xhci.c revision 1.153 1 /* $NetBSD: xhci.c,v 1.153 2022/01/16 20:25:36 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2013 Jonathan A. Kollasch
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
25 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
26 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * USB rev 2.0 and rev 3.1 specification
31 * http://www.usb.org/developers/docs/
32 * xHCI rev 1.1 specification
33 * http://www.intel.com/technology/usb/spec.htm
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.153 2022/01/16 20:25:36 riastradh Exp $");
38
39 #ifdef _KERNEL_OPT
40 #include "opt_usb.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/device.h>
48 #include <sys/select.h>
49 #include <sys/proc.h>
50 #include <sys/queue.h>
51 #include <sys/mutex.h>
52 #include <sys/condvar.h>
53 #include <sys/bus.h>
54 #include <sys/cpu.h>
55 #include <sys/sysctl.h>
56
57 #include <machine/endian.h>
58
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdivar.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbhist.h>
64 #include <dev/usb/usb_mem.h>
65 #include <dev/usb/usb_quirks.h>
66
67 #include <dev/usb/xhcireg.h>
68 #include <dev/usb/xhcivar.h>
69 #include <dev/usb/usbroothub.h>
70
71
72 #ifdef USB_DEBUG
73 #ifndef XHCI_DEBUG
74 #define xhcidebug 0
75 #else /* !XHCI_DEBUG */
76 #define HEXDUMP(a, b, c) \
77 do { \
78 if (xhcidebug > 0) \
79 hexdump(printf, a, b, c); \
80 } while (/*CONSTCOND*/0)
81 static int xhcidebug = 0;
82
83 SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup")
84 {
85 int err;
86 const struct sysctlnode *rnode;
87 const struct sysctlnode *cnode;
88
89 err = sysctl_createv(clog, 0, NULL, &rnode,
90 CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci",
91 SYSCTL_DESCR("xhci global controls"),
92 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
93
94 if (err)
95 goto fail;
96
97 /* control debugging printfs */
98 err = sysctl_createv(clog, 0, &rnode, &cnode,
99 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
100 "debug", SYSCTL_DESCR("Enable debugging output"),
101 NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL);
102 if (err)
103 goto fail;
104
105 return;
106 fail:
107 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
108 }
109
110 #endif /* !XHCI_DEBUG */
111 #endif /* USB_DEBUG */
112
113 #ifndef HEXDUMP
114 #define HEXDUMP(a, b, c)
115 #endif
116
117 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(xhcidebug,FMT,A,B,C,D)
118 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D)
119 #define XHCIHIST_FUNC() USBHIST_FUNC()
120 #define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug)
121 #define XHCIHIST_CALLARGS(FMT,A,B,C,D) \
122 USBHIST_CALLARGS(xhcidebug,FMT,A,B,C,D)
123
124 #define XHCI_DCI_SLOT 0
125 #define XHCI_DCI_EP_CONTROL 1
126
127 #define XHCI_ICI_INPUT_CONTROL 0
128
129 struct xhci_pipe {
130 struct usbd_pipe xp_pipe;
131 struct usb_task xp_async_task;
132 int16_t xp_isoc_next; /* next frame */
133 uint8_t xp_maxb; /* max burst */
134 uint8_t xp_mult;
135 };
136
137 #define XHCI_COMMAND_RING_TRBS 256
138 #define XHCI_EVENT_RING_TRBS 256
139 #define XHCI_EVENT_RING_SEGMENTS 1
140 #define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT
141
142 static usbd_status xhci_open(struct usbd_pipe *);
143 static void xhci_close_pipe(struct usbd_pipe *);
144 static int xhci_intr1(struct xhci_softc * const);
145 static void xhci_softintr(void *);
146 static void xhci_poll(struct usbd_bus *);
147 static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int);
148 static void xhci_freex(struct usbd_bus *, struct usbd_xfer *);
149 static void xhci_abortx(struct usbd_xfer *);
150 static bool xhci_dying(struct usbd_bus *);
151 static void xhci_get_lock(struct usbd_bus *, kmutex_t **);
152 static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int,
153 struct usbd_port *);
154 static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
155 void *, int);
156
157 static usbd_status xhci_configure_endpoint(struct usbd_pipe *);
158 //static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *);
159 static usbd_status xhci_reset_endpoint(struct usbd_pipe *);
160 static usbd_status xhci_stop_endpoint_cmd(struct xhci_softc *,
161 struct xhci_slot *, u_int, uint32_t);
162 static usbd_status xhci_stop_endpoint(struct usbd_pipe *);
163
164 static void xhci_host_dequeue(struct xhci_ring * const);
165 static usbd_status xhci_set_dequeue(struct usbd_pipe *);
166
167 static usbd_status xhci_do_command(struct xhci_softc * const,
168 struct xhci_soft_trb * const, int);
169 static usbd_status xhci_do_command_locked(struct xhci_softc * const,
170 struct xhci_soft_trb * const, int);
171 static usbd_status xhci_init_slot(struct usbd_device *, uint32_t);
172 static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *);
173 static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool);
174 static usbd_status xhci_enable_slot(struct xhci_softc * const,
175 uint8_t * const);
176 static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t);
177 static usbd_status xhci_address_device(struct xhci_softc * const,
178 uint64_t, uint8_t, bool);
179 static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int);
180 static usbd_status xhci_update_ep0_mps(struct xhci_softc * const,
181 struct xhci_slot * const, u_int);
182 static usbd_status xhci_ring_init(struct xhci_softc * const,
183 struct xhci_ring **, size_t, size_t);
184 static void xhci_ring_free(struct xhci_softc * const,
185 struct xhci_ring ** const);
186
187 static void xhci_setup_ctx(struct usbd_pipe *);
188 static void xhci_setup_route(struct usbd_pipe *, uint32_t *);
189 static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *);
190 static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *);
191 static uint32_t xhci_bival2ival(uint32_t, uint32_t);
192
193 static void xhci_noop(struct usbd_pipe *);
194
195 static usbd_status xhci_root_intr_transfer(struct usbd_xfer *);
196 static usbd_status xhci_root_intr_start(struct usbd_xfer *);
197 static void xhci_root_intr_abort(struct usbd_xfer *);
198 static void xhci_root_intr_close(struct usbd_pipe *);
199 static void xhci_root_intr_done(struct usbd_xfer *);
200
201 static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *);
202 static usbd_status xhci_device_ctrl_start(struct usbd_xfer *);
203 static void xhci_device_ctrl_abort(struct usbd_xfer *);
204 static void xhci_device_ctrl_close(struct usbd_pipe *);
205 static void xhci_device_ctrl_done(struct usbd_xfer *);
206
207 static usbd_status xhci_device_isoc_transfer(struct usbd_xfer *);
208 static usbd_status xhci_device_isoc_enter(struct usbd_xfer *);
209 static void xhci_device_isoc_abort(struct usbd_xfer *);
210 static void xhci_device_isoc_close(struct usbd_pipe *);
211 static void xhci_device_isoc_done(struct usbd_xfer *);
212
213 static usbd_status xhci_device_intr_transfer(struct usbd_xfer *);
214 static usbd_status xhci_device_intr_start(struct usbd_xfer *);
215 static void xhci_device_intr_abort(struct usbd_xfer *);
216 static void xhci_device_intr_close(struct usbd_pipe *);
217 static void xhci_device_intr_done(struct usbd_xfer *);
218
219 static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *);
220 static usbd_status xhci_device_bulk_start(struct usbd_xfer *);
221 static void xhci_device_bulk_abort(struct usbd_xfer *);
222 static void xhci_device_bulk_close(struct usbd_pipe *);
223 static void xhci_device_bulk_done(struct usbd_xfer *);
224
225 static const struct usbd_bus_methods xhci_bus_methods = {
226 .ubm_open = xhci_open,
227 .ubm_softint = xhci_softintr,
228 .ubm_dopoll = xhci_poll,
229 .ubm_allocx = xhci_allocx,
230 .ubm_freex = xhci_freex,
231 .ubm_abortx = xhci_abortx,
232 .ubm_dying = xhci_dying,
233 .ubm_getlock = xhci_get_lock,
234 .ubm_newdev = xhci_new_device,
235 .ubm_rhctrl = xhci_roothub_ctrl,
236 };
237
238 static const struct usbd_pipe_methods xhci_root_intr_methods = {
239 .upm_transfer = xhci_root_intr_transfer,
240 .upm_start = xhci_root_intr_start,
241 .upm_abort = xhci_root_intr_abort,
242 .upm_close = xhci_root_intr_close,
243 .upm_cleartoggle = xhci_noop,
244 .upm_done = xhci_root_intr_done,
245 };
246
247
248 static const struct usbd_pipe_methods xhci_device_ctrl_methods = {
249 .upm_transfer = xhci_device_ctrl_transfer,
250 .upm_start = xhci_device_ctrl_start,
251 .upm_abort = xhci_device_ctrl_abort,
252 .upm_close = xhci_device_ctrl_close,
253 .upm_cleartoggle = xhci_noop,
254 .upm_done = xhci_device_ctrl_done,
255 };
256
257 static const struct usbd_pipe_methods xhci_device_isoc_methods = {
258 .upm_transfer = xhci_device_isoc_transfer,
259 .upm_abort = xhci_device_isoc_abort,
260 .upm_close = xhci_device_isoc_close,
261 .upm_cleartoggle = xhci_noop,
262 .upm_done = xhci_device_isoc_done,
263 };
264
265 static const struct usbd_pipe_methods xhci_device_bulk_methods = {
266 .upm_transfer = xhci_device_bulk_transfer,
267 .upm_start = xhci_device_bulk_start,
268 .upm_abort = xhci_device_bulk_abort,
269 .upm_close = xhci_device_bulk_close,
270 .upm_cleartoggle = xhci_noop,
271 .upm_done = xhci_device_bulk_done,
272 };
273
274 static const struct usbd_pipe_methods xhci_device_intr_methods = {
275 .upm_transfer = xhci_device_intr_transfer,
276 .upm_start = xhci_device_intr_start,
277 .upm_abort = xhci_device_intr_abort,
278 .upm_close = xhci_device_intr_close,
279 .upm_cleartoggle = xhci_noop,
280 .upm_done = xhci_device_intr_done,
281 };
282
283 static inline uint32_t
284 xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset)
285 {
286 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
287 }
288
289 static inline uint32_t
290 xhci_read_2(const struct xhci_softc * const sc, bus_size_t offset)
291 {
292 return bus_space_read_2(sc->sc_iot, sc->sc_ioh, offset);
293 }
294
295 static inline uint32_t
296 xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset)
297 {
298 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset);
299 }
300
301 static inline void
302 xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset,
303 uint32_t value)
304 {
305 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value);
306 }
307
308 #if 0 /* unused */
309 static inline void
310 xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset,
311 uint32_t value)
312 {
313 bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value);
314 }
315 #endif /* unused */
316
317 static inline void
318 xhci_barrier(const struct xhci_softc * const sc, int flags)
319 {
320 bus_space_barrier(sc->sc_iot, sc->sc_ioh, 0, sc->sc_ios, flags);
321 }
322
323 static inline uint32_t
324 xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset)
325 {
326 return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset);
327 }
328
329 static inline uint32_t
330 xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset)
331 {
332 return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
333 }
334
335 static inline void
336 xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset,
337 uint32_t value)
338 {
339 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
340 }
341
342 static inline uint64_t
343 xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset)
344 {
345 uint64_t value;
346
347 #ifdef XHCI_USE_BUS_SPACE_8
348 value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset);
349 #else
350 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
351 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh,
352 offset + 4) << 32;
353 #endif
354
355 return value;
356 }
357
358 static inline void
359 xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset,
360 uint64_t value)
361 {
362 #ifdef XHCI_USE_BUS_SPACE_8
363 bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value);
364 #else
365 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0,
366 (value >> 0) & 0xffffffff);
367 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4,
368 (value >> 32) & 0xffffffff);
369 #endif
370 }
371
372 static inline uint32_t
373 xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset)
374 {
375 return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
376 }
377
378 static inline void
379 xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset,
380 uint32_t value)
381 {
382 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
383 }
384
385 static inline uint64_t
386 xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset)
387 {
388 uint64_t value;
389
390 #ifdef XHCI_USE_BUS_SPACE_8
391 value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset);
392 #else
393 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
394 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh,
395 offset + 4) << 32;
396 #endif
397
398 return value;
399 }
400
401 static inline void
402 xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset,
403 uint64_t value)
404 {
405 #ifdef XHCI_USE_BUS_SPACE_8
406 bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value);
407 #else
408 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0,
409 (value >> 0) & 0xffffffff);
410 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4,
411 (value >> 32) & 0xffffffff);
412 #endif
413 }
414
415 #if 0 /* unused */
416 static inline uint32_t
417 xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset)
418 {
419 return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset);
420 }
421 #endif /* unused */
422
423 static inline void
424 xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset,
425 uint32_t value)
426 {
427 bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value);
428 }
429
430 /* --- */
431
432 static inline uint8_t
433 xhci_ep_get_type(usb_endpoint_descriptor_t * const ed)
434 {
435 u_int eptype = 0;
436
437 switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
438 case UE_CONTROL:
439 eptype = 0x0;
440 break;
441 case UE_ISOCHRONOUS:
442 eptype = 0x1;
443 break;
444 case UE_BULK:
445 eptype = 0x2;
446 break;
447 case UE_INTERRUPT:
448 eptype = 0x3;
449 break;
450 }
451
452 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
453 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
454 return eptype | 0x4;
455 else
456 return eptype;
457 }
458
459 static u_int
460 xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed)
461 {
462 /* xHCI 1.0 section 4.5.1 */
463 u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress);
464 u_int in = 0;
465
466 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
467 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
468 in = 1;
469
470 return epaddr * 2 + in;
471 }
472
473 static inline u_int
474 xhci_dci_to_ici(const u_int i)
475 {
476 return i + 1;
477 }
478
479 static inline void *
480 xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs,
481 const u_int dci)
482 {
483 return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
484 }
485
486 #if 0 /* unused */
487 static inline bus_addr_t
488 xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs,
489 const u_int dci)
490 {
491 return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
492 }
493 #endif /* unused */
494
495 static inline void *
496 xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs,
497 const u_int ici)
498 {
499 return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
500 }
501
502 static inline bus_addr_t
503 xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs,
504 const u_int ici)
505 {
506 return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
507 }
508
509 static inline struct xhci_trb *
510 xhci_ring_trbv(struct xhci_ring * const xr, u_int idx)
511 {
512 return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
513 }
514
515 static inline bus_addr_t
516 xhci_ring_trbp(struct xhci_ring * const xr, u_int idx)
517 {
518 return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
519 }
520
521 static inline void
522 xhci_xfer_put_trb(struct xhci_xfer * const xx, u_int idx,
523 uint64_t parameter, uint32_t status, uint32_t control)
524 {
525 KASSERTMSG(idx < xx->xx_ntrb, "idx=%u xx_ntrb=%u", idx, xx->xx_ntrb);
526 xx->xx_trb[idx].trb_0 = parameter;
527 xx->xx_trb[idx].trb_2 = status;
528 xx->xx_trb[idx].trb_3 = control;
529 }
530
531 static inline void
532 xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status,
533 uint32_t control)
534 {
535 trb->trb_0 = htole64(parameter);
536 trb->trb_2 = htole32(status);
537 trb->trb_3 = htole32(control);
538 }
539
540 static int
541 xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx)
542 {
543 /* base address of TRBs */
544 bus_addr_t trbp = xhci_ring_trbp(xr, 0);
545
546 /* trb_0 range sanity check */
547 if (trb_0 == 0 || trb_0 < trbp ||
548 (trb_0 - trbp) % sizeof(struct xhci_trb) != 0 ||
549 (trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) {
550 return 1;
551 }
552 *idx = (trb_0 - trbp) / sizeof(struct xhci_trb);
553 return 0;
554 }
555
556 static unsigned int
557 xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs,
558 u_int dci)
559 {
560 uint32_t *cp;
561
562 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
563 cp = xhci_slot_get_dcv(sc, xs, dci);
564 return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0]));
565 }
566
567 static inline unsigned int
568 xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport)
569 {
570 const unsigned int port = ctlrport - 1;
571 const uint8_t bit = __BIT(port % NBBY);
572
573 return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit);
574 }
575
576 /*
577 * Return the roothub port for a controller port. Both are 1..n.
578 */
579 static inline unsigned int
580 xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport)
581 {
582
583 return sc->sc_ctlrportmap[ctrlport - 1];
584 }
585
586 /*
587 * Return the controller port for a bus roothub port. Both are 1..n.
588 */
589 static inline unsigned int
590 xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn,
591 unsigned int rhport)
592 {
593
594 return sc->sc_rhportmap[bn][rhport - 1];
595 }
596
597 /* --- */
598
599 void
600 xhci_childdet(device_t self, device_t child)
601 {
602 struct xhci_softc * const sc = device_private(self);
603
604 KASSERT((sc->sc_child == child) || (sc->sc_child2 == child));
605 if (child == sc->sc_child2)
606 sc->sc_child2 = NULL;
607 else if (child == sc->sc_child)
608 sc->sc_child = NULL;
609 }
610
611 int
612 xhci_detach(struct xhci_softc *sc, int flags)
613 {
614 int rv = 0;
615
616 if (sc->sc_child2 != NULL) {
617 rv = config_detach(sc->sc_child2, flags);
618 if (rv != 0)
619 return rv;
620 KASSERT(sc->sc_child2 == NULL);
621 }
622
623 if (sc->sc_child != NULL) {
624 rv = config_detach(sc->sc_child, flags);
625 if (rv != 0)
626 return rv;
627 KASSERT(sc->sc_child == NULL);
628 }
629
630 /* XXX unconfigure/free slots */
631
632 /* verify: */
633 xhci_rt_write_4(sc, XHCI_IMAN(0), 0);
634 xhci_op_write_4(sc, XHCI_USBCMD, 0);
635 /* do we need to wait for stop? */
636
637 xhci_op_write_8(sc, XHCI_CRCR, 0);
638 xhci_ring_free(sc, &sc->sc_cr);
639 cv_destroy(&sc->sc_command_cv);
640 cv_destroy(&sc->sc_cmdbusy_cv);
641
642 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0);
643 xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0);
644 xhci_rt_write_8(sc, XHCI_ERDP(0), 0 | XHCI_ERDP_BUSY);
645 xhci_ring_free(sc, &sc->sc_er);
646
647 usb_freemem(&sc->sc_eventst_dma);
648
649 xhci_op_write_8(sc, XHCI_DCBAAP, 0);
650 usb_freemem(&sc->sc_dcbaa_dma);
651
652 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots);
653
654 kmem_free(sc->sc_ctlrportbus,
655 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY));
656 kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int));
657
658 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
659 kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int));
660 }
661
662 mutex_destroy(&sc->sc_lock);
663 mutex_destroy(&sc->sc_intr_lock);
664
665 pool_cache_destroy(sc->sc_xferpool);
666
667 return rv;
668 }
669
670 int
671 xhci_activate(device_t self, enum devact act)
672 {
673 struct xhci_softc * const sc = device_private(self);
674
675 switch (act) {
676 case DVACT_DEACTIVATE:
677 sc->sc_dying = true;
678 return 0;
679 default:
680 return EOPNOTSUPP;
681 }
682 }
683
684 bool
685 xhci_suspend(device_t self, const pmf_qual_t *qual)
686 {
687 struct xhci_softc * const sc = device_private(self);
688 size_t i, j, bn, dci;
689 int port;
690 uint32_t v;
691 usbd_status err;
692 bool ok = false;
693
694 XHCIHIST_FUNC(); XHCIHIST_CALLED();
695
696 mutex_enter(&sc->sc_lock);
697
698 /*
699 * Block issuance of new commands, and wait for all pending
700 * commands to complete.
