xhci.c revision 1.186 1 /* $NetBSD: xhci.c,v 1.186 2025/01/09 10:17:22 jmcneill Exp $ */
2
3 /*
4 * Copyright (c) 2013 Jonathan A. Kollasch
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
25 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
26 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * USB rev 2.0 and rev 3.1 specification
31 * http://www.usb.org/developers/docs/
32 * xHCI rev 1.1 specification
33 * http://www.intel.com/technology/usb/spec.htm
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.186 2025/01/09 10:17:22 jmcneill Exp $");
38
39 #ifdef _KERNEL_OPT
40 #include "opt_usb.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/device.h>
48 #include <sys/select.h>
49 #include <sys/proc.h>
50 #include <sys/queue.h>
51 #include <sys/mutex.h>
52 #include <sys/condvar.h>
53 #include <sys/bus.h>
54 #include <sys/cpu.h>
55 #include <sys/sysctl.h>
56
57 #include <machine/endian.h>
58
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdivar.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbhist.h>
64 #include <dev/usb/usb_mem.h>
65 #include <dev/usb/usb_quirks.h>
66
67 #include <dev/usb/xhcireg.h>
68 #include <dev/usb/xhcivar.h>
69 #include <dev/usb/usbroothub.h>
70
71
72 #ifdef USB_DEBUG
73 #ifndef XHCI_DEBUG
74 #define xhcidebug 0
75 #else /* !XHCI_DEBUG */
76 #define HEXDUMP(a, b, c) \
77 do { \
78 if (xhcidebug > 0) \
79 hexdump(printf, a, b, c); \
80 } while (/*CONSTCOND*/0)
81 static int xhcidebug = 0;
82
83 SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup")
84 {
85 int err;
86 const struct sysctlnode *rnode;
87 const struct sysctlnode *cnode;
88
89 err = sysctl_createv(clog, 0, NULL, &rnode,
90 CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci",
91 SYSCTL_DESCR("xhci global controls"),
92 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
93
94 if (err)
95 goto fail;
96
97 /* control debugging printfs */
98 err = sysctl_createv(clog, 0, &rnode, &cnode,
99 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
100 "debug", SYSCTL_DESCR("Enable debugging output"),
101 NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL);
102 if (err)
103 goto fail;
104
105 return;
106 fail:
107 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
108 }
109
110 #endif /* !XHCI_DEBUG */
111 #endif /* USB_DEBUG */
112
113 #ifndef HEXDUMP
114 #define HEXDUMP(a, b, c)
115 #endif
116
117 #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(xhcidebug,FMT,A,B,C,D)
118 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D)
119 #define XHCIHIST_FUNC() USBHIST_FUNC()
120 #define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug)
121 #define XHCIHIST_CALLARGS(FMT,A,B,C,D) \
122 USBHIST_CALLARGS(xhcidebug,FMT,A,B,C,D)
123
124 #define XHCI_DCI_SLOT 0
125 #define XHCI_DCI_EP_CONTROL 1
126
127 #define XHCI_ICI_INPUT_CONTROL 0
128
129 struct xhci_pipe {
130 struct usbd_pipe xp_pipe;
131 struct usb_task xp_async_task;
132 int16_t xp_isoc_next; /* next frame */
133 uint8_t xp_maxb; /* max burst */
134 uint8_t xp_mult;
135 };
136
137 #define XHCI_COMMAND_RING_TRBS 256
138 #define XHCI_EVENT_RING_TRBS 256
139 #define XHCI_EVENT_RING_SEGMENTS 1
140 #define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT
141
142 static usbd_status xhci_open(struct usbd_pipe *);
143 static void xhci_close_pipe(struct usbd_pipe *);
144 static int xhci_intr1(struct xhci_softc * const);
145 static void xhci_softintr(void *);
146 static void xhci_poll(struct usbd_bus *);
147 static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int);
148 static void xhci_freex(struct usbd_bus *, struct usbd_xfer *);
149 static void xhci_abortx(struct usbd_xfer *);
150 static bool xhci_dying(struct usbd_bus *);
151 static void xhci_get_lock(struct usbd_bus *, kmutex_t **);
152 static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int,
153 struct usbd_port *);
154 static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
155 void *, int);
156
157 static void xhci_pipe_restart(struct usbd_pipe *);
158 static void xhci_pipe_restart_async_task(void *);
159 static void xhci_pipe_restart_async(struct usbd_pipe *);
160
161 static usbd_status xhci_configure_endpoint(struct usbd_pipe *);
162 //static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *);
163 static void xhci_reset_endpoint(struct usbd_pipe *);
164 static usbd_status xhci_stop_endpoint_cmd(struct xhci_softc *,
165 struct xhci_slot *, u_int, uint32_t);
166 static usbd_status xhci_stop_endpoint(struct usbd_pipe *);
167
168 static void xhci_host_dequeue(struct xhci_ring * const);
169 static void xhci_set_dequeue(struct usbd_pipe *);
170
171 static usbd_status xhci_do_command(struct xhci_softc * const,
172 struct xhci_soft_trb * const, int);
173 static usbd_status xhci_do_command_locked(struct xhci_softc * const,
174 struct xhci_soft_trb * const, int);
175 static usbd_status xhci_init_slot(struct usbd_device *, uint32_t);
176 static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *);
177 static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool);
178 static usbd_status xhci_enable_slot(struct xhci_softc * const,
179 uint8_t * const);
180 static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t);
181 static usbd_status xhci_address_device(struct xhci_softc * const,
182 uint64_t, uint8_t, bool);
183 static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int);
184 static usbd_status xhci_update_ep0_mps(struct xhci_softc * const,
185 struct xhci_slot * const, u_int);
186 static usbd_status xhci_ring_init(struct xhci_softc * const,
187 struct xhci_ring **, size_t, size_t);
188 static void xhci_ring_free(struct xhci_softc * const,
189 struct xhci_ring ** const);
190
191 static void xhci_setup_ctx(struct usbd_pipe *);
192 static void xhci_setup_route(struct usbd_pipe *, uint32_t *);
193 static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *);
194 static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *);
195 static uint32_t xhci_bival2ival(uint32_t, uint32_t, uint32_t);
196
197 static void xhci_noop(struct usbd_pipe *);
198
199 static usbd_status xhci_root_intr_transfer(struct usbd_xfer *);
200 static usbd_status xhci_root_intr_start(struct usbd_xfer *);
201 static void xhci_root_intr_abort(struct usbd_xfer *);
202 static void xhci_root_intr_close(struct usbd_pipe *);
203 static void xhci_root_intr_done(struct usbd_xfer *);
204
205 static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *);
206 static usbd_status xhci_device_ctrl_start(struct usbd_xfer *);
207 static void xhci_device_ctrl_abort(struct usbd_xfer *);
208 static void xhci_device_ctrl_close(struct usbd_pipe *);
209 static void xhci_device_ctrl_done(struct usbd_xfer *);
210
211 static usbd_status xhci_device_isoc_transfer(struct usbd_xfer *);
212 static usbd_status xhci_device_isoc_enter(struct usbd_xfer *);
213 static void xhci_device_isoc_abort(struct usbd_xfer *);
214 static void xhci_device_isoc_close(struct usbd_pipe *);
215 static void xhci_device_isoc_done(struct usbd_xfer *);
216
217 static usbd_status xhci_device_intr_transfer(struct usbd_xfer *);
218 static usbd_status xhci_device_intr_start(struct usbd_xfer *);
219 static void xhci_device_intr_abort(struct usbd_xfer *);
220 static void xhci_device_intr_close(struct usbd_pipe *);
221 static void xhci_device_intr_done(struct usbd_xfer *);
222
223 static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *);
224 static usbd_status xhci_device_bulk_start(struct usbd_xfer *);
225 static void xhci_device_bulk_abort(struct usbd_xfer *);
226 static void xhci_device_bulk_close(struct usbd_pipe *);
227 static void xhci_device_bulk_done(struct usbd_xfer *);
228
229 static const struct usbd_bus_methods xhci_bus_methods = {
230 .ubm_open = xhci_open,
231 .ubm_softint = xhci_softintr,
232 .ubm_dopoll = xhci_poll,
233 .ubm_allocx = xhci_allocx,
234 .ubm_freex = xhci_freex,
235 .ubm_abortx = xhci_abortx,
236 .ubm_dying = xhci_dying,
237 .ubm_getlock = xhci_get_lock,
238 .ubm_newdev = xhci_new_device,
239 .ubm_rhctrl = xhci_roothub_ctrl,
240 };
241
242 static const struct usbd_pipe_methods xhci_root_intr_methods = {
243 .upm_transfer = xhci_root_intr_transfer,
244 .upm_start = xhci_root_intr_start,
245 .upm_abort = xhci_root_intr_abort,
246 .upm_close = xhci_root_intr_close,
247 .upm_cleartoggle = xhci_noop,
248 .upm_done = xhci_root_intr_done,
249 };
250
251
252 static const struct usbd_pipe_methods xhci_device_ctrl_methods = {
253 .upm_transfer = xhci_device_ctrl_transfer,
254 .upm_start = xhci_device_ctrl_start,
255 .upm_abort = xhci_device_ctrl_abort,
256 .upm_close = xhci_device_ctrl_close,
257 .upm_cleartoggle = xhci_noop,
258 .upm_done = xhci_device_ctrl_done,
259 };
260
261 static const struct usbd_pipe_methods xhci_device_isoc_methods = {
262 .upm_transfer = xhci_device_isoc_transfer,
263 .upm_abort = xhci_device_isoc_abort,
264 .upm_close = xhci_device_isoc_close,
265 .upm_cleartoggle = xhci_noop,
266 .upm_done = xhci_device_isoc_done,
267 };
268
269 static const struct usbd_pipe_methods xhci_device_bulk_methods = {
270 .upm_transfer = xhci_device_bulk_transfer,
271 .upm_start = xhci_device_bulk_start,
272 .upm_abort = xhci_device_bulk_abort,
273 .upm_close = xhci_device_bulk_close,
274 .upm_cleartoggle = xhci_noop,
275 .upm_done = xhci_device_bulk_done,
276 };
277
278 static const struct usbd_pipe_methods xhci_device_intr_methods = {
279 .upm_transfer = xhci_device_intr_transfer,
280 .upm_start = xhci_device_intr_start,
281 .upm_abort = xhci_device_intr_abort,
282 .upm_close = xhci_device_intr_close,
283 .upm_cleartoggle = xhci_noop,
284 .upm_done = xhci_device_intr_done,
285 };
286
287 static inline uint32_t
288 xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset)
289 {
290 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
291 }
292
293 static inline uint32_t
294 xhci_read_2(const struct xhci_softc * const sc, bus_size_t offset)
295 {
296 return bus_space_read_2(sc->sc_iot, sc->sc_ioh, offset);
297 }
298
299 static inline uint32_t
300 xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset)
301 {
302 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset);
303 }
304
305 static inline void
306 xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset,
307 uint32_t value)
308 {
309 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value);
310 }
311
312 #if 0 /* unused */
313 static inline void
314 xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset,
315 uint32_t value)
316 {
317 bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value);
318 }
319 #endif /* unused */
320
321 static inline uint32_t
322 xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset)
323 {
324 return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset);
325 }
326
327 static inline uint32_t
328 xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset)
329 {
330 return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
331 }
332
333 static inline void
334 xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset,
335 uint32_t value)
336 {
337 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
338 }
339
340 static inline uint64_t
341 xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset)
342 {
343 uint64_t value;
344
345 #ifdef XHCI_USE_BUS_SPACE_8
346 value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset);
347 #else
348 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
349 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh,
350 offset + 4) << 32;
351 #endif
352
353 return value;
354 }
355
356 static inline void
357 xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset,
358 uint64_t value)
359 {
360 #ifdef XHCI_USE_BUS_SPACE_8
361 bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value);
362 #else
363 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0,
364 (value >> 0) & 0xffffffff);
365 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4,
366 (value >> 32) & 0xffffffff);
367 #endif
368 }
369
370 static inline uint32_t
371 xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset)
372 {
373 return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
374 }
375
376 static inline void
377 xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset,
378 uint32_t value)
379 {
380 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
381 }
382
383 static inline uint64_t
384 xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset)
385 {
386 uint64_t value;
387
388 #ifdef XHCI_USE_BUS_SPACE_8
389 value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset);
390 #else
391 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
392 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh,
393 offset + 4) << 32;
394 #endif
395
396 return value;
397 }
398
399 static inline void
400 xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset,
401 uint64_t value)
402 {
403 #ifdef XHCI_USE_BUS_SPACE_8
404 bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value);
405 #else
406 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0,
407 (value >> 0) & 0xffffffff);
408 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4,
409 (value >> 32) & 0xffffffff);
410 #endif
411 }
412
413 #if 0 /* unused */
414 static inline uint32_t
415 xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset)
416 {
417 return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset);
418 }
419 #endif /* unused */
420
421 static inline void
422 xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset,
423 uint32_t value)
424 {
425 bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value);
426 }
427
428 /* --- */
429
430 static inline uint8_t
431 xhci_ep_get_type(usb_endpoint_descriptor_t * const ed)
432 {
433 u_int eptype = 0;
434
435 switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
436 case UE_CONTROL:
437 eptype = 0x0;
438 break;
439 case UE_ISOCHRONOUS:
440 eptype = 0x1;
441 break;
442 case UE_BULK:
443 eptype = 0x2;
444 break;
445 case UE_INTERRUPT:
446 eptype = 0x3;
447 break;
448 }
449
450 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
451 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
452 return eptype | 0x4;
453 else
454 return eptype;
455 }
456
457 static u_int
458 xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed)
459 {
460 /* xHCI 1.0 section 4.5.1 */
461 u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress);
462 u_int in = 0;
463
464 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
465 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
466 in = 1;
467
468 return epaddr * 2 + in;
469 }
470
471 static inline u_int
472 xhci_dci_to_ici(const u_int i)
473 {
474 return i + 1;
475 }
476
477 static inline void *
478 xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs,
479 const u_int dci)
480 {
481 return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
482 }
483
484 #if 0 /* unused */
485 static inline bus_addr_t
486 xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs,
487 const u_int dci)
488 {
489 return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
490 }
491 #endif /* unused */
492
493 static inline void *
494 xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs,
495 const u_int ici)
496 {
497 return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
498 }
499
500 static inline bus_addr_t
501 xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs,
502 const u_int ici)
503 {
504 return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
505 }
506
507 static inline struct xhci_trb *
508 xhci_ring_trbv(struct xhci_ring * const xr, u_int idx)
509 {
510 return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
511 }
512
513 static inline bus_addr_t
514 xhci_ring_trbp(struct xhci_ring * const xr, u_int idx)
515 {
516 return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
517 }
518
519 static inline void
520 xhci_xfer_put_trb(struct xhci_xfer * const xx, u_int idx,
521 uint64_t parameter, uint32_t status, uint32_t control)
522 {
523 KASSERTMSG(idx < xx->xx_ntrb, "idx=%u xx_ntrb=%u", idx, xx->xx_ntrb);
524 xx->xx_trb[idx].trb_0 = parameter;
525 xx->xx_trb[idx].trb_2 = status;
526 xx->xx_trb[idx].trb_3 = control;
527 }
528
529 static inline void
530 xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status,
531 uint32_t control)
532 {
533 trb->trb_0 = htole64(parameter);
534 trb->trb_2 = htole32(status);
535 trb->trb_3 = htole32(control);
536 }
537
538 static int
539 xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx)
540 {
541 /* base address of TRBs */
542 bus_addr_t trbp = xhci_ring_trbp(xr, 0);
543
544 /* trb_0 range sanity check */
545 if (trb_0 == 0 || trb_0 < trbp ||
546 (trb_0 - trbp) % sizeof(struct xhci_trb) != 0 ||
547 (trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) {
548 return 1;
549 }
550 *idx = (trb_0 - trbp) / sizeof(struct xhci_trb);
551 return 0;
552 }
553
554 static unsigned int
555 xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs,
556 u_int dci)
557 {
558 uint32_t *cp;
559
560 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
561 cp = xhci_slot_get_dcv(sc, xs, dci);
562 return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0]));
563 }
564
565 static inline unsigned int
566 xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport)
567 {
568 const unsigned int port = ctlrport - 1;
569 const uint8_t bit = __BIT(port % NBBY);
570
571 return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit);
572 }
573
574 /*
575 * Return the roothub port for a controller port. Both are 1..n.
