);
2580 trb_2 = le32toh(trb->trb_2);
2581 trb_3 = le32toh(trb->trb_3);
2582
2583 XHCIHIST_CALLARGS("event: %#jx 0x%016jx 0x%08jx 0x%08jx",
2584 (uintptr_t)trb, trb_0, trb_2, trb_3);
2585
2586 /*
2587 * 4.11.3.1, 6.4.2.1
2588 * TRB Pointer is invalid for these completion codes.
2589 */
2590 switch (XHCI_TRB_2_ERROR_GET(trb_2)) {
2591 case XHCI_TRB_ERROR_RING_UNDERRUN:
2592 case XHCI_TRB_ERROR_RING_OVERRUN:
2593 case XHCI_TRB_ERROR_VF_RING_FULL:
2594 return;
2595 default:
2596 if (trb_0 == 0) {
2597 return;
2598 }
2599 break;
2600 }
2601
2602 switch (XHCI_TRB_3_TYPE_GET(trb_3)) {
2603 case XHCI_TRB_EVENT_TRANSFER:
2604 xhci_event_transfer(sc, trb);
2605 break;
2606 case XHCI_TRB_EVENT_CMD_COMPLETE:
2607 xhci_event_cmd(sc, trb);
2608 break;
2609 case XHCI_TRB_EVENT_PORT_STS_CHANGE:
2610 xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff));
2611 break;
2612 default:
2613 break;
2614 }
2615 }
2616
2617 static void
2618 xhci_softintr(void *v)
2619 {
2620 struct usbd_bus * const bus = v;
2621 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2622 struct xhci_ring * const er = sc->sc_er;
2623 struct xhci_trb *trb;
2624 int i, j, k;
2625
2626 XHCIHIST_FUNC();
2627
2628 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
2629
2630 i = er->xr_ep;
2631 j = er->xr_cs;
2632
2633 XHCIHIST_CALLARGS("er: xr_ep %jd xr_cs %jd", i, j, 0, 0);
2634
2635 while (1) {
2636 usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE,
2637 BUS_DMASYNC_POSTREAD);
2638 trb = &er->xr_trb[i];
2639 k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
2640
2641 if (j != k)
2642 break;
2643
2644 xhci_handle_event(sc, trb);
2645
2646 i++;
2647 if (i == er->xr_ntrb) {
2648 i = 0;
2649 j ^= 1;
2650 }
2651 }
2652
2653 er->xr_ep = i;
2654 er->xr_cs = j;
2655
2656 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) |
2657 XHCI_ERDP_BUSY);
2658
2659 DPRINTFN(16, "ends", 0, 0, 0, 0);
2660
2661 return;
2662 }
2663
2664 static void
2665 xhci_poll(struct usbd_bus *bus)
2666 {
2667 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2668
2669 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2670
2671 mutex_enter(&sc->sc_intr_lock);
2672 int ret = xhci_intr1(sc);
2673 if (ret) {
2674 xhci_softintr(bus);
2675 }
2676 mutex_exit(&sc->sc_intr_lock);
2677
2678 return;
2679 }
2680
2681 static struct usbd_xfer *
2682 xhci_allocx(struct usbd_bus *bus, unsigned int nframes)
2683 {
2684 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2685 struct xhci_xfer *xx;
2686 u_int ntrbs;
2687
2688 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2689
2690 ntrbs = uimax(3, nframes);
2691 const size_t trbsz = sizeof(*xx->xx_trb) * ntrbs;
2692
2693 xx = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
2694 if (xx != NULL) {
2695 memset(xx, 0, sizeof(*xx));
2696 if (ntrbs > 0) {
2697 xx->xx_trb = kmem_alloc(trbsz, KM_SLEEP);
2698 xx->xx_ntrb = ntrbs;
2699 }
2700 #ifdef DIAGNOSTIC
2701 xx->xx_xfer.ux_state = XFER_BUSY;
2702 #endif
2703 }
2704
2705 return &xx->xx_xfer;
2706 }
2707
2708 static void
2709 xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
2710 {
2711 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2712 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
2713
2714 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2715
2716 #ifdef DIAGNOSTIC
2717 if (xfer->ux_state != XFER_BUSY &&
2718 xfer->ux_status != USBD_NOT_STARTED) {
2719 DPRINTFN(0, "xfer=%#jx not busy, 0x%08jx",
2720 (uintptr_t)xfer, xfer->ux_state, 0, 0);
2721 }
2722 xfer->ux_state = XFER_FREE;
2723 #endif
2724 if (xx->xx_ntrb > 0) {
2725 kmem_free(xx->xx_trb, xx->xx_ntrb * sizeof(*xx->xx_trb));
2726 xx->xx_trb = NULL;
2727 xx->xx_ntrb = 0;
2728 }
2729 pool_cache_put(sc->sc_xferpool, xx);
2730 }
2731
2732 static bool
2733 xhci_dying(struct usbd_bus *bus)
2734 {
2735 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2736
2737 return sc->sc_dying;
2738 }
2739
2740 static void
2741 xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
2742 {
2743 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2744
2745 *lock = &sc->sc_lock;
2746 }
2747
2748 extern uint32_t usb_cookie_no;
2749
2750 /*
2751 * xHCI 4.3
2752 * Called when uhub_explore finds a new device (via usbd_new_device).
2753 * Port initialization and speed detection (4.3.1) are already done in uhub.c.
2754 * This function does:
2755 * Allocate and construct dev structure of default endpoint (ep0).
2756 * Allocate and open pipe of ep0.
2757 * Enable slot and initialize slot context.
2758 * Set Address.
2759 * Read initial device descriptor.
2760 * Determine initial MaxPacketSize (mps) by speed.
2761 * Read full device descriptor.
2762 * Register this device.
2763 * Finally state of device transitions ADDRESSED.
2764 */
2765 static usbd_status
2766 xhci_new_device(device_t parent, struct usbd_bus *bus, int depth,
2767 int speed, int port, struct usbd_port *up)
2768 {
2769 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2770 struct usbd_device *dev;
2771 usbd_status err;
2772 usb_device_descriptor_t *dd;
2773 struct xhci_slot *xs;
2774 uint32_t *cp;
2775
2776 XHCIHIST_FUNC();
2777 XHCIHIST_CALLARGS("port %ju depth %ju speed %ju up %#jx",
2778 port, depth, speed, (uintptr_t)up);
2779
2780 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
2781 dev->ud_bus = bus;
2782 dev->ud_quirks = &usbd_no_quirk;
2783 dev->ud_addr = 0;
2784 dev->ud_ddesc.bMaxPacketSize = 0;
2785 dev->ud_depth = depth;
2786 dev->ud_powersrc = up;
2787 dev->ud_myhub = up->up_parent;
2788 dev->ud_speed = speed;
2789 dev->ud_langid = USBD_NOLANG;
2790 dev->ud_cookie.cookie = ++usb_cookie_no;
2791
2792 /* Set up default endpoint handle. */
2793 dev->ud_ep0.ue_edesc = &dev->ud_ep0desc;
2794 /* doesn't matter, just don't let it uninitialized */
2795 dev->ud_ep0.ue_toggle = 0;
2796
2797 /* Set up default endpoint descriptor. */
2798 dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE;
2799 dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT;
2800 dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
2801 dev->ud_ep0desc.bmAttributes = UE_CONTROL;
2802 dev->ud_ep0desc.bInterval = 0;
2803
2804 /* 4.3, 4.8.2.1 */
2805 switch (speed) {
2806 case USB_SPEED_SUPER:
2807 case USB_SPEED_SUPER_PLUS:
2808 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET);
2809 break;
2810 case USB_SPEED_FULL:
2811 /* XXX using 64 as initial mps of ep0 in FS */
2812 case USB_SPEED_HIGH:
2813 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET);
2814 break;
2815 case USB_SPEED_LOW:
2816 default:
2817 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET);
2818 break;
2819 }
2820
2821 up->up_dev = dev;
2822
2823 dd = &dev->ud_ddesc;
2824
2825 if (depth == 0 && port == 0) {
2826 KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL);
2827 bus->ub_devices[USB_ROOTHUB_INDEX] = dev;
2828
2829 /* Establish the default pipe. */
2830 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
2831 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
2832 if (err) {
2833 DPRINTFN(1, "setup default pipe failed %jd", err,0,0,0);
2834 goto bad;
2835 }
2836 err = usbd_get_initial_ddesc(dev, dd);
2837 if (err) {
2838 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2839 goto bad;
2840 }
2841 } else {
2842 uint8_t slot = 0;
2843
2844 /* 4.3.2 */
2845 err = xhci_enable_slot(sc, &slot);
2846 if (err) {
2847 DPRINTFN(1, "enable slot %ju", err, 0, 0, 0);
2848 goto bad;
2849 }
2850
2851 xs = &sc->sc_slots[slot];
2852 dev->ud_hcpriv = xs;
2853
2854 /* 4.3.3 initialize slot structure */
2855 err = xhci_init_slot(dev, slot);
2856 if (err) {
2857 DPRINTFN(1, "init slot %ju", err, 0, 0, 0);
2858 dev->ud_hcpriv = NULL;
2859 /*
2860 * We have to disable_slot here because
2861 * xs->xs_idx == 0 when xhci_init_slot fails,
2862 * in that case usbd_remove_dev won't work.
2863 */
2864 mutex_enter(&sc->sc_lock);
2865 xhci_disable_slot(sc, slot);
2866 mutex_exit(&sc->sc_lock);
2867 goto bad;
2868 }
2869
2870 /*
2871 * We have to establish the default pipe _after_ slot
2872 * structure has been prepared.