701 */
702 KASSERT(sc->sc_suspender == NULL);
703 sc->sc_suspender = curlwp;
704 while (sc->sc_command_addr != 0)
705 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
706
707 /*
708 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.23.2:
709 * xHCI Power Management, p. 342
710 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=342
711 */
712
713 /*
714 * `1. Stop all USB activity by issuing Stop Endpoint Commands
715 * for Busy endpoints in the Running state. If the Force
716 * Save Context Capability (FSC = ``0'') is not supported,
717 * then Stop Endpoint Commands shall be issued for all idle
718 * endpoints in the Running state as well. The Stop
719 * Endpoint Command causes the xHC to update the respective
720 * Endpoint or Stream Contexts in system memory, e.g. the
721 * TR Dequeue Pointer, DCS, etc. fields. Refer to
722 * Implementation Note "0".'
723 */
724 for (i = 0; i < sc->sc_maxslots; i++) {
725 struct xhci_slot *xs = &sc->sc_slots[i];
726
727 /* Skip if the slot is not in use. */
728 if (xs->xs_idx == 0)
729 continue;
730
731 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
732 /* Skip if the endpoint is not Running. */
733 /* XXX What about Busy? */
734 if (xhci_get_epstate(sc, xs, dci) !=
735 XHCI_EPSTATE_RUNNING)
736 continue;
737
738 /* Stop endpoint. */
739 err = xhci_stop_endpoint_cmd(sc, xs, dci,
740 XHCI_TRB_3_SUSP_EP_BIT);
741 if (err) {
742 device_printf(self, "failed to stop endpoint"
743 " slot %zu dci %zu err %d\n",
744 i, dci, err);
745 goto out;
746 }
747 }
748 }
749
750 /*
751 * Next, suspend all the ports:
752 *
753 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.15:
754 * Suspend-Resume, pp. 276-283
755 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=276
756 */
757 for (bn = 0; bn < 2; bn++) {
758 for (i = 1; i <= sc->sc_rhportcount[bn]; i++) {
759 /* 4.15.1: Port Suspend. */
760 port = XHCI_PORTSC(xhci_rhport2ctlrport(sc, bn, i));
761
762 /*
763 * `System software places individual ports
764 * into suspend mode by writing a ``3'' into
765 * the appropriate PORTSC register Port Link
766 * State (PLS) field (refer to Section 5.4.8).
767 * Software should only set the PLS field to
768 * ``3'' when the port is in the Enabled
769 * state.'
770 *
771 * `Software should not attempt to suspend a
772 * port unless the port reports that it is in
773 * the enabled (PED = ``1''; PLS < ``3'')
774 * state (refer to Section 5.4.8 for more
775 * information about PED and PLS).'
776 */
777 v = xhci_op_read_4(sc, port);
778 if (((v & XHCI_PS_PED) == 0) ||
779 XHCI_PS_PLS_GET(v) >= XHCI_PS_PLS_U3)
780 continue;
781 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
782 v |= XHCI_PS_LWS | XHCI_PS_PLS_SET(XHCI_PS_PLS_SETU3);
783 xhci_op_write_4(sc, port, v);
784
785 /*
786 * `When the PLS field is written with U3
787 * (``3''), the status of the PLS bit will not
788 * change to the target U state U3 until the
789 * suspend signaling has completed to the
790 * attached device (which may be as long as
791 * 10ms.).'
792 *
793 * `Software is required to wait for U3
794 * transitions to complete before it puts the
795 * xHC into a low power state, and before
796 * resuming the port.'
797 *
798 * XXX Take advantage of the technique to
799 * reduce polling on host controllers that
800 * support the U3C capability.
801 */
802 for (j = 0; j < XHCI_WAIT_PLS_U3; j++) {
803 v = xhci_op_read_4(sc, port);
804 if (XHCI_PS_PLS_GET(v) == XHCI_PS_PLS_U3)
805 break;
806 usb_delay_ms(&sc->sc_bus, 1);
807 }
808 if (j == XHCI_WAIT_PLS_U3) {
809 device_printf(self,
810 "suspend timeout on bus %zu port %zu\n",
811 bn, i);
812 goto out;
813 }
814 }
815 }
816
817 /*
818 * `2. Ensure that the Command Ring is in the Stopped state
819 * (CRR = ``0'') or Idle (i.e. the Command Transfer Ring is
820 * empty), and all Command Completion Events associated
821 * with them have been received.'
822 *
823 * XXX
824 */
825
826 /* `3. Stop the controller by setting Run/Stop (R/S) = ``0''.' */
827 xhci_op_write_4(sc, XHCI_USBCMD,
828 xhci_op_read_4(sc, XHCI_USBCMD) & ~XHCI_CMD_RS);
829
830 /*
831 * `4. Read the Operational Runtime, and VTIO registers in the
832 * following order: USBCMD, DNCTRL, DCBAAP, CONFIG, ERSTSZ,
833 * ERSTBA, ERDP, IMAN, IMOD, and VTIO and save their
834 * state.'
835 *
836 * (We don't use VTIO here (XXX for now?).)
837 */
838 sc->sc_regs.usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
839 sc->sc_regs.dnctrl = xhci_op_read_4(sc, XHCI_DNCTRL);
840 sc->sc_regs.dcbaap = xhci_op_read_8(sc, XHCI_DCBAAP);
841 sc->sc_regs.config = xhci_op_read_4(sc, XHCI_CONFIG);
842 sc->sc_regs.erstsz0 = xhci_rt_read_4(sc, XHCI_ERSTSZ(0));
843 sc->sc_regs.erstba0 = xhci_rt_read_8(sc, XHCI_ERSTBA(0));
844 sc->sc_regs.erdp0 = xhci_rt_read_8(sc, XHCI_ERDP(0));
845 sc->sc_regs.iman0 = xhci_rt_read_4(sc, XHCI_IMAN(0));
846 sc->sc_regs.imod0 = xhci_rt_read_4(sc, XHCI_IMOD(0));
847
848 /*
849 * `5. Set the Controller Save State (CSS) flag in the USBCMD
850 * register (5.4.1)...'
851 */
852 xhci_op_write_4(sc, XHCI_USBCMD,
853 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_CSS);
854
855 /*
856 * `...and wait for the Save State Status (SSS) flag in the
857 * USBSTS register (5.4.2) to transition to ``0''.'
858 */
859 for (i = 0; i < XHCI_WAIT_SSS; i++) {
860 if ((xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SSS) == 0)
861 break;
862 usb_delay_ms(&sc->sc_bus, 1);
863 }
864 if (i >= XHCI_WAIT_SSS) {
865 device_printf(self, "suspend timeout, USBSTS.SSS\n");
866 /*
867 * Just optimistically go on and check SRE anyway --
868 * what's the worst that could happen?
869 */
870 }
871
872 /*
873 * `Note: After a Save or Restore operation completes, the
874 * Save/Restore Error (SRE) flag in the USBSTS register should
875 * be checked to ensure that the operation completed
876 * successfully.'
877 */
878 if (xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SRE) {
879 device_printf(self, "suspend error, USBSTS.SRE\n");
880 goto out;
881 }
882
883 /* Success! */
884 ok = true;
885
886 out: mutex_exit(&sc->sc_lock);
887 return ok;
888 }
889
890 bool
891 xhci_resume(device_t self, const pmf_qual_t *qual)
892 {
893 struct xhci_softc * const sc = device_private(self);
894 size_t i, j, bn, dci;
895 int port;
896 uint32_t v;
897 bool ok = false;
898
899 XHCIHIST_FUNC(); XHCIHIST_CALLED();
900
901 mutex_enter(&sc->sc_lock);
902 KASSERT(sc->sc_suspender);
903
904 /*
905 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.23.2:
906 * xHCI Power Management, p. 343
907 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=343
908 */
909
910 /*
911 * `4. Restore the Operational Runtime, and VTIO registers with
912 * their previously saved state in the following order:
913 * DNCTRL, DCBAAP, CONFIG, ERSTSZ, ERSTBA, ERDP, IMAN,
914 * IMOD, and VTIO.'
915 *
916 * (We don't use VTIO here (for now?).)
917 */
918 xhci_op_write_4(sc, XHCI_USBCMD, sc->sc_regs.usbcmd);
919 xhci_op_write_4(sc, XHCI_DNCTRL, sc->sc_regs.dnctrl);
920 xhci_op_write_8(sc, XHCI_DCBAAP, sc->sc_regs.dcbaap);
921 xhci_op_write_4(sc, XHCI_CONFIG, sc->sc_regs.config);
922 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), sc->sc_regs.erstsz0);
923 xhci_rt_write_8(sc, XHCI_ERSTBA(0), sc->sc_regs.erstba0);
924 xhci_rt_write_8(sc, XHCI_ERDP(0), sc->sc_regs.erdp0);
925 xhci_rt_write_4(sc, XHCI_IMAN(0), sc->sc_regs.iman0);
926 xhci_rt_write_4(sc, XHCI_IMOD(0), sc->sc_regs.imod0);
927
928 memset(&sc->sc_regs, 0, sizeof(sc->sc_regs)); /* paranoia */
929
930 /*
931 * `5. Set the Controller Restore State (CRS) flag in the
932 * USBCMD register (5.4.1) to ``1''...'
933 */
934 xhci_op_write_4(sc, XHCI_USBCMD,
935 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_CRS);
936
937 /*
938 * `...and wait for the Restore State Status (RSS) in the
939 * USBSTS register (5.4.2) to transition to ``0''.'
940 */
941 for (i = 0; i < XHCI_WAIT_RSS; i++) {
942 if ((xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_RSS) == 0)
943 break;
944 usb_delay_ms(&sc->sc_bus, 1);
945 }
946 if (i >= XHCI_WAIT_RSS) {
947 device_printf(self, "resume timeout, USBSTS.RSS\n");
948 goto out;
949 }
950
951 /*
952 * `6. Reinitialize the Command Ring, i.e. so its Cycle bits
953 * are consistent with the RCS values to be written to the
954 * CRCR.'
955 *
956 * XXX Hope just zeroing it is good enough!
957 */
958 xhci_host_dequeue(sc->sc_cr);
959
960 /*
961 * `7. Write the CRCR with the address and RCS value of the
962 * reinitialized Command Ring. Note that this write will
963 * cause the Command Ring to restart at the address
964 * specified by the CRCR.'
965 */
966 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) |
967 sc->sc_cr->xr_cs);
968
969 /*
970 * `8. Enable the controller by setting Run/Stop (R/S) =
971 * ``1''.'
972 */
973 xhci_op_write_4(sc, XHCI_USBCMD,
974 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_RS);
975
976 /*
977 * `9. Software shall walk the USB topology and initialize each
978 * of the xHC PORTSC, PORTPMSC, and PORTLI registers, and
979 * external hub ports attached to USB devices.'
980 *
981 * This follows the procedure in 4.15 `Suspend-Resume', 4.15.2
982 * `Port Resume', 4.15.2.2 `Host Initiated'.
983 *
984 * XXX We should maybe batch up initiating the state
985 * transitions, and then wait for them to complete all at once.
986 */
987 for (bn = 0; bn < 2; bn++) {
988 for (i = 1; i <= sc->sc_rhportcount[bn]; i++) {
989 port = XHCI_PORTSC(xhci_rhport2ctlrport(sc, bn, i));
990
991 /* `When a port is in the U3 state: ...' */
992 v = xhci_op_read_4(sc, port);
993 if (XHCI_PS_PLS_GET(v) != XHCI_PS_PLS_U3)
994 continue;
995
996 /*
997 * `For a USB2 protocol port, software shall
998 * write a ``15'' (Resume) to the PLS field to
999 * initiate resume signaling. The port shall
1000 * transition to the Resume substate and the
1001 * xHC shall transmit the resume signaling
1002 * within 1ms (T_URSM). Software shall ensure
1003 * that resume is signaled for at least 20ms
1004 * (T_DRSMDN). Software shall start timing
1005 * T_DRSMDN from the write of ``15'' (Resume)
1006 * to PLS.'
1007 */
1008 if (bn == 1) {
1009 KASSERT(sc->sc_bus2.ub_revision == USBREV_2_0);
1010 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
1011 v |= XHCI_PS_LWS;
1012 v |= XHCI_PS_PLS_SET(XHCI_PS_PLS_SETRESUME);
1013 xhci_op_write_4(sc, port, v);
1014 usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT);
1015 } else {
1016 KASSERT(sc->sc_bus.ub_revision > USBREV_2_0);
1017 }
1018
1019 /*
1020 * `For a USB3 protocol port [and a USB2
1021 * protocol port after transitioning to
1022 * Resume], software shall write a ``0'' (U0)
1023 * to the PLS field...'
1024 */
1025 v = xhci_op_read_4(sc, port);
1026 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
1027 v |= XHCI_PS_LWS | XHCI_PS_PLS_SET(XHCI_PS_PLS_SETU0);
1028 xhci_op_write_4(sc, port, v);
1029
1030 for (j = 0; j < XHCI_WAIT_PLS_U0; j++) {
1031 v = xhci_op_read_4(sc, port);
1032 if (XHCI_PS_PLS_GET(v) == XHCI_PS_PLS_U0)
1033 break;
1034 usb_delay_ms(&sc->sc_bus, 1);
1035 }
1036 if (j == XHCI_WAIT_PLS_U0) {
1037 device_printf(self,
1038 "resume timeout on bus %zu port %zu\n",
1039 bn, i);
1040 goto out;
1041 }
1042 }
1043 }
1044
1045 /*
1046 * `10. Restart each of the previously Running endpoints by
1047 * ringing their doorbells.'
1048 */
1049 for (i = 0; i < sc->sc_maxslots; i++) {
1050 struct xhci_slot *xs = &sc->sc_slots[i];
1051
1052 /* Skip if the slot is not in use. */
1053 if (xs->xs_idx == 0)
1054 continue;
1055
1056 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
1057 /* Skip if the endpoint is not Running. */
1058 if (xhci_get_epstate(sc, xs, dci) !=
1059 XHCI_EPSTATE_RUNNING)
1060 continue;
1061
1062 /* Ring the doorbell. */
1063 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
1064 }
1065 }
1066
1067 /*
1068 * `Note: After a Save or Restore operation completes, the
1069 * Save/Restore Error (SRE) flag in the USBSTS register should
1070 * be checked to ensure that the operation completed
1071 * successfully.'
1072 */
1073 if (xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SRE) {
1074 device_printf(self, "resume error, USBSTS.SRE\n");
1075 goto out;
1076 }
1077
1078 /* Resume command issuance. */
1079 sc->sc_suspender = NULL;
1080 cv_broadcast(&sc->sc_cmdbusy_cv);
1081
1082 /* Success! */
1083 ok = true;
1084
1085 out: mutex_exit(&sc->sc_lock);
1086 return ok;
1087 }
1088
1089 bool
1090 xhci_shutdown(device_t self, int flags)
1091 {
1092 return false;
1093 }
1094
1095 static int
1096 xhci_hc_reset(struct xhci_softc * const sc)
1097 {
1098 uint32_t usbcmd, usbsts;
1099 int i;
1100
1101 /* Check controller not ready */
1102 for (i = 0; i < XHCI_WAIT_CNR; i++) {
1103 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1104 if ((usbsts & XHCI_STS_CNR) == 0)
1105 break;
1106 usb_delay_ms(&sc->sc_bus, 1);
1107 }
1108 if (i >= XHCI_WAIT_CNR) {
1109 aprint_error_dev(sc->sc_dev, "controller not ready timeout\n");
1110 return EIO;
1111 }
1112
1113 /* Halt controller */
1114 usbcmd = 0;
1115 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
1116 usb_delay_ms(&sc->sc_bus, 1);
1117
1118 /* Reset controller */
1119 usbcmd = XHCI_CMD_HCRST;
1120 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
1121 for (i = 0; i < XHCI_WAIT_HCRST; i++) {
1122 /*
1123 * Wait 1ms first. Existing Intel xHCI requires 1ms delay to
1124 * prevent system hang (Errata).