576 */
577 static inline unsigned int
578 xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport)
579 {
580
581 return sc->sc_ctlrportmap[ctrlport - 1];
582 }
583
584 /*
585 * Return the controller port for a bus roothub port. Both are 1..n.
586 */
587 static inline unsigned int
588 xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn,
589 unsigned int rhport)
590 {
591
592 return sc->sc_rhportmap[bn][rhport - 1];
593 }
594
595 /* --- */
596
597 void
598 xhci_childdet(device_t self, device_t child)
599 {
600 struct xhci_softc * const sc = device_private(self);
601
602 mutex_enter(&sc->sc_intr_lock);
603 KASSERT((sc->sc_child == child) || (sc->sc_child2 == child));
604 if (child == sc->sc_child2)
605 sc->sc_child2 = NULL;
606 else if (child == sc->sc_child)
607 sc->sc_child = NULL;
608 mutex_exit(&sc->sc_intr_lock);
609 }
610
611 int
612 xhci_detach(struct xhci_softc *sc, int flags)
613 {
614 int rv = 0;
615
616 if (sc->sc_child2 != NULL) {
617 rv = config_detach(sc->sc_child2, flags);
618 if (rv != 0)
619 return rv;
620 KASSERT(sc->sc_child2 == NULL);
621 }
622
623 if (sc->sc_child != NULL) {
624 rv = config_detach(sc->sc_child, flags);
625 if (rv != 0)
626 return rv;
627 KASSERT(sc->sc_child == NULL);
628 }
629
630 /* XXX unconfigure/free slots */
631
632 /* verify: */
633 xhci_rt_write_4(sc, XHCI_IMAN(0), 0);
634 xhci_op_write_4(sc, XHCI_USBCMD, 0);
635 /* do we need to wait for stop? */
636
637 xhci_op_write_8(sc, XHCI_CRCR, 0);
638 xhci_ring_free(sc, &sc->sc_cr);
639 cv_destroy(&sc->sc_command_cv);
640 cv_destroy(&sc->sc_cmdbusy_cv);
641
642 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0);
643 xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0);
644 xhci_rt_write_8(sc, XHCI_ERDP(0), 0 | XHCI_ERDP_BUSY);
645 xhci_ring_free(sc, &sc->sc_er);
646
647 usb_freemem(&sc->sc_eventst_dma);
648
649 xhci_op_write_8(sc, XHCI_DCBAAP, 0);
650 usb_freemem(&sc->sc_dcbaa_dma);
651
652 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots);
653
654 kmem_free(sc->sc_ctlrportbus,
655 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY));
656 kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int));
657
658 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
659 kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int));
660 }
661
662 mutex_destroy(&sc->sc_rhlock);
663 mutex_destroy(&sc->sc_lock);
664 mutex_destroy(&sc->sc_intr_lock);
665
666 pool_cache_destroy(sc->sc_xferpool);
667
668 return rv;
669 }
670
671 int
672 xhci_activate(device_t self, enum devact act)
673 {
674 struct xhci_softc * const sc = device_private(self);
675
676 switch (act) {
677 case DVACT_DEACTIVATE:
678 sc->sc_dying = true;
679 return 0;
680 default:
681 return EOPNOTSUPP;
682 }
683 }
684
685 bool
686 xhci_suspend(device_t self, const pmf_qual_t *qual)
687 {
688 struct xhci_softc * const sc = device_private(self);
689 size_t i, j, bn, dci;
690 int port;
691 uint32_t v;
692 usbd_status err;
693 bool ok = false;
694
695 XHCIHIST_FUNC(); XHCIHIST_CALLED();
696
697 /*
698 * Block issuance of new commands, and wait for all pending
699 * commands to complete.
700 */
701 mutex_enter(&sc->sc_lock);
702 KASSERT(sc->sc_suspender == NULL);
703 sc->sc_suspender = curlwp;
704 while (sc->sc_command_addr != 0)
705 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
706 mutex_exit(&sc->sc_lock);
707
708 /*
709 * Block roothub xfers which might touch portsc registers until
710 * we're done suspending.
711 */
712 mutex_enter(&sc->sc_rhlock);
713
714 /*
715 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.23.2:
716 * xHCI Power Management, p. 342
717 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=342
718 */
719
720 /*
721 * `1. Stop all USB activity by issuing Stop Endpoint Commands
722 * for Busy endpoints in the Running state. If the Force
723 * Save Context Capability (FSC = ``0'') is not supported,
724 * then Stop Endpoint Commands shall be issued for all idle
725 * endpoints in the Running state as well. The Stop
726 * Endpoint Command causes the xHC to update the respective
727 * Endpoint or Stream Contexts in system memory, e.g. the
728 * TR Dequeue Pointer, DCS, etc. fields. Refer to
729 * Implementation Note "0".'
730 */
731 for (i = 0; i < sc->sc_maxslots; i++) {
732 struct xhci_slot *xs = &sc->sc_slots[i];
733
734 /* Skip if the slot is not in use. */
735 if (xs->xs_idx == 0)
736 continue;
737
738 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
739 /* Skip if the endpoint is not Running. */
740 /* XXX What about Busy? */
741 if (xhci_get_epstate(sc, xs, dci) !=
742 XHCI_EPSTATE_RUNNING)
743 continue;
744
745 /* Stop endpoint. */
746 mutex_enter(&sc->sc_lock);
747 err = xhci_stop_endpoint_cmd(sc, xs, dci,
748 XHCI_TRB_3_SUSP_EP_BIT);
749 mutex_exit(&sc->sc_lock);
750 if (err) {
751 device_printf(self, "failed to stop endpoint"
752 " slot %zu dci %zu err %d\n",
753 i, dci, err);
754 goto out;
755 }
756 }
757 }
758
759 /*
760 * Next, suspend all the ports:
761 *
762 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.15:
763 * Suspend-Resume, pp. 276-283
764 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=276
765 */
766 for (bn = 0; bn < 2; bn++) {
767 for (i = 1; i <= sc->sc_rhportcount[bn]; i++) {
768 /* 4.15.1: Port Suspend. */
769 port = XHCI_PORTSC(xhci_rhport2ctlrport(sc, bn, i));
770
771 /*
772 * `System software places individual ports
773 * into suspend mode by writing a ``3'' into
774 * the appropriate PORTSC register Port Link
775 * State (PLS) field (refer to Section 5.4.8).
776 * Software should only set the PLS field to
777 * ``3'' when the port is in the Enabled
778 * state.'
779 *
780 * `Software should not attempt to suspend a
781 * port unless the port reports that it is in
782 * the enabled (PED = ``1''; PLS < ``3'')
783 * state (refer to Section 5.4.8 for more
784 * information about PED and PLS).'
785 */
786 v = xhci_op_read_4(sc, port);
787 if (((v & XHCI_PS_PED) == 0) ||
788 XHCI_PS_PLS_GET(v) >= XHCI_PS_PLS_U3)
789 continue;
790 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
791 v |= XHCI_PS_LWS | XHCI_PS_PLS_SET(XHCI_PS_PLS_SETU3);
792 xhci_op_write_4(sc, port, v);
793
794 /*
795 * `When the PLS field is written with U3
796 * (``3''), the status of the PLS bit will not
797 * change to the target U state U3 until the
798 * suspend signaling has completed to the
799 * attached device (which may be as long as
800 * 10ms.).'
801 *
802 * `Software is required to wait for U3
803 * transitions to complete before it puts the
804 * xHC into a low power state, and before
805 * resuming the port.'
806 *
807 * XXX Take advantage of the technique to
808 * reduce polling on host controllers that
809 * support the U3C capability.
810 */
811 for (j = 0; j < XHCI_WAIT_PLS_U3; j++) {
812 v = xhci_op_read_4(sc, port);
813 if (XHCI_PS_PLS_GET(v) == XHCI_PS_PLS_U3)
814 break;
815 usb_delay_ms(&sc->sc_bus, 1);
816 }
817 if (j == XHCI_WAIT_PLS_U3) {
818 device_printf(self,
819 "suspend timeout on bus %zu port %zu\n",
820 bn, i);
821 goto out;
822 }
823 }
824 }
825
826 /*
827 * `2. Ensure that the Command Ring is in the Stopped state
828 * (CRR = ``0'') or Idle (i.e. the Command Transfer Ring is
829 * empty), and all Command Completion Events associated
830 * with them have been received.'
831 *
832 * XXX
833 */
834
835 /* `3. Stop the controller by setting Run/Stop (R/S) = ``0''.' */
836 xhci_op_write_4(sc, XHCI_USBCMD,
837 xhci_op_read_4(sc, XHCI_USBCMD) & ~XHCI_CMD_RS);
838
839 /*
840 * `4. Read the Operational Runtime, and VTIO registers in the
841 * following order: USBCMD, DNCTRL, DCBAAP, CONFIG, ERSTSZ,
842 * ERSTBA, ERDP, IMAN, IMOD, and VTIO and save their
843 * state.'
844 *
845 * (We don't use VTIO here (XXX for now?).)
846 */
847 sc->sc_regs.usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
848 sc->sc_regs.dnctrl = xhci_op_read_4(sc, XHCI_DNCTRL);
849 sc->sc_regs.dcbaap = xhci_op_read_8(sc, XHCI_DCBAAP);
850 sc->sc_regs.config = xhci_op_read_4(sc, XHCI_CONFIG);
851 sc->sc_regs.erstsz0 = xhci_rt_read_4(sc, XHCI_ERSTSZ(0));
852 sc->sc_regs.erstba0 = xhci_rt_read_8(sc, XHCI_ERSTBA(0));
853 sc->sc_regs.erdp0 = xhci_rt_read_8(sc, XHCI_ERDP(0));
854 sc->sc_regs.iman0 = xhci_rt_read_4(sc, XHCI_IMAN(0));
855 sc->sc_regs.imod0 = xhci_rt_read_4(sc, XHCI_IMOD(0));
856
857 /*
858 * `5. Set the Controller Save State (CSS) flag in the USBCMD
859 * register (5.4.1)...'
860 */
861 xhci_op_write_4(sc, XHCI_USBCMD,
862 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_CSS);
863
864 /*
865 * `...and wait for the Save State Status (SSS) flag in the
866 * USBSTS register (5.4.2) to transition to ``0''.'
867 */
868 for (i = 0; i < XHCI_WAIT_SSS; i++) {
869 if ((xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SSS) == 0)
870 break;
871 usb_delay_ms(&sc->sc_bus, 1);
872 }
873 if (i >= XHCI_WAIT_SSS) {
874 device_printf(self, "suspend timeout, USBSTS.SSS\n");
875 /*
876 * Just optimistically go on and check SRE anyway --
877 * what's the worst that could happen?
878 */
879 }
880
881 /*
882 * `Note: After a Save or Restore operation completes, the
883 * Save/Restore Error (SRE) flag in the USBSTS register should
884 * be checked to ensure that the operation completed
885 * successfully.'
886 */
887 if (xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SRE) {
888 device_printf(self, "suspend error, USBSTS.SRE\n");
889 goto out;
890 }
891
892 /* Success! */
893 ok = true;
894
895 out: mutex_exit(&sc->sc_rhlock);
896 if (!ok) {
897 /*
898 * If suspend failed, stop holding up command issuance
899 * and make it fail instead.
900 */
901 mutex_enter(&sc->sc_lock);
902 KASSERT(sc->sc_suspender == curlwp);
903 sc->sc_suspender = NULL;
904 sc->sc_suspendresume_failed = true;
905 cv_broadcast(&sc->sc_cmdbusy_cv);
906 mutex_exit(&sc->sc_lock);
907 }
908 return ok;
909 }
910
911 bool
912 xhci_resume(device_t self, const pmf_qual_t *qual)
913 {
914 struct xhci_softc * const sc = device_private(self);
915 size_t i, j, bn, dci;
916 int port;
917 uint32_t v;
918 bool ok = false;
919
920 XHCIHIST_FUNC(); XHCIHIST_CALLED();
921
922 /*
923 * If resume had previously failed, just try again. Can't make
924 * things worse, probably.
925 */
926 mutex_enter(&sc->sc_lock);
927 if (sc->sc_suspendresume_failed) {
928 KASSERT(sc->sc_suspender == NULL);
929 sc->sc_suspender = curlwp;
930 sc->sc_suspendresume_failed = false;
931 }
932 KASSERT(sc->sc_suspender);
933 mutex_exit(&sc->sc_lock);
934
935 /*
936 * Block roothub xfers which might touch portsc registers until
937 * we're done resuming.
938 */
939 mutex_enter(&sc->sc_rhlock);
940
941 /*
942 * xHCI Requirements Specification 1.2, May 2019, Sec. 4.23.2:
943 * xHCI Power Management, p. 343
944 * https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf#page=343
945 */
946
947 /*
948 * `4. Restore the Operational Runtime, and VTIO registers with
949 * their previously saved state in the following order:
950 * DNCTRL, DCBAAP, CONFIG, ERSTSZ, ERSTBA, ERDP, IMAN,
951 * IMOD, and VTIO.'
952 *
953 * (We don't use VTIO here (for now?).)
954 */
955 xhci_op_write_4(sc, XHCI_USBCMD, sc->sc_regs.usbcmd);
956 xhci_op_write_4(sc, XHCI_DNCTRL, sc->sc_regs.dnctrl);
957 xhci_op_write_8(sc, XHCI_DCBAAP, sc->sc_regs.dcbaap);
958 xhci_op_write_4(sc, XHCI_CONFIG, sc->sc_regs.config);
959 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), sc->sc_regs.erstsz0);
960 xhci_rt_write_8(sc, XHCI_ERSTBA(0), sc->sc_regs.erstba0);
961 xhci_rt_write_8(sc, XHCI_ERDP(0), sc->sc_regs.erdp0);
962 xhci_rt_write_4(sc, XHCI_IMAN(0), sc->sc_regs.iman0);
963 xhci_rt_write_4(sc, XHCI_IMOD(0), sc->sc_regs.imod0);
964
965 memset(&sc->sc_regs, 0, sizeof(sc->sc_regs)); /* paranoia */
966
967 /*
968 * `5. Set the Controller Restore State (CRS) flag in the
969 * USBCMD register (5.4.1) to ``1''...'
970 */
971 xhci_op_write_4(sc, XHCI_USBCMD,
972 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_CRS);
973
974 /*
975 * `...and wait for the Restore State Status (RSS) in the
976 * USBSTS register (5.4.2) to transition to ``0''.'