2873 */
2874 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
2875 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
2876 if (err) {
2877 DPRINTFN(1, "setup default pipe failed %jd", err, 0, 0,
2878 0);
2879 goto bad;
2880 }
2881
2882 /* 4.3.4 Address Assignment */
2883 err = xhci_set_address(dev, slot, false);
2884 if (err) {
2885 DPRINTFN(1, "failed! to set address: %ju", err, 0, 0, 0);
2886 goto bad;
2887 }
2888
2889 /* Allow device time to set new address */
2890 usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE);
2891
2892 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2893 cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT);
2894 HEXDUMP("slot context", cp, sc->sc_ctxsz);
2895 uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3]));
2896 DPRINTFN(4, "device address %ju", addr, 0, 0, 0);
2897 /*
2898 * XXX ensure we know when the hardware does something
2899 * we can't yet cope with
2900 */
2901 KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr);
2902 dev->ud_addr = addr;
2903
2904 KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL,
2905 "addr %d already allocated", dev->ud_addr);
2906 /*
2907 * The root hub is given its own slot
2908 */
2909 bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev;
2910
2911 err = usbd_get_initial_ddesc(dev, dd);
2912 if (err) {
2913 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2914 goto bad;
2915 }
2916
2917 /* 4.8.2.1 */
2918 if (USB_IS_SS(speed)) {
2919 if (dd->bMaxPacketSize != 9) {
2920 printf("%s: invalid mps 2^%u for SS ep0,"
2921 " using 512\n",
2922 device_xname(sc->sc_dev),
2923 dd->bMaxPacketSize);
2924 dd->bMaxPacketSize = 9;
2925 }
2926 USETW(dev->ud_ep0desc.wMaxPacketSize,
2927 (1 << dd->bMaxPacketSize));
2928 } else
2929 USETW(dev->ud_ep0desc.wMaxPacketSize,
2930 dd->bMaxPacketSize);
2931 DPRINTFN(4, "bMaxPacketSize %ju", dd->bMaxPacketSize, 0, 0, 0);
2932 err = xhci_update_ep0_mps(sc, xs,
2933 UGETW(dev->ud_ep0desc.wMaxPacketSize));
2934 if (err) {
2935 DPRINTFN(1, "update mps of ep0 %ju", err, 0, 0, 0);
2936 goto bad;
2937 }
2938 }
2939
2940 err = usbd_reload_device_desc(dev);
2941 if (err) {
2942 DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
2943 goto bad;
2944 }
2945
2946 DPRINTFN(1, "adding unit addr=%jd, rev=%02jx,",
2947 dev->ud_addr, UGETW(dd->bcdUSB), 0, 0);
2948 DPRINTFN(1, " class=%jd, subclass=%jd, protocol=%jd,",
2949 dd->bDeviceClass, dd->bDeviceSubClass,
2950 dd->bDeviceProtocol, 0);
2951 DPRINTFN(1, " mps=%jd, len=%jd, noconf=%jd, speed=%jd",
2952 dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations,
2953 dev->ud_speed);
2954
2955 usbd_get_device_strings(dev);
2956
2957 usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev);
2958
2959 if (depth == 0 && port == 0) {
2960 usbd_attach_roothub(parent, dev);
2961 DPRINTFN(1, "root hub %#jx", (uintptr_t)dev, 0, 0, 0);
2962 return USBD_NORMAL_COMPLETION;
2963 }
2964
2965 err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr);
2966 bad:
2967 if (err != USBD_NORMAL_COMPLETION) {
2968 usbd_remove_device(dev, up);
2969 }
2970
2971 return err;
2972 }
2973
2974 static usbd_status
2975 xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring **xrp,
2976 size_t ntrb, size_t align)
2977 {
2978 size_t size = ntrb * XHCI_TRB_SIZE;
2979 struct xhci_ring *xr;
2980
2981 XHCIHIST_FUNC();
2982 XHCIHIST_CALLARGS("xr %#jx ntrb %#jx align %#jx",
2983 (uintptr_t)*xrp, ntrb, align, 0);
2984
2985 xr = kmem_zalloc(sizeof(struct xhci_ring), KM_SLEEP);
2986 DPRINTFN(1, "ring %#jx", (uintptr_t)xr, 0, 0, 0);
2987
2988 int err = usb_allocmem(&sc->sc_bus, size, align,
2989 USBMALLOC_COHERENT | USBMALLOC_ZERO, &xr->xr_dma);
2990 if (err) {
2991 kmem_free(xr, sizeof(struct xhci_ring));
2992 DPRINTFN(1, "alloc xr_dma failed %jd", err, 0, 0, 0);
2993 return err;
2994 }
2995 mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
2996 xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP);
2997 xr->xr_trb = xhci_ring_trbv(xr, 0);
2998 xr->xr_ntrb = ntrb;
2999 xr->is_halted = false;
3000 xhci_host_dequeue(xr);
3001 *xrp = xr;
3002
3003 return USBD_NORMAL_COMPLETION;
3004 }
3005
3006 static void
3007 xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring ** const xr)
3008 {
3009 if (*xr == NULL)
3010 return;
3011
3012 usb_freemem(&sc->sc_bus, &(*xr)->xr_dma);
3013 mutex_destroy(&(*xr)->xr_lock);
3014 kmem_free((*xr)->xr_cookies,
3015 sizeof(*(*xr)->xr_cookies) * (*xr)->xr_ntrb);
3016 kmem_free(*xr, sizeof(struct xhci_ring));
3017 *xr = NULL;
3018 }
3019
3020 static void
3021 xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr,
3022 void *cookie, struct xhci_soft_trb * const trbs, size_t ntrbs)
3023 {
3024 size_t i;
3025 u_int ri;
3026 u_int cs;
3027 uint64_t parameter;
3028 uint32_t status;
3029 uint32_t control;
3030
3031 XHCIHIST_FUNC();
3032 XHCIHIST_CALLARGS("%#jx xr_ep %#jx xr_cs %ju",
3033 (uintptr_t)xr, xr->xr_ep, xr->xr_cs, 0);
3034
3035 KASSERTMSG(ntrbs < xr->xr_ntrb, "ntrbs %zu, xr->xr_ntrb %u",
3036 ntrbs, xr->xr_ntrb);
3037 for (i = 0; i < ntrbs; i++) {
3038 DPRINTFN(12, "xr %#jx trbs %#jx num %ju", (uintptr_t)xr,
3039 (uintptr_t)trbs, i, 0);
3040 DPRINTFN(12, " 0x%016jx 0x%08jx 0x%08jx",
3041 trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0);
3042 KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) !=
3043 XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3);
3044 }
3045
3046 ri = xr->xr_ep;
3047 cs = xr->xr_cs;
3048
3049 /*
3050 * Although the xhci hardware can do scatter/gather dma from
3051 * arbitrary sized buffers, there is a non-obvious restriction
3052 * that a LINK trb is only allowed at the end of a burst of
3053 * transfers - which might be 16kB.
3054 * Arbitrary aligned LINK trb definitely fail on Ivy bridge.
3055 * The simple solution is not to allow a LINK trb in the middle
3056 * of anything - as here.
3057 * XXX: (dsl) There are xhci controllers out there (eg some made by
3058 * ASMedia) that seem to lock up if they process a LINK trb but
3059 * cannot process the linked-to trb yet.
3060 * The code should write the 'cycle' bit on the link trb AFTER
3061 * adding the other trb.
3062 */
3063 u_int firstep = xr->xr_ep;
3064 u_int firstcs = xr->xr_cs;
3065
3066 for (i = 0; i < ntrbs; ) {
3067 u_int oldri = ri;
3068 u_int oldcs = cs;
3069
3070 if (ri >= (xr->xr_ntrb - 1)) {
3071 /* Put Link TD at the end of ring */
3072 parameter = xhci_ring_trbp(xr, 0);
3073 status = 0;
3074 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
3075 XHCI_TRB_3_TC_BIT;
3076 xr->xr_cookies[ri] = NULL;
3077 xr->xr_ep = 0;
3078 xr->xr_cs ^= 1;
3079 ri = xr->xr_ep;
3080 cs = xr->xr_cs;
3081 } else {
3082 parameter = trbs[i].trb_0;
3083 status = trbs[i].trb_2;
3084 control = trbs[i].trb_3;
3085
3086 xr->xr_cookies[ri] = cookie;
3087 ri++;
3088 i++;
3089 }
3090 /*
3091 * If this is a first TRB, mark it invalid to prevent
3092 * xHC from running it immediately.
3093 */
3094 if (oldri == firstep) {
3095 if (oldcs) {
3096 control &= ~XHCI_TRB_3_CYCLE_BIT;
3097 } else {
3098 control |= XHCI_TRB_3_CYCLE_BIT;
3099 }
3100 } else {
3101 if (oldcs) {
3102 control |= XHCI_TRB_3_CYCLE_BIT;
3103 } else {
3104 control &= ~XHCI_TRB_3_CYCLE_BIT;
3105 }
3106 }
3107 xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control);
3108 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri,
3109 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
3110 }
3111
3112 /* Now invert cycle bit of first TRB */
3113 if (firstcs) {
3114 xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
3115 } else {
3116 xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
3117 }
3118 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep,
3119 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
3120
3121 xr->xr_ep = ri;
3122 xr->xr_cs = cs;
3123
3124 DPRINTFN(12, "%#jx xr_ep %#jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep,
3125 xr->xr_cs, 0);
3126 }
3127
3128 static inline void
3129 xhci_ring_put_xfer(struct xhci_softc * const sc, struct xhci_ring * const tr,
3130 struct xhci_xfer *xx, u_int ntrb)
3131 {
3132 KASSERT(ntrb <= xx->xx_ntrb);
3133 xhci_ring_put(sc, tr, xx, xx->xx_trb, ntrb);
3134 }
3135
3136 /*
3137 * Stop execution commands, purge all commands on command ring, and
3138 * rewind dequeue pointer.