1125 */
1126 usb_delay_ms(&sc->sc_bus, 1);
1127 usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
1128 if ((usbcmd & XHCI_CMD_HCRST) == 0)
1129 break;
1130 }
1131 if (i >= XHCI_WAIT_HCRST) {
1132 aprint_error_dev(sc->sc_dev, "host controller reset timeout\n");
1133 return EIO;
1134 }
1135
1136 /* Check controller not ready */
1137 for (i = 0; i < XHCI_WAIT_CNR; i++) {
1138 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1139 if ((usbsts & XHCI_STS_CNR) == 0)
1140 break;
1141 usb_delay_ms(&sc->sc_bus, 1);
1142 }
1143 if (i >= XHCI_WAIT_CNR) {
1144 aprint_error_dev(sc->sc_dev,
1145 "controller not ready timeout after reset\n");
1146 return EIO;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /* 7.2 xHCI Support Protocol Capability */
1153 static void
1154 xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp)
1155 {
1156 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1157
1158 /* XXX Cache this lot */
1159
1160 const uint32_t w0 = xhci_read_4(sc, ecp);
1161 const uint32_t w4 = xhci_read_4(sc, ecp + 4);
1162 const uint32_t w8 = xhci_read_4(sc, ecp + 8);
1163 const uint32_t wc = xhci_read_4(sc, ecp + 0xc);
1164
1165 aprint_debug_dev(sc->sc_dev,
1166 " SP: 0x%08x 0x%08x 0x%08x 0x%08x\n", w0, w4, w8, wc);
1167
1168 if (w4 != XHCI_XECP_USBID)
1169 return;
1170
1171 const int major = XHCI_XECP_SP_W0_MAJOR(w0);
1172 const int minor = XHCI_XECP_SP_W0_MINOR(w0);
1173 const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8);
1174 const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8);
1175
1176 const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16));
1177 switch (mm) {
1178 case 0x0200:
1179 case 0x0300:
1180 case 0x0301:
1181 case 0x0310:
1182 aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n",
1183 major == 3 ? "ss" : "hs", cpo, cpo + cpc -1);
1184 break;
1185 default:
1186 aprint_error_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n",
1187 major, minor);
1188 return;
1189 }
1190
1191 const size_t bus = (major == 3) ? 0 : 1;
1192
1193 /* Index arrays with 0..n-1 where ports are numbered 1..n */
1194 for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) {
1195 if (sc->sc_ctlrportmap[cp] != 0) {
1196 aprint_error_dev(sc->sc_dev, "controller port %zu "
1197 "already assigned", cp);
1198 continue;
1199 }
1200
1201 sc->sc_ctlrportbus[cp / NBBY] |=
1202 bus == 0 ? 0 : __BIT(cp % NBBY);
1203
1204 const size_t rhp = sc->sc_rhportcount[bus]++;
1205
1206 KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0,
1207 "bus %zu rhp %zu is %d", bus, rhp,
1208 sc->sc_rhportmap[bus][rhp]);
1209
1210 sc->sc_rhportmap[bus][rhp] = cp + 1;
1211 sc->sc_ctlrportmap[cp] = rhp + 1;
1212 }
1213 }
1214
1215 /* Process extended capabilities */
1216 static void
1217 xhci_ecp(struct xhci_softc *sc)
1218 {
1219 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1220
1221 bus_size_t ecp = XHCI_HCC_XECP(sc->sc_hcc) * 4;
1222 while (ecp != 0) {
1223 uint32_t ecr = xhci_read_4(sc, ecp);
1224 aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr);
1225 switch (XHCI_XECP_ID(ecr)) {
1226 case XHCI_ID_PROTOCOLS: {
1227 xhci_id_protocols(sc, ecp);
1228 break;
1229 }
1230 case XHCI_ID_USB_LEGACY: {
1231 uint8_t bios_sem;
1232
1233 /* Take host controller ownership from BIOS */
1234 bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM);
1235 if (bios_sem) {
1236 /* sets xHCI to be owned by OS */
1237 xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1);
1238 aprint_debug_dev(sc->sc_dev,
1239 "waiting for BIOS to give up control\n");
1240 for (int i = 0; i < 5000; i++) {
1241 bios_sem = xhci_read_1(sc, ecp +
1242 XHCI_XECP_BIOS_SEM);
1243 if (bios_sem == 0)
1244 break;
1245 DELAY(1000);
1246 }
1247 if (bios_sem) {
1248 aprint_error_dev(sc->sc_dev,
1249 "timed out waiting for BIOS\n");
1250 }
1251 }
1252 break;
1253 }
1254 default:
1255 break;
1256 }
1257 ecr = xhci_read_4(sc, ecp);
1258 if (XHCI_XECP_NEXT(ecr) == 0) {
1259 ecp = 0;
1260 } else {
1261 ecp += XHCI_XECP_NEXT(ecr) * 4;
1262 }
1263 }
1264 }
1265
1266 #define XHCI_HCCPREV1_BITS \
1267 "\177\020" /* New bitmask */ \
1268 "f\020\020XECP\0" \
1269 "f\014\4MAXPSA\0" \
1270 "b\013CFC\0" \
1271 "b\012SEC\0" \
1272 "b\011SBD\0" \
1273 "b\010FSE\0" \
1274 "b\7NSS\0" \
1275 "b\6LTC\0" \
1276 "b\5LHRC\0" \
1277 "b\4PIND\0" \
1278 "b\3PPC\0" \
1279 "b\2CZC\0" \
1280 "b\1BNC\0" \
1281 "b\0AC64\0" \
1282 "\0"
1283 #define XHCI_HCCV1_x_BITS \
1284 "\177\020" /* New bitmask */ \
1285 "f\020\020XECP\0" \
1286 "f\014\4MAXPSA\0" \
1287 "b\013CFC\0" \
1288 "b\012SEC\0" \
1289 "b\011SPC\0" \
1290 "b\010PAE\0" \
1291 "b\7NSS\0" \
1292 "b\6LTC\0" \
1293 "b\5LHRC\0" \
1294 "b\4PIND\0" \
1295 "b\3PPC\0" \
1296 "b\2CSZ\0" \
1297 "b\1BNC\0" \
1298 "b\0AC64\0" \
1299 "\0"
1300
1301 #define XHCI_HCC2_BITS \
1302 "\177\020" /* New bitmask */ \
1303 "b\7ETC_TSC\0" \
1304 "b\6ETC\0" \
1305 "b\5CIC\0" \
1306 "b\4LEC\0" \
1307 "b\3CTC\0" \
1308 "b\2FSC\0" \
1309 "b\1CMC\0" \
1310 "b\0U3C\0" \
1311 "\0"
1312
1313 void
1314 xhci_start(struct xhci_softc *sc)
1315 {
1316 xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA);
1317 if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0)
1318 /* Intel xhci needs interrupt rate moderated. */
1319 xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP);
1320 else
1321 xhci_rt_write_4(sc, XHCI_IMOD(0), 0);
1322 aprint_debug_dev(sc->sc_dev, "current IMOD %u\n",
1323 xhci_rt_read_4(sc, XHCI_IMOD(0)));
1324
1325 /* Go! */
1326 xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS);
1327 aprint_debug_dev(sc->sc_dev, "USBCMD 0x%08"PRIx32"\n",
1328 xhci_op_read_4(sc, XHCI_USBCMD));
1329 }
1330
1331 int
1332 xhci_init(struct xhci_softc *sc)
1333 {
1334 bus_size_t bsz;
1335 uint32_t hcs1, hcs2, hcs3, dboff, rtsoff;
1336 uint32_t pagesize, config;
1337 int i = 0;
1338 uint16_t hciversion;
1339 uint8_t caplength;
1340
1341 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1342
1343 /* Set up the bus struct for the usb 3 and usb 2 buses */
1344 sc->sc_bus.ub_methods = &xhci_bus_methods;
1345 sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe);
1346 sc->sc_bus.ub_usedma = true;
1347 sc->sc_bus.ub_hcpriv = sc;
1348
1349 sc->sc_bus2.ub_methods = &xhci_bus_methods;
1350 sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe);
1351 sc->sc_bus2.ub_revision = USBREV_2_0;
1352 sc->sc_bus2.ub_usedma = true;
1353 sc->sc_bus2.ub_hcpriv = sc;
1354 sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag;
1355
1356 caplength = xhci_read_1(sc, XHCI_CAPLENGTH);
1357 hciversion = xhci_read_2(sc, XHCI_HCIVERSION);
1358
1359 if (hciversion < XHCI_HCIVERSION_0_96 ||
1360 hciversion >= 0x0200) {
1361 aprint_normal_dev(sc->sc_dev,
1362 "xHCI version %x.%x not known to be supported\n",
1363 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
1364 } else {
1365 aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n",
1366 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
1367 }
1368
1369 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength,
1370 &sc->sc_cbh) != 0) {
1371 aprint_error_dev(sc->sc_dev, "capability subregion failure\n");
1372 return ENOMEM;
1373 }
1374
1375 hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1);
1376 sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1);
1377 sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1);
1378 sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1);
1379 hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2);
1380 hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3);
1381 aprint_debug_dev(sc->sc_dev,
1382 "hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3);
1383
1384 sc->sc_hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS);
1385 sc->sc_ctxsz = XHCI_HCC_CSZ(sc->sc_hcc) ? 64 : 32;
1386
1387 char sbuf[128];
1388 if (hciversion < XHCI_HCIVERSION_1_0)
1389 snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, sc->sc_hcc);
1390 else
1391 snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, sc->sc_hcc);
1392 aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf);
1393 aprint_debug_dev(sc->sc_dev, "xECP %" __PRIxBITS "\n",
1394 XHCI_HCC_XECP(sc->sc_hcc) * 4);
1395 if (hciversion >= XHCI_HCIVERSION_1_1) {
1396 sc->sc_hcc2 = xhci_cap_read_4(sc, XHCI_HCCPARAMS2);
1397 snprintb(sbuf, sizeof(sbuf), XHCI_HCC2_BITS, sc->sc_hcc2);
1398 aprint_debug_dev(sc->sc_dev, "hcc2=%s\n", sbuf);
1399 }
1400
1401 /* default all ports to bus 0, i.e. usb 3 */
1402 sc->sc_ctlrportbus = kmem_zalloc(
1403 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP);
1404 sc->sc_ctlrportmap = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1405
1406 /* controller port to bus roothub port map */
1407 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
1408 sc->sc_rhportmap[j] = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1409 }
1410
1411 /*
1412 * Process all Extended Capabilities
1413 */
1414 xhci_ecp(sc);
1415
1416 bsz = XHCI_PORTSC(sc->sc_maxports);
1417 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz,
1418 &sc->sc_obh) != 0) {
1419 aprint_error_dev(sc->sc_dev, "operational subregion failure\n");
1420 return ENOMEM;
1421 }
1422
1423 dboff = xhci_cap_read_4(sc, XHCI_DBOFF);
1424 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff,
1425 sc->sc_maxslots * 4, &sc->sc_dbh) != 0) {
1426 aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n");
1427 return ENOMEM;
1428 }
1429
1430 rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF);
1431 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff,
1432 sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) {
1433 aprint_error_dev(sc->sc_dev, "runtime subregion failure\n");
1434 return ENOMEM;
1435 }
1436
1437 int rv;
1438 rv = xhci_hc_reset(sc);
1439 if (rv != 0) {
1440 return rv;
1441 }
1442
1443 if (sc->sc_vendor_init)
1444 sc->sc_vendor_init(sc);
1445
1446 pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE);
1447 aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize);
1448 pagesize = ffs(pagesize);
1449 if (pagesize == 0) {
1450 aprint_error_dev(sc->sc_dev, "pagesize is 0\n");
1451 return EIO;
1452 }
1453 sc->sc_pgsz = 1 << (12 + (pagesize - 1));
1454 aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz);
1455 aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n",
1456 (uint32_t)sc->sc_maxslots);
1457 aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports);
1458
1459 int err;
1460 sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2);
1461 aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf);
1462 if (sc->sc_maxspbuf != 0) {
1463 err = usb_allocmem(sc->sc_bus.ub_dmatag,
1464 sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t),
1465 USBMALLOC_COHERENT | USBMALLOC_ZERO,
1466 &sc->sc_spbufarray_dma);
1467 if (err) {
1468 aprint_error_dev(sc->sc_dev,
1469 "spbufarray init fail, err %d\n", err);
1470 return ENOMEM;
1471 }
1472
1473 sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) *
1474 sc->sc_maxspbuf, KM_SLEEP);
1475 uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0);
1476 for (i = 0; i < sc->sc_maxspbuf; i++) {
1477 usb_dma_t * const dma = &sc->sc_spbuf_dma[i];
1478 /* allocate contexts */
1479 err = usb_allocmem(sc->sc_bus.ub_dmatag, sc->sc_pgsz,
1480 sc->sc_pgsz, USBMALLOC_COHERENT | USBMALLOC_ZERO,
1481 dma);
1482 if (err) {
1483 aprint_error_dev(sc->sc_dev,
1484 "spbufarray_dma init fail, err %d\n", err);
1485 rv = ENOMEM;
1486 goto bad1;
1487 }
1488 spbufarray[i] = htole64(DMAADDR(dma, 0));
1489 usb_syncmem(dma, 0, sc->sc_pgsz,
1490 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1491 }
1492
1493 usb_syncmem(&sc->sc_spbufarray_dma, 0,
1494 sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE);
1495 }
1496
1497 config = xhci_op_read_4(sc, XHCI_CONFIG);
1498 config &= ~0xFF;
1499 config |= sc->sc_maxslots & 0xFF;
1500 xhci_op_write_4(sc, XHCI_CONFIG, config);
1501
1502 err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS,
1503 XHCI_COMMAND_RING_SEGMENTS_ALIGN);
1504 if (err) {
1505 aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n",
1506 err);
1507 rv = ENOMEM;
1508 goto bad1;
1509 }
1510
1511 err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS,
1512 XHCI_EVENT_RING_SEGMENTS_ALIGN);
1513 if (err) {
1514 aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n",
1515 err);
1516 rv = ENOMEM;
1517 goto bad2;
1518 }
1519
1520 usb_dma_t *dma;
1521 size_t size;
1522 size_t align;
1523
1524 dma = &sc->sc_eventst_dma;
1525 size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE,
1526 XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN);
1527 KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size);
1528 align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN;
1529 err = usb_allocmem(sc->sc_bus.ub_dmatag, size, align,
1530 USBMALLOC_COHERENT | USBMALLOC_ZERO, dma);
1531 if (err) {
1532 aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n",
1533 err);
1534 rv = ENOMEM;
1535 goto bad3;
1536 }
1537
1538 aprint_debug_dev(sc->sc_dev, "eventst: 0x%016jx %p %zx\n",
1539 (uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0),
1540 KERNADDR(&sc->sc_eventst_dma, 0),
1541 sc->sc_eventst_dma.udma_block->size);
1542
1543 dma = &sc->sc_dcbaa_dma;
1544 size = (1 + sc->sc_maxslots) * sizeof(uint64_t);
1545 KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size);
1546 align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN;
1547 err = usb_allocmem(sc->sc_bus.ub_dmatag, size, align,
1548 USBMALLOC_COHERENT | USBMALLOC_ZERO, dma);
1549 if (err) {
1550 aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err);
1551 rv = ENOMEM;
1552 goto bad4;
1553 }
1554 aprint_debug_dev(sc->sc_dev, "dcbaa: 0x%016jx %p %zx\n",
1555 (uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0),
1556 KERNADDR(&sc->sc_dcbaa_dma, 0),
1557 sc->sc_dcbaa_dma.udma_block->size);
1558
1559 if (sc->sc_maxspbuf != 0) {
1560 /*
1561 * DCBA entry 0 hold the scratchbuf array pointer.
1562 */
1563 *(uint64_t *)KERNADDR(dma, 0) =
1564 htole64(DMAADDR(&sc->sc_spbufarray_dma, 0));
1565 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1566 }
1567
1568 sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots,
1569 KM_SLEEP);
1570 if (sc->sc_slots == NULL) {
1571 aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err);
1572 rv = ENOMEM;
1573 goto bad;
1574 }
1575
1576 sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0,
1577 "xhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
1578 if (sc->sc_xferpool == NULL) {
1579 aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n",
1580 err);
1581 rv = ENOMEM;
1582 goto bad;
1583 }
1584
1585 cv_init(&sc->sc_command_cv, "xhcicmd");
1586 cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq");
1587 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1588 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1589
1590 struct xhci_erste *erst;
1591 erst = KERNADDR(&sc->sc_eventst_dma, 0);
1592 erst[0].erste_0 = htole64(xhci_ring_trbp(sc->sc_er, 0));
1593 erst[0].erste_2 = htole32(sc->sc_er->xr_ntrb);
1594 erst[0].erste_3 = htole32(0);
1595 usb_syncmem(&sc->sc_eventst_dma, 0,
1596 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE);
1597
1598 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS);
1599 xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0));
1600 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(sc->sc_er, 0) |
1601 XHCI_ERDP_BUSY);
1602
1603 xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0));
1604 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) |
1605 sc->sc_cr->xr_cs);
1606
1607 xhci_barrier(sc, BUS_SPACE_BARRIER_WRITE);
1608
1609 HEXDUMP("eventst", KERNADDR(&sc->sc_eventst_dma, 0),
1610 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS);
1611
1612 if ((sc->sc_quirks & XHCI_DEFERRED_START) == 0)
1613 xhci_start(sc);
1614
1615 return 0;
1616
1617 bad:
1618 if (sc->sc_xferpool) {
1619 pool_cache_destroy(sc->sc_xferpool);
1620 sc->sc_xferpool = NULL;
1621 }
1622
1623 if (sc->sc_slots) {
1624 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) *
1625 sc->sc_maxslots);
1626 sc->sc_slots = NULL;
1627 }
1628
1629 usb_freemem(&sc->sc_dcbaa_dma);
1630 bad4:
1631 usb_freemem(&sc->sc_eventst_dma);
1632 bad3:
1633 xhci_ring_free(sc, &sc->sc_er);
1634 bad2:
1635 xhci_ring_free(sc, &sc->sc_cr);
1636 i = sc->sc_maxspbuf;
1637 bad1:
1638 for (int j = 0; j < i; j++)
1639 usb_freemem(&sc->sc_spbuf_dma[j]);
1640 usb_freemem(&sc->sc_spbufarray_dma);
1641
1642 return rv;
1643 }
1644
1645 static inline bool
1646 xhci_polling_p(struct xhci_softc * const sc)
1647 {
1648 return sc->sc_bus.ub_usepolling || sc->sc_bus2.ub_usepolling;
1649 }
1650
1651 int
1652 xhci_intr(void *v)
1653 {
1654 struct xhci_softc * const sc = v;
1655 int ret = 0;
1656
1657 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1658
1659 if (sc == NULL)
1660 return 0;
1661
1662 mutex_spin_enter(&sc->sc_intr_lock);
1663
1664 if (sc->sc_dying || !device_has_power(sc->sc_dev))
1665 goto done;
1666
1667 /* If we get an interrupt while polling, then just ignore it. */
1668 if (xhci_polling_p(sc)) {
1669 #ifdef DIAGNOSTIC
1670 DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
1671 #endif
1672 goto done;
1673 }
1674
1675 ret = xhci_intr1(sc);
1676 if (ret) {
1677 KASSERT(sc->sc_child || sc->sc_child2);
1678
1679 /*
1680 * One of child busses could be already detached. It doesn't
1681 * matter on which of the two the softintr is scheduled.
1682 */
1683 if (sc->sc_child)
1684 usb_schedsoftintr(&sc->sc_bus);
1685 else
1686 usb_schedsoftintr(&sc->sc_bus2);
1687 }
1688 done:
1689 mutex_spin_exit(&sc->sc_intr_lock);
1690 return ret;
1691 }
1692
1693 int
1694 xhci_intr1(struct xhci_softc * const sc)
1695 {
1696 uint32_t usbsts;
1697 uint32_t iman;
1698
1699 XHCIHIST_FUNC();
1700
1701 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1702 XHCIHIST_CALLARGS("USBSTS 0x%08jx", usbsts, 0, 0, 0);
1703 if ((usbsts & (XHCI_STS_HSE | XHCI_STS_EINT | XHCI_STS_PCD |
1704 XHCI_STS_HCE)) == 0) {
1705 DPRINTFN(16, "ignored intr not for %jd",
1706 device_unit(sc->sc_dev), 0, 0, 0);
1707 return 0;
1708 }
1709
1710 /*
1711 * Clear EINT and other transient flags, to not misenterpret
1712 * next shared interrupt. Also, to avoid race, EINT must be cleared
1713 * before XHCI_IMAN_INTR_PEND is cleared.
1714 */
1715 xhci_op_write_4(sc, XHCI_USBSTS, usbsts & XHCI_STS_RSVDP0);
1716
1717 #ifdef XHCI_DEBUG
1718 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1719 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
1720 #endif
1721
1722 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1723 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
1724 iman |= XHCI_IMAN_INTR_PEND;
1725 xhci_rt_write_4(sc, XHCI_IMAN(0), iman);
1726
1727 #ifdef XHCI_DEBUG
1728 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1729 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
1730 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1731 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
1732 #endif
1733
1734 return 1;
1735 }
1736
1737 /*
1738 * 3 port speed types used in USB stack
1739 *
1740 * usbdi speed
1741 * definition: USB_SPEED_* in usb.h
1742 * They are used in struct usbd_device in USB stack.
1743 * ioctl interface uses these values too.
1744 * port_status speed
1745 * definition: UPS_*_SPEED in usb.h
1746 * They are used in usb_port_status_t and valid only for USB 2.0.
1747 * Speed value is always 0 for Super Speed or more, and dwExtPortStatus
1748 * of usb_port_status_ext_t indicates port speed.
1749 * Note that some 3.0 values overlap with 2.0 values.
1750 * (e.g. 0x200 means UPS_POER_POWER_SS in SS and
1751 * means UPS_LOW_SPEED in HS.)
1752 * port status returned from hub also uses these values.
1753 * On NetBSD UPS_OTHER_SPEED indicates port speed is super speed
1754 * or more.
1755 * xspeed:
1756 * definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1)
1757 * They are used in only slot context and PORTSC reg of xhci.
1758 * The difference between usbdi speed and xspeed is
1759 * that FS and LS values are swapped.
1760 */
1761
1762 /* convert usbdi speed to xspeed */
1763 static int
1764 xhci_speed2xspeed(int speed)
1765 {
1766 switch (speed) {
1767 case USB_SPEED_LOW: return 2;
1768 case USB_SPEED_FULL: return 1;
1769 default: return speed;
1770 }
1771 }
1772
1773 #if 0
1774 /* convert xspeed to usbdi speed */
1775 static int
1776 xhci_xspeed2speed(int xspeed)
1777 {
1778 switch (xspeed) {
1779 case 1: return USB_SPEED_FULL;
1780 case 2: return USB_SPEED_LOW;
1781 default: return xspeed;
1782 }
1783 }
1784 #endif
1785
1786 /* convert xspeed to port status speed */
1787 static int
1788 xhci_xspeed2psspeed(int xspeed)
1789 {
1790 switch (xspeed) {
1791 case 0: return 0;
1792 case 1: return UPS_FULL_SPEED;
1793 case 2: return UPS_LOW_SPEED;
1794 case 3: return UPS_HIGH_SPEED;
1795 default: return UPS_OTHER_SPEED;
1796 }
1797 }
1798
1799 /*
1800 * Construct input contexts and issue TRB to open pipe.