977 */
978 for (i = 0; i < XHCI_WAIT_RSS; i++) {
979 if ((xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_RSS) == 0)
980 break;
981 usb_delay_ms(&sc->sc_bus, 1);
982 }
983 if (i >= XHCI_WAIT_RSS) {
984 device_printf(self, "resume timeout, USBSTS.RSS\n");
985 goto out;
986 }
987
988 /*
989 * `6. Reinitialize the Command Ring, i.e. so its Cycle bits
990 * are consistent with the RCS values to be written to the
991 * CRCR.'
992 *
993 * XXX Hope just zeroing it is good enough!
994 */
995 xhci_host_dequeue(sc->sc_cr);
996
997 /*
998 * `7. Write the CRCR with the address and RCS value of the
999 * reinitialized Command Ring. Note that this write will
1000 * cause the Command Ring to restart at the address
1001 * specified by the CRCR.'
1002 */
1003 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) |
1004 sc->sc_cr->xr_cs);
1005
1006 /*
1007 * `8. Enable the controller by setting Run/Stop (R/S) =
1008 * ``1''.'
1009 */
1010 xhci_op_write_4(sc, XHCI_USBCMD,
1011 xhci_op_read_4(sc, XHCI_USBCMD) | XHCI_CMD_RS);
1012
1013 /*
1014 * `9. Software shall walk the USB topology and initialize each
1015 * of the xHC PORTSC, PORTPMSC, and PORTLI registers, and
1016 * external hub ports attached to USB devices.'
1017 *
1018 * This follows the procedure in 4.15 `Suspend-Resume', 4.15.2
1019 * `Port Resume', 4.15.2.2 `Host Initiated'.
1020 *
1021 * XXX We should maybe batch up initiating the state
1022 * transitions, and then wait for them to complete all at once.
1023 */
1024 for (bn = 0; bn < 2; bn++) {
1025 for (i = 1; i <= sc->sc_rhportcount[bn]; i++) {
1026 port = XHCI_PORTSC(xhci_rhport2ctlrport(sc, bn, i));
1027
1028 /* `When a port is in the U3 state: ...' */
1029 v = xhci_op_read_4(sc, port);
1030 if (XHCI_PS_PLS_GET(v) != XHCI_PS_PLS_U3)
1031 continue;
1032
1033 /*
1034 * `For a USB2 protocol port, software shall
1035 * write a ``15'' (Resume) to the PLS field to
1036 * initiate resume signaling. The port shall
1037 * transition to the Resume substate and the
1038 * xHC shall transmit the resume signaling
1039 * within 1ms (T_URSM). Software shall ensure
1040 * that resume is signaled for at least 20ms
1041 * (T_DRSMDN). Software shall start timing
1042 * T_DRSMDN from the write of ``15'' (Resume)
1043 * to PLS.'
1044 */
1045 if (bn == 1) {
1046 KASSERT(sc->sc_bus2.ub_revision == USBREV_2_0);
1047 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
1048 v |= XHCI_PS_LWS;
1049 v |= XHCI_PS_PLS_SET(XHCI_PS_PLS_SETRESUME);
1050 xhci_op_write_4(sc, port, v);
1051 usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT);
1052 } else {
1053 KASSERT(sc->sc_bus.ub_revision > USBREV_2_0);
1054 }
1055
1056 /*
1057 * `For a USB3 protocol port [and a USB2
1058 * protocol port after transitioning to
1059 * Resume], software shall write a ``0'' (U0)
1060 * to the PLS field...'
1061 */
1062 v = xhci_op_read_4(sc, port);
1063 v &= ~(XHCI_PS_PLS_MASK | XHCI_PS_CLEAR);
1064 v |= XHCI_PS_LWS | XHCI_PS_PLS_SET(XHCI_PS_PLS_SETU0);
1065 xhci_op_write_4(sc, port, v);
1066
1067 for (j = 0; j < XHCI_WAIT_PLS_U0; j++) {
1068 v = xhci_op_read_4(sc, port);
1069 if (XHCI_PS_PLS_GET(v) == XHCI_PS_PLS_U0)
1070 break;
1071 usb_delay_ms(&sc->sc_bus, 1);
1072 }
1073 if (j == XHCI_WAIT_PLS_U0) {
1074 device_printf(self,
1075 "resume timeout on bus %zu port %zu\n",
1076 bn, i);
1077 goto out;
1078 }
1079 }
1080 }
1081
1082 /*
1083 * `10. Restart each of the previously Running endpoints by
1084 * ringing their doorbells.'
1085 */
1086 for (i = 0; i < sc->sc_maxslots; i++) {
1087 struct xhci_slot *xs = &sc->sc_slots[i];
1088
1089 /* Skip if the slot is not in use. */
1090 if (xs->xs_idx == 0)
1091 continue;
1092
1093 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
1094 /* Skip if the endpoint is not Running. */
1095 if (xhci_get_epstate(sc, xs, dci) !=
1096 XHCI_EPSTATE_RUNNING)
1097 continue;
1098
1099 /* Ring the doorbell. */
1100 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
1101 }
1102 }
1103
1104 /*
1105 * `Note: After a Save or Restore operation completes, the
1106 * Save/Restore Error (SRE) flag in the USBSTS register should
1107 * be checked to ensure that the operation completed
1108 * successfully.'
1109 */
1110 if (xhci_op_read_4(sc, XHCI_USBSTS) & XHCI_STS_SRE) {
1111 device_printf(self, "resume error, USBSTS.SRE\n");
1112 goto out;
1113 }
1114
1115 /* Success! */
1116 ok = true;
1117
1118 out: /*
1119 * Resume command issuance. If the hardware failed to resume,
1120 * well, tough -- deadlocking because everything is held up on
1121 * the suspension, with no opportunity to detach, isn't better
1122 * than timing out waiting for dead hardware.
1123 */
1124 mutex_enter(&sc->sc_lock);
1125 KASSERT(sc->sc_suspender);
1126 sc->sc_suspender = NULL;
1127 sc->sc_suspendresume_failed = !ok;
1128 cv_broadcast(&sc->sc_cmdbusy_cv);
1129 mutex_exit(&sc->sc_lock);
1130
1131 mutex_exit(&sc->sc_rhlock);
1132 return ok;
1133 }
1134
1135 bool
1136 xhci_shutdown(device_t self, int flags)
1137 {
1138 return false;
1139 }
1140
1141 static int
1142 xhci_hc_reset(struct xhci_softc * const sc)
1143 {
1144 uint32_t usbcmd, usbsts;
1145 int i;
1146
1147 /* Check controller not ready */
1148 for (i = 0; i < XHCI_WAIT_CNR; i++) {
1149 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1150 if ((usbsts & XHCI_STS_CNR) == 0)
1151 break;
1152 usb_delay_ms(&sc->sc_bus, 1);
1153 }
1154 if (i >= XHCI_WAIT_CNR) {
1155 aprint_error_dev(sc->sc_dev, "controller not ready timeout\n");
1156 return EIO;
1157 }
1158
1159 /* Halt controller */
1160 usbcmd = 0;
1161 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
1162 usb_delay_ms(&sc->sc_bus, 1);
1163
1164 /* Reset controller */
1165 usbcmd = XHCI_CMD_HCRST;
1166 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
1167 for (i = 0; i < XHCI_WAIT_HCRST; i++) {
1168 /*
1169 * Wait 1ms first. Existing Intel xHCI requires 1ms delay to
1170 * prevent system hang (Errata).
1171 */
1172 usb_delay_ms(&sc->sc_bus, 1);
1173 usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
1174 if ((usbcmd & XHCI_CMD_HCRST) == 0)
1175 break;
1176 }
1177 if (i >= XHCI_WAIT_HCRST) {
1178 aprint_error_dev(sc->sc_dev, "host controller reset timeout\n");
1179 return EIO;
1180 }
1181
1182 /* Check controller not ready */
1183 for (i = 0; i < XHCI_WAIT_CNR; i++) {
1184 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1185 if ((usbsts & XHCI_STS_CNR) == 0)
1186 break;
1187 usb_delay_ms(&sc->sc_bus, 1);
1188 }
1189 if (i >= XHCI_WAIT_CNR) {
1190 aprint_error_dev(sc->sc_dev,
1191 "controller not ready timeout after reset\n");
1192 return EIO;
1193 }
1194
1195 return 0;
1196 }
1197
1198 /* 7.2 xHCI Support Protocol Capability */
1199 static void
1200 xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp)
1201 {
1202 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1203
1204 /* XXX Cache this lot */
1205
1206 const uint32_t w0 = xhci_read_4(sc, ecp);
1207 const uint32_t w4 = xhci_read_4(sc, ecp + 4);
1208 const uint32_t w8 = xhci_read_4(sc, ecp + 8);
1209 const uint32_t wc = xhci_read_4(sc, ecp + 0xc);
1210
1211 aprint_debug_dev(sc->sc_dev,
1212 " SP: 0x%08x 0x%08x 0x%08x 0x%08x\n", w0, w4, w8, wc);
1213
1214 if (w4 != XHCI_XECP_USBID)
1215 return;
1216
1217 const int major = XHCI_XECP_SP_W0_MAJOR(w0);
1218 const int minor = XHCI_XECP_SP_W0_MINOR(w0);
1219 const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8);
1220 const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8);
1221
1222 const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16));
1223 switch (mm) {
1224 case 0x0200:
1225 case 0x0300:
1226 case 0x0301:
1227 case 0x0310:
1228 case 0x0320:
1229 aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n",
1230 major == 3 ? "ss" : "hs", cpo, cpo + cpc - 1);
1231 if (major == 3)
1232 sc->sc_usb3nports += cpo + cpc - 1;
1233 else
1234 sc->sc_usb2nports += cpo + cpc - 1;
1235 break;
1236 default:
1237 aprint_error_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n",
1238 major, minor);
1239 return;
1240 }
1241
1242 const size_t bus = (major == 3) ? 0 : 1;
1243
1244 /* Index arrays with 0..n-1 where ports are numbered 1..n */
1245 for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) {
1246 if (sc->sc_ctlrportmap[cp] != 0) {
1247 aprint_error_dev(sc->sc_dev, "controller port %zu "
1248 "already assigned", cp);
1249 continue;
1250 }
1251
1252 sc->sc_ctlrportbus[cp / NBBY] |=
1253 bus == 0 ? 0 : __BIT(cp % NBBY);
1254
1255 const size_t rhp = sc->sc_rhportcount[bus]++;
1256
1257 KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0,
1258 "bus %zu rhp %zu is %d", bus, rhp,
1259 sc->sc_rhportmap[bus][rhp]);
1260
1261 sc->sc_rhportmap[bus][rhp] = cp + 1;
1262 sc->sc_ctlrportmap[cp] = rhp + 1;
1263 }
1264 }
1265
1266 /* Process extended capabilities */
1267 static void
1268 xhci_ecp(struct xhci_softc *sc)
1269 {
1270 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1271
1272 bus_size_t ecp = XHCI_HCC_XECP(sc->sc_hcc) * 4;
1273 while (ecp != 0) {
1274 uint32_t ecr = xhci_read_4(sc, ecp);
1275 aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr);
1276 switch (XHCI_XECP_ID(ecr)) {
1277 case XHCI_ID_PROTOCOLS: {
1278 xhci_id_protocols(sc, ecp);
1279 break;
1280 }
1281 case XHCI_ID_USB_LEGACY: {
1282 uint8_t bios_sem;
1283
1284 /* Take host controller ownership from BIOS */
1285 bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM);
1286 if (bios_sem) {
1287 /* sets xHCI to be owned by OS */
1288 xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1);
1289 aprint_debug_dev(sc->sc_dev,
1290 "waiting for BIOS to give up control\n");
1291 for (int i = 0; i < 5000; i++) {
1292 bios_sem = xhci_read_1(sc, ecp +
1293 XHCI_XECP_BIOS_SEM);
1294 if (bios_sem == 0)
1295 break;
1296 DELAY(1000);
1297 }
1298 if (bios_sem) {
1299 aprint_error_dev(sc->sc_dev,
1300 "timed out waiting for BIOS\n");
1301 }
1302 }
1303 break;
1304 }
1305 default:
1306 break;
1307 }
1308 ecr = xhci_read_4(sc, ecp);
1309 if (XHCI_XECP_NEXT(ecr) == 0) {
1310 ecp = 0;
1311 } else {
1312 ecp += XHCI_XECP_NEXT(ecr) * 4;
1313 }
1314 }
1315 }
1316
1317 #define XHCI_HCCPREV1_BITS \
1318 "\177\020" /* New bitmask */ \
1319 "f\020\020XECP\0" \
1320 "f\014\4MAXPSA\0" \
1321 "b\013CFC\0" \
1322 "b\012SEC\0" \
1323 "b\011SBD\0" \
1324 "b\010FSE\0" \
1325 "b\7NSS\0" \
1326 "b\6LTC\0" \
1327 "b\5LHRC\0" \
1328 "b\4PIND\0" \
1329 "b\3PPC\0" \
1330 "b\2CZC\0" \
1331 "b\1BNC\0" \
1332 "b\0AC64\0" \
1333 "\0"
1334 #define XHCI_HCCV1_x_BITS \
1335 "\177\020" /* New bitmask */ \
1336 "f\020\020XECP\0" \
1337 "f\014\4MAXPSA\0" \
1338 "b\013CFC\0" \
1339 "b\012SEC\0" \
1340 "b\011SPC\0" \
1341 "b\010PAE\0" \
1342 "b\7NSS\0" \
1343 "b\6LTC\0" \
1344 "b\5LHRC\0" \
1345 "b\4PIND\0" \
1346 "b\3PPC\0" \
1347 "b\2CSZ\0" \
1348 "b\1BNC\0" \
1349 "b\0AC64\0" \
1350 "\0"
1351
1352 #define XHCI_HCC2_BITS \
1353 "\177\020" /* New bitmask */ \
1354 "b\7ETC_TSC\0" \
1355 "b\6ETC\0" \
1356 "b\5CIC\0" \
1357 "b\4LEC\0" \
1358 "b\3CTC\0" \
1359 "b\2FSC\0" \
1360 "b\1CMC\0" \
1361 "b\0U3C\0" \
1362 "\0"
1363
1364 void
1365 xhci_start(struct xhci_softc *sc)
1366 {
1367 xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA);
1368 if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0)
1369 /* Intel xhci needs interrupt rate moderated. */
1370 xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP);
1371 else
1372 xhci_rt_write_4(sc, XHCI_IMOD(0), 0);
1373 aprint_debug_dev(sc->sc_dev, "current IMOD %u\n",
1374 xhci_rt_read_4(sc, XHCI_IMOD(0)));
1375
1376 /* Go! */
1377 xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS);
1378 aprint_debug_dev(sc->sc_dev, "USBCMD 0x%08"PRIx32"\n",
1379 xhci_op_read_4(sc, XHCI_USBCMD));
1380 }
1381
1382 int
1383 xhci_init(struct xhci_softc *sc)
1384 {
1385 bus_size_t bsz;
1386 uint32_t hcs1, hcs2, hcs3, dboff, rtsoff;
1387 uint32_t pagesize, config;
1388 int i = 0;
1389 uint16_t hciversion;
1390 uint8_t caplength;
1391
1392 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1393
1394 /* Set up the bus struct for the usb 3 and usb 2 buses */
1395 sc->sc_bus.ub_methods = &xhci_bus_methods;
1396 sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe);
1397 sc->sc_bus.ub_usedma = true;
1398 sc->sc_bus.ub_hcpriv = sc;
1399
1400 sc->sc_bus2.ub_methods = &xhci_bus_methods;
1401 sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe);
1402 sc->sc_bus2.ub_revision = USBREV_2_0;
1403 sc->sc_bus2.ub_usedma = true;
1404 sc->sc_bus2.ub_hcpriv = sc;
1405 sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag;
1406
1407 caplength = xhci_read_1(sc, XHCI_CAPLENGTH);
1408 hciversion = xhci_read_2(sc, XHCI_HCIVERSION);
1409
1410 if (hciversion < XHCI_HCIVERSION_0_96 ||
1411 hciversion >= 0x0200) {
1412 aprint_normal_dev(sc->sc_dev,
1413 "xHCI version %x.%x not known to be supported\n",
1414 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
1415 } else {
1416 aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n",
1417 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
1418 }
1419
1420 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength,
1421 &sc->sc_cbh) != 0) {
1422 aprint_error_dev(sc->sc_dev, "capability subregion failure\n");
1423 return ENOMEM;
1424 }
1425
1426 hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1);
1427 sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1);
1428 sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1);
1429 sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1);