3139 */
3140 static void
3141 xhci_abort_command(struct xhci_softc *sc)
3142 {
3143 struct xhci_ring * const cr = sc->sc_cr;
3144 uint64_t crcr;
3145 int i;
3146
3147 XHCIHIST_FUNC();
3148 XHCIHIST_CALLARGS("command %#jx timeout, aborting",
3149 sc->sc_command_addr, 0, 0, 0);
3150
3151 mutex_enter(&cr->xr_lock);
3152
3153 /* 4.6.1.2 Aborting a Command */
3154 crcr = xhci_op_read_8(sc, XHCI_CRCR);
3155 xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA);
3156
3157 for (i = 0; i < 500; i++) {
3158 crcr = xhci_op_read_8(sc, XHCI_CRCR);
3159 if ((crcr & XHCI_CRCR_LO_CRR) == 0)
3160 break;
3161 usb_delay_ms(&sc->sc_bus, 1);
3162 }
3163 if ((crcr & XHCI_CRCR_LO_CRR) != 0) {
3164 DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0);
3165 /* reset HC here? */
3166 }
3167
3168 /* reset command ring dequeue pointer */
3169 cr->xr_ep = 0;
3170 cr->xr_cs = 1;
3171 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs);
3172
3173 mutex_exit(&cr->xr_lock);
3174 }
3175
3176 /*
3177 * Put a command on command ring, ring bell, set timer, and cv_timedwait.
3178 * Command completion is notified by cv_signal from xhci_event_cmd()
3179 * (called from xhci_softint), or timed-out.
3180 * The completion code is copied to sc->sc_result_trb in xhci_event_cmd(),
3181 * then do_command examines it.
3182 */
3183 static usbd_status
3184 xhci_do_command_locked(struct xhci_softc * const sc,
3185 struct xhci_soft_trb * const trb, int timeout)
3186 {
3187 struct xhci_ring * const cr = sc->sc_cr;
3188 usbd_status err;
3189
3190 XHCIHIST_FUNC();
3191 XHCIHIST_CALLARGS("input: 0x%016jx 0x%08jx 0x%08jx",
3192 trb->trb_0, trb->trb_2, trb->trb_3, 0);
3193
3194 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
3195 KASSERT(mutex_owned(&sc->sc_lock));
3196
3197 while (sc->sc_command_addr != 0 ||
3198 (sc->sc_suspender != NULL && sc->sc_suspender != curlwp))
3199 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
3200
3201 /*
3202 * If enqueue pointer points at last of ring, it's Link TRB,
3203 * command TRB will be stored in 0th TRB.
3204 */
3205 if (cr->xr_ep == cr->xr_ntrb - 1)
3206 sc->sc_command_addr = xhci_ring_trbp(cr, 0);
3207 else
3208 sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep);
3209
3210 sc->sc_resultpending = true;
3211
3212 mutex_enter(&cr->xr_lock);
3213 xhci_ring_put(sc, cr, NULL, trb, 1);
3214 mutex_exit(&cr->xr_lock);
3215
3216 xhci_db_write_4(sc, XHCI_DOORBELL(0), 0);
3217
3218 while (sc->sc_resultpending) {
3219 if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock,
3220 MAX(1, mstohz(timeout))) == EWOULDBLOCK) {
3221 xhci_abort_command(sc);
3222 err = USBD_TIMEOUT;
3223 goto timedout;
3224 }
3225 }
3226
3227 trb->trb_0 = sc->sc_result_trb.trb_0;
3228 trb->trb_2 = sc->sc_result_trb.trb_2;
3229 trb->trb_3 = sc->sc_result_trb.trb_3;
3230
3231 DPRINTFN(12, "output: 0x%016jx 0x%08jx 0x%08jx",
3232 trb->trb_0, trb->trb_2, trb->trb_3, 0);
3233
3234 switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) {
3235 case XHCI_TRB_ERROR_SUCCESS:
3236 err = USBD_NORMAL_COMPLETION;
3237 break;
3238 default:
3239 case 192 ... 223:
3240 DPRINTFN(5, "error %#jx",
3241 XHCI_TRB_2_ERROR_GET(trb->trb_2), 0, 0, 0);
3242 err = USBD_IOERROR;
3243 break;
3244 case 224 ... 255:
3245 err = USBD_NORMAL_COMPLETION;
3246 break;
3247 }
3248
3249 timedout:
3250 sc->sc_resultpending = false;
3251 sc->sc_command_addr = 0;
3252 cv_broadcast(&sc->sc_cmdbusy_cv);
3253
3254 return err;
3255 }
3256
3257 static usbd_status
3258 xhci_do_command(struct xhci_softc * const sc, struct xhci_soft_trb * const trb,
3259 int timeout)
3260 {
3261
3262 mutex_enter(&sc->sc_lock);
3263 usbd_status ret = xhci_do_command_locked(sc, trb, timeout);
3264 mutex_exit(&sc->sc_lock);
3265
3266 return ret;
3267 }
3268
3269 static usbd_status
3270 xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp)
3271 {
3272 struct xhci_soft_trb trb;
3273 usbd_status err;
3274
3275 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3276
3277 trb.trb_0 = 0;
3278 trb.trb_2 = 0;
3279 trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT);
3280
3281 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3282 if (err != USBD_NORMAL_COMPLETION) {
3283 return err;
3284 }
3285
3286 *slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3);
3287
3288 return err;
3289 }
3290
3291 /*
3292 * xHCI 4.6.4
3293 * Deallocate ring and device/input context DMA buffers, and disable_slot.
3294 * All endpoints in the slot should be stopped.
3295 * Should be called with sc_lock held.
3296 */
3297 static usbd_status
3298 xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot)
3299 {
3300 struct xhci_soft_trb trb;
3301 struct xhci_slot *xs;
3302 usbd_status err;
3303
3304 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3305
3306 if (sc->sc_dying)
3307 return USBD_IOERROR;
3308
3309 trb.trb_0 = 0;
3310 trb.trb_2 = 0;
3311 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot) |
3312 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT);
3313
3314 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
3315
3316 if (!err) {
3317 xs = &sc->sc_slots[slot];
3318 if (xs->xs_idx != 0) {
3319 xhci_free_slot(sc, xs);
3320 xhci_set_dcba(sc, 0, slot);
3321 memset(xs, 0, sizeof(*xs));
3322 }
3323 }
3324
3325 return err;
3326 }
3327
3328 /*
3329 * Set address of device and transition slot state from ENABLED to ADDRESSED
3330 * if Block Setaddress Request (BSR) is false.
3331 * If BSR==true, transition slot state from ENABLED to DEFAULT.
3332 * see xHCI 1.1 4.5.3, 3.3.4
3333 * Should be called without sc_lock held.
3334 */
3335 static usbd_status
3336 xhci_address_device(struct xhci_softc * const sc,
3337 uint64_t icp, uint8_t slot_id, bool bsr)
3338 {
3339 struct xhci_soft_trb trb;
3340 usbd_status err;
3341
3342 XHCIHIST_FUNC();
3343 if (bsr) {
3344 XHCIHIST_CALLARGS("icp %#jx slot %#jx with bsr",
3345 icp, slot_id, 0, 0);
3346 } else {
3347 XHCIHIST_CALLARGS("icp %#jx slot %#jx nobsr",
3348 icp, slot_id, 0, 0);
3349 }
3350
3351 trb.trb_0 = icp;
3352 trb.trb_2 = 0;
3353 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) |
3354 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
3355 (bsr ? XHCI_TRB_3_BSR_BIT : 0);
3356
3357 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3358
3359 if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS)
3360 err = USBD_NO_ADDR;
3361
3362 return err;
3363 }
3364
3365 static usbd_status
3366 xhci_update_ep0_mps(struct xhci_softc * const sc,
3367 struct xhci_slot * const xs, u_int mps)
3368 {
3369 struct xhci_soft_trb trb;
3370 usbd_status err;
3371 uint32_t * cp;
3372
3373 XHCIHIST_FUNC();
3374 XHCIHIST_CALLARGS("slot %ju mps %ju", xs->xs_idx, mps, 0, 0);
3375
3376 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3377 cp[0] = htole32(0);
3378 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL));
3379
3380 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL));
3381 cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps));
3382
3383 /* sync input contexts before they are read from memory */
3384 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3385 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
3386 sc->sc_ctxsz * 4);
3387
3388 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
3389 trb.trb_2 = 0;
3390 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
3391 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX);
3392
3393 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3394 return err;
3395 }
3396
3397 static void
3398 xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si)
3399 {
3400 uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0);
3401
3402 XHCIHIST_FUNC();
3403 XHCIHIST_CALLARGS("dcbaa %#jx dc 0x%016jx slot %jd",
3404 (uintptr_t)&dcbaa[si], dcba, si, 0);
3405
3406 dcbaa[si] = htole64(dcba);
3407 usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t),
3408 BUS_DMASYNC_PREWRITE);
3409 }
3410
3411 /*
3412 * Allocate device and input context DMA buffer, and
3413 * TRB DMA buffer for each endpoint.