1801 */
1802 static usbd_status
1803 xhci_configure_endpoint(struct usbd_pipe *pipe)
1804 {
1805 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1806 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1807 #ifdef USB_DEBUG
1808 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1809 #endif
1810 struct xhci_soft_trb trb;
1811 usbd_status err;
1812
1813 XHCIHIST_FUNC();
1814 XHCIHIST_CALLARGS("slot %ju dci %ju epaddr 0x%02jx attr 0x%02jx",
1815 xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress,
1816 pipe->up_endpoint->ue_edesc->bmAttributes);
1817
1818 /* XXX ensure input context is available? */
1819
1820 memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz);
1821
1822 /* set up context */
1823 xhci_setup_ctx(pipe);
1824
1825 HEXDUMP("input control context", xhci_slot_get_icv(sc, xs, 0),
1826 sc->sc_ctxsz * 1);
1827 HEXDUMP("input endpoint context", xhci_slot_get_icv(sc, xs,
1828 xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1);
1829
1830 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1831 trb.trb_2 = 0;
1832 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1833 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1834
1835 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
1836
1837 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1838 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, dci),
1839 sc->sc_ctxsz * 1);
1840
1841 return err;
1842 }
1843
1844 #if 0
1845 static usbd_status
1846 xhci_unconfigure_endpoint(struct usbd_pipe *pipe)
1847 {
1848 #ifdef USB_DEBUG
1849 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1850 #endif
1851
1852 XHCIHIST_FUNC();
1853 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
1854
1855 return USBD_NORMAL_COMPLETION;
1856 }
1857 #endif
1858
1859 /* 4.6.8, 6.4.3.7 */
1860 static usbd_status
1861 xhci_reset_endpoint_locked(struct usbd_pipe *pipe)
1862 {
1863 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1864 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1865 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1866 struct xhci_soft_trb trb;
1867 usbd_status err;
1868
1869 XHCIHIST_FUNC();
1870 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1871
1872 KASSERT(mutex_owned(&sc->sc_lock));
1873
1874 trb.trb_0 = 0;
1875 trb.trb_2 = 0;
1876 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1877 XHCI_TRB_3_EP_SET(dci) |
1878 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP);
1879
1880 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1881
1882 return err;
1883 }
1884
1885 static usbd_status
1886 xhci_reset_endpoint(struct usbd_pipe *pipe)
1887 {
1888 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1889
1890 mutex_enter(&sc->sc_lock);
1891 usbd_status ret = xhci_reset_endpoint_locked(pipe);
1892 mutex_exit(&sc->sc_lock);
1893
1894 return ret;
1895 }
1896
1897 /*
1898 * 4.6.9, 6.4.3.8
1899 * Stop execution of TDs on xfer ring.
1900 * Should be called with sc_lock held.
1901 */
1902 static usbd_status
1903 xhci_stop_endpoint_cmd(struct xhci_softc *sc, struct xhci_slot *xs, u_int dci,
1904 uint32_t trb3flags)
1905 {
1906 struct xhci_soft_trb trb;
1907 usbd_status err;
1908
1909 XHCIHIST_FUNC();
1910 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1911
1912 KASSERT(mutex_owned(&sc->sc_lock));
1913
1914 trb.trb_0 = 0;
1915 trb.trb_2 = 0;
1916 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1917 XHCI_TRB_3_EP_SET(dci) |
1918 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP) |
1919 trb3flags;
1920
1921 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1922
1923 return err;
1924 }
1925
1926 static usbd_status
1927 xhci_stop_endpoint(struct usbd_pipe *pipe)
1928 {
1929 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1930 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1931 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1932
1933 XHCIHIST_FUNC();
1934 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1935
1936 KASSERT(mutex_owned(&sc->sc_lock));
1937
1938 return xhci_stop_endpoint_cmd(sc, xs, dci, 0);
1939 }
1940
1941 /*
1942 * Set TR Dequeue Pointer.
1943 * xHCI 1.1 4.6.10 6.4.3.9
1944 * Purge all of the TRBs on ring and reinitialize ring.
1945 * Set TR dequeue Pointer to 0 and Cycle State to 1.
1946 * EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE
1947 * error will be generated.
1948 */
1949 static usbd_status
1950 xhci_set_dequeue_locked(struct usbd_pipe *pipe)
1951 {
1952 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1953 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1954 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1955 struct xhci_ring * const xr = xs->xs_xr[dci];
1956 struct xhci_soft_trb trb;
1957 usbd_status err;
1958
1959 XHCIHIST_FUNC();
1960 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1961
1962 KASSERT(mutex_owned(&sc->sc_lock));
1963 KASSERT(xr != NULL);
1964
1965 xhci_host_dequeue(xr);
1966
1967 /* set DCS */
1968 trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */
1969 trb.trb_2 = 0;
1970 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1971 XHCI_TRB_3_EP_SET(dci) |
1972 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE);
1973
1974 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1975
1976 return err;
1977 }
1978
1979 static usbd_status
1980 xhci_set_dequeue(struct usbd_pipe *pipe)
1981 {
1982 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1983
1984 mutex_enter(&sc->sc_lock);
1985 usbd_status ret = xhci_set_dequeue_locked(pipe);
1986 mutex_exit(&sc->sc_lock);
1987
1988 return ret;
1989 }
1990
1991 /*
1992 * Open new pipe: called from usbd_setup_pipe_flags.
1993 * Fills methods of pipe.
1994 * If pipe is not for ep0, calls configure_endpoint.
1995 */
1996 static usbd_status
1997 xhci_open(struct usbd_pipe *pipe)
1998 {
1999 struct usbd_device * const dev = pipe->up_dev;
2000 struct xhci_pipe * const xpipe = (struct xhci_pipe *)pipe;
2001 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
2002 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2003 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
2004 const u_int dci = xhci_ep_get_dci(ed);
2005 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
2006 usbd_status err;
2007
2008 XHCIHIST_FUNC();
2009 XHCIHIST_CALLARGS("addr %jd depth %jd port %jd speed %jd", dev->ud_addr,
2010 dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed);
2011 DPRINTFN(1, " dci %ju type 0x%02jx epaddr 0x%02jx attr 0x%02jx",
2012 xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress,
2013 ed->bmAttributes);
2014 DPRINTFN(1, " mps %ju ival %ju", UGETW(ed->wMaxPacketSize),
2015 ed->bInterval, 0, 0);
2016
2017 if (sc->sc_dying)
2018 return USBD_IOERROR;
2019
2020 /* Root Hub */
2021 if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) {
2022 switch (ed->bEndpointAddress) {
2023 case USB_CONTROL_ENDPOINT:
2024 pipe->up_methods = &roothub_ctrl_methods;
2025 break;
2026 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
2027 pipe->up_methods = &xhci_root_intr_methods;
2028 break;
2029 default:
2030 pipe->up_methods = NULL;
2031 DPRINTFN(0, "bad bEndpointAddress 0x%02jx",
2032 ed->bEndpointAddress, 0, 0, 0);
2033 return USBD_INVAL;
2034 }
2035 return USBD_NORMAL_COMPLETION;
2036 }
2037
2038 switch (xfertype) {
2039 case UE_CONTROL:
2040 pipe->up_methods = &xhci_device_ctrl_methods;
2041 break;
2042 case UE_ISOCHRONOUS:
2043 pipe->up_methods = &xhci_device_isoc_methods;
2044 pipe->up_serialise = false;
2045 xpipe->xp_isoc_next = -1;
2046 break;
2047 case UE_BULK:
2048 pipe->up_methods = &xhci_device_bulk_methods;
2049 break;
2050 case UE_INTERRUPT:
2051 pipe->up_methods = &xhci_device_intr_methods;
2052 break;
2053 default:
2054 return USBD_IOERROR;
2055 break;
2056 }
2057
2058 KASSERT(xs != NULL);
2059 KASSERT(xs->xs_xr[dci] == NULL);
2060
2061 /* allocate transfer ring */
2062 err = xhci_ring_init(sc, &xs->xs_xr[dci], XHCI_TRANSFER_RING_TRBS,
2063 XHCI_TRB_ALIGN);
2064 if (err) {
2065 DPRINTFN(1, "ring alloc failed %jd", err, 0, 0, 0);
2066 return err;
2067 }
2068
2069 if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT)
2070 return xhci_configure_endpoint(pipe);
2071
2072 return USBD_NORMAL_COMPLETION;
2073 }
2074
2075 /*
2076 * Closes pipe, called from usbd_kill_pipe via close methods.
2077 * If the endpoint to be closed is ep0, disable_slot.
2078 * Should be called with sc_lock held.
2079 */
2080 static void
2081 xhci_close_pipe(struct usbd_pipe *pipe)
2082 {
2083 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
2084 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2085 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
2086 const u_int dci = xhci_ep_get_dci(ed);
2087 struct xhci_soft_trb trb;
2088 uint32_t *cp;
2089
2090 XHCIHIST_FUNC();
2091
2092 if (sc->sc_dying)
2093 return;
2094
2095 /* xs is uninitialized before xhci_init_slot */
2096 if (xs == NULL || xs->xs_idx == 0)
2097 return;
2098
2099 XHCIHIST_CALLARGS("pipe %#jx slot %ju dci %ju",
2100 (uintptr_t)pipe, xs->xs_idx, dci, 0);
2101
2102 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
2103 KASSERT(mutex_owned(&sc->sc_lock));
2104
2105 if (pipe->up_dev->ud_depth == 0)
2106 return;
2107
2108 if (dci == XHCI_DCI_EP_CONTROL) {
2109 DPRINTFN(4, "closing ep0", 0, 0, 0, 0);
2110 /* This frees all rings */
2111 xhci_disable_slot(sc, xs->xs_idx);
2112 return;
2113 }
2114
2115 if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED)
2116 (void)xhci_stop_endpoint(pipe);
2117
2118 /*
2119 * set appropriate bit to be dropped.
2120 * don't set DC bit to 1, otherwise all endpoints
2121 * would be deconfigured.
2122 */
2123 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
2124 cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci));
2125 cp[1] = htole32(0);
2126
2127 /* XXX should be most significant one, not dci? */
2128 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
2129 cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci));
2130
2131 /* configure ep context performs an implicit dequeue */
2132 xhci_host_dequeue(xs->xs_xr[dci]);
2133
2134 /* sync input contexts before they are read from memory */
2135 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
2136
2137 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
2138 trb.trb_2 = 0;
2139 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
2140 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
2141
2142 (void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
2143 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2144
2145 xhci_ring_free(sc, &xs->xs_xr[dci]);
2146 xs->xs_xr[dci] = NULL;
2147 }
2148
2149 /*
2150 * Abort transfer.
2151 * Should be called with sc_lock held.
2152 */
2153 static void
2154 xhci_abortx(struct usbd_xfer *xfer)
2155 {
2156 XHCIHIST_FUNC();
2157 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2158 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
2159 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
2160
2161 XHCIHIST_CALLARGS("xfer %#jx pipe %#jx",
2162 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0, 0);
2163
2164 KASSERT(mutex_owned(&sc->sc_lock));
2165 ASSERT_SLEEPABLE();
2166
2167 KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
2168 xfer->ux_status == USBD_TIMEOUT),
2169 "bad abort status: %d", xfer->ux_status);
2170
2171 /*
2172 * If we're dying, skip the hardware action and just notify the
2173 * software that we're done.
2174 */
2175 if (sc->sc_dying) {
2176 DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer,
2177 xfer->ux_status, 0, 0);
2178 goto dying;
2179 }
2180
2181 /*
2182 * HC Step 1: Stop execution of TD on the ring.
2183 */
2184 switch (xhci_get_epstate(sc, xs, dci)) {
2185 case XHCI_EPSTATE_HALTED:
2186 (void)xhci_reset_endpoint_locked(xfer->ux_pipe);
2187 break;
2188 case XHCI_EPSTATE_STOPPED:
2189 break;
2190 default:
2191 (void)xhci_stop_endpoint(xfer->ux_pipe);
2192 break;
2193 }
2194 #ifdef DIAGNOSTIC
2195 uint32_t epst = xhci_get_epstate(sc, xs, dci);
2196 if (epst != XHCI_EPSTATE_STOPPED)
2197 DPRINTFN(4, "dci %ju not stopped %ju", dci, epst, 0, 0);
2198 #endif
2199
2200 /*
2201 * HC Step 2: Remove any vestiges of the xfer from the ring.
2202 */
2203 xhci_set_dequeue_locked(xfer->ux_pipe);
2204
2205 /*
2206 * Final Step: Notify completion to waiting xfers.
2207 */
2208 dying:
2209 usb_transfer_complete(xfer);
2210 DPRINTFN(14, "end", 0, 0, 0, 0);
2211
2212 KASSERT(mutex_owned(&sc->sc_lock));
2213 }
2214
2215 static void
2216 xhci_host_dequeue(struct xhci_ring * const xr)
2217 {
2218 /* When dequeueing the controller, update our struct copy too */
2219 memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE);
2220 usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE,
2221 BUS_DMASYNC_PREWRITE);
2222 memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies));
2223
2224 xr->xr_ep = 0;
2225 xr->xr_cs = 1;
2226 }
2227
2228 /*
2229 * Recover STALLed endpoint.
2230 * xHCI 1.1 sect 4.10.2.1
2231 * Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove
2232 * all transfers on transfer ring.
2233 * These are done in thread context asynchronously.
2234 */
2235 static void
2236 xhci_clear_endpoint_stall_async_task(void *cookie)
2237 {
2238 struct usbd_xfer * const xfer = cookie;
2239 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2240 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
2241 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
2242 struct xhci_ring * const tr = xs->xs_xr[dci];
2243
2244 XHCIHIST_FUNC();
2245 XHCIHIST_CALLARGS("xfer %#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx,
2246 dci, 0);
2247
2248 /*
2249 * XXXMRG: Stall task can run after slot is disabled when yanked.
2250 * This hack notices that the xs has been memset() in
2251 * xhci_disable_slot() and returns. Both xhci_reset_endpoint()
2252 * and xhci_set_dequeue() rely upon a valid ring setup for correct
2253 * operation, and the latter will fault, as would
2254 * usb_transfer_complete() if it got that far.
2255 */
2256 if (xs->xs_idx == 0) {
2257 DPRINTFN(4, "ends xs_idx is 0", 0, 0, 0, 0);
2258 return;
2259 }
2260
2261 KASSERT(tr != NULL);
2262
2263 xhci_reset_endpoint(xfer->ux_pipe);
2264 xhci_set_dequeue(xfer->ux_pipe);
2265
2266 mutex_enter(&sc->sc_lock);
2267 tr->is_halted = false;
2268 usb_transfer_complete(xfer);
2269 mutex_exit(&sc->sc_lock);
2270 DPRINTFN(4, "ends", 0, 0, 0, 0);
2271 }
2272
2273 static usbd_status
2274 xhci_clear_endpoint_stall_async(struct usbd_xfer *xfer)
2275 {
2276 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2277 struct xhci_pipe * const xp = (struct xhci_pipe *)xfer->ux_pipe;
2278
2279 XHCIHIST_FUNC();
2280 XHCIHIST_CALLARGS("xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
2281
2282 if (sc->sc_dying) {
2283 return USBD_IOERROR;
2284 }
2285
2286 usb_init_task(&xp->xp_async_task,
2287 xhci_clear_endpoint_stall_async_task, xfer, USB_TASKQ_MPSAFE);
2288 usb_add_task(xfer->ux_pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC);
2289 DPRINTFN(4, "ends", 0, 0, 0, 0);
2290
2291 return USBD_NORMAL_COMPLETION;
2292 }
2293
2294 /* Process roothub port status/change events and notify to uhub_intr. */
2295 static void
2296 xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport)
2297 {
2298 XHCIHIST_FUNC();
2299 XHCIHIST_CALLARGS("xhci%jd: port %ju status change",
2300 device_unit(sc->sc_dev), ctlrport, 0, 0);
2301
2302 if (ctlrport > sc->sc_maxports)
2303 return;
2304
2305 const size_t bn = xhci_ctlrport2bus(sc, ctlrport);
2306 const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport);
2307 struct usbd_xfer * const xfer = sc->sc_intrxfer[bn];
2308
2309 DPRINTFN(4, "xhci%jd: bus %jd bp %ju xfer %#jx status change",
2310 device_unit(sc->sc_dev), bn, rhp, (uintptr_t)xfer);
2311
2312 if (xfer == NULL)
2313 return;
2314 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
2315
2316 uint8_t *p = xfer->ux_buf;
2317 memset(p, 0, xfer->ux_length);
2318 p[rhp / NBBY] |= 1 << (rhp % NBBY);
2319 xfer->ux_actlen = xfer->ux_length;
2320 xfer->ux_status = USBD_NORMAL_COMPLETION;
2321 usb_transfer_complete(xfer);
2322 }
2323
2324 /* Process Transfer Events */
2325 static void
2326 xhci_event_transfer(struct xhci_softc * const sc,
2327 const struct xhci_trb * const trb)
2328 {
2329 uint64_t trb_0;
2330 uint32_t trb_2, trb_3;
2331 uint8_t trbcode;
2332 u_int slot, dci;
2333 struct xhci_slot *xs;
2334 struct xhci_ring *xr;
2335 struct xhci_xfer *xx;
2336 struct usbd_xfer *xfer;
2337 usbd_status err;
2338
2339 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2340
2341 trb_0 = le64toh(trb->trb_0);
2342 trb_2 = le32toh(trb->trb_2);
2343 trb_3 = le32toh(trb->trb_3);
2344 trbcode = XHCI_TRB_2_ERROR_GET(trb_2);
2345 slot = XHCI_TRB_3_SLOT_GET(trb_3);
2346 dci = XHCI_TRB_3_EP_GET(trb_3);
2347 xs = &sc->sc_slots[slot];
2348 xr = xs->xs_xr[dci];
2349
2350 /* sanity check */
2351 KASSERT(xr != NULL);
2352 KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots,
2353 "invalid xs_idx %u slot %u", xs->xs_idx, slot);
2354
2355 int idx = 0;
2356 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
2357 if (xhci_trb_get_idx(xr, trb_0, &idx)) {
2358 DPRINTFN(0, "invalid trb_0 %#jx", trb_0, 0, 0, 0);
2359 return;
2360 }
2361 xx = xr->xr_cookies[idx];
2362
2363 /* clear cookie of consumed TRB */
2364 xr->xr_cookies[idx] = NULL;
2365
2366 /*
2367 * xx is NULL if pipe is opened but xfer is not started.
2368 * It happens when stopping idle pipe.
2369 */
2370 if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) {
2371 DPRINTFN(1, "Ignore #%ju: cookie %#jx cc %ju dci %ju",
2372 idx, (uintptr_t)xx, trbcode, dci);
2373 DPRINTFN(1, " orig TRB %#jx type %ju", trb_0,
2374 XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)),
2375 0, 0);
2376 return;
2377 }
2378 } else {
2379 /* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */
2380 xx = (void *)(uintptr_t)(trb_0 & ~0x3);
2381 }
2382 /* XXX this may not happen */
2383 if (xx == NULL) {
2384 DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0);
2385 return;
2386 }
2387 xfer = &xx->xx_xfer;
2388 /* XXX this may happen when detaching */
2389 if (xfer == NULL) {
2390 DPRINTFN(1, "xx(%#jx)->xx_xfer is NULL trb_0 %#jx",
2391 (uintptr_t)xx, trb_0, 0, 0);
2392 return;
2393 }
2394 DPRINTFN(14, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
2395 /* XXX I dunno why this happens */
2396 KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer);
2397
2398 if (!xfer->ux_pipe->up_repeat &&
2399 SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) {
2400 DPRINTFN(1, "xfer(%#jx)->pipe not queued", (uintptr_t)xfer,
2401 0, 0, 0);
2402 return;
2403 }
2404
2405 const uint8_t xfertype =
2406 UE_GET_XFERTYPE(xfer->ux_pipe->up_endpoint->ue_edesc->bmAttributes);
2407
2408 /* 4.11.5.2 Event Data TRB */
2409 if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
2410 DPRINTFN(14, "transfer Event Data: 0x%016jx 0x%08jx"
2411 " %02jx", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0);
2412 if ((trb_0 & 0x3) == 0x3) {
2413 xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2);
2414 }
2415 }
2416
2417 switch (trbcode) {
2418 case XHCI_TRB_ERROR_SHORT_PKT:
2419 case XHCI_TRB_ERROR_SUCCESS:
2420 /*
2421 * A ctrl transfer can generate two events if it has a Data
2422 * stage. A short data stage can be OK and should not
2423 * complete the transfer as the status stage needs to be
2424 * performed.
2425 *
2426 * Note: Data and Status stage events point at same xfer.
2427 * ux_actlen and ux_dmabuf will be passed to
2428 * usb_transfer_complete after the Status stage event.
2429 *
2430 * It can be distingished which stage generates the event:
2431 * + by checking least 3 bits of trb_0 if ED==1.
2432 * (see xhci_device_ctrl_start).