1430 hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2);
1431 hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3);
1432 aprint_debug_dev(sc->sc_dev,
1433 "hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3);
1434
1435 sc->sc_hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS);
1436 sc->sc_ctxsz = XHCI_HCC_CSZ(sc->sc_hcc) ? 64 : 32;
1437
1438 char sbuf[128];
1439 if (hciversion < XHCI_HCIVERSION_1_0)
1440 snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, sc->sc_hcc);
1441 else
1442 snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, sc->sc_hcc);
1443 aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf);
1444 aprint_debug_dev(sc->sc_dev, "xECP %" __PRIxBITS "\n",
1445 XHCI_HCC_XECP(sc->sc_hcc) * 4);
1446 if (hciversion >= XHCI_HCIVERSION_1_1) {
1447 sc->sc_hcc2 = xhci_cap_read_4(sc, XHCI_HCCPARAMS2);
1448 snprintb(sbuf, sizeof(sbuf), XHCI_HCC2_BITS, sc->sc_hcc2);
1449 aprint_debug_dev(sc->sc_dev, "hcc2=%s\n", sbuf);
1450 }
1451
1452 /* default all ports to bus 0, i.e. usb 3 */
1453 sc->sc_ctlrportbus = kmem_zalloc(
1454 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP);
1455 sc->sc_ctlrportmap =
1456 kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1457
1458 /* controller port to bus roothub port map */
1459 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
1460 sc->sc_rhportmap[j] =
1461 kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
1462 }
1463
1464 /*
1465 * Process all Extended Capabilities
1466 */
1467 xhci_ecp(sc);
1468
1469 bsz = XHCI_PORTSC(sc->sc_maxports);
1470 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz,
1471 &sc->sc_obh) != 0) {
1472 aprint_error_dev(sc->sc_dev, "operational subregion failure\n");
1473 return ENOMEM;
1474 }
1475
1476 dboff = xhci_cap_read_4(sc, XHCI_DBOFF);
1477 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff,
1478 sc->sc_maxslots * 4, &sc->sc_dbh) != 0) {
1479 aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n");
1480 return ENOMEM;
1481 }
1482
1483 rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF);
1484 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff,
1485 sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) {
1486 aprint_error_dev(sc->sc_dev, "runtime subregion failure\n");
1487 return ENOMEM;
1488 }
1489
1490 int rv;
1491 rv = xhci_hc_reset(sc);
1492 if (rv != 0) {
1493 return rv;
1494 }
1495
1496 if (sc->sc_vendor_init)
1497 sc->sc_vendor_init(sc);
1498
1499 pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE);
1500 aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize);
1501 pagesize = ffs(pagesize);
1502 if (pagesize == 0) {
1503 aprint_error_dev(sc->sc_dev, "pagesize is 0\n");
1504 return EIO;
1505 }
1506 sc->sc_pgsz = 1 << (12 + (pagesize - 1));
1507 aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz);
1508 aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n",
1509 (uint32_t)sc->sc_maxslots);
1510 aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports);
1511
1512 int err;
1513 sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2);
1514 aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf);
1515 if (sc->sc_maxspbuf != 0) {
1516 err = usb_allocmem(sc->sc_bus.ub_dmatag,
1517 sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t),
1518 USBMALLOC_ZERO, &sc->sc_spbufarray_dma);
1519 if (err) {
1520 aprint_error_dev(sc->sc_dev,
1521 "spbufarray init fail, err %d\n", err);
1522 return ENOMEM;
1523 }
1524
1525 sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) *
1526 sc->sc_maxspbuf, KM_SLEEP);
1527 uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0);
1528 for (i = 0; i < sc->sc_maxspbuf; i++) {
1529 usb_dma_t * const dma = &sc->sc_spbuf_dma[i];
1530 /* allocate contexts */
1531 err = usb_allocmem(sc->sc_bus.ub_dmatag, sc->sc_pgsz,
1532 sc->sc_pgsz, USBMALLOC_ZERO, dma);
1533 if (err) {
1534 aprint_error_dev(sc->sc_dev,
1535 "spbufarray_dma init fail, err %d\n", err);
1536 rv = ENOMEM;
1537 goto bad1;
1538 }
1539 spbufarray[i] = htole64(DMAADDR(dma, 0));
1540 usb_syncmem(dma, 0, sc->sc_pgsz,
1541 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1542 }
1543
1544 usb_syncmem(&sc->sc_spbufarray_dma, 0,
1545 sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE);
1546 }
1547
1548 config = xhci_op_read_4(sc, XHCI_CONFIG);
1549 config &= ~0xFF;
1550 config |= sc->sc_maxslots & 0xFF;
1551 xhci_op_write_4(sc, XHCI_CONFIG, config);
1552
1553 err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS,
1554 XHCI_COMMAND_RING_SEGMENTS_ALIGN);
1555 if (err) {
1556 aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n",
1557 err);
1558 rv = ENOMEM;
1559 goto bad1;
1560 }
1561
1562 err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS,
1563 XHCI_EVENT_RING_SEGMENTS_ALIGN);
1564 if (err) {
1565 aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n",
1566 err);
1567 rv = ENOMEM;
1568 goto bad2;
1569 }
1570
1571 usb_dma_t *dma;
1572 size_t size;
1573 size_t align;
1574
1575 dma = &sc->sc_eventst_dma;
1576 size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE,
1577 XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN);
1578 KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size);
1579 align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN;
1580 err = usb_allocmem(sc->sc_bus.ub_dmatag, size, align,
1581 USBMALLOC_ZERO, dma);
1582 if (err) {
1583 aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n",
1584 err);
1585 rv = ENOMEM;
1586 goto bad3;
1587 }
1588
1589 aprint_debug_dev(sc->sc_dev, "eventst: 0x%016jx %p %zx\n",
1590 (uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0),
1591 KERNADDR(&sc->sc_eventst_dma, 0),
1592 sc->sc_eventst_dma.udma_block->size);
1593
1594 dma = &sc->sc_dcbaa_dma;
1595 size = (1 + sc->sc_maxslots) * sizeof(uint64_t);
1596 KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size);
1597 align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN;
1598 err = usb_allocmem(sc->sc_bus.ub_dmatag, size, align,
1599 USBMALLOC_ZERO, dma);
1600 if (err) {
1601 aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err);
1602 rv = ENOMEM;
1603 goto bad4;
1604 }
1605 aprint_debug_dev(sc->sc_dev, "dcbaa: 0x%016jx %p %zx\n",
1606 (uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0),
1607 KERNADDR(&sc->sc_dcbaa_dma, 0),
1608 sc->sc_dcbaa_dma.udma_block->size);
1609
1610 if (sc->sc_maxspbuf != 0) {
1611 /*
1612 * DCBA entry 0 hold the scratchbuf array pointer.
1613 */
1614 *(uint64_t *)KERNADDR(dma, 0) =
1615 htole64(DMAADDR(&sc->sc_spbufarray_dma, 0));
1616 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1617 }
1618
1619 sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots,
1620 KM_SLEEP);
1621 if (sc->sc_slots == NULL) {
1622 aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err);
1623 rv = ENOMEM;
1624 goto bad;
1625 }
1626
1627 sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0,
1628 "xhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
1629 if (sc->sc_xferpool == NULL) {
1630 aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n",
1631 err);
1632 rv = ENOMEM;
1633 goto bad;
1634 }
1635
1636 cv_init(&sc->sc_command_cv, "xhcicmd");
1637 cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq");
1638 mutex_init(&sc->sc_rhlock, MUTEX_DEFAULT, IPL_NONE);
1639 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1640 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1641
1642 struct xhci_erste *erst;
1643 erst = KERNADDR(&sc->sc_eventst_dma, 0);
1644 erst[0].erste_0 = htole64(xhci_ring_trbp(sc->sc_er, 0));
1645 erst[0].erste_2 = htole32(sc->sc_er->xr_ntrb);
1646 erst[0].erste_3 = htole32(0);
1647 usb_syncmem(&sc->sc_eventst_dma, 0,
1648 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE);
1649
1650 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS);
1651 xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0));
1652 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(sc->sc_er, 0) |
1653 XHCI_ERDP_BUSY);
1654
1655 xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0));
1656 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) |
1657 sc->sc_cr->xr_cs);
1658
1659 HEXDUMP("eventst", KERNADDR(&sc->sc_eventst_dma, 0),
1660 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS);
1661
1662 if ((sc->sc_quirks & XHCI_DEFERRED_START) == 0)
1663 xhci_start(sc);
1664
1665 return 0;
1666
1667 bad:
1668 if (sc->sc_xferpool) {
1669 pool_cache_destroy(sc->sc_xferpool);
1670 sc->sc_xferpool = NULL;
1671 }
1672
1673 if (sc->sc_slots) {
1674 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) *
1675 sc->sc_maxslots);
1676 sc->sc_slots = NULL;
1677 }
1678
1679 usb_freemem(&sc->sc_dcbaa_dma);
1680 bad4:
1681 usb_freemem(&sc->sc_eventst_dma);
1682 bad3:
1683 xhci_ring_free(sc, &sc->sc_er);
1684 bad2:
1685 xhci_ring_free(sc, &sc->sc_cr);
1686 i = sc->sc_maxspbuf;
1687 bad1:
1688 for (int j = 0; j < i; j++)
1689 usb_freemem(&sc->sc_spbuf_dma[j]);
1690 usb_freemem(&sc->sc_spbufarray_dma);
1691
1692 return rv;
1693 }
1694
1695 static inline bool
1696 xhci_polling_p(struct xhci_softc * const sc)
1697 {
1698 return sc->sc_bus.ub_usepolling || sc->sc_bus2.ub_usepolling;
1699 }
1700
1701 int
1702 xhci_intr(void *v)
1703 {
1704 struct xhci_softc * const sc = v;
1705 int ret = 0;
1706
1707 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1708
1709 if (sc == NULL)
1710 return 0;
1711
1712 mutex_spin_enter(&sc->sc_intr_lock);
1713
1714 if (sc->sc_dying || !device_has_power(sc->sc_dev))
1715 goto done;
1716
1717 /* If we get an interrupt while polling, then just ignore it. */
1718 if (xhci_polling_p(sc)) {
1719 #ifdef DIAGNOSTIC
1720 DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
1721 #endif
1722 goto done;
1723 }
1724
1725 ret = xhci_intr1(sc);
1726 if (ret) {
1727 KASSERT(sc->sc_child || sc->sc_child2);
1728
1729 /*
1730 * One of child busses could be already detached. It doesn't
1731 * matter on which of the two the softintr is scheduled.
1732 */
1733 if (sc->sc_child)
1734 usb_schedsoftintr(&sc->sc_bus);
1735 else
1736 usb_schedsoftintr(&sc->sc_bus2);
1737 }
1738 done:
1739 mutex_spin_exit(&sc->sc_intr_lock);
1740 return ret;
1741 }
1742
1743 int
1744 xhci_intr1(struct xhci_softc * const sc)
1745 {
1746 uint32_t usbsts;
1747 uint32_t iman;
1748
1749 XHCIHIST_FUNC();
1750
1751 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1752 XHCIHIST_CALLARGS("USBSTS 0x%08jx", usbsts, 0, 0, 0);
1753 if ((usbsts & (XHCI_STS_HSE | XHCI_STS_EINT | XHCI_STS_PCD |
1754 XHCI_STS_HCE)) == 0) {
1755 DPRINTFN(16, "ignored intr not for %jd",
1756 device_unit(sc->sc_dev), 0, 0, 0);
1757 return 0;
1758 }
1759
1760 /*
1761 * Clear EINT and other transient flags, to not misenterpret
1762 * next shared interrupt. Also, to avoid race, EINT must be cleared
1763 * before XHCI_IMAN_INTR_PEND is cleared.
1764 */
1765 xhci_op_write_4(sc, XHCI_USBSTS, usbsts & ~XHCI_STS_RSVDP0);
1766
1767 #ifdef XHCI_DEBUG
1768 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1769 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
1770 #endif
1771
1772 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1773 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
1774 iman |= XHCI_IMAN_INTR_PEND;
1775 xhci_rt_write_4(sc, XHCI_IMAN(0), iman);
1776
1777 #ifdef XHCI_DEBUG
1778 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1779 DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
1780 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1781 DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
1782 #endif
1783
1784 return 1;
1785 }
1786
1787 /*
1788 * 3 port speed types used in USB stack
1789 *
1790 * usbdi speed
1791 * definition: USB_SPEED_* in usb.h
1792 * They are used in struct usbd_device in USB stack.
1793 * ioctl interface uses these values too.
1794 * port_status speed
1795 * definition: UPS_*_SPEED in usb.h
1796 * They are used in usb_port_status_t and valid only for USB 2.0.
1797 * Speed value is always 0 for Super Speed or more, and dwExtPortStatus
1798 * of usb_port_status_ext_t indicates port speed.
1799 * Note that some 3.0 values overlap with 2.0 values.
1800 * (e.g. 0x200 means UPS_POER_POWER_SS in SS and
1801 * means UPS_LOW_SPEED in HS.)
1802 * port status returned from hub also uses these values.
1803 * On NetBSD UPS_OTHER_SPEED indicates port speed is super speed
1804 * or more.
1805 * xspeed:
1806 * definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1)
1807 * They are used in only slot context and PORTSC reg of xhci.
1808 * The difference between usbdi speed and xspeed is
1809 * that FS and LS values are swapped.
1810 */
1811
1812 /* convert usbdi speed to xspeed */
1813 static int
1814 xhci_speed2xspeed(int speed)
1815 {
1816 switch (speed) {
1817 case USB_SPEED_LOW: return 2;
1818 case USB_SPEED_FULL: return 1;
1819 default: return speed;
1820 }
1821 }
1822
1823 #if 0
1824 /* convert xspeed to usbdi speed */
1825 static int
1826 xhci_xspeed2speed(int xspeed)
1827 {
1828 switch (xspeed) {
1829 case 1: return USB_SPEED_FULL;
1830 case 2: return USB_SPEED_LOW;
1831 default: return xspeed;
1832 }
1833 }
1834 #endif
1835
1836 /* convert xspeed to port status speed */
1837 static int
1838 xhci_xspeed2psspeed(int xspeed)
1839 {
1840 switch (xspeed) {
1841 case 0: return 0;
1842 case 1: return UPS_FULL_SPEED;
1843 case 2: return UPS_LOW_SPEED;
1844 case 3: return UPS_HIGH_SPEED;
1845 default: return UPS_OTHER_SPEED;
1846 }
1847 }
1848
1849 /*
1850 * Construct input contexts and issue TRB to open pipe.