3414 */
3415 static usbd_status
3416 xhci_init_slot(struct usbd_device *dev, uint32_t slot)
3417 {
3418 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
3419 struct xhci_slot *xs;
3420
3421 XHCIHIST_FUNC();
3422 XHCIHIST_CALLARGS("slot %ju", slot, 0, 0, 0);
3423
3424 xs = &sc->sc_slots[slot];
3425
3426 /* allocate contexts */
3427 int err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
3428 USBMALLOC_COHERENT | USBMALLOC_ZERO, &xs->xs_dc_dma);
3429 if (err) {
3430 DPRINTFN(1, "failed to allocmem output device context %jd",
3431 err, 0, 0, 0);
3432 return USBD_NOMEM;
3433 }
3434
3435 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
3436 USBMALLOC_COHERENT | USBMALLOC_ZERO, &xs->xs_ic_dma);
3437 if (err) {
3438 DPRINTFN(1, "failed to allocmem input device context %jd",
3439 err, 0, 0, 0);
3440 return USBD_NOMEM;
3441 }
3442
3443 memset(&xs->xs_xr[0], 0, sizeof(xs->xs_xr));
3444 xs->xs_idx = slot;
3445
3446 return USBD_NORMAL_COMPLETION;
3447
3448 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
3449 xs->xs_idx = 0;
3450 return USBD_NOMEM;
3451 }
3452
3453 static void
3454 xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs)
3455 {
3456 u_int dci;
3457
3458 XHCIHIST_FUNC();
3459 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
3460
3461 /* deallocate all allocated rings in the slot */
3462 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
3463 if (xs->xs_xr[dci] != NULL)
3464 xhci_ring_free(sc, &xs->xs_xr[dci]);
3465 }
3466 usb_freemem(&sc->sc_bus, &xs->xs_ic_dma);
3467 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
3468 xs->xs_idx = 0;
3469 }
3470
3471 /*
3472 * Setup slot context, set Device Context Base Address, and issue
3473 * Set Address Device command.
3474 */
3475 static usbd_status
3476 xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr)
3477 {
3478 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
3479 struct xhci_slot *xs;
3480 usbd_status err;
3481
3482 XHCIHIST_FUNC();
3483 XHCIHIST_CALLARGS("slot %ju bsr %ju", slot, bsr, 0, 0);
3484
3485 xs = &sc->sc_slots[slot];
3486
3487 xhci_setup_ctx(dev->ud_pipe0);
3488
3489 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
3490 sc->sc_ctxsz * 3);
3491
3492 xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot);
3493
3494 err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr);
3495
3496 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
3497 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, 0),
3498 sc->sc_ctxsz * 2);
3499
3500 return err;
3501 }
3502
3503 /*
3504 * 4.8.2, 6.2.3.2
3505 * construct slot/endpoint context parameters and do syncmem
3506 */
3507 static void
3508 xhci_setup_ctx(struct usbd_pipe *pipe)
3509 {
3510 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3511 struct usbd_device *dev = pipe->up_dev;
3512 struct xhci_slot * const xs = dev->ud_hcpriv;
3513 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3514 const u_int dci = xhci_ep_get_dci(ed);
3515 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3516 uint32_t *cp;
3517 uint16_t mps = UGETW(ed->wMaxPacketSize);
3518 uint8_t speed = dev->ud_speed;
3519 uint8_t ival = ed->bInterval;
3520
3521 XHCIHIST_FUNC();
3522 XHCIHIST_CALLARGS("pipe %#jx: slot %ju dci %ju speed %ju",
3523 (uintptr_t)pipe, xs->xs_idx, dci, speed);
3524
3525 /* set up initial input control context */
3526 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3527 cp[0] = htole32(0);
3528 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci));
3529 cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT));
3530 cp[7] = htole32(0);
3531
3532 /* set up input slot context */
3533 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
3534 cp[0] =
3535 XHCI_SCTX_0_CTX_NUM_SET(dci) |
3536 XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed));
3537 cp[1] = 0;
3538 cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0);
3539 cp[3] = 0;
3540 xhci_setup_route(pipe, cp);
3541 xhci_setup_tthub(pipe, cp);
3542
3543 cp[0] = htole32(cp[0]);
3544 cp[1] = htole32(cp[1]);
3545 cp[2] = htole32(cp[2]);
3546 cp[3] = htole32(cp[3]);
3547
3548 /* set up input endpoint context */
3549 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci));
3550 cp[0] =
3551 XHCI_EPCTX_0_EPSTATE_SET(0) |
3552 XHCI_EPCTX_0_MULT_SET(0) |
3553 XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
3554 XHCI_EPCTX_0_LSA_SET(0) |
3555 XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0);
3556 cp[1] =
3557 XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) |
3558 XHCI_EPCTX_1_HID_SET(0) |
3559 XHCI_EPCTX_1_MAXB_SET(0);
3560
3561 if (xfertype != UE_ISOCHRONOUS)
3562 cp[1] |= XHCI_EPCTX_1_CERR_SET(3);
3563
3564 if (xfertype == UE_CONTROL)
3565 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); /* 6.2.3 */
3566 else if (USB_IS_SS(speed))
3567 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(mps);
3568 else
3569 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(UE_GET_SIZE(mps));
3570
3571 xhci_setup_maxburst(pipe, cp);
3572
3573 switch (xfertype) {
3574 case UE_CONTROL:
3575 break;
3576 case UE_BULK:
3577 /* XXX Set MaxPStreams, HID, and LSA if streams enabled */
3578 break;
3579 case UE_INTERRUPT:
3580 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3581 ival = pipe->up_interval;
3582
3583 ival = xhci_bival2ival(ival, speed);
3584 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3585 break;
3586 case UE_ISOCHRONOUS:
3587 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3588 ival = pipe->up_interval;
3589
3590 /* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 */
3591 if (speed == USB_SPEED_FULL)
3592 ival += 3; /* 1ms -> 125us */
3593 ival--;
3594 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3595 break;
3596 default:
3597 break;
3598 }
3599 DPRINTFN(4, "setting ival %ju MaxBurst %#jx",
3600 XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_1_MAXB_GET(cp[1]), 0, 0);
3601
3602 /* rewind TR dequeue pointer in xHC */
3603 /* can't use xhci_ep_get_dci() yet? */
3604 *(uint64_t *)(&cp[2]) = htole64(
3605 xhci_ring_trbp(xs->xs_xr[dci], 0) |
3606 XHCI_EPCTX_2_DCS_SET(1));
3607
3608 cp[0] = htole32(cp[0]);
3609 cp[1] = htole32(cp[1]);
3610 cp[4] = htole32(cp[4]);
3611
3612 /* rewind TR dequeue pointer in driver */
3613 struct xhci_ring *xr = xs->xs_xr[dci];
3614 mutex_enter(&xr->xr_lock);
3615 xhci_host_dequeue(xr);
3616 mutex_exit(&xr->xr_lock);
3617
3618 /* sync input contexts before they are read from memory */
3619 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3620 }
3621
3622 /*
3623 * Setup route string and roothub port of given device for slot context
3624 */
3625 static void
3626 xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp)
3627 {
3628 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3629 struct usbd_device *dev = pipe->up_dev;
3630 struct usbd_port *up = dev->ud_powersrc;
3631 struct usbd_device *hub;
3632 struct usbd_device *adev;
3633 uint8_t rhport = 0;
3634 uint32_t route = 0;
3635
3636 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3637
3638 /* Locate root hub port and Determine route string */
3639 /* 4.3.3 route string does not include roothub port */
3640 for (hub = dev; hub != NULL; hub = hub->ud_myhub) {
3641 uint32_t dep;
3642
3643 DPRINTFN(4, "hub %#jx depth %jd upport %#jx upportno %jd",
3644 (uintptr_t)hub, hub->ud_depth, (uintptr_t)hub->ud_powersrc,
3645 hub->ud_powersrc ? (uintptr_t)hub->ud_powersrc->up_portno :
3646 -1);
3647
3648 if (hub->ud_powersrc == NULL)
3649 break;
3650 dep = hub->ud_depth;
3651 if (dep == 0)
3652 break;
3653 rhport = hub->ud_powersrc->up_portno;
3654 if (dep > USB_HUB_MAX_DEPTH)
3655 continue;
3656
3657 route |=
3658 (rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport)
3659 << ((dep - 1) * 4);
3660 }
3661 route = route >> 4;
3662 size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1;
3663
3664 /* Locate port on upstream high speed hub */
3665 for (adev = dev, hub = up->up_parent;
3666 hub != NULL && hub->ud_speed != USB_SPEED_HIGH;
3667 adev = hub, hub = hub->ud_myhub)
3668 ;
3669 if (hub) {
3670 int p;
3671 for (p = 1; p <= hub->ud_hub->uh_hubdesc.bNbrPorts; p++) {
3672 if (hub->ud_hub->uh_ports[p - 1].up_dev == adev) {
3673 dev->ud_myhsport = &hub->ud_hub->uh_ports[p - 1];
3674 goto found;
3675 }
3676 }
3677 panic("%s: cannot find HS port", __func__);
3678 found:
3679 DPRINTFN(4, "high speed port %jd", p, 0, 0, 0);
3680 } else {
3681 dev->ud_myhsport = NULL;
3682 }
3683
3684 const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport);
3685
3686 DPRINTFN(4, "rhport %ju ctlrport %ju Route %05jx hub %#jx", rhport,
3687 ctlrport, route, (uintptr_t)hub);
3688
3689 cp[0] |= XHCI_SCTX_0_ROUTE_SET(route);
3690 cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport);
3691 }
3692
3693 /*
3694 * Setup whether device is hub, whether device uses MTT, and
3695 * TT informations if it uses MTT.