2433 * + by checking the type of original TRB if ED==0.
2434 *
2435 * In addition, intr, bulk, and isoc transfer currently
2436 * consists of single TD, so the "skip" is not needed.
2437 * ctrl xfer uses EVENT_DATA, and others do not.
2438 * Thus driver can switch the flow by checking ED bit.
2439 */
2440 if (xfertype == UE_ISOCHRONOUS) {
2441 xfer->ux_frlengths[xx->xx_isoc_done] -=
2442 XHCI_TRB_2_REM_GET(trb_2);
2443 xfer->ux_actlen += xfer->ux_frlengths[xx->xx_isoc_done];
2444 if (++xx->xx_isoc_done < xfer->ux_nframes)
2445 return;
2446 } else
2447 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
2448 if (xfer->ux_actlen == 0)
2449 xfer->ux_actlen = xfer->ux_length -
2450 XHCI_TRB_2_REM_GET(trb_2);
2451 if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3))
2452 == XHCI_TRB_TYPE_DATA_STAGE) {
2453 return;
2454 }
2455 } else if ((trb_0 & 0x3) == 0x3) {
2456 return;
2457 }
2458 err = USBD_NORMAL_COMPLETION;
2459 break;
2460 case XHCI_TRB_ERROR_STOPPED:
2461 case XHCI_TRB_ERROR_LENGTH:
2462 case XHCI_TRB_ERROR_STOPPED_SHORT:
2463 err = USBD_IOERROR;
2464 break;
2465 case XHCI_TRB_ERROR_STALL:
2466 case XHCI_TRB_ERROR_BABBLE:
2467 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2468 xr->is_halted = true;
2469 /*
2470 * Try to claim this xfer for completion. If it has already
2471 * completed or aborted, drop it on the floor.
2472 */
2473 if (!usbd_xfer_trycomplete(xfer))
2474 return;
2475
2476 /*
2477 * Stalled endpoints can be recoverd by issuing
2478 * command TRB TYPE_RESET_EP on xHCI instead of
2479 * issuing request CLEAR_FEATURE UF_ENDPOINT_HALT
2480 * on the endpoint. However, this function may be
2481 * called from softint context (e.g. from umass),
2482 * in that case driver gets KASSERT in cv_timedwait
2483 * in xhci_do_command.
2484 * To avoid this, this runs reset_endpoint and
2485 * usb_transfer_complete in usb task thread
2486 * asynchronously (and then umass issues clear
2487 * UF_ENDPOINT_HALT).
2488 */
2489
2490 /* Override the status. */
2491 xfer->ux_status = USBD_STALLED;
2492
2493 xhci_clear_endpoint_stall_async(xfer);
2494 return;
2495 default:
2496 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2497 err = USBD_IOERROR;
2498 break;
2499 }
2500
2501 /*
2502 * Try to claim this xfer for completion. If it has already
2503 * completed or aborted, drop it on the floor.
2504 */
2505 if (!usbd_xfer_trycomplete(xfer))
2506 return;
2507
2508 /* Set the status. */
2509 xfer->ux_status = err;
2510
2511 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0 ||
2512 (trb_0 & 0x3) == 0x0) {
2513 usb_transfer_complete(xfer);
2514 }
2515 }
2516
2517 /* Process Command complete events */
2518 static void
2519 xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb)
2520 {
2521 uint64_t trb_0;
2522 uint32_t trb_2, trb_3;
2523
2524 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2525
2526 KASSERT(mutex_owned(&sc->sc_lock));
2527
2528 trb_0 = le64toh(trb->trb_0);
2529 trb_2 = le32toh(trb->trb_2);
2530 trb_3 = le32toh(trb->trb_3);
2531
2532 if (trb_0 == sc->sc_command_addr) {
2533 sc->sc_resultpending = false;
2534
2535 sc->sc_result_trb.trb_0 = trb_0;
2536 sc->sc_result_trb.trb_2 = trb_2;
2537 sc->sc_result_trb.trb_3 = trb_3;
2538 if (XHCI_TRB_2_ERROR_GET(trb_2) !=
2539 XHCI_TRB_ERROR_SUCCESS) {
2540 DPRINTFN(1, "command completion "
2541 "failure: 0x%016jx 0x%08jx 0x%08jx",
2542 trb_0, trb_2, trb_3, 0);
2543 }
2544 cv_signal(&sc->sc_command_cv);
2545 } else {
2546 DPRINTFN(1, "spurious event: %#jx 0x%016jx "
2547 "0x%08jx 0x%08jx", (uintptr_t)trb, trb_0, trb_2, trb_3);
2548 }
2549 }
2550
2551 /*
2552 * Process events.
2553 * called from xhci_softintr
2554 */
2555 static void
2556 xhci_handle_event(struct xhci_softc * const sc,
2557 const struct xhci_trb * const trb)
2558 {
2559 uint64_t trb_0;
2560 uint32_t trb_2, trb_3;
2561
2562 XHCIHIST_FUNC();
2563
2564 trb_0 = le64toh(trb->trb_0);
2565 trb_2 = le32toh(trb->trb_2);
2566 trb_3 = le32toh(trb->trb_3);
2567
2568 XHCIHIST_CALLARGS("event: %#jx 0x%016jx 0x%08jx 0x%08jx",
2569 (uintptr_t)trb, trb_0, trb_2, trb_3);
2570
2571 /*
2572 * 4.11.3.1, 6.4.2.1
2573 * TRB Pointer is invalid for these completion codes.
2574 */
2575 switch (XHCI_TRB_2_ERROR_GET(trb_2)) {
2576 case XHCI_TRB_ERROR_RING_UNDERRUN:
2577 case XHCI_TRB_ERROR_RING_OVERRUN:
2578 case XHCI_TRB_ERROR_VF_RING_FULL:
2579 return;
2580 default:
2581 if (trb_0 == 0) {
2582 return;
2583 }
2584 break;
2585 }
2586
2587 switch (XHCI_TRB_3_TYPE_GET(trb_3)) {
2588 case XHCI_TRB_EVENT_TRANSFER:
2589 xhci_event_transfer(sc, trb);
2590 break;
2591 case XHCI_TRB_EVENT_CMD_COMPLETE:
2592 xhci_event_cmd(sc, trb);
2593 break;
2594 case XHCI_TRB_EVENT_PORT_STS_CHANGE:
2595 xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff));
2596 break;
2597 default:
2598 break;
2599 }
2600 }
2601
2602 static void
2603 xhci_softintr(void *v)
2604 {
2605 struct usbd_bus * const bus = v;
2606 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2607 struct xhci_ring * const er = sc->sc_er;
2608 struct xhci_trb *trb;
2609 int i, j, k;
2610
2611 XHCIHIST_FUNC();
2612
2613 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
2614
2615 i = er->xr_ep;
2616 j = er->xr_cs;
2617
2618 XHCIHIST_CALLARGS("er: xr_ep %jd xr_cs %jd", i, j, 0, 0);
2619
2620 while (1) {
2621 usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE,
2622 BUS_DMASYNC_POSTREAD);
2623 trb = &er->xr_trb[i];
2624 k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
2625
2626 if (j != k)
2627 break;
2628
2629 xhci_handle_event(sc, trb);
2630
2631 i++;
2632 if (i == er->xr_ntrb) {
2633 i = 0;
2634 j ^= 1;
2635 }
2636 }
2637
2638 er->xr_ep = i;
2639 er->xr_cs = j;
2640
2641 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) |
2642 XHCI_ERDP_BUSY);
2643
2644 DPRINTFN(16, "ends", 0, 0, 0, 0);
2645
2646 return;
2647 }
2648
2649 static void
2650 xhci_poll(struct usbd_bus *bus)
2651 {
2652 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2653
2654 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2655
2656 mutex_enter(&sc->sc_intr_lock);
2657 int ret = xhci_intr1(sc);
2658 if (ret) {
2659 xhci_softintr(bus);
2660 }
2661 mutex_exit(&sc->sc_intr_lock);
2662
2663 return;
2664 }
2665
2666 static struct usbd_xfer *
2667 xhci_allocx(struct usbd_bus *bus, unsigned int nframes)
2668 {
2669 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2670 struct xhci_xfer *xx;
2671 u_int ntrbs;
2672
2673 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2674
2675 ntrbs = uimax(3, nframes);
2676 const size_t trbsz = sizeof(*xx->xx_trb) * ntrbs;
2677
2678 xx = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
2679 if (xx != NULL) {
2680 memset(xx, 0, sizeof(*xx));
2681 if (ntrbs > 0) {
2682 xx->xx_trb = kmem_alloc(trbsz, KM_SLEEP);
2683 xx->xx_ntrb = ntrbs;
2684 }
2685 #ifdef DIAGNOSTIC
2686 xx->xx_xfer.ux_state = XFER_BUSY;
2687 #endif
2688 }
2689
2690 return &xx->xx_xfer;
2691 }
2692
2693 static void
2694 xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
2695 {
2696 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2697 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
2698
2699 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2700
2701 #ifdef DIAGNOSTIC
2702 if (xfer->ux_state != XFER_BUSY &&
2703 xfer->ux_status != USBD_NOT_STARTED) {
2704 DPRINTFN(0, "xfer=%#jx not busy, 0x%08jx",
2705 (uintptr_t)xfer, xfer->ux_state, 0, 0);
2706 }
2707 xfer->ux_state = XFER_FREE;
2708 #endif
2709 if (xx->xx_ntrb > 0) {
2710 kmem_free(xx->xx_trb, xx->xx_ntrb * sizeof(*xx->xx_trb));
2711 xx->xx_trb = NULL;
2712 xx->xx_ntrb = 0;
2713 }
2714 pool_cache_put(sc->sc_xferpool, xx);
2715 }
2716
2717 static bool
2718 xhci_dying(struct usbd_bus *bus)
2719 {
2720 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2721
2722 return sc->sc_dying;
2723 }
2724
2725 static void
2726 xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
2727 {
2728 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2729
2730 *lock = &sc->sc_lock;
2731 }
2732
2733 extern uint32_t usb_cookie_no;
2734
2735 /*
2736 * xHCI 4.3
2737 * Called when uhub_explore finds a new device (via usbd_new_device).
2738 * Port initialization and speed detection (4.3.1) are already done in uhub.c.
2739 * This function does:
2740 * Allocate and construct dev structure of default endpoint (ep0).
2741 * Allocate and open pipe of ep0.
2742 * Enable slot and initialize slot context.
2743 * Set Address.
2744 * Read initial device descriptor.
2745 * Determine initial MaxPacketSize (mps) by speed.
2746 * Read full device descriptor.
2747 * Register this device.
2748 * Finally state of device transitions ADDRESSED.
2749 */
2750 static usbd_status
2751 xhci_new_device(device_t parent, struct usbd_bus *bus, int depth,
2752 int speed, int port, struct usbd_port *up)
2753 {
2754 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2755 struct usbd_device *dev;
2756 usbd_status err;
2757 usb_device_descriptor_t *dd;
2758 struct xhci_slot *xs;
2759 uint32_t *cp;
2760
2761 XHCIHIST_FUNC();
2762 XHCIHIST_CALLARGS("port %ju depth %ju speed %ju up %#jx",
2763 port, depth, speed, (uintptr_t)up);
2764
2765 KASSERT(KERNEL_LOCKED_P());
2766
2767 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
2768 dev->ud_bus = bus;
2769 dev->ud_quirks = &usbd_no_quirk;
2770 dev->ud_addr = 0;
2771 dev->ud_ddesc.bMaxPacketSize = 0;
2772 dev->ud_depth = depth;
2773 dev->ud_powersrc = up;
2774 dev->ud_myhub = up->up_parent;
2775 dev->ud_speed = speed;
2776 dev->ud_langid = USBD_NOLANG;
2777 dev->ud_cookie.cookie = ++usb_cookie_no;
2778
2779 /* Set up default endpoint handle. */
2780 dev->ud_ep0.ue_edesc = &dev->ud_ep0desc;
2781 /* doesn't matter, just don't let it uninitialized */
2782 dev->ud_ep0.ue_toggle = 0;
2783
2784 /* Set up default endpoint descriptor. */
2785 dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE;
2786 dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT;
2787 dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
2788 dev->ud_ep0desc.bmAttributes = UE_CONTROL;
2789 dev->ud_ep0desc.bInterval = 0;
2790
2791 /* 4.3, 4.8.2.1 */
2792 switch (speed) {
2793 case USB_SPEED_SUPER:
2794 case USB_SPEED_SUPER_PLUS:
2795 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET);
2796 break;
2797 case USB_SPEED_FULL:
2798 /* XXX using 64 as initial mps of ep0 in FS */
2799 case USB_SPEED_HIGH:
2800 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET);
2801 break;
2802 case USB_SPEED_LOW:
2803 default:
2804 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET);
2805 break;
2806 }
2807
2808 up->up_dev = dev;
2809
2810 dd = &dev->ud_ddesc;
2811
2812 if (depth == 0 && port == 0) {
2813 KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL);
2814 bus->ub_devices[USB_ROOTHUB_INDEX] = dev;
2815
2816 /* Establish the default pipe. */
2817 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
2818 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
2819 if (err) {
2820 DPRINTFN(1, "setup default pipe failed %jd", err,0,0,0);
2821 goto bad;
2822 }
2823 err = usbd_get_initial_ddesc(dev, dd);
2824 if (err) {
2825 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2826 goto bad;
2827 }
2828 } else {
2829 uint8_t slot = 0;
2830
2831 /* 4.3.2 */
2832 err = xhci_enable_slot(sc, &slot);
2833 if (err) {
2834 DPRINTFN(1, "enable slot %ju", err, 0, 0, 0);
2835 goto bad;
2836 }
2837
2838 xs = &sc->sc_slots[slot];
2839 dev->ud_hcpriv = xs;
2840
2841 /* 4.3.3 initialize slot structure */
2842 err = xhci_init_slot(dev, slot);
2843 if (err) {
2844 DPRINTFN(1, "init slot %ju", err, 0, 0, 0);
2845 dev->ud_hcpriv = NULL;
2846 /*
2847 * We have to disable_slot here because
2848 * xs->xs_idx == 0 when xhci_init_slot fails,
2849 * in that case usbd_remove_dev won't work.
2850 */
2851 mutex_enter(&sc->sc_lock);
2852 xhci_disable_slot(sc, slot);
2853 mutex_exit(&sc->sc_lock);
2854 goto bad;
2855 }
2856
2857 /*
2858 * We have to establish the default pipe _after_ slot
2859 * structure has been prepared.
2860 */
2861 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
2862 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
2863 if (err) {
2864 DPRINTFN(1, "setup default pipe failed %jd", err, 0, 0,
2865 0);
2866 goto bad;
2867 }
2868
2869 /* 4.3.4 Address Assignment */
2870 err = xhci_set_address(dev, slot, false);
2871 if (err) {
2872 DPRINTFN(1, "failed! to set address: %ju", err, 0, 0, 0);
2873 goto bad;
2874 }
2875
2876 /* Allow device time to set new address */
2877 usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE);
2878
2879 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2880 cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT);
2881 HEXDUMP("slot context", cp, sc->sc_ctxsz);
2882 uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3]));
2883 DPRINTFN(4, "device address %ju", addr, 0, 0, 0);
2884 /*
2885 * XXX ensure we know when the hardware does something
2886 * we can't yet cope with
2887 */
2888 KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr);
2889 dev->ud_addr = addr;
2890
2891 KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL,
2892 "addr %d already allocated", dev->ud_addr);
2893 /*
2894 * The root hub is given its own slot
2895 */
2896 bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev;
2897
2898 err = usbd_get_initial_ddesc(dev, dd);
2899 if (err) {
2900 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2901 goto bad;
2902 }
2903
2904 /* 4.8.2.1 */
2905 if (USB_IS_SS(speed)) {
2906 if (dd->bMaxPacketSize != 9) {
2907 printf("%s: invalid mps 2^%u for SS ep0,"
2908 " using 512\n",
2909 device_xname(sc->sc_dev),
2910 dd->bMaxPacketSize);
2911 dd->bMaxPacketSize = 9;
2912 }
2913 USETW(dev->ud_ep0desc.wMaxPacketSize,
2914 (1 << dd->bMaxPacketSize));
2915 } else
2916 USETW(dev->ud_ep0desc.wMaxPacketSize,
2917 dd->bMaxPacketSize);
2918 DPRINTFN(4, "bMaxPacketSize %ju", dd->bMaxPacketSize, 0, 0, 0);
2919 err = xhci_update_ep0_mps(sc, xs,
2920 UGETW(dev->ud_ep0desc.wMaxPacketSize));
2921 if (err) {
2922 DPRINTFN(1, "update mps of ep0 %ju", err, 0, 0, 0);
2923 goto bad;
2924 }
2925 }
2926
2927 err = usbd_reload_device_desc(dev);
2928 if (err) {
2929 DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
2930 goto bad;
2931 }
2932
2933 DPRINTFN(1, "adding unit addr=%jd, rev=%02jx,",
2934 dev->ud_addr, UGETW(dd->bcdUSB), 0, 0);
2935 DPRINTFN(1, " class=%jd, subclass=%jd, protocol=%jd,",
2936 dd->bDeviceClass, dd->bDeviceSubClass,
2937 dd->bDeviceProtocol, 0);
2938 DPRINTFN(1, " mps=%jd, len=%jd, noconf=%jd, speed=%jd",
2939 dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations,
2940 dev->ud_speed);
2941
2942 usbd_get_device_strings(dev);
2943
2944 usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev);
2945
2946 if (depth == 0 && port == 0) {
2947 usbd_attach_roothub(parent, dev);
2948 DPRINTFN(1, "root hub %#jx", (uintptr_t)dev, 0, 0, 0);
2949 return USBD_NORMAL_COMPLETION;
2950 }
2951
2952 err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr);
2953 bad:
2954 if (err != USBD_NORMAL_COMPLETION) {
2955 if (depth == 0 && port == 0 && dev->ud_pipe0)
2956 usbd_kill_pipe(dev->ud_pipe0);
2957 usbd_remove_device(dev, up);
2958 }
2959
2960 return err;
2961 }
2962
2963 static usbd_status
2964 xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring **xrp,
2965 size_t ntrb, size_t align)
2966 {
2967 size_t size = ntrb * XHCI_TRB_SIZE;
2968 struct xhci_ring *xr;
2969
2970 XHCIHIST_FUNC();
2971 XHCIHIST_CALLARGS("xr %#jx ntrb %#jx align %#jx",
2972 (uintptr_t)*xrp, ntrb, align, 0);
2973
2974 xr = kmem_zalloc(sizeof(struct xhci_ring), KM_SLEEP);
2975 DPRINTFN(1, "ring %#jx", (uintptr_t)xr, 0, 0, 0);
2976
2977 int err = usb_allocmem(sc->sc_bus.ub_dmatag, size, align,
2978 USBMALLOC_COHERENT | USBMALLOC_ZERO, &xr->xr_dma);
2979 if (err) {
2980 kmem_free(xr, sizeof(struct xhci_ring));
2981 DPRINTFN(1, "alloc xr_dma failed %jd", err, 0, 0, 0);
2982 return err;
2983 }
2984 mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
2985 xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP);
2986 xr->xr_trb = xhci_ring_trbv(xr, 0);
2987 xr->xr_ntrb = ntrb;
2988 xr->is_halted = false;
2989 xhci_host_dequeue(xr);
2990 *xrp = xr;
2991
2992 return USBD_NORMAL_COMPLETION;
2993 }
2994
2995 static void
2996 xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring ** const xr)
2997 {
2998 if (*xr == NULL)
2999 return;
3000
3001 usb_freemem(&(*xr)->xr_dma);
3002 mutex_destroy(&(*xr)->xr_lock);
3003 kmem_free((*xr)->xr_cookies,
3004 sizeof(*(*xr)->xr_cookies) * (*xr)->xr_ntrb);
3005 kmem_free(*xr, sizeof(struct xhci_ring));
3006 *xr = NULL;
3007 }
3008
3009 static void
3010 xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr,
3011 void *cookie, struct xhci_soft_trb * const trbs, size_t ntrbs)
3012 {
3013 size_t i;
3014 u_int ri;
3015 u_int cs;
3016 uint64_t parameter;
3017 uint32_t status;
3018 uint32_t control;
3019
3020 XHCIHIST_FUNC();
3021 XHCIHIST_CALLARGS("%#jx xr_ep %#jx xr_cs %ju",
3022 (uintptr_t)xr, xr->xr_ep, xr->xr_cs, 0);
3023
3024 KASSERTMSG(ntrbs < xr->xr_ntrb, "ntrbs %zu, xr->xr_ntrb %u",
3025 ntrbs, xr->xr_ntrb);
3026 for (i = 0; i < ntrbs; i++) {
3027 DPRINTFN(12, "xr %#jx trbs %#jx num %ju", (uintptr_t)xr,
3028 (uintptr_t)trbs, i, 0);
3029 DPRINTFN(12, " 0x%016jx 0x%08jx 0x%08jx",
3030 trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0);
3031 KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) !=
3032 XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3);
3033 }
3034
3035 ri = xr->xr_ep;
3036 cs = xr->xr_cs;
3037
3038 /*
3039 * Although the xhci hardware can do scatter/gather dma from
3040 * arbitrary sized buffers, there is a non-obvious restriction
3041 * that a LINK trb is only allowed at the end of a burst of
3042 * transfers - which might be 16kB.