1851 */
1852 static usbd_status
1853 xhci_configure_endpoint(struct usbd_pipe *pipe)
1854 {
1855 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1856 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1857 #ifdef USB_DEBUG
1858 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1859 #endif
1860 struct xhci_soft_trb trb;
1861 usbd_status err;
1862
1863 XHCIHIST_FUNC();
1864 XHCIHIST_CALLARGS("slot %ju dci %ju epaddr 0x%02jx attr 0x%02jx",
1865 xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress,
1866 pipe->up_endpoint->ue_edesc->bmAttributes);
1867
1868 /* XXX ensure input context is available? */
1869
1870 memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz);
1871
1872 /* set up context */
1873 xhci_setup_ctx(pipe);
1874
1875 HEXDUMP("input control context", xhci_slot_get_icv(sc, xs, 0),
1876 sc->sc_ctxsz * 1);
1877 HEXDUMP("input endpoint context", xhci_slot_get_icv(sc, xs,
1878 xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1);
1879
1880 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1881 trb.trb_2 = 0;
1882 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1883 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1884
1885 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
1886
1887 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1888 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, dci),
1889 sc->sc_ctxsz * 1);
1890
1891 return err;
1892 }
1893
1894 #if 0
1895 static usbd_status
1896 xhci_unconfigure_endpoint(struct usbd_pipe *pipe)
1897 {
1898 #ifdef USB_DEBUG
1899 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1900 #endif
1901
1902 XHCIHIST_FUNC();
1903 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
1904
1905 return USBD_NORMAL_COMPLETION;
1906 }
1907 #endif
1908
1909 /* 4.6.8, 6.4.3.7 */
1910 static void
1911 xhci_reset_endpoint(struct usbd_pipe *pipe)
1912 {
1913 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1914 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1915 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1916 struct xhci_soft_trb trb;
1917
1918 XHCIHIST_FUNC();
1919 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1920
1921 KASSERT(mutex_owned(&sc->sc_lock));
1922
1923 trb.trb_0 = 0;
1924 trb.trb_2 = 0;
1925 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1926 XHCI_TRB_3_EP_SET(dci) |
1927 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP);
1928
1929 if (xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT)) {
1930 device_printf(sc->sc_dev, "%s: endpoint 0x%x: timed out\n",
1931 __func__, pipe->up_endpoint->ue_edesc->bEndpointAddress);
1932 }
1933 }
1934
1935 /*
1936 * 4.6.9, 6.4.3.8
1937 * Stop execution of TDs on xfer ring.
1938 * Should be called with sc_lock held.
1939 */
1940 static usbd_status
1941 xhci_stop_endpoint_cmd(struct xhci_softc *sc, struct xhci_slot *xs, u_int dci,
1942 uint32_t trb3flags)
1943 {
1944 struct xhci_soft_trb trb;
1945 usbd_status err;
1946
1947 XHCIHIST_FUNC();
1948 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1949
1950 KASSERT(mutex_owned(&sc->sc_lock));
1951
1952 trb.trb_0 = 0;
1953 trb.trb_2 = 0;
1954 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1955 XHCI_TRB_3_EP_SET(dci) |
1956 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP) |
1957 trb3flags;
1958
1959 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1960
1961 return err;
1962 }
1963
1964 static usbd_status
1965 xhci_stop_endpoint(struct usbd_pipe *pipe)
1966 {
1967 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1968 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1969 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1970
1971 XHCIHIST_FUNC();
1972 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1973
1974 KASSERT(mutex_owned(&sc->sc_lock));
1975
1976 return xhci_stop_endpoint_cmd(sc, xs, dci, 0);
1977 }
1978
1979 /*
1980 * Set TR Dequeue Pointer.
1981 * xHCI 1.1 4.6.10 6.4.3.9
1982 * Purge all of the TRBs on ring and reinitialize ring.
1983 * Set TR dequeue Pointer to 0 and Cycle State to 1.
1984 * EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE
1985 * error will be generated.
1986 */
1987 static void
1988 xhci_set_dequeue(struct usbd_pipe *pipe)
1989 {
1990 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1991 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1992 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1993 struct xhci_ring * const xr = xs->xs_xr[dci];
1994 struct xhci_soft_trb trb;
1995
1996 XHCIHIST_FUNC();
1997 XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1998
1999 KASSERT(mutex_owned(&sc->sc_lock));
2000 KASSERT(xr != NULL);
2001
2002 xhci_host_dequeue(xr);
2003
2004 /* set DCS */
2005 trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */
2006 trb.trb_2 = 0;
2007 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
2008 XHCI_TRB_3_EP_SET(dci) |
2009 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE);
2010
2011 if (xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT)) {
2012 device_printf(sc->sc_dev, "%s: endpoint 0x%x: timed out\n",
2013 __func__, pipe->up_endpoint->ue_edesc->bEndpointAddress);
2014 }
2015 }
2016
2017 /*
2018 * Open new pipe: called from usbd_setup_pipe_flags.
2019 * Fills methods of pipe.
2020 * If pipe is not for ep0, calls configure_endpoint.
2021 */
2022 static usbd_status
2023 xhci_open(struct usbd_pipe *pipe)
2024 {
2025 struct usbd_device * const dev = pipe->up_dev;
2026 struct xhci_pipe * const xpipe = (struct xhci_pipe *)pipe;
2027 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
2028 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2029 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
2030 const u_int dci = xhci_ep_get_dci(ed);
2031 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
2032 usbd_status err;
2033
2034 XHCIHIST_FUNC();
2035 XHCIHIST_CALLARGS("addr %jd depth %jd port %jd speed %jd", dev->ud_addr,
2036 dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed);
2037 DPRINTFN(1, " dci %ju type 0x%02jx epaddr 0x%02jx attr 0x%02jx",
2038 xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress,
2039 ed->bmAttributes);
2040 DPRINTFN(1, " mps %ju ival %ju", UGETW(ed->wMaxPacketSize),
2041 ed->bInterval, 0, 0);
2042
2043 if (sc->sc_dying)
2044 return USBD_IOERROR;
2045
2046 /* Root Hub */
2047 if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) {
2048 switch (ed->bEndpointAddress) {
2049 case USB_CONTROL_ENDPOINT:
2050 pipe->up_methods = &roothub_ctrl_methods;
2051 break;
2052 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
2053 pipe->up_methods = &xhci_root_intr_methods;
2054 break;
2055 default:
2056 pipe->up_methods = NULL;
2057 DPRINTFN(0, "bad bEndpointAddress 0x%02jx",
2058 ed->bEndpointAddress, 0, 0, 0);
2059 return USBD_INVAL;
2060 }
2061 return USBD_NORMAL_COMPLETION;
2062 }
2063
2064 usb_init_task(&xpipe->xp_async_task, xhci_pipe_restart_async_task,
2065 pipe, USB_TASKQ_MPSAFE);
2066
2067 switch (xfertype) {
2068 case UE_CONTROL:
2069 pipe->up_methods = &xhci_device_ctrl_methods;
2070 break;
2071 case UE_ISOCHRONOUS:
2072 pipe->up_methods = &xhci_device_isoc_methods;
2073 pipe->up_serialise = false;
2074 xpipe->xp_isoc_next = -1;
2075 break;
2076 case UE_BULK:
2077 pipe->up_methods = &xhci_device_bulk_methods;
2078 break;
2079 case UE_INTERRUPT:
2080 pipe->up_methods = &xhci_device_intr_methods;
2081 break;
2082 default:
2083 return USBD_IOERROR;
2084 break;
2085 }
2086
2087 KASSERT(xs != NULL);
2088 KASSERT(xs->xs_xr[dci] == NULL);
2089
2090 /* allocate transfer ring */
2091 err = xhci_ring_init(sc, &xs->xs_xr[dci], XHCI_TRANSFER_RING_TRBS,
2092 XHCI_TRB_ALIGN);
2093 if (err) {
2094 DPRINTFN(1, "ring alloc failed %jd", err, 0, 0, 0);
2095 return err;
2096 }
2097
2098 if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT)
2099 return xhci_configure_endpoint(pipe);
2100
2101 return USBD_NORMAL_COMPLETION;
2102 }
2103
2104 /*
2105 * Closes pipe, called from usbd_kill_pipe via close methods.
2106 * If the endpoint to be closed is ep0, disable_slot.
2107 * Should be called with sc_lock held.
2108 */
2109 static void
2110 xhci_close_pipe(struct usbd_pipe *pipe)
2111 {
2112 struct xhci_pipe * const xp =
2113 container_of(pipe, struct xhci_pipe, xp_pipe);
2114 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
2115 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2116 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
2117 const u_int dci = xhci_ep_get_dci(ed);
2118 struct xhci_soft_trb trb;
2119 uint32_t *cp;
2120
2121 XHCIHIST_FUNC();
2122
2123 usb_rem_task_wait(pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC,
2124 &sc->sc_lock);
2125
2126 if (sc->sc_dying)
2127 return;
2128
2129 /* xs is uninitialized before xhci_init_slot */
2130 if (xs == NULL || xs->xs_idx == 0)
2131 return;
2132
2133 XHCIHIST_CALLARGS("pipe %#jx slot %ju dci %ju",
2134 (uintptr_t)pipe, xs->xs_idx, dci, 0);
2135
2136 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
2137 KASSERT(mutex_owned(&sc->sc_lock));
2138
2139 if (pipe->up_dev->ud_depth == 0)
2140 return;
2141
2142 if (dci == XHCI_DCI_EP_CONTROL) {
2143 DPRINTFN(4, "closing ep0", 0, 0, 0, 0);
2144 /* This frees all rings */
2145 xhci_disable_slot(sc, xs->xs_idx);
2146 return;
2147 }
2148
2149 if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED)
2150 (void)xhci_stop_endpoint(pipe);
2151
2152 /*
2153 * set appropriate bit to be dropped.
2154 * don't set DC bit to 1, otherwise all endpoints
2155 * would be deconfigured.
2156 */
2157 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
2158 cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci));
2159 cp[1] = htole32(0);
2160
2161 /* XXX should be most significant one, not dci? */
2162 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
2163 cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci));
2164
2165 /* configure ep context performs an implicit dequeue */
2166 xhci_host_dequeue(xs->xs_xr[dci]);
2167
2168 /* sync input contexts before they are read from memory */
2169 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
2170
2171 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
2172 trb.trb_2 = 0;
2173 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
2174 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
2175
2176 (void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
2177 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2178
2179 xhci_ring_free(sc, &xs->xs_xr[dci]);
2180 xs->xs_xr[dci] = NULL;
2181 }
2182
2183 /*
2184 * Abort transfer. Must be called with sc_lock held. Releases and
2185 * reacquires sc_lock to sleep until hardware acknowledges abort.
2186 */
2187 static void
2188 xhci_abortx(struct usbd_xfer *xfer)
2189 {
2190 XHCIHIST_FUNC();
2191 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
2192
2193 XHCIHIST_CALLARGS("xfer %#jx pipe %#jx",
2194 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0, 0);
2195
2196 KASSERT(mutex_owned(&sc->sc_lock));
2197 KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
2198 xfer->ux_status == USBD_TIMEOUT),
2199 "bad abort status: %d", xfer->ux_status);
2200
2201 xhci_pipe_restart(xfer->ux_pipe);
2202
2203 DPRINTFN(14, "end", 0, 0, 0, 0);
2204 }
2205
2206 static void
2207 xhci_host_dequeue(struct xhci_ring * const xr)
2208 {
2209 /* When dequeueing the controller, update our struct copy too */
2210 memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE);
2211 usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE,
2212 BUS_DMASYNC_PREWRITE);
2213 memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies));
2214
2215 xr->xr_ep = 0;
2216 xr->xr_cs = 1;
2217 }
2218
2219 /*
2220 * Recover STALLed endpoint, or stop endpoint to abort a pipe.
2221 * xHCI 1.1 sect 4.10.2.1
2222 * Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove
2223 * all transfers on transfer ring.
2224 */
2225 static void
2226 xhci_pipe_restart(struct usbd_pipe *pipe)
2227 {
2228 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
2229 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2230 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
2231
2232 XHCIHIST_FUNC();
2233 XHCIHIST_CALLARGS("pipe %#jx slot %ju dci %ju",
2234 (uintptr_t)pipe, xs->xs_idx, dci, 0);
2235
2236 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
2237
2238 /*
2239 * - If the endpoint is halted, indicating a stall, reset it.
2240 * - If the endpoint is stopped, we're already good.
2241 * - Otherwise, someone wanted to abort the pipe, so stop the
2242 * endpoint.
2243 *
2244 * In any case, clear the ring.
2245 */
2246 switch (xhci_get_epstate(sc, xs, dci)) {
2247 case XHCI_EPSTATE_HALTED:
2248 xhci_reset_endpoint(pipe);
2249 break;
2250 case XHCI_EPSTATE_STOPPED:
2251 break;
2252 default:
2253 xhci_stop_endpoint(pipe);
2254 break;
2255 }
2256
2257 switch (xhci_get_epstate(sc, xs, dci)) {
2258 case XHCI_EPSTATE_STOPPED:
2259 break;
2260 case XHCI_EPSTATE_ERROR:
2261 device_printf(sc->sc_dev, "endpoint 0x%x error\n",
2262 pipe->up_endpoint->ue_edesc->bEndpointAddress);
2263 break;
2264 default:
2265 device_printf(sc->sc_dev, "endpoint 0x%x failed to stop\n",
2266 pipe->up_endpoint->ue_edesc->bEndpointAddress);
2267 }
2268
2269 xhci_set_dequeue(pipe);
2270
2271 DPRINTFN(4, "ends", 0, 0, 0, 0);
2272 }
2273
2274 static void
2275 xhci_pipe_restart_async_task(void *cookie)
2276 {
2277 struct usbd_pipe * const pipe = cookie;
2278 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
2279 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2280 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
2281 struct xhci_ring * const tr = xs->xs_xr[dci];
2282 struct usbd_xfer *xfer;
2283
2284 XHCIHIST_FUNC();
2285 XHCIHIST_CALLARGS("sc=%#jx pipe=%#jx",
2286 (uintptr_t)sc, (uintptr_t)pipe, 0, 0);
2287
2288 mutex_enter(&sc->sc_lock);
2289
2290 xhci_pipe_restart(pipe);
2291
2292 /*
2293 * We halted our own queue because it stalled. Mark it no
2294 * longer halted and start issuing queued transfers again.
2295 */
2296 tr->is_halted = false;
2297 xfer = SIMPLEQ_FIRST(&pipe->up_queue);
2298 if (xfer) {
2299 /*
2300 * If the first xfer of the queue is not in progress,
2301 * though, there may be a concurrent software abort
2302 * that has already cancelled it and is now in the
2303 * middle of a concurrent xhci_pipe_restart waiting to
2304 * reacquire the pipe (bus) lock. So only restart the
2305 * xfer if it's still USBD_IN_PROGRESS.