3696 */
3697 static void
3698 xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp)
3699 {
3700 struct usbd_device *dev = pipe->up_dev;
3701 struct usbd_port *myhsport = dev->ud_myhsport;
3702 usb_device_descriptor_t * const dd = &dev->ud_ddesc;
3703 uint32_t speed = dev->ud_speed;
3704 uint8_t rhaddr = dev->ud_bus->ub_rhaddr;
3705 uint8_t tthubslot, ttportnum;
3706 bool ishub;
3707 bool usemtt;
3708
3709 XHCIHIST_FUNC();
3710
3711 /*
3712 * 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2
3713 * tthubslot:
3714 * This is the slot ID of parent HS hub
3715 * if LS/FS device is connected && connected through HS hub.
3716 * This is 0 if device is not LS/FS device ||
3717 * parent hub is not HS hub ||
3718 * attached to root hub.
3719 * ttportnum:
3720 * This is the downstream facing port of parent HS hub
3721 * if LS/FS device is connected.
3722 * This is 0 if device is not LS/FS device ||
3723 * parent hub is not HS hub ||
3724 * attached to root hub.
3725 */
3726 if (myhsport &&
3727 myhsport->up_parent->ud_addr != rhaddr &&
3728 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
3729 ttportnum = myhsport->up_portno;
3730 tthubslot = myhsport->up_parent->ud_addr;
3731 } else {
3732 ttportnum = 0;
3733 tthubslot = 0;
3734 }
3735 XHCIHIST_CALLARGS("myhsport %#jx ttportnum=%jd tthubslot=%jd",
3736 (uintptr_t)myhsport, ttportnum, tthubslot, 0);
3737
3738 /* ishub is valid after reading UDESC_DEVICE */
3739 ishub = (dd->bDeviceClass == UDCLASS_HUB);
3740
3741 /* dev->ud_hub is valid after reading UDESC_HUB */
3742 if (ishub && dev->ud_hub) {
3743 usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc;
3744 uint8_t ttt =
3745 __SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK);
3746
3747 cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts);
3748 cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt);
3749 DPRINTFN(4, "nports=%jd ttt=%jd", hd->bNbrPorts, ttt, 0, 0);
3750 }
3751
3752 #define IS_MTTHUB(dd) \
3753 ((dd)->bDeviceProtocol == UDPROTO_HSHUBMTT)
3754
3755 /*
3756 * MTT flag is set if
3757 * 1. this is HS hub && MTTs are supported and enabled; or
3758 * 2. this is LS or FS device && there is a parent HS hub where MTTs
3759 * are supported and enabled.
3760 *
3761 * XXX enabled is not tested yet
3762 */
3763 if (ishub && speed == USB_SPEED_HIGH && IS_MTTHUB(dd))
3764 usemtt = true;
3765 else if ((speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) &&
3766 myhsport &&
3767 myhsport->up_parent->ud_addr != rhaddr &&
3768 IS_MTTHUB(&myhsport->up_parent->ud_ddesc))
3769 usemtt = true;
3770 else
3771 usemtt = false;
3772 DPRINTFN(4, "class %ju proto %ju ishub %jd usemtt %jd",
3773 dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt);
3774
3775 #undef IS_MTTHUB
3776
3777 cp[0] |=
3778 XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) |
3779 XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0);
3780 cp[2] |=
3781 XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) |
3782 XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum);
3783 }
3784
3785 /* set up params for periodic endpoint */
3786 static void
3787 xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp)
3788 {
3789 struct xhci_pipe * const xpipe = (struct xhci_pipe *)pipe;
3790 struct usbd_device *dev = pipe->up_dev;
3791 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3792 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3793 usbd_desc_iter_t iter;
3794 const usb_cdc_descriptor_t *cdcd;
3795 uint32_t maxb = 0;
3796 uint16_t mps = UGETW(ed->wMaxPacketSize);
3797 uint8_t speed = dev->ud_speed;
3798 uint8_t mult = 0;
3799 uint8_t ep;
3800
3801 /* config desc is NULL when opening ep0 */
3802 if (dev == NULL || dev->ud_cdesc == NULL)
3803 goto no_cdcd;
3804 cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev,
3805 UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY);
3806 if (cdcd == NULL)
3807 goto no_cdcd;
3808 usb_desc_iter_init(dev, &iter);
3809 iter.cur = (const void *)cdcd;
3810
3811 /* find endpoint_ss_comp desc for ep of this pipe */
3812 for (ep = 0;;) {
3813 cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter);
3814 if (cdcd == NULL)
3815 break;
3816 if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) {
3817 ep = ((const usb_endpoint_descriptor_t *)cdcd)->
3818 bEndpointAddress;
3819 if (UE_GET_ADDR(ep) ==
3820 UE_GET_ADDR(ed->bEndpointAddress)) {
3821 cdcd = (const usb_cdc_descriptor_t *)
3822 usb_desc_iter_next(&iter);
3823 break;
3824 }
3825 ep = 0;
3826 }
3827 }
3828 if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) {
3829 const usb_endpoint_ss_comp_descriptor_t * esscd =
3830 (const usb_endpoint_ss_comp_descriptor_t *)cdcd;
3831 maxb = esscd->bMaxBurst;
3832 mult = UE_GET_SS_ISO_MULT(esscd->bmAttributes);
3833 }
3834
3835 no_cdcd:
3836 /* 6.2.3.4, 4.8.2.4 */
3837 if (USB_IS_SS(speed)) {
3838 /* USB 3.1 9.6.6 */
3839 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps);
3840 /* USB 3.1 9.6.7 */
3841 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3842 #ifdef notyet
3843 if (xfertype == UE_ISOCHRONOUS) {
3844 }
3845 if (XHCI_HCC2_LEC(sc->sc_hcc2) != 0) {
3846 /* use ESIT */
3847 cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(x);
3848 cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(x);
3849
3850 /* XXX if LEC = 1, set ESIT instead */
3851 cp[0] |= XHCI_EPCTX_0_MULT_SET(0);
3852 } else {
3853 /* use ival */
3854 }
3855 #endif
3856 } else {
3857 /* USB 2.0 9.6.6 */
3858 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(UE_GET_SIZE(mps));
3859
3860 /* 6.2.3.4 */
3861 if (speed == USB_SPEED_HIGH &&
3862 (xfertype == UE_ISOCHRONOUS || xfertype == UE_INTERRUPT)) {
3863 maxb = UE_GET_TRANS(mps);
3864 } else {
3865 /* LS/FS or HS CTRL or HS BULK */
3866 maxb = 0;
3867 }
3868 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3869 }
3870 xpipe->xp_maxb = maxb + 1;
3871 xpipe->xp_mult = mult + 1;
3872 }
3873
3874 /*
3875 * Convert endpoint bInterval value to endpoint context interval value
3876 * for Interrupt pipe.
3877 * xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6
3878 */
3879 static uint32_t
3880 xhci_bival2ival(uint32_t ival, uint32_t speed)
3881 {
3882 if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
3883 int i;
3884
3885 /*
3886 * round ival down to "the nearest base 2 multiple of
3887 * bInterval * 8".
3888 * bInterval is at most 255 as its type is uByte.
3889 * 255(ms) = 2040(x 125us) < 2^11, so start with 10.
3890 */
3891 for (i = 10; i > 0; i--) {
3892 if ((ival * 8) >= (1 << i))
3893 break;
3894 }
3895 ival = i;
3896 } else {
3897 /* Interval = bInterval-1 for SS/HS */
3898 ival--;
3899 }
3900
3901 return ival;
3902 }
3903
3904 /* ----- */
3905
3906 static void
3907 xhci_noop(struct usbd_pipe *pipe)
3908 {
3909 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3910 }
3911
3912 /*
3913 * Process root hub request.