3043 * Arbitrary aligned LINK trb definitely fail on Ivy bridge.
3044 * The simple solution is not to allow a LINK trb in the middle
3045 * of anything - as here.
3046 * XXX: (dsl) There are xhci controllers out there (eg some made by
3047 * ASMedia) that seem to lock up if they process a LINK trb but
3048 * cannot process the linked-to trb yet.
3049 * The code should write the 'cycle' bit on the link trb AFTER
3050 * adding the other trb.
3051 */
3052 u_int firstep = xr->xr_ep;
3053 u_int firstcs = xr->xr_cs;
3054
3055 for (i = 0; i < ntrbs; ) {
3056 u_int oldri = ri;
3057 u_int oldcs = cs;
3058
3059 if (ri >= (xr->xr_ntrb - 1)) {
3060 /* Put Link TD at the end of ring */
3061 parameter = xhci_ring_trbp(xr, 0);
3062 status = 0;
3063 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
3064 XHCI_TRB_3_TC_BIT;
3065 xr->xr_cookies[ri] = NULL;
3066 xr->xr_ep = 0;
3067 xr->xr_cs ^= 1;
3068 ri = xr->xr_ep;
3069 cs = xr->xr_cs;
3070 } else {
3071 parameter = trbs[i].trb_0;
3072 status = trbs[i].trb_2;
3073 control = trbs[i].trb_3;
3074
3075 xr->xr_cookies[ri] = cookie;
3076 ri++;
3077 i++;
3078 }
3079 /*
3080 * If this is a first TRB, mark it invalid to prevent
3081 * xHC from running it immediately.
3082 */
3083 if (oldri == firstep) {
3084 if (oldcs) {
3085 control &= ~XHCI_TRB_3_CYCLE_BIT;
3086 } else {
3087 control |= XHCI_TRB_3_CYCLE_BIT;
3088 }
3089 } else {
3090 if (oldcs) {
3091 control |= XHCI_TRB_3_CYCLE_BIT;
3092 } else {
3093 control &= ~XHCI_TRB_3_CYCLE_BIT;
3094 }
3095 }
3096 xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control);
3097 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri,
3098 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
3099 }
3100
3101 /* Now invert cycle bit of first TRB */
3102 if (firstcs) {
3103 xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
3104 } else {
3105 xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
3106 }
3107 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep,
3108 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
3109
3110 xr->xr_ep = ri;
3111 xr->xr_cs = cs;
3112
3113 DPRINTFN(12, "%#jx xr_ep %#jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep,
3114 xr->xr_cs, 0);
3115 }
3116
3117 static inline void
3118 xhci_ring_put_xfer(struct xhci_softc * const sc, struct xhci_ring * const tr,
3119 struct xhci_xfer *xx, u_int ntrb)
3120 {
3121 KASSERT(ntrb <= xx->xx_ntrb);
3122 xhci_ring_put(sc, tr, xx, xx->xx_trb, ntrb);
3123 }
3124
3125 /*
3126 * Stop execution commands, purge all commands on command ring, and
3127 * rewind dequeue pointer.
3128 */
3129 static void
3130 xhci_abort_command(struct xhci_softc *sc)
3131 {
3132 struct xhci_ring * const cr = sc->sc_cr;
3133 uint64_t crcr;
3134 int i;
3135
3136 XHCIHIST_FUNC();
3137 XHCIHIST_CALLARGS("command %#jx timeout, aborting",
3138 sc->sc_command_addr, 0, 0, 0);
3139
3140 mutex_enter(&cr->xr_lock);
3141
3142 /* 4.6.1.2 Aborting a Command */
3143 crcr = xhci_op_read_8(sc, XHCI_CRCR);
3144 xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA);
3145
3146 for (i = 0; i < 500; i++) {
3147 crcr = xhci_op_read_8(sc, XHCI_CRCR);
3148 if ((crcr & XHCI_CRCR_LO_CRR) == 0)
3149 break;
3150 usb_delay_ms(&sc->sc_bus, 1);
3151 }
3152 if ((crcr & XHCI_CRCR_LO_CRR) != 0) {
3153 DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0);
3154 /* reset HC here? */
3155 }
3156
3157 /* reset command ring dequeue pointer */
3158 cr->xr_ep = 0;
3159 cr->xr_cs = 1;
3160 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs);
3161
3162 mutex_exit(&cr->xr_lock);
3163 }
3164
3165 /*
3166 * Put a command on command ring, ring bell, set timer, and cv_timedwait.
3167 * Command completion is notified by cv_signal from xhci_event_cmd()
3168 * (called from xhci_softint), or timed-out.
3169 * The completion code is copied to sc->sc_result_trb in xhci_event_cmd(),
3170 * then do_command examines it.
3171 */
3172 static usbd_status
3173 xhci_do_command_locked(struct xhci_softc * const sc,
3174 struct xhci_soft_trb * const trb, int timeout)
3175 {
3176 struct xhci_ring * const cr = sc->sc_cr;
3177 usbd_status err;
3178
3179 XHCIHIST_FUNC();
3180 XHCIHIST_CALLARGS("input: 0x%016jx 0x%08jx 0x%08jx",
3181 trb->trb_0, trb->trb_2, trb->trb_3, 0);
3182
3183 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
3184 KASSERT(mutex_owned(&sc->sc_lock));
3185
3186 while (sc->sc_command_addr != 0 ||
3187 (sc->sc_suspender != NULL && sc->sc_suspender != curlwp))
3188 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
3189
3190 /*
3191 * If enqueue pointer points at last of ring, it's Link TRB,
3192 * command TRB will be stored in 0th TRB.
3193 */
3194 if (cr->xr_ep == cr->xr_ntrb - 1)
3195 sc->sc_command_addr = xhci_ring_trbp(cr, 0);
3196 else
3197 sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep);
3198
3199 sc->sc_resultpending = true;
3200
3201 mutex_enter(&cr->xr_lock);
3202 xhci_ring_put(sc, cr, NULL, trb, 1);
3203 mutex_exit(&cr->xr_lock);
3204
3205 xhci_db_write_4(sc, XHCI_DOORBELL(0), 0);
3206
3207 while (sc->sc_resultpending) {
3208 if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock,
3209 MAX(1, mstohz(timeout))) == EWOULDBLOCK) {
3210 xhci_abort_command(sc);
3211 err = USBD_TIMEOUT;
3212 goto timedout;
3213 }
3214 }
3215
3216 trb->trb_0 = sc->sc_result_trb.trb_0;
3217 trb->trb_2 = sc->sc_result_trb.trb_2;
3218 trb->trb_3 = sc->sc_result_trb.trb_3;
3219
3220 DPRINTFN(12, "output: 0x%016jx 0x%08jx 0x%08jx",
3221 trb->trb_0, trb->trb_2, trb->trb_3, 0);
3222
3223 switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) {
3224 case XHCI_TRB_ERROR_SUCCESS:
3225 err = USBD_NORMAL_COMPLETION;
3226 break;
3227 default:
3228 case 192 ... 223:
3229 DPRINTFN(5, "error %#jx",
3230 XHCI_TRB_2_ERROR_GET(trb->trb_2), 0, 0, 0);
3231 err = USBD_IOERROR;
3232 break;
3233 case 224 ... 255:
3234 err = USBD_NORMAL_COMPLETION;
3235 break;
3236 }
3237
3238 timedout:
3239 sc->sc_resultpending = false;
3240 sc->sc_command_addr = 0;
3241 cv_broadcast(&sc->sc_cmdbusy_cv);
3242
3243 return err;
3244 }
3245
3246 static usbd_status
3247 xhci_do_command(struct xhci_softc * const sc, struct xhci_soft_trb * const trb,
3248 int timeout)
3249 {
3250
3251 mutex_enter(&sc->sc_lock);
3252 usbd_status ret = xhci_do_command_locked(sc, trb, timeout);
3253 mutex_exit(&sc->sc_lock);
3254
3255 return ret;
3256 }
3257
3258 static usbd_status
3259 xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp)
3260 {
3261 struct xhci_soft_trb trb;
3262 usbd_status err;
3263
3264 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3265
3266 trb.trb_0 = 0;
3267 trb.trb_2 = 0;
3268 trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT);
3269
3270 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3271 if (err != USBD_NORMAL_COMPLETION) {
3272 return err;
3273 }
3274
3275 *slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3);
3276
3277 return err;
3278 }
3279
3280 /*
3281 * xHCI 4.6.4
3282 * Deallocate ring and device/input context DMA buffers, and disable_slot.
3283 * All endpoints in the slot should be stopped.
3284 * Should be called with sc_lock held.
3285 */
3286 static usbd_status
3287 xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot)
3288 {
3289 struct xhci_soft_trb trb;
3290 struct xhci_slot *xs;
3291 usbd_status err;
3292
3293 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3294
3295 if (sc->sc_dying)
3296 return USBD_IOERROR;
3297
3298 trb.trb_0 = 0;
3299 trb.trb_2 = 0;
3300 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot) |
3301 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT);
3302
3303 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
3304
3305 if (!err) {
3306 xs = &sc->sc_slots[slot];
3307 if (xs->xs_idx != 0) {
3308 xhci_free_slot(sc, xs);
3309 xhci_set_dcba(sc, 0, slot);
3310 memset(xs, 0, sizeof(*xs));
3311 }
3312 }
3313
3314 return err;
3315 }
3316
3317 /*
3318 * Set address of device and transition slot state from ENABLED to ADDRESSED
3319 * if Block Setaddress Request (BSR) is false.
3320 * If BSR==true, transition slot state from ENABLED to DEFAULT.
3321 * see xHCI 1.1 4.5.3, 3.3.4
3322 * Should be called without sc_lock held.
3323 */
3324 static usbd_status
3325 xhci_address_device(struct xhci_softc * const sc,
3326 uint64_t icp, uint8_t slot_id, bool bsr)
3327 {
3328 struct xhci_soft_trb trb;
3329 usbd_status err;
3330
3331 XHCIHIST_FUNC();
3332 if (bsr) {
3333 XHCIHIST_CALLARGS("icp %#jx slot %#jx with bsr",
3334 icp, slot_id, 0, 0);
3335 } else {
3336 XHCIHIST_CALLARGS("icp %#jx slot %#jx nobsr",
3337 icp, slot_id, 0, 0);
3338 }
3339
3340 trb.trb_0 = icp;
3341 trb.trb_2 = 0;
3342 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) |
3343 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
3344 (bsr ? XHCI_TRB_3_BSR_BIT : 0);
3345
3346 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3347
3348 if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS)
3349 err = USBD_NO_ADDR;
3350
3351 return err;
3352 }
3353
3354 static usbd_status
3355 xhci_update_ep0_mps(struct xhci_softc * const sc,
3356 struct xhci_slot * const xs, u_int mps)
3357 {
3358 struct xhci_soft_trb trb;
3359 usbd_status err;
3360 uint32_t * cp;
3361
3362 XHCIHIST_FUNC();
3363 XHCIHIST_CALLARGS("slot %ju mps %ju", xs->xs_idx, mps, 0, 0);
3364
3365 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3366 cp[0] = htole32(0);
3367 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL));
3368
3369 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL));
3370 cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps));
3371
3372 /* sync input contexts before they are read from memory */
3373 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3374 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
3375 sc->sc_ctxsz * 4);
3376
3377 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
3378 trb.trb_2 = 0;
3379 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
3380 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX);
3381
3382 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3383 return err;
3384 }
3385
3386 static void
3387 xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si)
3388 {
3389 uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0);
3390
3391 XHCIHIST_FUNC();
3392 XHCIHIST_CALLARGS("dcbaa %#jx dc 0x%016jx slot %jd",
3393 (uintptr_t)&dcbaa[si], dcba, si, 0);
3394
3395 dcbaa[si] = htole64(dcba);
3396 usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t),
3397 BUS_DMASYNC_PREWRITE);
3398 }
3399
3400 /*
3401 * Allocate device and input context DMA buffer, and
3402 * TRB DMA buffer for each endpoint.
3403 */
3404 static usbd_status
3405 xhci_init_slot(struct usbd_device *dev, uint32_t slot)
3406 {
3407 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
3408 struct xhci_slot *xs;
3409
3410 XHCIHIST_FUNC();
3411 XHCIHIST_CALLARGS("slot %ju", slot, 0, 0, 0);
3412
3413 xs = &sc->sc_slots[slot];
3414
3415 /* allocate contexts */
3416 int err = usb_allocmem(sc->sc_bus.ub_dmatag, sc->sc_pgsz, sc->sc_pgsz,
3417 USBMALLOC_COHERENT | USBMALLOC_ZERO, &xs->xs_dc_dma);
3418 if (err) {
3419 DPRINTFN(1, "failed to allocmem output device context %jd",
3420 err, 0, 0, 0);
3421 return USBD_NOMEM;
3422 }
3423
3424 err = usb_allocmem(sc->sc_bus.ub_dmatag, sc->sc_pgsz, sc->sc_pgsz,
3425 USBMALLOC_COHERENT | USBMALLOC_ZERO, &xs->xs_ic_dma);
3426 if (err) {
3427 DPRINTFN(1, "failed to allocmem input device context %jd",
3428 err, 0, 0, 0);
3429 goto bad1;
3430 }
3431
3432 memset(&xs->xs_xr[0], 0, sizeof(xs->xs_xr));
3433 xs->xs_idx = slot;
3434
3435 return USBD_NORMAL_COMPLETION;
3436
3437 bad1:
3438 usb_freemem(&xs->xs_dc_dma);
3439 xs->xs_idx = 0;
3440 return USBD_NOMEM;
3441 }
3442
3443 static void
3444 xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs)
3445 {
3446 u_int dci;
3447
3448 XHCIHIST_FUNC();
3449 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
3450
3451 /* deallocate all allocated rings in the slot */
3452 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
3453 if (xs->xs_xr[dci] != NULL)
3454 xhci_ring_free(sc, &xs->xs_xr[dci]);
3455 }
3456 usb_freemem(&xs->xs_ic_dma);
3457 usb_freemem(&xs->xs_dc_dma);
3458 xs->xs_idx = 0;
3459 }
3460
3461 /*
3462 * Setup slot context, set Device Context Base Address, and issue
3463 * Set Address Device command.
3464 */
3465 static usbd_status
3466 xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr)
3467 {
3468 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
3469 struct xhci_slot *xs;
3470 usbd_status err;
3471
3472 XHCIHIST_FUNC();
3473 XHCIHIST_CALLARGS("slot %ju bsr %ju", slot, bsr, 0, 0);
3474
3475 xs = &sc->sc_slots[slot];
3476
3477 xhci_setup_ctx(dev->ud_pipe0);
3478
3479 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
3480 sc->sc_ctxsz * 3);
3481
3482 xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot);
3483
3484 err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr);
3485
3486 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
3487 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, 0),
3488 sc->sc_ctxsz * 2);
3489
3490 return err;
3491 }
3492
3493 /*
3494 * 4.8.2, 6.2.3.2
3495 * construct slot/endpoint context parameters and do syncmem
3496 */
3497 static void
3498 xhci_setup_ctx(struct usbd_pipe *pipe)
3499 {
3500 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3501 struct usbd_device *dev = pipe->up_dev;
3502 struct xhci_slot * const xs = dev->ud_hcpriv;
3503 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3504 const u_int dci = xhci_ep_get_dci(ed);
3505 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3506 uint32_t *cp;
3507 uint16_t mps = UGETW(ed->wMaxPacketSize);
3508 uint8_t speed = dev->ud_speed;
3509 uint8_t ival = ed->bInterval;
3510
3511 XHCIHIST_FUNC();
3512 XHCIHIST_CALLARGS("pipe %#jx: slot %ju dci %ju speed %ju",
3513 (uintptr_t)pipe, xs->xs_idx, dci, speed);
3514
3515 /* set up initial input control context */
3516 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3517 cp[0] = htole32(0);
3518 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci));
3519 cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT));
3520 cp[7] = htole32(0);
3521
3522 /* set up input slot context */
3523 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
3524 cp[0] =
3525 XHCI_SCTX_0_CTX_NUM_SET(dci) |
3526 XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed));
3527 cp[1] = 0;
3528 cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0);
3529 cp[3] = 0;
3530 xhci_setup_route(pipe, cp);
3531 xhci_setup_tthub(pipe, cp);
3532
3533 cp[0] = htole32(cp[0]);
3534 cp[1] = htole32(cp[1]);
3535 cp[2] = htole32(cp[2]);
3536 cp[3] = htole32(cp[3]);
3537
3538 /* set up input endpoint context */
3539 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci));
3540 cp[0] =
3541 XHCI_EPCTX_0_EPSTATE_SET(0) |
3542 XHCI_EPCTX_0_MULT_SET(0) |
3543 XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
3544 XHCI_EPCTX_0_LSA_SET(0) |
3545 XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0);
3546 cp[1] =
3547 XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) |
3548 XHCI_EPCTX_1_HID_SET(0) |
3549 XHCI_EPCTX_1_MAXB_SET(0);
3550
3551 if (xfertype != UE_ISOCHRONOUS)
3552 cp[1] |= XHCI_EPCTX_1_CERR_SET(3);
3553
3554 if (xfertype == UE_CONTROL)
3555 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); /* 6.2.3 */
3556 else if (USB_IS_SS(speed))
3557 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(mps);
3558 else
3559 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(UE_GET_SIZE(mps));
3560
3561 xhci_setup_maxburst(pipe, cp);
3562
3563 switch (xfertype) {
3564 case UE_CONTROL:
3565 break;
3566 case UE_BULK:
3567 /* XXX Set MaxPStreams, HID, and LSA if streams enabled */
3568 break;
3569 case UE_INTERRUPT:
3570 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3571 ival = pipe->up_interval;
3572
3573 ival = xhci_bival2ival(ival, speed);
3574 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3575 break;
3576 case UE_ISOCHRONOUS:
3577 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3578 ival = pipe->up_interval;
3579
3580 /* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 */
3581 if (speed == USB_SPEED_FULL)
3582 ival += 3; /* 1ms -> 125us */
3583 ival--;
3584 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3585 break;
3586 default:
3587 break;
3588 }
3589 DPRINTFN(4, "setting ival %ju MaxBurst %#jx",
3590 XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_1_MAXB_GET(cp[1]), 0, 0);
3591
3592 /* rewind TR dequeue pointer in xHC */
3593 /* can't use xhci_ep_get_dci() yet? */
3594 *(uint64_t *)(&cp[2]) = htole64(
3595 xhci_ring_trbp(xs->xs_xr[dci], 0) |
3596 XHCI_EPCTX_2_DCS_SET(1));
3597
3598 cp[0] = htole32(cp[0]);
3599 cp[1] = htole32(cp[1]);
3600 cp[4] = htole32(cp[4]);
3601
3602 /* rewind TR dequeue pointer in driver */
3603 struct xhci_ring *xr = xs->xs_xr[dci];
3604 mutex_enter(&xr->xr_lock);
3605 xhci_host_dequeue(xr);
3606 mutex_exit(&xr->xr_lock);
3607
3608 /* sync input contexts before they are read from memory */
3609 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3610 }
3611
3612 /*
3613 * Setup route string and roothub port of given device for slot context
3614 */
3615 static void
3616 xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp)
3617 {
3618 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3619 struct usbd_device *dev = pipe->up_dev;
3620 struct usbd_port *up = dev->ud_powersrc;
3621 struct usbd_device *hub;
3622 struct usbd_device *adev;
3623 uint8_t rhport = 0;
3624 uint32_t route = 0;
3625
3626 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3627
3628 /* Locate root hub port and Determine route string */
3629 /* 4.3.3 route string does not include roothub port */
3630 for (hub = dev; hub != NULL; hub = hub->ud_myhub) {
3631 uint32_t dep;
3632
3633 DPRINTFN(4, "hub %#jx depth %jd upport %#jx upportno %jd",
3634 (uintptr_t)hub, hub->ud_depth, (uintptr_t)hub->ud_powersrc,
3635 hub->ud_powersrc ? (uintptr_t)hub->ud_powersrc->up_portno :
3636 -1);
3637
3638 if (hub->ud_powersrc == NULL)
3639 break;
3640 dep = hub->ud_depth;
3641 if (dep == 0)
3642 break;
3643 rhport = hub->ud_powersrc->up_portno;
3644 if (dep > USB_HUB_MAX_DEPTH)
3645 continue;
3646
3647 route |=
3648 (rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport)
3649 << ((dep - 1) * 4);
3650 }
3651 route = route >> 4;
3652 size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1;
3653
3654 /* Locate port on upstream high speed hub */
3655 for (adev = dev, hub = up->up_parent;
3656 hub != NULL && hub->ud_speed != USB_SPEED_HIGH;
3657 adev = hub, hub = hub->ud_myhub)
3658 ;
3659 if (hub) {
3660 int p;
3661 for (p = 1; p <= hub->ud_hub->uh_hubdesc.bNbrPorts; p++) {
3662 if (hub->ud_hub->uh_ports[p - 1].up_dev == adev) {
3663 dev->ud_myhsport = &hub->ud_hub->uh_ports[p - 1];
3664 goto found;
3665 }
3666 }
3667 panic("%s: cannot find HS port", __func__);
3668 found:
3669 DPRINTFN(4, "high speed port %jd", p, 0, 0, 0);
3670 } else {
3671 dev->ud_myhsport = NULL;
3672 }
3673
3674 const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport);
3675
3676 DPRINTFN(4, "rhport %ju ctlrport %ju Route %05jx hub %#jx", rhport,
3677 ctlrport, route, (uintptr_t)hub);
3678
3679 cp[0] |= XHCI_SCTX_0_ROUTE_SET(route);
3680 cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport);
3681 }
3682
3683 /*
3684 * Setup whether device is hub, whether device uses MTT, and
3685 * TT informations if it uses MTT.