2306 *
2307 * Either way, xfers on the queue can't be in
2308 * USBD_NOT_STARTED.
2309 */
2310 KASSERT(xfer->ux_status != USBD_NOT_STARTED);
2311 if (xfer->ux_status == USBD_IN_PROGRESS) {
2312 (*pipe->up_methods->upm_start)(xfer);
2313 } else {
2314 DPRINTF("pipe restart race xfer=%#jx status=%jd",
2315 (uintptr_t)xfer, xfer->ux_status, 0, 0);
2316 }
2317 }
2318
2319 mutex_exit(&sc->sc_lock);
2320 }
2321
2322 static void
2323 xhci_pipe_restart_async(struct usbd_pipe *pipe)
2324 {
2325 struct xhci_pipe * const xp =
2326 container_of(pipe, struct xhci_pipe, xp_pipe);
2327 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
2328 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
2329 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
2330 struct xhci_ring * const tr = xs->xs_xr[dci];
2331
2332 XHCIHIST_FUNC();
2333 XHCIHIST_CALLARGS("pipe %#jx", (uintptr_t)pipe, 0, 0, 0);
2334
2335 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
2336
2337 tr->is_halted = true;
2338 usb_add_task(pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC);
2339
2340 DPRINTFN(4, "ends", 0, 0, 0, 0);
2341 }
2342
2343 /* Process roothub port status/change events and notify to uhub_intr. */
2344 static void
2345 xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport)
2346 {
2347 XHCIHIST_FUNC();
2348 XHCIHIST_CALLARGS("xhci%jd: port %ju status change",
2349 device_unit(sc->sc_dev), ctlrport, 0, 0);
2350
2351 if (ctlrport > sc->sc_maxports)
2352 return;
2353
2354 const size_t bn = xhci_ctlrport2bus(sc, ctlrport);
2355 const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport);
2356 struct usbd_xfer * const xfer = sc->sc_intrxfer[bn];
2357
2358 DPRINTFN(4, "xhci%jd: bus %jd bp %ju xfer %#jx status change",
2359 device_unit(sc->sc_dev), bn, rhp, (uintptr_t)xfer);
2360
2361 if (xfer == NULL)
2362 return;
2363 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
2364
2365 uint8_t *p = xfer->ux_buf;
2366 if (!xhci_polling_p(sc) || !sc->sc_intrxfer_deferred[bn])
2367 memset(p, 0, xfer->ux_length);
2368 p[rhp / NBBY] |= 1 << (rhp % NBBY);
2369 xfer->ux_actlen = xfer->ux_length;
2370 xfer->ux_status = USBD_NORMAL_COMPLETION;
2371 if (xhci_polling_p(sc))
2372 sc->sc_intrxfer_deferred[bn] = true;
2373 else
2374 usb_transfer_complete(xfer);
2375 }
2376
2377 /* Process Transfer Events */
2378 static void
2379 xhci_event_transfer(struct xhci_softc * const sc,
2380 const struct xhci_trb * const trb)
2381 {
2382 uint64_t trb_0;
2383 uint32_t trb_2, trb_3;
2384 uint8_t trbcode;
2385 u_int slot, dci;
2386 struct xhci_slot *xs;
2387 struct xhci_ring *xr;
2388 struct xhci_xfer *xx;
2389 struct usbd_xfer *xfer;
2390 usbd_status err;
2391
2392 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2393
2394 trb_0 = le64toh(trb->trb_0);
2395 trb_2 = le32toh(trb->trb_2);
2396 trb_3 = le32toh(trb->trb_3);
2397 trbcode = XHCI_TRB_2_ERROR_GET(trb_2);
2398 slot = XHCI_TRB_3_SLOT_GET(trb_3);
2399 dci = XHCI_TRB_3_EP_GET(trb_3);
2400 xs = &sc->sc_slots[slot];
2401 xr = xs->xs_xr[dci];
2402
2403 /* sanity check */
2404 KASSERT(xr != NULL);
2405 KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots,
2406 "invalid xs_idx %u slot %u", xs->xs_idx, slot);
2407
2408 int idx = 0;
2409 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
2410 if (xhci_trb_get_idx(xr, trb_0, &idx)) {
2411 DPRINTFN(0, "invalid trb_0 %#jx", trb_0, 0, 0, 0);
2412 return;
2413 }
2414 xx = xr->xr_cookies[idx];
2415
2416 /* clear cookie of consumed TRB */
2417 xr->xr_cookies[idx] = NULL;
2418
2419 /*
2420 * xx is NULL if pipe is opened but xfer is not started.
2421 * It happens when stopping idle pipe.
2422 */
2423 if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) {
2424 DPRINTFN(1, "Ignore #%ju: cookie %#jx cc %ju dci %ju",
2425 idx, (uintptr_t)xx, trbcode, dci);
2426 DPRINTFN(1, " orig TRB %#jx type %ju", trb_0,
2427 XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)),
2428 0, 0);
2429 return;
2430 }
2431 } else {
2432 /* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */
2433 xx = (void *)(uintptr_t)(trb_0 & ~0x3);
2434 }
2435 /* XXX this may not happen */
2436 if (xx == NULL) {
2437 DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0);
2438 return;
2439 }
2440 xfer = &xx->xx_xfer;
2441 /* XXX this may happen when detaching */
2442 if (xfer == NULL) {
2443 DPRINTFN(1, "xx(%#jx)->xx_xfer is NULL trb_0 %#jx",
2444 (uintptr_t)xx, trb_0, 0, 0);
2445 return;
2446 }
2447 DPRINTFN(14, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
2448 /* XXX I dunno why this happens */
2449 KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer);
2450
2451 if (!xfer->ux_pipe->up_repeat &&
2452 SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) {
2453 DPRINTFN(1, "xfer(%#jx)->pipe not queued", (uintptr_t)xfer,
2454 0, 0, 0);
2455 return;
2456 }
2457
2458 const uint8_t xfertype =
2459 UE_GET_XFERTYPE(xfer->ux_pipe->up_endpoint->ue_edesc->bmAttributes);
2460
2461 /* 4.11.5.2 Event Data TRB */
2462 if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
2463 DPRINTFN(14, "transfer Event Data: 0x%016jx 0x%08jx"
2464 " %02jx", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0);
2465 if ((trb_0 & 0x3) == 0x3) {
2466 xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2);
2467 }
2468 }
2469
2470 switch (trbcode) {
2471 case XHCI_TRB_ERROR_SHORT_PKT:
2472 case XHCI_TRB_ERROR_SUCCESS:
2473 /*
2474 * A ctrl transfer can generate two events if it has a Data
2475 * stage. A short data stage can be OK and should not
2476 * complete the transfer as the status stage needs to be
2477 * performed.
2478 *
2479 * Note: Data and Status stage events point at same xfer.
2480 * ux_actlen and ux_dmabuf will be passed to
2481 * usb_transfer_complete after the Status stage event.
2482 *
2483 * It can be distinguished which stage generates the event:
2484 * + by checking least 3 bits of trb_0 if ED==1.
2485 * (see xhci_device_ctrl_start).
2486 * + by checking the type of original TRB if ED==0.
2487 *
2488 * In addition, intr, bulk, and isoc transfer currently
2489 * consists of single TD, so the "skip" is not needed.
2490 * ctrl xfer uses EVENT_DATA, and others do not.
2491 * Thus driver can switch the flow by checking ED bit.
2492 */
2493 if (xfertype == UE_ISOCHRONOUS) {
2494 xfer->ux_frlengths[xx->xx_isoc_done] -=
2495 XHCI_TRB_2_REM_GET(trb_2);
2496 xfer->ux_actlen += xfer->ux_frlengths[xx->xx_isoc_done];
2497 } else if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
2498 if (xfer->ux_actlen == 0)
2499 xfer->ux_actlen = xfer->ux_length -
2500 XHCI_TRB_2_REM_GET(trb_2);
2501 if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3))
2502 == XHCI_TRB_TYPE_DATA_STAGE) {
2503 return;
2504 }
2505 } else if ((trb_0 & 0x3) == 0x3) {
2506 return;
2507 }
2508 err = USBD_NORMAL_COMPLETION;
2509 break;
2510 case XHCI_TRB_ERROR_STOPPED:
2511 case XHCI_TRB_ERROR_LENGTH:
2512 case XHCI_TRB_ERROR_STOPPED_SHORT:
2513 err = USBD_IOERROR;
2514 break;
2515 case XHCI_TRB_ERROR_STALL:
2516 case XHCI_TRB_ERROR_BABBLE:
2517 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2518 xhci_pipe_restart_async(xfer->ux_pipe);
2519 err = USBD_STALLED;
2520 break;
2521 default:
2522 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2523 err = USBD_IOERROR;
2524 break;
2525 }
2526
2527 if (xfertype == UE_ISOCHRONOUS) {
2528 switch (trbcode) {
2529 case XHCI_TRB_ERROR_SHORT_PKT:
2530 case XHCI_TRB_ERROR_SUCCESS:
2531 break;
2532 case XHCI_TRB_ERROR_MISSED_SERVICE:
2533 case XHCI_TRB_ERROR_RING_UNDERRUN:
2534 case XHCI_TRB_ERROR_RING_OVERRUN:
2535 default:
2536 xfer->ux_frlengths[xx->xx_isoc_done] = 0;
2537 break;
2538 }
2539 if (++xx->xx_isoc_done < xfer->ux_nframes)
2540 return;
2541 }
2542
2543 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0 ||
2544 (trb_0 & 0x3) == 0x0) {
2545 /*
2546 * Try to claim this xfer for completion. If it has
2547 * already completed or aborted, drop it on the floor.
2548 */
2549 if (!usbd_xfer_trycomplete(xfer))
2550 return;
2551
2552 /* Set the status. */
2553 xfer->ux_status = err;
2554
2555 usb_transfer_complete(xfer);
2556 }
2557 }
2558
2559 /* Process Command complete events */
2560 static void
2561 xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb)
2562 {
2563 uint64_t trb_0;
2564 uint32_t trb_2, trb_3;
2565
2566 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2567
2568 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
2569
2570 trb_0 = le64toh(trb->trb_0);
2571 trb_2 = le32toh(trb->trb_2);
2572 trb_3 = le32toh(trb->trb_3);
2573
2574 if (trb_0 == sc->sc_command_addr) {
2575 sc->sc_resultpending = false;
2576
2577 sc->sc_result_trb.trb_0 = trb_0;
2578 sc->sc_result_trb.trb_2 = trb_2;
2579 sc->sc_result_trb.trb_3 = trb_3;
2580 if (XHCI_TRB_2_ERROR_GET(trb_2) !=
2581 XHCI_TRB_ERROR_SUCCESS) {
2582 DPRINTFN(1, "command completion "
2583 "failure: 0x%016jx 0x%08jx 0x%08jx",
2584 trb_0, trb_2, trb_3, 0);
2585 }
2586 cv_signal(&sc->sc_command_cv);
2587 } else {
2588 DPRINTFN(1, "spurious event: %#jx 0x%016jx "
2589 "0x%08jx 0x%08jx", (uintptr_t)trb, trb_0, trb_2, trb_3);
2590 }
2591 }
2592
2593 /*
2594 * Process events.
2595 * called from xhci_softintr
2596 */
2597 static void
2598 xhci_handle_event(struct xhci_softc * const sc,
2599 const struct xhci_trb * const trb)
2600 {
2601 uint64_t trb_0;
2602 uint32_t trb_2, trb_3;
2603
2604 XHCIHIST_FUNC();
2605
2606 trb_0 = le64toh(trb->trb_0);
2607 trb_2 = le32toh(trb->trb_2);
2608 trb_3 = le32toh(trb->trb_3);
2609
2610 XHCIHIST_CALLARGS("event: %#jx 0x%016jx 0x%08jx 0x%08jx",
2611 (uintptr_t)trb, trb_0, trb_2, trb_3);
2612
2613 /*
2614 * 4.11.3.1, 6.4.2.1
2615 * TRB Pointer is invalid for these completion codes.
2616 */
2617 switch (XHCI_TRB_2_ERROR_GET(trb_2)) {
2618 case XHCI_TRB_ERROR_RING_UNDERRUN:
2619 case XHCI_TRB_ERROR_RING_OVERRUN:
2620 case XHCI_TRB_ERROR_VF_RING_FULL:
2621 return;
2622 default:
2623 if (trb_0 == 0) {
2624 return;
2625 }
2626 break;
2627 }
2628
2629 switch (XHCI_TRB_3_TYPE_GET(trb_3)) {
2630 case XHCI_TRB_EVENT_TRANSFER:
2631 xhci_event_transfer(sc, trb);
2632 break;
2633 case XHCI_TRB_EVENT_CMD_COMPLETE:
2634 xhci_event_cmd(sc, trb);
2635 break;
2636 case XHCI_TRB_EVENT_PORT_STS_CHANGE:
2637 xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff));
2638 break;
2639 default:
2640 break;
2641 }
2642 }
2643
2644 static void
2645 xhci_softintr(void *v)
2646 {
2647 struct usbd_bus * const bus = v;
2648 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2649 struct xhci_ring * const er = sc->sc_er;
2650 struct xhci_trb *trb;
2651 int i, j, k, bn;
2652
2653 XHCIHIST_FUNC();
2654
2655 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
2656
2657 i = er->xr_ep;
2658 j = er->xr_cs;
2659
2660 XHCIHIST_CALLARGS("er: xr_ep %jd xr_cs %jd", i, j, 0, 0);
2661
2662 /*
2663 * Handle deferred root intr xfer, in case we just switched off
2664 * polling. It's not safe to complete root intr xfers while
2665 * polling -- too much kernel machinery gets involved.