3914 */
3915 static int
3916 xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3917 void *buf, int buflen)
3918 {
3919 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
3920 usb_port_status_t ps;
3921 int l, totlen = 0;
3922 uint16_t len, value, index;
3923 int port, i;
3924 uint32_t v;
3925
3926 XHCIHIST_FUNC();
3927
3928 if (sc->sc_dying)
3929 return -1;
3930
3931 size_t bn = bus == &sc->sc_bus ? 0 : 1;
3932
3933 len = UGETW(req->wLength);
3934 value = UGETW(req->wValue);
3935 index = UGETW(req->wIndex);
3936
3937 XHCIHIST_CALLARGS("rhreq: %04jx %04jx %04jx %04jx",
3938 req->bmRequestType | (req->bRequest << 8), value, index, len);
3939
3940 #define C(x,y) ((x) | ((y) << 8))
3941 switch (C(req->bRequest, req->bmRequestType)) {
3942 case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
3943 DPRINTFN(8, "getdesc: wValue=0x%04jx", value, 0, 0, 0);
3944 if (len == 0)
3945 break;
3946 switch (value) {
3947 #define sd ((usb_string_descriptor_t *)buf)
3948 case C(2, UDESC_STRING):
3949 /* Product */
3950 totlen = usb_makestrdesc(sd, len, "xHCI root hub");
3951 break;
3952 #undef sd
3953 default:
3954 /* default from usbroothub */
3955 return buflen;
3956 }
3957 break;
3958
3959 /* Hub requests */
3960 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
3961 break;
3962 /* Clear Port Feature request */
3963 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): {
3964 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3965
3966 DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%jd feat=%jd bus=%jd cp=%jd",
3967 index, value, bn, cp);
3968 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3969 return -1;
3970 }
3971 port = XHCI_PORTSC(cp);
3972 v = xhci_op_read_4(sc, port);
3973 DPRINTFN(4, "portsc=0x%08jx", v, 0, 0, 0);
3974 v &= ~XHCI_PS_CLEAR;
3975 switch (value) {
3976 case UHF_PORT_ENABLE:
3977 xhci_op_write_4(sc, port, v & ~XHCI_PS_PED);
3978 break;
3979 case UHF_PORT_SUSPEND:
3980 return -1;
3981 case UHF_PORT_POWER:
3982 break;
3983 case UHF_PORT_TEST:
3984 case UHF_PORT_INDICATOR:
3985 return -1;
3986 case UHF_C_PORT_CONNECTION:
3987 xhci_op_write_4(sc, port, v | XHCI_PS_CSC);
3988 break;
3989 case UHF_C_PORT_ENABLE:
3990 case UHF_C_PORT_SUSPEND:
3991 case UHF_C_PORT_OVER_CURRENT:
3992 return -1;
3993 case UHF_C_BH_PORT_RESET:
3994 xhci_op_write_4(sc, port, v | XHCI_PS_WRC);
3995 break;
3996 case UHF_C_PORT_RESET:
3997 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
3998 break;
3999 case UHF_C_PORT_LINK_STATE:
4000 xhci_op_write_4(sc, port, v | XHCI_PS_PLC);
4001 break;
4002 case UHF_C_PORT_CONFIG_ERROR:
4003 xhci_op_write_4(sc, port, v | XHCI_PS_CEC);
4004 break;
4005 default:
4006 return -1;
4007 }
4008 break;
4009 }
4010 case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
4011 if (len == 0)
4012 break;
4013 if ((value & 0xff) != 0) {
4014 return -1;
4015 }
4016 usb_hub_descriptor_t hubd;
4017
4018 totlen = uimin(buflen, sizeof(hubd));
4019 memcpy(&hubd, buf, totlen);
4020 hubd.bNbrPorts = sc->sc_rhportcount[bn];
4021 USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH);
4022 hubd.bPwrOn2PwrGood = 200;
4023 for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) {
4024 /* XXX can't find out? */
4025 hubd.DeviceRemovable[i++] = 0;
4026 }
4027 hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
4028 totlen = uimin(totlen, hubd.bDescLength);
4029 memcpy(buf, &hubd, totlen);
4030 break;
4031 case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
4032 if (len != 4) {
4033 return -1;
4034 }
4035 memset(buf, 0, len); /* ? XXX */
4036 totlen = len;
4037 break;
4038 /* Get Port Status request */
4039 case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
4040 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
4041
4042 DPRINTFN(8, "get port status bn=%jd i=%jd cp=%ju",
4043 bn, index, cp, 0);
4044 if (index < 1 || index > sc->sc_rhportcount[bn]) {
4045 DPRINTFN(5, "bad get port status: index=%jd bn=%jd "
4046 "portcount=%jd",
4047 index, bn, sc->sc_rhportcount[bn], 0);
4048 return -1;
4049 }
4050 if (len != 4) {
4051 DPRINTFN(5, "bad get port status: len %jd != 4",
4052 len, 0, 0, 0);
4053 return -1;
4054 }
4055 v = xhci_op_read_4(sc, XHCI_PORTSC(cp));
4056 DPRINTFN(4, "getrhportsc %jd 0x%08jx", cp, v, 0, 0);
4057 i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v));
4058 if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS;
4059 if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED;
4060 if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR;
4061 //if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND;
4062 if (v & XHCI_PS_PR) i |= UPS_RESET;
4063 if (v & XHCI_PS_PP) {
4064 if (i & UPS_OTHER_SPEED)
4065 i |= UPS_PORT_POWER_SS;
4066 else
4067 i |= UPS_PORT_POWER;
4068 }
4069 if (i & UPS_OTHER_SPEED)
4070 i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v));
4071 if (sc->sc_vendor_port_status)
4072 i = sc->sc_vendor_port_status(sc, v, i);
4073 USETW(ps.wPortStatus, i);
4074 i = 0;
4075 if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS;
4076 if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED;
4077 if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR;
4078 if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET;
4079 if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET;
4080 if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE;
4081 if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR;
4082 USETW(ps.wPortChange, i);
4083 totlen = uimin(len, sizeof(ps));
4084 memcpy(buf, &ps, totlen);
4085 DPRINTFN(5, "get port status: wPortStatus %#jx wPortChange %#jx"
4086 " totlen %jd",
4087 UGETW(ps.wPortStatus), UGETW(ps.wPortChange), totlen, 0);
4088 break;
4089 }
4090 case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
4091 return -1;
4092 case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE):
4093 break;
4094 case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
4095 break;
4096 /* Set Port Feature request */
4097 case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): {
4098 int optval = (index >> 8) & 0xff;
4099 index &= 0xff;
4100 if (index < 1 || index > sc->sc_rhportcount[bn]) {
4101 return -1;
4102 }
4103
4104 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
4105
4106 port = XHCI_PORTSC(cp);
4107 v = xhci_op_read_4(sc, port);
4108 DPRINTFN(4, "index %jd cp %jd portsc=0x%08jx", index, cp, v, 0);
4109 v &= ~XHCI_PS_CLEAR;
4110 switch (value) {
4111 case UHF_PORT_ENABLE:
4112 xhci_op_write_4(sc, port, v | XHCI_PS_PED);
4113 break;
4114 case UHF_PORT_SUSPEND:
4115 /* XXX suspend */
4116 break;
4117 case UHF_PORT_RESET:
4118 v &= ~(XHCI_PS_PED | XHCI_PS_PR);
4119 xhci_op_write_4(sc, port, v | XHCI_PS_PR);
4120 /* Wait for reset to complete. */
4121 usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
4122 if (sc->sc_dying) {
4123 return -1;
4124 }
4125 v = xhci_op_read_4(sc, port);
4126 if (v & XHCI_PS_PR) {
4127 xhci_op_write_4(sc, port, v & ~XHCI_PS_PR);
4128 usb_delay_ms(&sc->sc_bus, 10);
4129 /* XXX */
4130 }
4131 break;
4132 case UHF_PORT_POWER:
4133 /* XXX power control */
4134 break;
4135 /* XXX more */
4136 case UHF_C_PORT_RESET:
4137 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
4138 break;
4139 case UHF_PORT_U1_TIMEOUT:
4140 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
4141 return -1;
4142 }
4143 port = XHCI_PORTPMSC(cp);
4144 v = xhci_op_read_4(sc, port);
4145 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
4146 index, cp, v, 0);
4147 v &= ~XHCI_PM3_U1TO_SET(0xff);
4148 v |= XHCI_PM3_U1TO_SET(optval);
4149 xhci_op_write_4(sc, port, v);
4150 break;
4151 case UHF_PORT_U2_TIMEOUT:
4152 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
4153 return -1;
4154 }
4155 port = XHCI_PORTPMSC(cp);
4156 v = xhci_op_read_4(sc, port);
4157 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
4158 index, cp, v, 0);
4159 v &= ~XHCI_PM3_U2TO_SET(0xff);
4160 v |= XHCI_PM3_U2TO_SET(optval);
4161 xhci_op_write_4(sc, port, v);
4162 break;
4163 default:
4164 return -1;
4165 }
4166 }
4167 break;
4168 case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
4169 case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
4170 case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
4171 case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
4172 break;
4173 default:
4174 /* default from usbroothub */
4175 return buflen;
4176 }
4177
4178 return totlen;
4179 }
4180
4181 /* root hub interrupt */
4182
4183 static usbd_status
4184 xhci_root_intr_transfer(struct usbd_xfer *xfer)
4185 {
4186 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4187 usbd_status err;
4188
4189 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4190
4191 /* Insert last in queue. */
4192 mutex_enter(&sc->sc_lock);
4193 err = usb_insert_transfer(xfer);
4194 mutex_exit(&sc->sc_lock);
4195 if (err)
4196 return err;
4197
4198 /* Pipe isn't running, start first */
4199 return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4200 }
4201
4202 /* Wait for roothub port status/change */
4203 static usbd_status
4204 xhci_root_intr_start(struct usbd_xfer *xfer)
4205 {
4206 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4207 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4208 const bool polling = xhci_polling_p(sc);
4209
4210 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4211
4212 if (sc->sc_dying)
4213 return USBD_IOERROR;
4214
4215 if (!polling)
4216 mutex_enter(&sc->sc_lock);
4217 KASSERT(sc->sc_intrxfer[bn] == NULL);
4218 sc->sc_intrxfer[bn] = xfer;
4219 xfer->ux_status = USBD_IN_PROGRESS;
4220 if (!polling)
4221 mutex_exit(&sc->sc_lock);
4222
4223 return USBD_IN_PROGRESS;
4224 }
4225
4226 static void
4227 xhci_root_intr_abort(struct usbd_xfer *xfer)
4228 {
4229 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4230 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4231
4232 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4233
4234 KASSERT(mutex_owned(&sc->sc_lock));
4235 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
4236
4237 /* If xfer has already completed, nothing to do here. */
4238 if (sc->sc_intrxfer[bn] == NULL)
4239 return;
4240
4241 /*
4242 * Otherwise, sc->sc_intrxfer[bn] had better be this transfer.