3686 */
3687 static void
3688 xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp)
3689 {
3690 struct usbd_device *dev = pipe->up_dev;
3691 struct usbd_port *myhsport = dev->ud_myhsport;
3692 usb_device_descriptor_t * const dd = &dev->ud_ddesc;
3693 uint32_t speed = dev->ud_speed;
3694 uint8_t rhaddr = dev->ud_bus->ub_rhaddr;
3695 uint8_t tthubslot, ttportnum;
3696 bool ishub;
3697 bool usemtt;
3698
3699 XHCIHIST_FUNC();
3700
3701 /*
3702 * 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2
3703 * tthubslot:
3704 * This is the slot ID of parent HS hub
3705 * if LS/FS device is connected && connected through HS hub.
3706 * This is 0 if device is not LS/FS device ||
3707 * parent hub is not HS hub ||
3708 * attached to root hub.
3709 * ttportnum:
3710 * This is the downstream facing port of parent HS hub
3711 * if LS/FS device is connected.
3712 * This is 0 if device is not LS/FS device ||
3713 * parent hub is not HS hub ||
3714 * attached to root hub.
3715 */
3716 if (myhsport &&
3717 myhsport->up_parent->ud_addr != rhaddr &&
3718 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
3719 ttportnum = myhsport->up_portno;
3720 tthubslot = myhsport->up_parent->ud_addr;
3721 } else {
3722 ttportnum = 0;
3723 tthubslot = 0;
3724 }
3725 XHCIHIST_CALLARGS("myhsport %#jx ttportnum=%jd tthubslot=%jd",
3726 (uintptr_t)myhsport, ttportnum, tthubslot, 0);
3727
3728 /* ishub is valid after reading UDESC_DEVICE */
3729 ishub = (dd->bDeviceClass == UDCLASS_HUB);
3730
3731 /* dev->ud_hub is valid after reading UDESC_HUB */
3732 if (ishub && dev->ud_hub) {
3733 usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc;
3734 uint8_t ttt =
3735 __SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK);
3736
3737 cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts);
3738 cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt);
3739 DPRINTFN(4, "nports=%jd ttt=%jd", hd->bNbrPorts, ttt, 0, 0);
3740 }
3741
3742 #define IS_MTTHUB(dd) \
3743 ((dd)->bDeviceProtocol == UDPROTO_HSHUBMTT)
3744
3745 /*
3746 * MTT flag is set if
3747 * 1. this is HS hub && MTTs are supported and enabled; or
3748 * 2. this is LS or FS device && there is a parent HS hub where MTTs
3749 * are supported and enabled.
3750 *
3751 * XXX enabled is not tested yet
3752 */
3753 if (ishub && speed == USB_SPEED_HIGH && IS_MTTHUB(dd))
3754 usemtt = true;
3755 else if ((speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) &&
3756 myhsport &&
3757 myhsport->up_parent->ud_addr != rhaddr &&
3758 IS_MTTHUB(&myhsport->up_parent->ud_ddesc))
3759 usemtt = true;
3760 else
3761 usemtt = false;
3762 DPRINTFN(4, "class %ju proto %ju ishub %jd usemtt %jd",
3763 dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt);
3764
3765 #undef IS_MTTHUB
3766
3767 cp[0] |=
3768 XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) |
3769 XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0);
3770 cp[2] |=
3771 XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) |
3772 XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum);
3773 }
3774
3775 /* set up params for periodic endpoint */
3776 static void
3777 xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp)
3778 {
3779 struct xhci_pipe * const xpipe = (struct xhci_pipe *)pipe;
3780 struct usbd_device *dev = pipe->up_dev;
3781 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3782 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3783 usbd_desc_iter_t iter;
3784 const usb_cdc_descriptor_t *cdcd;
3785 uint32_t maxb = 0;
3786 uint16_t mps = UGETW(ed->wMaxPacketSize);
3787 uint8_t speed = dev->ud_speed;
3788 uint8_t mult = 0;
3789 uint8_t ep;
3790
3791 /* config desc is NULL when opening ep0 */
3792 if (dev == NULL || dev->ud_cdesc == NULL)
3793 goto no_cdcd;
3794 cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev,
3795 UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY);
3796 if (cdcd == NULL)
3797 goto no_cdcd;
3798 usb_desc_iter_init(dev, &iter);
3799 iter.cur = (const void *)cdcd;
3800
3801 /* find endpoint_ss_comp desc for ep of this pipe */
3802 for (ep = 0;;) {
3803 cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter);
3804 if (cdcd == NULL)
3805 break;
3806 if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) {
3807 ep = ((const usb_endpoint_descriptor_t *)cdcd)->
3808 bEndpointAddress;
3809 if (UE_GET_ADDR(ep) ==
3810 UE_GET_ADDR(ed->bEndpointAddress)) {
3811 cdcd = (const usb_cdc_descriptor_t *)
3812 usb_desc_iter_next(&iter);
3813 break;
3814 }
3815 ep = 0;
3816 }
3817 }
3818 if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) {
3819 const usb_endpoint_ss_comp_descriptor_t * esscd =
3820 (const usb_endpoint_ss_comp_descriptor_t *)cdcd;
3821 maxb = esscd->bMaxBurst;
3822 mult = UE_GET_SS_ISO_MULT(esscd->bmAttributes);
3823 }
3824
3825 no_cdcd:
3826 /* 6.2.3.4, 4.8.2.4 */
3827 if (USB_IS_SS(speed)) {
3828 /* USB 3.1 9.6.6 */
3829 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps);
3830 /* USB 3.1 9.6.7 */
3831 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3832 #ifdef notyet
3833 if (xfertype == UE_ISOCHRONOUS) {
3834 }
3835 if (XHCI_HCC2_LEC(sc->sc_hcc2) != 0) {
3836 /* use ESIT */
3837 cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(x);
3838 cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(x);
3839
3840 /* XXX if LEC = 1, set ESIT instead */
3841 cp[0] |= XHCI_EPCTX_0_MULT_SET(0);
3842 } else {
3843 /* use ival */
3844 }
3845 #endif
3846 } else {
3847 /* USB 2.0 9.6.6 */
3848 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(UE_GET_SIZE(mps));
3849
3850 /* 6.2.3.4 */
3851 if (speed == USB_SPEED_HIGH &&
3852 (xfertype == UE_ISOCHRONOUS || xfertype == UE_INTERRUPT)) {
3853 maxb = UE_GET_TRANS(mps);
3854 } else {
3855 /* LS/FS or HS CTRL or HS BULK */
3856 maxb = 0;
3857 }
3858 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3859 }
3860 xpipe->xp_maxb = maxb + 1;
3861 xpipe->xp_mult = mult + 1;
3862 }
3863
3864 /*
3865 * Convert endpoint bInterval value to endpoint context interval value
3866 * for Interrupt pipe.
3867 * xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6
3868 */
3869 static uint32_t
3870 xhci_bival2ival(uint32_t ival, uint32_t speed)
3871 {
3872 if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
3873 int i;
3874
3875 /*
3876 * round ival down to "the nearest base 2 multiple of
3877 * bInterval * 8".
3878 * bInterval is at most 255 as its type is uByte.
3879 * 255(ms) = 2040(x 125us) < 2^11, so start with 10.
3880 */
3881 for (i = 10; i > 0; i--) {
3882 if ((ival * 8) >= (1 << i))
3883 break;
3884 }
3885 ival = i;
3886 } else {
3887 /* Interval = bInterval-1 for SS/HS */
3888 ival--;
3889 }
3890
3891 return ival;
3892 }
3893
3894 /* ----- */
3895
3896 static void
3897 xhci_noop(struct usbd_pipe *pipe)
3898 {
3899 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3900 }
3901
3902 /*
3903 * Process root hub request.
3904 */
3905 static int
3906 xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3907 void *buf, int buflen)
3908 {
3909 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
3910 usb_port_status_t ps;
3911 int l, totlen = 0;
3912 uint16_t len, value, index;
3913 int port, i;
3914 uint32_t v;
3915
3916 XHCIHIST_FUNC();
3917
3918 if (sc->sc_dying)
3919 return -1;
3920
3921 size_t bn = bus == &sc->sc_bus ? 0 : 1;
3922
3923 len = UGETW(req->wLength);
3924 value = UGETW(req->wValue);
3925 index = UGETW(req->wIndex);
3926
3927 XHCIHIST_CALLARGS("rhreq: %04jx %04jx %04jx %04jx",
3928 req->bmRequestType | (req->bRequest << 8), value, index, len);
3929
3930 #define C(x,y) ((x) | ((y) << 8))
3931 switch (C(req->bRequest, req->bmRequestType)) {
3932 case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
3933 DPRINTFN(8, "getdesc: wValue=0x%04jx", value, 0, 0, 0);
3934 if (len == 0)
3935 break;
3936 switch (value) {
3937 #define sd ((usb_string_descriptor_t *)buf)
3938 case C(2, UDESC_STRING):
3939 /* Product */
3940 totlen = usb_makestrdesc(sd, len, "xHCI root hub");
3941 break;
3942 #undef sd
3943 default:
3944 /* default from usbroothub */
3945 return buflen;
3946 }
3947 break;
3948
3949 /* Hub requests */
3950 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
3951 break;
3952 /* Clear Port Feature request */
3953 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): {
3954 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3955
3956 DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%jd feat=%jd bus=%jd cp=%jd",
3957 index, value, bn, cp);
3958 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3959 return -1;
3960 }
3961 port = XHCI_PORTSC(cp);
3962 v = xhci_op_read_4(sc, port);
3963 DPRINTFN(4, "portsc=0x%08jx", v, 0, 0, 0);
3964 v &= ~XHCI_PS_CLEAR;
3965 switch (value) {
3966 case UHF_PORT_ENABLE:
3967 xhci_op_write_4(sc, port, v & ~XHCI_PS_PED);
3968 break;
3969 case UHF_PORT_SUSPEND:
3970 return -1;
3971 case UHF_PORT_POWER:
3972 break;
3973 case UHF_PORT_TEST:
3974 case UHF_PORT_INDICATOR:
3975 return -1;
3976 case UHF_C_PORT_CONNECTION:
3977 xhci_op_write_4(sc, port, v | XHCI_PS_CSC);
3978 break;
3979 case UHF_C_PORT_ENABLE:
3980 case UHF_C_PORT_SUSPEND:
3981 case UHF_C_PORT_OVER_CURRENT:
3982 return -1;
3983 case UHF_C_BH_PORT_RESET:
3984 xhci_op_write_4(sc, port, v | XHCI_PS_WRC);
3985 break;
3986 case UHF_C_PORT_RESET:
3987 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
3988 break;
3989 case UHF_C_PORT_LINK_STATE:
3990 xhci_op_write_4(sc, port, v | XHCI_PS_PLC);
3991 break;
3992 case UHF_C_PORT_CONFIG_ERROR:
3993 xhci_op_write_4(sc, port, v | XHCI_PS_CEC);
3994 break;
3995 default:
3996 return -1;
3997 }
3998 break;
3999 }
4000 case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
4001 if (len == 0)
4002 break;
4003 if ((value & 0xff) != 0) {
4004 return -1;
4005 }
4006 usb_hub_descriptor_t hubd;
4007
4008 totlen = uimin(buflen, sizeof(hubd));
4009 memcpy(&hubd, buf, totlen);
4010 hubd.bNbrPorts = sc->sc_rhportcount[bn];
4011 USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH);
4012 hubd.bPwrOn2PwrGood = 200;
4013 for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) {
4014 /* XXX can't find out? */
4015 hubd.DeviceRemovable[i++] = 0;
4016 }
4017 hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
4018 totlen = uimin(totlen, hubd.bDescLength);
4019 memcpy(buf, &hubd, totlen);
4020 break;
4021 case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
4022 if (len != 4) {
4023 return -1;
4024 }
4025 memset(buf, 0, len); /* ? XXX */
4026 totlen = len;
4027 break;
4028 /* Get Port Status request */
4029 case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
4030 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
4031
4032 DPRINTFN(8, "get port status bn=%jd i=%jd cp=%ju",
4033 bn, index, cp, 0);
4034 if (index < 1 || index > sc->sc_rhportcount[bn]) {
4035 DPRINTFN(5, "bad get port status: index=%jd bn=%jd "
4036 "portcount=%jd",
4037 index, bn, sc->sc_rhportcount[bn], 0);
4038 return -1;
4039 }
4040 if (len != 4) {
4041 DPRINTFN(5, "bad get port status: len %jd != 4",
4042 len, 0, 0, 0);
4043 return -1;
4044 }
4045 v = xhci_op_read_4(sc, XHCI_PORTSC(cp));
4046 DPRINTFN(4, "getrhportsc %jd 0x%08jx", cp, v, 0, 0);
4047 i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v));
4048 if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS;
4049 if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED;
4050 if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR;
4051 //if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND;
4052 if (v & XHCI_PS_PR) i |= UPS_RESET;
4053 if (v & XHCI_PS_PP) {
4054 if (i & UPS_OTHER_SPEED)
4055 i |= UPS_PORT_POWER_SS;
4056 else
4057 i |= UPS_PORT_POWER;
4058 }
4059 if (i & UPS_OTHER_SPEED)
4060 i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v));
4061 if (sc->sc_vendor_port_status)
4062 i = sc->sc_vendor_port_status(sc, v, i);
4063 USETW(ps.wPortStatus, i);
4064 i = 0;
4065 if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS;
4066 if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED;
4067 if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR;
4068 if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET;
4069 if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET;
4070 if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE;
4071 if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR;
4072 USETW(ps.wPortChange, i);
4073 totlen = uimin(len, sizeof(ps));
4074 memcpy(buf, &ps, totlen);
4075 DPRINTFN(5, "get port status: wPortStatus %#jx wPortChange %#jx"
4076 " totlen %jd",
4077 UGETW(ps.wPortStatus), UGETW(ps.wPortChange), totlen, 0);
4078 break;
4079 }
4080 case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
4081 return -1;
4082 case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE):
4083 break;
4084 case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
4085 break;
4086 /* Set Port Feature request */
4087 case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): {
4088 int optval = (index >> 8) & 0xff;
4089 index &= 0xff;
4090 if (index < 1 || index > sc->sc_rhportcount[bn]) {
4091 return -1;
4092 }
4093
4094 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
4095
4096 port = XHCI_PORTSC(cp);
4097 v = xhci_op_read_4(sc, port);
4098 DPRINTFN(4, "index %jd cp %jd portsc=0x%08jx", index, cp, v, 0);
4099 v &= ~XHCI_PS_CLEAR;
4100 switch (value) {
4101 case UHF_PORT_ENABLE:
4102 xhci_op_write_4(sc, port, v | XHCI_PS_PED);
4103 break;
4104 case UHF_PORT_SUSPEND:
4105 /* XXX suspend */
4106 break;
4107 case UHF_PORT_RESET:
4108 xhci_op_write_4(sc, port, v | XHCI_PS_PR);
4109 /* Wait for reset to complete. */
4110 for (i = 0; i < USB_PORT_ROOT_RESET_DELAY / 10; i++) {
4111 if (sc->sc_dying) {
4112 return -1;
4113 }
4114 v = xhci_op_read_4(sc, port);
4115 if ((v & XHCI_PS_PR) == 0) {
4116 break;
4117 }
4118 usb_delay_ms(&sc->sc_bus, 10);
4119 }
4120 break;
4121 case UHF_PORT_POWER:
4122 /* XXX power control */
4123 break;
4124 /* XXX more */
4125 case UHF_C_PORT_RESET:
4126 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
4127 break;
4128 case UHF_PORT_U1_TIMEOUT:
4129 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
4130 return -1;
4131 }
4132 port = XHCI_PORTPMSC(cp);
4133 v = xhci_op_read_4(sc, port);
4134 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
4135 index, cp, v, 0);
4136 v &= ~XHCI_PM3_U1TO_SET(0xff);
4137 v |= XHCI_PM3_U1TO_SET(optval);
4138 xhci_op_write_4(sc, port, v);
4139 break;
4140 case UHF_PORT_U2_TIMEOUT:
4141 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
4142 return -1;
4143 }
4144 port = XHCI_PORTPMSC(cp);
4145 v = xhci_op_read_4(sc, port);
4146 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
4147 index, cp, v, 0);
4148 v &= ~XHCI_PM3_U2TO_SET(0xff);
4149 v |= XHCI_PM3_U2TO_SET(optval);
4150 xhci_op_write_4(sc, port, v);
4151 break;
4152 default:
4153 return -1;
4154 }
4155 }
4156 break;
4157 case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
4158 case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
4159 case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
4160 case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
4161 break;
4162 default:
4163 /* default from usbroothub */
4164 return buflen;
4165 }
4166
4167 return totlen;
4168 }
4169
4170 /* root hub interrupt */
4171
4172 static usbd_status
4173 xhci_root_intr_transfer(struct usbd_xfer *xfer)
4174 {
4175 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4176 usbd_status err;
4177
4178 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4179
4180 /* Insert last in queue. */
4181 mutex_enter(&sc->sc_lock);
4182 err = usb_insert_transfer(xfer);
4183 mutex_exit(&sc->sc_lock);
4184 if (err)
4185 return err;
4186
4187 /* Pipe isn't running, start first */
4188 return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4189 }
4190
4191 /* Wait for roothub port status/change */
4192 static usbd_status
4193 xhci_root_intr_start(struct usbd_xfer *xfer)
4194 {
4195 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4196 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4197 const bool polling = xhci_polling_p(sc);
4198
4199 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4200
4201 if (sc->sc_dying)
4202 return USBD_IOERROR;
4203
4204 if (!polling)
4205 mutex_enter(&sc->sc_lock);
4206 KASSERT(sc->sc_intrxfer[bn] == NULL);
4207 sc->sc_intrxfer[bn] = xfer;
4208 xfer->ux_status = USBD_IN_PROGRESS;
4209 if (!polling)
4210 mutex_exit(&sc->sc_lock);
4211
4212 return USBD_IN_PROGRESS;
4213 }
4214
4215 static void
4216 xhci_root_intr_abort(struct usbd_xfer *xfer)
4217 {
4218 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4219 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4220
4221 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4222
4223 KASSERT(mutex_owned(&sc->sc_lock));
4224 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
4225
4226 /* If xfer has already completed, nothing to do here. */
4227 if (sc->sc_intrxfer[bn] == NULL)
4228 return;
4229
4230 /*
4231 * Otherwise, sc->sc_intrxfer[bn] had better be this transfer.