2666 */
2667 if (!xhci_polling_p(sc)) {
2668 for (bn = 0; bn < 2; bn++) {
2669 if (__predict_false(sc->sc_intrxfer_deferred[bn])) {
2670 sc->sc_intrxfer_deferred[bn] = false;
2671 usb_transfer_complete(sc->sc_intrxfer[bn]);
2672 }
2673 }
2674 }
2675
2676 while (1) {
2677 usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE,
2678 BUS_DMASYNC_POSTREAD);
2679 trb = &er->xr_trb[i];
2680 k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
2681
2682 if (j != k)
2683 break;
2684
2685 xhci_handle_event(sc, trb);
2686
2687 i++;
2688 if (i == er->xr_ntrb) {
2689 i = 0;
2690 j ^= 1;
2691 }
2692 }
2693
2694 er->xr_ep = i;
2695 er->xr_cs = j;
2696
2697 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) |
2698 XHCI_ERDP_BUSY);
2699
2700 DPRINTFN(16, "ends", 0, 0, 0, 0);
2701
2702 return;
2703 }
2704
2705 static void
2706 xhci_poll(struct usbd_bus *bus)
2707 {
2708 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2709
2710 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2711
2712 mutex_enter(&sc->sc_intr_lock);
2713 int ret = xhci_intr1(sc);
2714 if (ret) {
2715 xhci_softintr(bus);
2716 }
2717 mutex_exit(&sc->sc_intr_lock);
2718
2719 return;
2720 }
2721
2722 static struct usbd_xfer *
2723 xhci_allocx(struct usbd_bus *bus, unsigned int nframes)
2724 {
2725 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2726 struct xhci_xfer *xx;
2727 u_int ntrbs;
2728
2729 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2730
2731 ntrbs = uimax(3, nframes);
2732 const size_t trbsz = sizeof(*xx->xx_trb) * ntrbs;
2733
2734 xx = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
2735 if (xx != NULL) {
2736 memset(xx, 0, sizeof(*xx));
2737 if (ntrbs > 0) {
2738 xx->xx_trb = kmem_alloc(trbsz, KM_SLEEP);
2739 xx->xx_ntrb = ntrbs;
2740 }
2741 #ifdef DIAGNOSTIC
2742 xx->xx_xfer.ux_state = XFER_BUSY;
2743 #endif
2744 }
2745
2746 return &xx->xx_xfer;
2747 }
2748
2749 static void
2750 xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
2751 {
2752 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2753 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
2754
2755 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2756
2757 #ifdef DIAGNOSTIC
2758 if (xfer->ux_state != XFER_BUSY &&
2759 xfer->ux_status != USBD_NOT_STARTED) {
2760 DPRINTFN(0, "xfer=%#jx not busy, 0x%08jx",
2761 (uintptr_t)xfer, xfer->ux_state, 0, 0);
2762 }
2763 xfer->ux_state = XFER_FREE;
2764 #endif
2765 if (xx->xx_ntrb > 0) {
2766 kmem_free(xx->xx_trb, xx->xx_ntrb * sizeof(*xx->xx_trb));
2767 xx->xx_trb = NULL;
2768 xx->xx_ntrb = 0;
2769 }
2770 pool_cache_put(sc->sc_xferpool, xx);
2771 }
2772
2773 static bool
2774 xhci_dying(struct usbd_bus *bus)
2775 {
2776 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2777
2778 return sc->sc_dying;
2779 }
2780
2781 static void
2782 xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
2783 {
2784 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2785
2786 *lock = &sc->sc_lock;
2787 }
2788
2789 extern uint32_t usb_cookie_no;
2790
2791 /*
2792 * xHCI 4.3
2793 * Called when uhub_explore finds a new device (via usbd_new_device).
2794 * Port initialization and speed detection (4.3.1) are already done in uhub.c.
2795 * This function does:
2796 * Allocate and construct dev structure of default endpoint (ep0).
2797 * Allocate and open pipe of ep0.
2798 * Enable slot and initialize slot context.
2799 * Set Address.
2800 * Read initial device descriptor.
2801 * Determine initial MaxPacketSize (mps) by speed.
2802 * Read full device descriptor.
2803 * Register this device.
2804 * Finally state of device transitions ADDRESSED.
2805 */
2806 static usbd_status
2807 xhci_new_device(device_t parent, struct usbd_bus *bus, int depth,
2808 int speed, int port, struct usbd_port *up)
2809 {
2810 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2811 struct usbd_device *dev;
2812 usbd_status err;
2813 usb_device_descriptor_t *dd;
2814 struct xhci_slot *xs;
2815 uint32_t *cp;
2816
2817 XHCIHIST_FUNC();
2818 XHCIHIST_CALLARGS("port %ju depth %ju speed %ju up %#jx",
2819 port, depth, speed, (uintptr_t)up);
2820
2821 KASSERT(KERNEL_LOCKED_P());
2822
2823 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
2824 dev->ud_bus = bus;
2825 dev->ud_quirks = &usbd_no_quirk;
2826 dev->ud_addr = 0;
2827 dev->ud_ddesc.bMaxPacketSize = 0;
2828 dev->ud_depth = depth;
2829 dev->ud_powersrc = up;
2830 dev->ud_myhub = up->up_parent;
2831 dev->ud_speed = speed;
2832 dev->ud_langid = USBD_NOLANG;
2833 dev->ud_cookie.cookie = ++usb_cookie_no;
2834
2835 /* Set up default endpoint handle. */
2836 dev->ud_ep0.ue_edesc = &dev->ud_ep0desc;
2837 /* doesn't matter, just don't let it uninitialized */
2838 dev->ud_ep0.ue_toggle = 0;
2839
2840 /* Set up default endpoint descriptor. */
2841 dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE;
2842 dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT;
2843 dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
2844 dev->ud_ep0desc.bmAttributes = UE_CONTROL;
2845 dev->ud_ep0desc.bInterval = 0;
2846
2847 /* 4.3, 4.8.2.1 */
2848 switch (speed) {
2849 case USB_SPEED_SUPER:
2850 case USB_SPEED_SUPER_PLUS:
2851 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET);
2852 break;
2853 case USB_SPEED_FULL:
2854 /* XXX using 64 as initial mps of ep0 in FS */
2855 case USB_SPEED_HIGH:
2856 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET);
2857 break;
2858 case USB_SPEED_LOW:
2859 default:
2860 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET);
2861 break;
2862 }
2863
2864 up->up_dev = dev;
2865
2866 dd = &dev->ud_ddesc;
2867
2868 if (depth == 0 && port == 0) {
2869 KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL);
2870 bus->ub_devices[USB_ROOTHUB_INDEX] = dev;
2871
2872 /* Establish the default pipe. */
2873 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
2874 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
2875 if (err) {
2876 DPRINTFN(1, "setup default pipe failed %jd", err,0,0,0);
2877 goto bad;
2878 }
2879 err = usbd_get_initial_ddesc(dev, dd);
2880 if (err) {
2881 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2882 goto bad;
2883 }
2884 } else {
2885 uint8_t slot = 0;
2886
2887 /* 4.3.2 */
2888 err = xhci_enable_slot(sc, &slot);
2889 if (err) {
2890 DPRINTFN(1, "enable slot %ju", err, 0, 0, 0);
2891 goto bad;
2892 }
2893
2894 xs = &sc->sc_slots[slot];
2895 dev->ud_hcpriv = xs;
2896
2897 /* 4.3.3 initialize slot structure */
2898 err = xhci_init_slot(dev, slot);
2899 if (err) {
2900 DPRINTFN(1, "init slot %ju", err, 0, 0, 0);
2901 dev->ud_hcpriv = NULL;
2902 /*
2903 * We have to disable_slot here because
2904 * xs->xs_idx == 0 when xhci_init_slot fails,
2905 * in that case usbd_remove_dev won't work.
2906 */
2907 mutex_enter(&sc->sc_lock);
2908 xhci_disable_slot(sc, slot);
2909 mutex_exit(&sc->sc_lock);
2910 goto bad;
2911 }
2912
2913 /*
2914 * We have to establish the default pipe _after_ slot
2915 * structure has been prepared.
2916 */
2917 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
2918 USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
2919 if (err) {
2920 DPRINTFN(1, "setup default pipe failed %jd", err, 0, 0,
2921 0);
2922 goto bad;
2923 }
2924
2925 /* 4.3.4 Address Assignment */
2926 err = xhci_set_address(dev, slot, false);
2927 if (err) {
2928 DPRINTFN(1, "failed! to set address: %ju", err, 0, 0, 0);
2929 goto bad;
2930 }
2931
2932 /* Allow device time to set new address */
2933 usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE);
2934
2935 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2936 cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT);
2937 HEXDUMP("slot context", cp, sc->sc_ctxsz);
2938 uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3]));
2939 DPRINTFN(4, "device address %ju", addr, 0, 0, 0);
2940 /*
2941 * XXX ensure we know when the hardware does something
2942 * we can't yet cope with
2943 */
2944 KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr);
2945 dev->ud_addr = addr;
2946
2947 KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL,
2948 "addr %d already allocated", dev->ud_addr);
2949 /*
2950 * The root hub is given its own slot
2951 */
2952 bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev;
2953
2954 err = usbd_get_initial_ddesc(dev, dd);
2955 if (err) {
2956 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2957 goto bad;
2958 }
2959
2960 /* 4.8.2.1 */
2961 if (USB_IS_SS(speed)) {
2962 if (dd->bMaxPacketSize != 9) {
2963 printf("%s: invalid mps 2^%u for SS ep0,"
2964 " using 512\n",
2965 device_xname(sc->sc_dev),
2966 dd->bMaxPacketSize);
2967 dd->bMaxPacketSize = 9;
2968 }
2969 USETW(dev->ud_ep0desc.wMaxPacketSize,
2970 (1 << dd->bMaxPacketSize));
2971 } else
2972 USETW(dev->ud_ep0desc.wMaxPacketSize,
2973 dd->bMaxPacketSize);
2974 DPRINTFN(4, "bMaxPacketSize %ju", dd->bMaxPacketSize, 0, 0, 0);
2975 err = xhci_update_ep0_mps(sc, xs,
2976 UGETW(dev->ud_ep0desc.wMaxPacketSize));
2977 if (err) {
2978 DPRINTFN(1, "update mps of ep0 %ju", err, 0, 0, 0);
2979 goto bad;
2980 }
2981 }
2982
2983 err = usbd_reload_device_desc(dev);
2984 if (err) {
2985 DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
2986 goto bad;
2987 }
2988
2989 DPRINTFN(1, "adding unit addr=%jd, rev=%02jx,",
2990 dev->ud_addr, UGETW(dd->bcdUSB), 0, 0);
2991 DPRINTFN(1, " class=%jd, subclass=%jd, protocol=%jd,",
2992 dd->bDeviceClass, dd->bDeviceSubClass,
2993 dd->bDeviceProtocol, 0);
2994 DPRINTFN(1, " mps=%jd, len=%jd, noconf=%jd, speed=%jd",
2995 dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations,
2996 dev->ud_speed);
2997
2998 usbd_get_device_strings(dev);
2999
3000 usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev);
3001
3002 if (depth == 0 && port == 0) {
3003 usbd_attach_roothub(parent, dev);
3004 DPRINTFN(1, "root hub %#jx", (uintptr_t)dev, 0, 0, 0);
3005 return USBD_NORMAL_COMPLETION;
3006 }
3007
3008 err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr);
3009 bad:
3010 if (err != USBD_NORMAL_COMPLETION) {
3011 if (depth == 0 && port == 0 && dev->ud_pipe0)
3012 usbd_kill_pipe(dev->ud_pipe0);
3013 usbd_remove_device(dev, up);
3014 }
3015
3016 return err;
3017 }
3018
3019 static usbd_status
3020 xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring **xrp,
3021 size_t ntrb, size_t align)
3022 {
3023 size_t size = ntrb * XHCI_TRB_SIZE;
3024 struct xhci_ring *xr;
3025
3026 XHCIHIST_FUNC();
3027 XHCIHIST_CALLARGS("xr %#jx ntrb %#jx align %#jx",
3028 (uintptr_t)*xrp, ntrb, align, 0);
3029
3030 xr = kmem_zalloc(sizeof(struct xhci_ring), KM_SLEEP);
3031 DPRINTFN(1, "ring %#jx", (uintptr_t)xr, 0, 0, 0);
3032
3033 int err = usb_allocmem(sc->sc_bus.ub_dmatag, size, align,
3034 USBMALLOC_ZERO, &xr->xr_dma);
3035 if (err) {
3036 kmem_free(xr, sizeof(struct xhci_ring));
3037 DPRINTFN(1, "alloc xr_dma failed %jd", err, 0, 0, 0);
3038 return err;
3039 }
3040 mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
3041 xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP);
3042 xr->xr_trb = xhci_ring_trbv(xr, 0);
3043 xr->xr_ntrb = ntrb;
3044 xr->is_halted = false;
3045 xhci_host_dequeue(xr);
3046 *xrp = xr;
3047
3048 return USBD_NORMAL_COMPLETION;
3049 }
3050
3051 static void
3052 xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring ** const xr)
3053 {
3054 if (*xr == NULL)
3055 return;
3056
3057 usb_freemem(&(*xr)->xr_dma);
3058 mutex_destroy(&(*xr)->xr_lock);
3059 kmem_free((*xr)->xr_cookies,
3060 sizeof(*(*xr)->xr_cookies) * (*xr)->xr_ntrb);
3061 kmem_free(*xr, sizeof(struct xhci_ring));
3062 *xr = NULL;
3063 }
3064
3065 static void
3066 xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr,
3067 void *cookie, struct xhci_soft_trb * const trbs, size_t ntrbs)
3068 {
3069 size_t i;
3070 u_int ri;
3071 u_int cs;
3072 uint64_t parameter;
3073 uint32_t status;
3074 uint32_t control;
3075
3076 XHCIHIST_FUNC();
3077 XHCIHIST_CALLARGS("%#jx xr_ep %#jx xr_cs %ju",
3078 (uintptr_t)xr, xr->xr_ep, xr->xr_cs, 0);
3079
3080 KASSERTMSG(ntrbs < xr->xr_ntrb, "ntrbs %zu, xr->xr_ntrb %u",
3081 ntrbs, xr->xr_ntrb);
3082 for (i = 0; i < ntrbs; i++) {
3083 DPRINTFN(12, "xr %#jx trbs %#jx num %ju", (uintptr_t)xr,
3084 (uintptr_t)trbs, i, 0);
3085 DPRINTFN(12, " 0x%016jx 0x%08jx 0x%08jx",
3086 trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0);
3087 KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) !=
3088 XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3);
3089 }
3090
3091 ri = xr->xr_ep;
3092 cs = xr->xr_cs;
3093
3094 /*
3095 * Although the xhci hardware can do scatter/gather dma from
3096 * arbitrary sized buffers, there is a non-obvious restriction
3097 * that a LINK trb is only allowed at the end of a burst of
3098 * transfers - which might be 16kB.
3099 * Arbitrary aligned LINK trb definitely fail on Ivy bridge.
3100 * The simple solution is not to allow a LINK trb in the middle
3101 * of anything - as here.
3102 * XXX: (dsl) There are xhci controllers out there (eg some made by
3103 * ASMedia) that seem to lock up if they process a LINK trb but
3104 * cannot process the linked-to trb yet.
3105 * The code should write the 'cycle' bit on the link trb AFTER
3106 * adding the other trb.
3107 */
3108 u_int firstep = xr->xr_ep;
3109 u_int firstcs = xr->xr_cs;
3110
3111 for (i = 0; i < ntrbs; ) {
3112 u_int oldri = ri;
3113 u_int oldcs = cs;
3114
3115 if (ri >= (xr->xr_ntrb - 1)) {
3116 /* Put Link TD at the end of ring */
3117 parameter = xhci_ring_trbp(xr, 0);
3118 status = 0;
3119 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
3120 XHCI_TRB_3_TC_BIT;
3121 xr->xr_cookies[ri] = NULL;
3122 xr->xr_ep = 0;
3123 xr->xr_cs ^= 1;
3124 ri = xr->xr_ep;
3125 cs = xr->xr_cs;
3126 } else {
3127 parameter = trbs[i].trb_0;
3128 status = trbs[i].trb_2;
3129 control = trbs[i].trb_3;
3130
3131 xr->xr_cookies[ri] = cookie;
3132 ri++;
3133 i++;
3134 }
3135 /*
3136 * If this is a first TRB, mark it invalid to prevent
3137 * xHC from running it immediately.