4243 * Cancel it.
4244 */
4245 KASSERT(sc->sc_intrxfer[bn] == xfer);
4246 xfer->ux_status = USBD_CANCELLED;
4247 usb_transfer_complete(xfer);
4248 }
4249
4250 static void
4251 xhci_root_intr_close(struct usbd_pipe *pipe)
4252 {
4253 struct xhci_softc * const sc __diagused = XHCI_PIPE2SC(pipe);
4254 const struct usbd_xfer *xfer __diagused = pipe->up_intrxfer;
4255 const size_t bn __diagused = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4256
4257 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4258
4259 KASSERT(mutex_owned(&sc->sc_lock));
4260
4261 /*
4262 * Caller must guarantee the xfer has completed first, by
4263 * closing the pipe only after normal completion or an abort.
4264 */
4265 KASSERT(sc->sc_intrxfer[bn] == NULL);
4266 }
4267
4268 static void
4269 xhci_root_intr_done(struct usbd_xfer *xfer)
4270 {
4271 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4272 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4273
4274 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4275
4276 KASSERT(mutex_owned(&sc->sc_lock));
4277
4278 /* Claim the xfer so it doesn't get completed again. */
4279 KASSERT(sc->sc_intrxfer[bn] == xfer);
4280 KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
4281 sc->sc_intrxfer[bn] = NULL;
4282 }
4283
4284 /* -------------- */
4285 /* device control */
4286
4287 static usbd_status
4288 xhci_device_ctrl_transfer(struct usbd_xfer *xfer)
4289 {
4290 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4291 usbd_status err;
4292
4293 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4294
4295 /* Insert last in queue. */
4296 mutex_enter(&sc->sc_lock);
4297 err = usb_insert_transfer(xfer);
4298 mutex_exit(&sc->sc_lock);
4299 if (err)
4300 return err;
4301
4302 /* Pipe isn't running, start first */
4303 return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4304 }
4305
4306 static usbd_status
4307 xhci_device_ctrl_start(struct usbd_xfer *xfer)
4308 {
4309 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4310 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4311 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4312 struct xhci_ring * const tr = xs->xs_xr[dci];
4313 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4314 usb_device_request_t * const req = &xfer->ux_request;
4315 const bool isread = usbd_xfer_isread(xfer);
4316 const uint32_t len = UGETW(req->wLength);
4317 usb_dma_t * const dma = &xfer->ux_dmabuf;
4318 uint64_t parameter;
4319 uint32_t status;
4320 uint32_t control;
4321 u_int i;
4322 const bool polling = xhci_polling_p(sc);
4323
4324 XHCIHIST_FUNC();
4325 XHCIHIST_CALLARGS("req: %04jx %04jx %04jx %04jx",
4326 req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue),
4327 UGETW(req->wIndex), UGETW(req->wLength));
4328
4329 /* we rely on the bottom bits for extra info */
4330 KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %zx",
4331 (uintptr_t) xfer);
4332
4333 KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0);
4334
4335 i = 0;
4336
4337 /* setup phase */
4338 parameter = le64dec(req); /* to keep USB endian after xhci_trb_put() */
4339 status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req));
4340 control = ((len == 0) ? XHCI_TRB_3_TRT_NONE :
4341 (isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) |
4342 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
4343 XHCI_TRB_3_IDT_BIT;
4344 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4345
4346 if (len != 0) {
4347 /* data phase */
4348 parameter = DMAADDR(dma, 0);
4349 KASSERTMSG(len <= 0x10000, "len %d", len);
4350 status = XHCI_TRB_2_IRQ_SET(0) |
4351 XHCI_TRB_2_TDSZ_SET(0) |
4352 XHCI_TRB_2_BYTES_SET(len);
4353 control = (isread ? XHCI_TRB_3_DIR_IN : 0) |
4354 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) |
4355 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4356 XHCI_TRB_3_IOC_BIT;
4357 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4358
4359 usb_syncmem(dma, 0, len,
4360 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4361 }
4362
4363 parameter = 0;
4364 status = XHCI_TRB_2_IRQ_SET(0);
4365 /* the status stage has inverted direction */
4366 control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) |
4367 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) |
4368 XHCI_TRB_3_IOC_BIT;
4369 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4370
4371 if (!polling)
4372 mutex_enter(&tr->xr_lock);
4373 xhci_ring_put_xfer(sc, tr, xx, i);
4374 if (!polling)
4375 mutex_exit(&tr->xr_lock);
4376
4377 if (!polling)
4378 mutex_enter(&sc->sc_lock);
4379 xfer->ux_status = USBD_IN_PROGRESS;
4380 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4381 usbd_xfer_schedule_timeout(xfer);
4382 if (!polling)
4383 mutex_exit(&sc->sc_lock);
4384
4385 return USBD_IN_PROGRESS;
4386 }
4387
4388 static void
4389 xhci_device_ctrl_done(struct usbd_xfer *xfer)
4390 {
4391 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4392 usb_device_request_t *req = &xfer->ux_request;
4393 int len = UGETW(req->wLength);
4394 int rd = req->bmRequestType & UT_READ;
4395
4396 if (len)
4397 usb_syncmem(&xfer->ux_dmabuf, 0, len,
4398 rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4399 }
4400
4401 static void
4402 xhci_device_ctrl_abort(struct usbd_xfer *xfer)
4403 {
4404 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4405
4406 usbd_xfer_abort(xfer);
4407 }
4408
4409 static void
4410 xhci_device_ctrl_close(struct usbd_pipe *pipe)
4411 {
4412 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4413
4414 xhci_close_pipe(pipe);
4415 }
4416
4417 /* ------------------ */
4418 /* device isochronous */
4419
4420 static usbd_status
4421 xhci_device_isoc_transfer(struct usbd_xfer *xfer)
4422 {
4423 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4424 usbd_status err;
4425
4426 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4427
4428 /* Insert last in queue. */
4429 mutex_enter(&sc->sc_lock);
4430 err = usb_insert_transfer(xfer);
4431 mutex_exit(&sc->sc_lock);
4432 if (err)
4433 return err;
4434
4435 return xhci_device_isoc_enter(xfer);
4436 }
4437
4438 static usbd_status
4439 xhci_device_isoc_enter(struct usbd_xfer *xfer)
4440 {
4441 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4442 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4443 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4444 struct xhci_ring * const tr = xs->xs_xr[dci];
4445 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4446 struct xhci_pipe * const xpipe = (struct xhci_pipe *)xfer->ux_pipe;
4447 uint32_t len = xfer->ux_length;
4448 usb_dma_t * const dma = &xfer->ux_dmabuf;
4449 uint64_t parameter;
4450 uint32_t status;
4451 uint32_t control;
4452 uint32_t mfindex;
4453 uint32_t offs;
4454 int i, ival;
4455 const bool polling = xhci_polling_p(sc);
4456 const uint16_t MPS = UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize);
4457 const uint16_t mps = UE_GET_SIZE(MPS);
4458 const uint8_t maxb = xpipe->xp_maxb;
4459 u_int tdpc, tbc, tlbpc;
4460
4461 XHCIHIST_FUNC();
4462 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4463 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4464
4465 if (sc->sc_dying)
4466 return USBD_IOERROR;
4467
4468 KASSERT(xfer->ux_nframes != 0 && xfer->ux_frlengths);
4469 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4470
4471 const bool isread = usbd_xfer_isread(xfer);
4472 if (xfer->ux_length)
4473 usb_syncmem(dma, 0, xfer->ux_length,
4474 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4475
4476 ival = xfer->ux_pipe->up_endpoint->ue_edesc->bInterval;
4477 if (ival >= 1 && ival <= 16)
4478 ival = 1 << (ival - 1);
4479 else
4480 ival = 1; /* fake something up */
4481
4482 if (xpipe->xp_isoc_next == -1) {
4483 mfindex = xhci_rt_read_4(sc, XHCI_MFINDEX);
4484 DPRINTF("mfindex %jx", (uintmax_t)mfindex, 0, 0, 0);
4485 mfindex = XHCI_MFINDEX_GET(mfindex + 1);
4486 mfindex /= USB_UFRAMES_PER_FRAME;
4487 mfindex += 7; /* 7 frames is max possible IST */
4488 xpipe->xp_isoc_next = roundup2(mfindex, ival);
4489 }
4490
4491 offs = 0;
4492 for (i = 0; i < xfer->ux_nframes; i++) {
4493 len = xfer->ux_frlengths[i];
4494
4495 tdpc = howmany(len, mps);
4496 tbc = howmany(tdpc, maxb) - 1;
4497 tlbpc = tdpc % maxb;
4498 tlbpc = tlbpc ? tlbpc - 1 : maxb - 1;
4499
4500 KASSERTMSG(len <= 0x10000, "len %d", len);
4501 parameter = DMAADDR(dma, offs);
4502 status = XHCI_TRB_2_IRQ_SET(0) |
4503 XHCI_TRB_2_TDSZ_SET(0) |
4504 XHCI_TRB_2_BYTES_SET(len);
4505 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ISOCH) |
4506 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4507 XHCI_TRB_3_TBC_SET(tbc) |
4508 XHCI_TRB_3_TLBPC_SET(tlbpc) |
4509 XHCI_TRB_3_IOC_BIT;
4510 if (XHCI_HCC_CFC(sc->sc_hcc)) {
4511 control |= XHCI_TRB_3_FRID_SET(xpipe->xp_isoc_next);
4512 #if 0
4513 } else if (xpipe->xp_isoc_next == -1) {
4514 control |= XHCI_TRB_3_FRID_SET(xpipe->xp_isoc_next);
4515 #endif
4516 } else {
4517 control |= XHCI_TRB_3_ISO_SIA_BIT;
4518 }
4519 #if 0
4520 if (i != xfer->ux_nframes - 1)
4521 control |= XHCI_TRB_3_BEI_BIT;
4522 #endif
4523 xhci_xfer_put_trb(xx, i, parameter, status, control);
4524
4525 xpipe->xp_isoc_next += ival;
4526 offs += len;
4527 }
4528
4529 xx->xx_isoc_done = 0;
4530
4531 if (!polling)
4532 mutex_enter(&tr->xr_lock);
4533 xhci_ring_put_xfer(sc, tr, xx, i);
4534 if (!polling)
4535 mutex_exit(&tr->xr_lock);
4536
4537 if (!polling)
4538 mutex_enter(&sc->sc_lock);
4539 xfer->ux_status = USBD_IN_PROGRESS;
4540 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4541 usbd_xfer_schedule_timeout(xfer);
4542 if (!polling)
4543 mutex_exit(&sc->sc_lock);
4544
4545 return USBD_IN_PROGRESS;
4546 }
4547
4548 static void
4549 xhci_device_isoc_abort(struct usbd_xfer *xfer)
4550 {
4551 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4552
4553 usbd_xfer_abort(xfer);
4554 }
4555
4556 static void
4557 xhci_device_isoc_close(struct usbd_pipe *pipe)
4558 {
4559 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4560
4561 xhci_close_pipe(pipe);
4562 }
4563
4564 static void
4565 xhci_device_isoc_done(struct usbd_xfer *xfer)
4566 {
4567 #ifdef USB_DEBUG
4568 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4569 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4570 #endif
4571 const bool isread = usbd_xfer_isread(xfer);
4572
4573 XHCIHIST_FUNC();
4574 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4575 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4576
4577 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4578 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4579 }
4580
4581 /* ----------- */
4582 /* device bulk */
4583
4584 static usbd_status
4585 xhci_device_bulk_transfer(struct usbd_xfer *xfer)
4586 {
4587 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4588 usbd_status err;
4589
4590 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4591
4592 /* Insert last in queue. */
4593 mutex_enter(&sc->sc_lock);
4594 err = usb_insert_transfer(xfer);
4595 mutex_exit(&sc->sc_lock);
4596 if (err)
4597 return err;
4598
4599 /*
4600 * Pipe isn't running (otherwise err would be USBD_INPROG),
4601 * so start it first.