4232 * Cancel it.
4233 */
4234 KASSERT(sc->sc_intrxfer[bn] == xfer);
4235 xfer->ux_status = USBD_CANCELLED;
4236 usb_transfer_complete(xfer);
4237 }
4238
4239 static void
4240 xhci_root_intr_close(struct usbd_pipe *pipe)
4241 {
4242 struct xhci_softc * const sc __diagused = XHCI_PIPE2SC(pipe);
4243 const struct usbd_xfer *xfer __diagused = pipe->up_intrxfer;
4244 const size_t bn __diagused = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4245
4246 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4247
4248 KASSERT(mutex_owned(&sc->sc_lock));
4249
4250 /*
4251 * Caller must guarantee the xfer has completed first, by
4252 * closing the pipe only after normal completion or an abort.
4253 */
4254 KASSERT(sc->sc_intrxfer[bn] == NULL);
4255 }
4256
4257 static void
4258 xhci_root_intr_done(struct usbd_xfer *xfer)
4259 {
4260 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4261 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4262
4263 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4264
4265 KASSERT(mutex_owned(&sc->sc_lock));
4266
4267 /* Claim the xfer so it doesn't get completed again. */
4268 KASSERT(sc->sc_intrxfer[bn] == xfer);
4269 KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
4270 sc->sc_intrxfer[bn] = NULL;
4271 }
4272
4273 /* -------------- */
4274 /* device control */
4275
4276 static usbd_status
4277 xhci_device_ctrl_transfer(struct usbd_xfer *xfer)
4278 {
4279 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4280 usbd_status err;
4281
4282 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4283
4284 /* Insert last in queue. */
4285 mutex_enter(&sc->sc_lock);
4286 err = usb_insert_transfer(xfer);
4287 mutex_exit(&sc->sc_lock);
4288 if (err)
4289 return err;
4290
4291 /* Pipe isn't running, start first */
4292 return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4293 }
4294
4295 static usbd_status
4296 xhci_device_ctrl_start(struct usbd_xfer *xfer)
4297 {
4298 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4299 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4300 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4301 struct xhci_ring * const tr = xs->xs_xr[dci];
4302 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4303 usb_device_request_t * const req = &xfer->ux_request;
4304 const bool isread = usbd_xfer_isread(xfer);
4305 const uint32_t len = UGETW(req->wLength);
4306 usb_dma_t * const dma = &xfer->ux_dmabuf;
4307 uint64_t parameter;
4308 uint32_t status;
4309 uint32_t control;
4310 u_int i;
4311 const bool polling = xhci_polling_p(sc);
4312
4313 XHCIHIST_FUNC();
4314 XHCIHIST_CALLARGS("req: %04jx %04jx %04jx %04jx",
4315 req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue),
4316 UGETW(req->wIndex), UGETW(req->wLength));
4317
4318 /* we rely on the bottom bits for extra info */
4319 KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %zx",
4320 (uintptr_t) xfer);
4321
4322 KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0);
4323
4324 i = 0;
4325
4326 /* setup phase */
4327 parameter = le64dec(req); /* to keep USB endian after xhci_trb_put() */
4328 status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req));
4329 control = ((len == 0) ? XHCI_TRB_3_TRT_NONE :
4330 (isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) |
4331 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
4332 XHCI_TRB_3_IDT_BIT;
4333 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4334
4335 if (len != 0) {
4336 /* data phase */
4337 parameter = DMAADDR(dma, 0);
4338 KASSERTMSG(len <= 0x10000, "len %d", len);
4339 status = XHCI_TRB_2_IRQ_SET(0) |
4340 XHCI_TRB_2_TDSZ_SET(0) |
4341 XHCI_TRB_2_BYTES_SET(len);
4342 control = (isread ? XHCI_TRB_3_DIR_IN : 0) |
4343 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) |
4344 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4345 XHCI_TRB_3_IOC_BIT;
4346 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4347
4348 usb_syncmem(dma, 0, len,
4349 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4350 }
4351
4352 parameter = 0;
4353 status = XHCI_TRB_2_IRQ_SET(0);
4354 /* the status stage has inverted direction */
4355 control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) |
4356 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) |
4357 XHCI_TRB_3_IOC_BIT;
4358 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4359
4360 if (!polling)
4361 mutex_enter(&tr->xr_lock);
4362 xhci_ring_put_xfer(sc, tr, xx, i);
4363 if (!polling)
4364 mutex_exit(&tr->xr_lock);
4365
4366 if (!polling)
4367 mutex_enter(&sc->sc_lock);
4368 xfer->ux_status = USBD_IN_PROGRESS;
4369 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4370 usbd_xfer_schedule_timeout(xfer);
4371 if (!polling)
4372 mutex_exit(&sc->sc_lock);
4373
4374 return USBD_IN_PROGRESS;
4375 }
4376
4377 static void
4378 xhci_device_ctrl_done(struct usbd_xfer *xfer)
4379 {
4380 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4381 usb_device_request_t *req = &xfer->ux_request;
4382 int len = UGETW(req->wLength);
4383 int rd = req->bmRequestType & UT_READ;
4384
4385 if (len)
4386 usb_syncmem(&xfer->ux_dmabuf, 0, len,
4387 rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4388 }
4389
4390 static void
4391 xhci_device_ctrl_abort(struct usbd_xfer *xfer)
4392 {
4393 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4394
4395 usbd_xfer_abort(xfer);
4396 }
4397
4398 static void
4399 xhci_device_ctrl_close(struct usbd_pipe *pipe)
4400 {
4401 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4402
4403 xhci_close_pipe(pipe);
4404 }
4405
4406 /* ------------------ */
4407 /* device isochronous */
4408
4409 static usbd_status
4410 xhci_device_isoc_transfer(struct usbd_xfer *xfer)
4411 {
4412 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4413 usbd_status err;
4414
4415 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4416
4417 /* Insert last in queue. */
4418 mutex_enter(&sc->sc_lock);
4419 err = usb_insert_transfer(xfer);
4420 mutex_exit(&sc->sc_lock);
4421 if (err)
4422 return err;
4423
4424 return xhci_device_isoc_enter(xfer);
4425 }
4426
4427 static usbd_status
4428 xhci_device_isoc_enter(struct usbd_xfer *xfer)
4429 {
4430 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4431 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4432 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4433 struct xhci_ring * const tr = xs->xs_xr[dci];
4434 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4435 struct xhci_pipe * const xpipe = (struct xhci_pipe *)xfer->ux_pipe;
4436 uint32_t len = xfer->ux_length;
4437 usb_dma_t * const dma = &xfer->ux_dmabuf;
4438 uint64_t parameter;
4439 uint32_t status;
4440 uint32_t control;
4441 uint32_t mfindex;
4442 uint32_t offs;
4443 int i, ival;
4444 const bool polling = xhci_polling_p(sc);
4445 const uint16_t MPS = UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize);
4446 const uint16_t mps = UE_GET_SIZE(MPS);
4447 const uint8_t maxb = xpipe->xp_maxb;
4448 u_int tdpc, tbc, tlbpc;
4449
4450 XHCIHIST_FUNC();
4451 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4452 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4453
4454 if (sc->sc_dying)
4455 return USBD_IOERROR;
4456
4457 KASSERT(xfer->ux_nframes != 0 && xfer->ux_frlengths);
4458 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4459
4460 const bool isread = usbd_xfer_isread(xfer);
4461 if (xfer->ux_length)
4462 usb_syncmem(dma, 0, xfer->ux_length,
4463 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4464
4465 ival = xfer->ux_pipe->up_endpoint->ue_edesc->bInterval;
4466 if (ival >= 1 && ival <= 16)
4467 ival = 1 << (ival - 1);
4468 else
4469 ival = 1; /* fake something up */
4470
4471 if (xpipe->xp_isoc_next == -1) {
4472 mfindex = xhci_rt_read_4(sc, XHCI_MFINDEX);
4473 DPRINTF("mfindex %jx", (uintmax_t)mfindex, 0, 0, 0);
4474 mfindex = XHCI_MFINDEX_GET(mfindex + 1);
4475 mfindex /= USB_UFRAMES_PER_FRAME;
4476 mfindex += 7; /* 7 frames is max possible IST */
4477 xpipe->xp_isoc_next = roundup2(mfindex, ival);
4478 }
4479
4480 offs = 0;
4481 for (i = 0; i < xfer->ux_nframes; i++) {
4482 len = xfer->ux_frlengths[i];
4483
4484 tdpc = howmany(len, mps);
4485 tbc = howmany(tdpc, maxb) - 1;
4486 tlbpc = tdpc % maxb;
4487 tlbpc = tlbpc ? tlbpc - 1 : maxb - 1;
4488
4489 KASSERTMSG(len <= 0x10000, "len %d", len);
4490 parameter = DMAADDR(dma, offs);
4491 status = XHCI_TRB_2_IRQ_SET(0) |
4492 XHCI_TRB_2_TDSZ_SET(0) |
4493 XHCI_TRB_2_BYTES_SET(len);
4494 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ISOCH) |
4495 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4496 XHCI_TRB_3_TBC_SET(tbc) |
4497 XHCI_TRB_3_TLBPC_SET(tlbpc) |
4498 XHCI_TRB_3_IOC_BIT;
4499 if (XHCI_HCC_CFC(sc->sc_hcc)) {
4500 control |= XHCI_TRB_3_FRID_SET(xpipe->xp_isoc_next);
4501 #if 0
4502 } else if (xpipe->xp_isoc_next == -1) {
4503 control |= XHCI_TRB_3_FRID_SET(xpipe->xp_isoc_next);
4504 #endif
4505 } else {
4506 control |= XHCI_TRB_3_ISO_SIA_BIT;
4507 }
4508 #if 0
4509 if (i != xfer->ux_nframes - 1)
4510 control |= XHCI_TRB_3_BEI_BIT;
4511 #endif
4512 xhci_xfer_put_trb(xx, i, parameter, status, control);
4513
4514 xpipe->xp_isoc_next += ival;
4515 offs += len;
4516 }
4517
4518 xx->xx_isoc_done = 0;
4519
4520 if (!polling)
4521 mutex_enter(&tr->xr_lock);
4522 xhci_ring_put_xfer(sc, tr, xx, i);
4523 if (!polling)
4524 mutex_exit(&tr->xr_lock);
4525
4526 if (!polling)
4527 mutex_enter(&sc->sc_lock);
4528 xfer->ux_status = USBD_IN_PROGRESS;
4529 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4530 usbd_xfer_schedule_timeout(xfer);
4531 if (!polling)
4532 mutex_exit(&sc->sc_lock);
4533
4534 return USBD_IN_PROGRESS;
4535 }
4536
4537 static void
4538 xhci_device_isoc_abort(struct usbd_xfer *xfer)
4539 {
4540 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4541
4542 usbd_xfer_abort(xfer);
4543 }
4544
4545 static void
4546 xhci_device_isoc_close(struct usbd_pipe *pipe)
4547 {
4548 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4549
4550 xhci_close_pipe(pipe);
4551 }
4552
4553 static void
4554 xhci_device_isoc_done(struct usbd_xfer *xfer)
4555 {
4556 #ifdef USB_DEBUG
4557 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4558 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4559 #endif
4560 const bool isread = usbd_xfer_isread(xfer);
4561
4562 XHCIHIST_FUNC();
4563 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4564 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4565
4566 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4567 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4568 }
4569
4570 /* ----------- */
4571 /* device bulk */
4572
4573 static usbd_status
4574 xhci_device_bulk_transfer(struct usbd_xfer *xfer)
4575 {
4576 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4577 usbd_status err;
4578
4579 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4580
4581 /* Insert last in queue. */
4582 mutex_enter(&sc->sc_lock);
4583 err = usb_insert_transfer(xfer);
4584 mutex_exit(&sc->sc_lock);
4585 if (err)
4586 return err;
4587
4588 /*
4589 * Pipe isn't running (otherwise err would be USBD_INPROG),
4590 * so start it first.
4591 */
4592 return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4593 }
4594
4595 static usbd_status
4596 xhci_device_bulk_start(struct usbd_xfer *xfer)
4597 {
4598 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4599 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4600 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4601 struct xhci_ring * const tr = xs->xs_xr[dci];
4602 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4603 const uint32_t len = xfer->ux_length;
4604 usb_dma_t * const dma = &xfer->ux_dmabuf;
4605 uint64_t parameter;
4606 uint32_t status;
4607 uint32_t control;
4608 u_int i = 0;
4609 const bool polling = xhci_polling_p(sc);
4610
4611 XHCIHIST_FUNC();
4612 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4613 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4614
4615 if (sc->sc_dying)
4616 return USBD_IOERROR;
4617
4618 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4619
4620 parameter = DMAADDR(dma, 0);
4621 const bool isread = usbd_xfer_isread(xfer);
4622 if (len)
4623 usb_syncmem(dma, 0, len,
4624 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4625
4626 /*
4627 * XXX: (dsl) The physical buffer must not cross a 64k boundary.
4628 * If the user supplied buffer crosses such a boundary then 2
4629 * (or more) TRB should be used.
4630 * If multiple TRB are used the td_size field must be set correctly.
4631 * For v1.0 devices (like ivy bridge) this is the number of usb data
4632 * blocks needed to complete the transfer.
4633 * Setting it to 1 in the last TRB causes an extra zero-length
4634 * data block be sent.
4635 * The earlier documentation differs, I don't know how it behaves.
4636 */
4637 KASSERTMSG(len <= 0x10000, "len %d", len);
4638 status = XHCI_TRB_2_IRQ_SET(0) |
4639 XHCI_TRB_2_TDSZ_SET(0) |
4640 XHCI_TRB_2_BYTES_SET(len);
4641 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4642 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4643 XHCI_TRB_3_IOC_BIT;
4644 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4645
4646 if (!polling)
4647 mutex_enter(&tr->xr_lock);
4648 xhci_ring_put_xfer(sc, tr, xx, i);
4649 if (!polling)
4650 mutex_exit(&tr->xr_lock);
4651
4652 if (!polling)
4653 mutex_enter(&sc->sc_lock);
4654 xfer->ux_status = USBD_IN_PROGRESS;
4655 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4656 usbd_xfer_schedule_timeout(xfer);
4657 if (!polling)
4658 mutex_exit(&sc->sc_lock);
4659
4660 return USBD_IN_PROGRESS;
4661 }
4662
4663 static void
4664 xhci_device_bulk_done(struct usbd_xfer *xfer)
4665 {
4666 #ifdef USB_DEBUG
4667 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4668 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4669 #endif
4670 const bool isread = usbd_xfer_isread(xfer);
4671
4672 XHCIHIST_FUNC();
4673 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4674 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4675
4676 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4677 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4678 }
4679
4680 static void
4681 xhci_device_bulk_abort(struct usbd_xfer *xfer)
4682 {
4683 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4684
4685 usbd_xfer_abort(xfer);
4686 }
4687
4688 static void
4689 xhci_device_bulk_close(struct usbd_pipe *pipe)
4690 {
4691 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4692
4693 xhci_close_pipe(pipe);
4694 }
4695
4696 /* ---------------- */
4697 /* device interrupt */
4698
4699 static usbd_status
4700 xhci_device_intr_transfer(struct usbd_xfer *xfer)
4701 {
4702 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4703 usbd_status err;
4704
4705 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4706
4707 /* Insert last in queue. */
4708 mutex_enter(&sc->sc_lock);
4709 err = usb_insert_transfer(xfer);
4710 mutex_exit(&sc->sc_lock);
4711 if (err)
4712 return err;
4713
4714 /*
4715 * Pipe isn't running (otherwise err would be USBD_INPROG),
4716 * so start it first.
4717 */
4718 return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4719 }
4720
4721 static usbd_status
4722 xhci_device_intr_start(struct usbd_xfer *xfer)
4723 {
4724 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4725 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4726 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4727 struct xhci_ring * const tr = xs->xs_xr[dci];
4728 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4729 const uint32_t len = xfer->ux_length;
4730 const bool polling = xhci_polling_p(sc);
4731 usb_dma_t * const dma = &xfer->ux_dmabuf;
4732 uint64_t parameter;
4733 uint32_t status;
4734 uint32_t control;
4735 u_int i = 0;
4736
4737 XHCIHIST_FUNC();
4738 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4739 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4740
4741 if (sc->sc_dying)
4742 return USBD_IOERROR;
4743
4744 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4745
4746 const bool isread = usbd_xfer_isread(xfer);
4747 if (len)
4748 usb_syncmem(dma, 0, len,
4749 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4750
4751 parameter = DMAADDR(dma, 0);
4752 KASSERTMSG(len <= 0x10000, "len %d", len);
4753 status = XHCI_TRB_2_IRQ_SET(0) |
4754 XHCI_TRB_2_TDSZ_SET(0) |
4755 XHCI_TRB_2_BYTES_SET(len);
4756 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4757 (isread ? XHCI_TRB_3_ISP_BIT : 0) | XHCI_TRB_3_IOC_BIT;
4758 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4759
4760 if (!polling)
4761 mutex_enter(&tr->xr_lock);
4762 xhci_ring_put_xfer(sc, tr, xx, i);
4763 if (!polling)
4764 mutex_exit(&tr->xr_lock);
4765
4766 if (!polling)
4767 mutex_enter(&sc->sc_lock);
4768 xfer->ux_status = USBD_IN_PROGRESS;
4769 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4770 usbd_xfer_schedule_timeout(xfer);
4771 if (!polling)
4772 mutex_exit(&sc->sc_lock);
4773
4774 return USBD_IN_PROGRESS;
4775 }
4776
4777 static void
4778 xhci_device_intr_done(struct usbd_xfer *xfer)
4779 {
4780 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4781 #ifdef USB_DEBUG
4782 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4783 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4784 #endif
4785 const bool isread = usbd_xfer_isread(xfer);
4786
4787 XHCIHIST_FUNC();
4788 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4789 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4790
4791 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
4792
4793 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4794 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4795 }
4796
4797 static void
4798 xhci_device_intr_abort(struct usbd_xfer *xfer)
4799 {
4800 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4801
4802 XHCIHIST_FUNC();
4803 XHCIHIST_CALLARGS("%#jx", (uintptr_t)xfer, 0, 0, 0);
4804
4805 KASSERT(mutex_owned(&sc->sc_lock));
4806 usbd_xfer_abort(xfer);
4807 }
4808
4809 static void
4810 xhci_device_intr_close(struct usbd_pipe *pipe)
4811 {
4812 //struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
4813
4814 XHCIHIST_FUNC();
4815 XHCIHIST_CALLARGS("%#jx", (uintptr_t)pipe, 0, 0, 0);
4816
4817 xhci_close_pipe(pipe);
4818 }
4819