4602 */
4603 return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4604 }
4605
4606 static usbd_status
4607 xhci_device_bulk_start(struct usbd_xfer *xfer)
4608 {
4609 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4610 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4611 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4612 struct xhci_ring * const tr = xs->xs_xr[dci];
4613 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4614 const uint32_t len = xfer->ux_length;
4615 usb_dma_t * const dma = &xfer->ux_dmabuf;
4616 uint64_t parameter;
4617 uint32_t status;
4618 uint32_t control;
4619 u_int i = 0;
4620 const bool polling = xhci_polling_p(sc);
4621
4622 XHCIHIST_FUNC();
4623 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4624 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4625
4626 if (sc->sc_dying)
4627 return USBD_IOERROR;
4628
4629 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4630
4631 parameter = DMAADDR(dma, 0);
4632 const bool isread = usbd_xfer_isread(xfer);
4633 if (len)
4634 usb_syncmem(dma, 0, len,
4635 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4636
4637 /*
4638 * XXX: (dsl) The physical buffer must not cross a 64k boundary.
4639 * If the user supplied buffer crosses such a boundary then 2
4640 * (or more) TRB should be used.
4641 * If multiple TRB are used the td_size field must be set correctly.
4642 * For v1.0 devices (like ivy bridge) this is the number of usb data
4643 * blocks needed to complete the transfer.
4644 * Setting it to 1 in the last TRB causes an extra zero-length
4645 * data block be sent.
4646 * The earlier documentation differs, I don't know how it behaves.
4647 */
4648 KASSERTMSG(len <= 0x10000, "len %d", len);
4649 status = XHCI_TRB_2_IRQ_SET(0) |
4650 XHCI_TRB_2_TDSZ_SET(0) |
4651 XHCI_TRB_2_BYTES_SET(len);
4652 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4653 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4654 XHCI_TRB_3_IOC_BIT;
4655 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4656
4657 if (!polling)
4658 mutex_enter(&tr->xr_lock);
4659 xhci_ring_put_xfer(sc, tr, xx, i);
4660 if (!polling)
4661 mutex_exit(&tr->xr_lock);
4662
4663 if (!polling)
4664 mutex_enter(&sc->sc_lock);
4665 xfer->ux_status = USBD_IN_PROGRESS;
4666 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4667 usbd_xfer_schedule_timeout(xfer);
4668 if (!polling)
4669 mutex_exit(&sc->sc_lock);
4670
4671 return USBD_IN_PROGRESS;
4672 }
4673
4674 static void
4675 xhci_device_bulk_done(struct usbd_xfer *xfer)
4676 {
4677 #ifdef USB_DEBUG
4678 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4679 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4680 #endif
4681 const bool isread = usbd_xfer_isread(xfer);
4682
4683 XHCIHIST_FUNC();
4684 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4685 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4686
4687 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4688 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4689 }
4690
4691 static void
4692 xhci_device_bulk_abort(struct usbd_xfer *xfer)
4693 {
4694 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4695
4696 usbd_xfer_abort(xfer);
4697 }
4698
4699 static void
4700 xhci_device_bulk_close(struct usbd_pipe *pipe)
4701 {
4702 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4703
4704 xhci_close_pipe(pipe);
4705 }
4706
4707 /* ---------------- */
4708 /* device interrupt */
4709
4710 static usbd_status
4711 xhci_device_intr_transfer(struct usbd_xfer *xfer)
4712 {
4713 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4714 usbd_status err;
4715
4716 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4717
4718 /* Insert last in queue. */
4719 mutex_enter(&sc->sc_lock);
4720 err = usb_insert_transfer(xfer);
4721 mutex_exit(&sc->sc_lock);
4722 if (err)
4723 return err;
4724
4725 /*
4726 * Pipe isn't running (otherwise err would be USBD_INPROG),
4727 * so start it first.
4728 */
4729 return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4730 }
4731
4732 static usbd_status
4733 xhci_device_intr_start(struct usbd_xfer *xfer)
4734 {
4735 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4736 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4737 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4738 struct xhci_ring * const tr = xs->xs_xr[dci];
4739 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4740 const uint32_t len = xfer->ux_length;
4741 const bool polling = xhci_polling_p(sc);
4742 usb_dma_t * const dma = &xfer->ux_dmabuf;
4743 uint64_t parameter;
4744 uint32_t status;
4745 uint32_t control;
4746 u_int i = 0;
4747
4748 XHCIHIST_FUNC();
4749 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4750 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4751
4752 if (sc->sc_dying)
4753 return USBD_IOERROR;
4754
4755 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4756
4757 const bool isread = usbd_xfer_isread(xfer);
4758 if (len)
4759 usb_syncmem(dma, 0, len,
4760 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4761
4762 parameter = DMAADDR(dma, 0);
4763 KASSERTMSG(len <= 0x10000, "len %d", len);
4764 status = XHCI_TRB_2_IRQ_SET(0) |
4765 XHCI_TRB_2_TDSZ_SET(0) |
4766 XHCI_TRB_2_BYTES_SET(len);
4767 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4768 (isread ? XHCI_TRB_3_ISP_BIT : 0) | XHCI_TRB_3_IOC_BIT;
4769 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4770
4771 if (!polling)
4772 mutex_enter(&tr->xr_lock);
4773 xhci_ring_put_xfer(sc, tr, xx, i);
4774 if (!polling)
4775 mutex_exit(&tr->xr_lock);
4776
4777 if (!polling)
4778 mutex_enter(&sc->sc_lock);
4779 xfer->ux_status = USBD_IN_PROGRESS;
4780 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4781 usbd_xfer_schedule_timeout(xfer);
4782 if (!polling)
4783 mutex_exit(&sc->sc_lock);
4784
4785 return USBD_IN_PROGRESS;
4786 }
4787
4788 static void
4789 xhci_device_intr_done(struct usbd_xfer *xfer)
4790 {
4791 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4792 #ifdef USB_DEBUG
4793 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4794 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4795 #endif
4796 const bool isread = usbd_xfer_isread(xfer);
4797
4798 XHCIHIST_FUNC();
4799 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4800 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4801
4802 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
4803
4804 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4805 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4806 }
4807
4808 static void
4809 xhci_device_intr_abort(struct usbd_xfer *xfer)
4810 {
4811 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4812
4813 XHCIHIST_FUNC();
4814 XHCIHIST_CALLARGS("%#jx", (uintptr_t)xfer, 0, 0, 0);
4815
4816 KASSERT(mutex_owned(&sc->sc_lock));
4817 usbd_xfer_abort(xfer);
4818 }
4819
4820 static void
4821 xhci_device_intr_close(struct usbd_pipe *pipe)
4822 {
4823 //struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
4824
4825 XHCIHIST_FUNC();
4826 XHCIHIST_CALLARGS("%#jx", (uintptr_t)pipe, 0, 0, 0);
4827
4828 xhci_close_pipe(pipe);
4829 }
4830