3138 */
3139 if (oldri == firstep) {
3140 if (oldcs) {
3141 control &= ~XHCI_TRB_3_CYCLE_BIT;
3142 } else {
3143 control |= XHCI_TRB_3_CYCLE_BIT;
3144 }
3145 } else {
3146 if (oldcs) {
3147 control |= XHCI_TRB_3_CYCLE_BIT;
3148 } else {
3149 control &= ~XHCI_TRB_3_CYCLE_BIT;
3150 }
3151 }
3152 xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control);
3153 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri,
3154 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
3155 }
3156
3157 /* Now invert cycle bit of first TRB */
3158 if (firstcs) {
3159 xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
3160 } else {
3161 xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
3162 }
3163 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep,
3164 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
3165
3166 xr->xr_ep = ri;
3167 xr->xr_cs = cs;
3168
3169 DPRINTFN(12, "%#jx xr_ep %#jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep,
3170 xr->xr_cs, 0);
3171 }
3172
3173 static inline void
3174 xhci_ring_put_xfer(struct xhci_softc * const sc, struct xhci_ring * const tr,
3175 struct xhci_xfer *xx, u_int ntrb)
3176 {
3177 KASSERT(ntrb <= xx->xx_ntrb);
3178 xhci_ring_put(sc, tr, xx, xx->xx_trb, ntrb);
3179 }
3180
3181 /*
3182 * Stop execution commands, purge all commands on command ring, and
3183 * rewind dequeue pointer.
3184 */
3185 static void
3186 xhci_abort_command(struct xhci_softc *sc)
3187 {
3188 struct xhci_ring * const cr = sc->sc_cr;
3189 uint64_t crcr;
3190 int i;
3191
3192 XHCIHIST_FUNC();
3193 XHCIHIST_CALLARGS("command %#jx timeout, aborting",
3194 sc->sc_command_addr, 0, 0, 0);
3195
3196 mutex_enter(&cr->xr_lock);
3197
3198 /* 4.6.1.2 Aborting a Command */
3199 crcr = xhci_op_read_8(sc, XHCI_CRCR);
3200 xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA);
3201
3202 for (i = 0; i < 500; i++) {
3203 crcr = xhci_op_read_8(sc, XHCI_CRCR);
3204 if ((crcr & XHCI_CRCR_LO_CRR) == 0)
3205 break;
3206 usb_delay_ms(&sc->sc_bus, 1);
3207 }
3208 if ((crcr & XHCI_CRCR_LO_CRR) != 0) {
3209 DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0);
3210 /* reset HC here? */
3211 }
3212
3213 /* reset command ring dequeue pointer */
3214 cr->xr_ep = 0;
3215 cr->xr_cs = 1;
3216 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs);
3217
3218 mutex_exit(&cr->xr_lock);
3219 }
3220
3221 /*
3222 * Put a command on command ring, ring bell, set timer, and cv_timedwait.
3223 * Command completion is notified by cv_signal from xhci_event_cmd()
3224 * (called from xhci_softint), or timed-out.
3225 * The completion code is copied to sc->sc_result_trb in xhci_event_cmd(),
3226 * then do_command examines it.
3227 */
3228 static usbd_status
3229 xhci_do_command_locked(struct xhci_softc * const sc,
3230 struct xhci_soft_trb * const trb, int timeout)
3231 {
3232 struct xhci_ring * const cr = sc->sc_cr;
3233 usbd_status err;
3234
3235 XHCIHIST_FUNC();
3236 XHCIHIST_CALLARGS("input: 0x%016jx 0x%08jx 0x%08jx",
3237 trb->trb_0, trb->trb_2, trb->trb_3, 0);
3238
3239 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
3240 KASSERT(mutex_owned(&sc->sc_lock));
3241
3242 while (sc->sc_command_addr != 0 ||
3243 (sc->sc_suspender != NULL && sc->sc_suspender != curlwp))
3244 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
3245 if (sc->sc_suspendresume_failed)
3246 return USBD_IOERROR;
3247
3248 /*
3249 * If enqueue pointer points at last of ring, it's Link TRB,
3250 * command TRB will be stored in 0th TRB.
3251 */
3252 if (cr->xr_ep == cr->xr_ntrb - 1)
3253 sc->sc_command_addr = xhci_ring_trbp(cr, 0);
3254 else
3255 sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep);
3256
3257 sc->sc_resultpending = true;
3258
3259 mutex_enter(&cr->xr_lock);
3260 xhci_ring_put(sc, cr, NULL, trb, 1);
3261 mutex_exit(&cr->xr_lock);
3262
3263 xhci_db_write_4(sc, XHCI_DOORBELL(0), 0);
3264
3265 while (sc->sc_resultpending) {
3266 if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock,
3267 MAX(1, mstohz(timeout))) == EWOULDBLOCK) {
3268 xhci_abort_command(sc);
3269 err = USBD_TIMEOUT;
3270 goto timedout;
3271 }
3272 }
3273
3274 trb->trb_0 = sc->sc_result_trb.trb_0;
3275 trb->trb_2 = sc->sc_result_trb.trb_2;
3276 trb->trb_3 = sc->sc_result_trb.trb_3;
3277
3278 DPRINTFN(12, "output: 0x%016jx 0x%08jx 0x%08jx",
3279 trb->trb_0, trb->trb_2, trb->trb_3, 0);
3280
3281 switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) {
3282 case XHCI_TRB_ERROR_SUCCESS:
3283 err = USBD_NORMAL_COMPLETION;
3284 break;
3285 default:
3286 case 192 ... 223:
3287 DPRINTFN(5, "error %#jx",
3288 XHCI_TRB_2_ERROR_GET(trb->trb_2), 0, 0, 0);
3289 err = USBD_IOERROR;
3290 break;
3291 case 224 ... 255:
3292 err = USBD_NORMAL_COMPLETION;
3293 break;
3294 }
3295
3296 timedout:
3297 sc->sc_resultpending = false;
3298 sc->sc_command_addr = 0;
3299 cv_broadcast(&sc->sc_cmdbusy_cv);
3300
3301 return err;
3302 }
3303
3304 static usbd_status
3305 xhci_do_command(struct xhci_softc * const sc, struct xhci_soft_trb * const trb,
3306 int timeout)
3307 {
3308
3309 mutex_enter(&sc->sc_lock);
3310 usbd_status ret = xhci_do_command_locked(sc, trb, timeout);
3311 mutex_exit(&sc->sc_lock);
3312
3313 return ret;
3314 }
3315
3316 static usbd_status
3317 xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp)
3318 {
3319 struct xhci_soft_trb trb;
3320 usbd_status err;
3321
3322 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3323
3324 trb.trb_0 = 0;
3325 trb.trb_2 = 0;
3326 trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT);
3327
3328 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3329 if (err != USBD_NORMAL_COMPLETION) {
3330 return err;
3331 }
3332
3333 *slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3);
3334
3335 return err;
3336 }
3337
3338 /*
3339 * xHCI 4.6.4
3340 * Deallocate ring and device/input context DMA buffers, and disable_slot.
3341 * All endpoints in the slot should be stopped.
3342 * Should be called with sc_lock held.
3343 */
3344 static usbd_status
3345 xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot)
3346 {
3347 struct xhci_soft_trb trb;
3348 struct xhci_slot *xs;
3349 usbd_status err;
3350
3351 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3352
3353 if (sc->sc_dying)
3354 return USBD_IOERROR;
3355
3356 trb.trb_0 = 0;
3357 trb.trb_2 = 0;
3358 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot) |
3359 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT);
3360
3361 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
3362
3363 if (!err) {
3364 xs = &sc->sc_slots[slot];
3365 if (xs->xs_idx != 0) {
3366 xhci_free_slot(sc, xs);
3367 xhci_set_dcba(sc, 0, slot);
3368 memset(xs, 0, sizeof(*xs));
3369 }
3370 }
3371
3372 return err;
3373 }
3374
3375 /*
3376 * Set address of device and transition slot state from ENABLED to ADDRESSED
3377 * if Block Setaddress Request (BSR) is false.
3378 * If BSR==true, transition slot state from ENABLED to DEFAULT.
3379 * see xHCI 1.1 4.5.3, 3.3.4
3380 * Should be called without sc_lock held.
3381 */
3382 static usbd_status
3383 xhci_address_device(struct xhci_softc * const sc,
3384 uint64_t icp, uint8_t slot_id, bool bsr)
3385 {
3386 struct xhci_soft_trb trb;
3387 usbd_status err;
3388
3389 XHCIHIST_FUNC();
3390 if (bsr) {
3391 XHCIHIST_CALLARGS("icp %#jx slot %#jx with bsr",
3392 icp, slot_id, 0, 0);
3393 } else {
3394 XHCIHIST_CALLARGS("icp %#jx slot %#jx nobsr",
3395 icp, slot_id, 0, 0);
3396 }
3397
3398 trb.trb_0 = icp;
3399 trb.trb_2 = 0;
3400 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) |
3401 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
3402 (bsr ? XHCI_TRB_3_BSR_BIT : 0);
3403
3404 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3405
3406 if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS)
3407 err = USBD_NO_ADDR;
3408
3409 return err;
3410 }
3411
3412 static usbd_status
3413 xhci_update_ep0_mps(struct xhci_softc * const sc,
3414 struct xhci_slot * const xs, u_int mps)
3415 {
3416 struct xhci_soft_trb trb;
3417 usbd_status err;
3418 uint32_t * cp;
3419
3420 XHCIHIST_FUNC();
3421 XHCIHIST_CALLARGS("slot %ju mps %ju", xs->xs_idx, mps, 0, 0);
3422
3423 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3424 cp[0] = htole32(0);
3425 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL));
3426
3427 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL));
3428 cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps));
3429
3430 /* sync input contexts before they are read from memory */
3431 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3432 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
3433 sc->sc_ctxsz * 4);
3434
3435 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
3436 trb.trb_2 = 0;
3437 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
3438 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX);
3439
3440 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
3441 return err;
3442 }
3443
3444 static void
3445 xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si)
3446 {
3447 uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0);
3448
3449 XHCIHIST_FUNC();
3450 XHCIHIST_CALLARGS("dcbaa %#jx dc 0x%016jx slot %jd",
3451 (uintptr_t)&dcbaa[si], dcba, si, 0);
3452
3453 dcbaa[si] = htole64(dcba);
3454 usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t),
3455 BUS_DMASYNC_PREWRITE);
3456 }
3457
3458 /*
3459 * Allocate device and input context DMA buffer, and
3460 * TRB DMA buffer for each endpoint.
3461 */
3462 static usbd_status
3463 xhci_init_slot(struct usbd_device *dev, uint32_t slot)
3464 {
3465 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
3466 struct xhci_slot *xs;
3467
3468 XHCIHIST_FUNC();
3469 XHCIHIST_CALLARGS("slot %ju", slot, 0, 0, 0);
3470
3471 xs = &sc->sc_slots[slot];
3472
3473 /* allocate contexts */
3474 int err = usb_allocmem(sc->sc_bus.ub_dmatag, sc->sc_pgsz, sc->sc_pgsz,
3475 USBMALLOC_ZERO, &xs->xs_dc_dma);
3476 if (err) {
3477 DPRINTFN(1, "failed to allocmem output device context %jd",
3478 err, 0, 0, 0);
3479 return USBD_NOMEM;
3480 }
3481
3482 err = usb_allocmem(sc->sc_bus.ub_dmatag, sc->sc_pgsz, sc->sc_pgsz,
3483 USBMALLOC_ZERO, &xs->xs_ic_dma);
3484 if (err) {
3485 DPRINTFN(1, "failed to allocmem input device context %jd",
3486 err, 0, 0, 0);
3487 goto bad1;
3488 }
3489
3490 memset(&xs->xs_xr[0], 0, sizeof(xs->xs_xr));
3491 xs->xs_idx = slot;
3492
3493 return USBD_NORMAL_COMPLETION;
3494
3495 bad1:
3496 usb_freemem(&xs->xs_dc_dma);
3497 xs->xs_idx = 0;
3498 return USBD_NOMEM;
3499 }
3500
3501 static void
3502 xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs)
3503 {
3504 u_int dci;
3505
3506 XHCIHIST_FUNC();
3507 XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
3508
3509 /* deallocate all allocated rings in the slot */
3510 for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
3511 if (xs->xs_xr[dci] != NULL)
3512 xhci_ring_free(sc, &xs->xs_xr[dci]);
3513 }
3514 usb_freemem(&xs->xs_ic_dma);
3515 usb_freemem(&xs->xs_dc_dma);
3516 xs->xs_idx = 0;
3517 }
3518
3519 /*
3520 * Setup slot context, set Device Context Base Address, and issue
3521 * Set Address Device command.
3522 */
3523 static usbd_status
3524 xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr)
3525 {
3526 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
3527 struct xhci_slot *xs;
3528 usbd_status err;
3529
3530 XHCIHIST_FUNC();
3531 XHCIHIST_CALLARGS("slot %ju bsr %ju", slot, bsr, 0, 0);
3532
3533 xs = &sc->sc_slots[slot];
3534
3535 xhci_setup_ctx(dev->ud_pipe0);
3536
3537 HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
3538 sc->sc_ctxsz * 3);
3539
3540 xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot);
3541
3542 err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr);
3543
3544 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
3545 HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, 0),
3546 sc->sc_ctxsz * 2);
3547
3548 return err;
3549 }
3550
3551 /*
3552 * 4.8.2, 6.2.3.2
3553 * construct slot/endpoint context parameters and do syncmem
3554 */
3555 static void
3556 xhci_setup_ctx(struct usbd_pipe *pipe)
3557 {
3558 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3559 struct usbd_device *dev = pipe->up_dev;
3560 struct xhci_slot * const xs = dev->ud_hcpriv;
3561 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3562 const u_int dci = xhci_ep_get_dci(ed);
3563 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3564 uint32_t *cp;
3565 uint8_t speed = dev->ud_speed;
3566
3567 XHCIHIST_FUNC();
3568 XHCIHIST_CALLARGS("pipe %#jx: slot %ju dci %ju speed %ju",
3569 (uintptr_t)pipe, xs->xs_idx, dci, speed);
3570
3571 /* set up initial input control context */
3572 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3573 cp[0] = htole32(0);
3574 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci));
3575 cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT));
3576 cp[7] = htole32(0);
3577
3578 /* set up input slot context */
3579 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
3580 cp[0] =
3581 XHCI_SCTX_0_CTX_NUM_SET(dci) |
3582 XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed));
3583 cp[1] = 0;
3584 cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0);
3585 cp[3] = 0;
3586 xhci_setup_route(pipe, cp);
3587 xhci_setup_tthub(pipe, cp);
3588
3589 cp[0] = htole32(cp[0]);
3590 cp[1] = htole32(cp[1]);
3591 cp[2] = htole32(cp[2]);
3592 cp[3] = htole32(cp[3]);
3593
3594 /* set up input endpoint context */
3595 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci));
3596 cp[0] =
3597 XHCI_EPCTX_0_EPSTATE_SET(0) |
3598 XHCI_EPCTX_0_MULT_SET(0) |
3599 XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
3600 XHCI_EPCTX_0_LSA_SET(0) |
3601 XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0);
3602 cp[1] =
3603 XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) |
3604 XHCI_EPCTX_1_HID_SET(0) |
3605 XHCI_EPCTX_1_MAXB_SET(0);
3606
3607 if (xfertype != UE_ISOCHRONOUS)
3608 cp[1] |= XHCI_EPCTX_1_CERR_SET(3);
3609
3610 xhci_setup_maxburst(pipe, cp);
3611
3612 DPRINTFN(4, "setting on dci %ju ival %ju mult %ju mps %#jx",
3613 dci, XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_0_MULT_GET(cp[0]),
3614 XHCI_EPCTX_1_MAXP_SIZE_GET(cp[1]));
3615 DPRINTFN(4, " maxburst %ju mep %#jx atl %#jx",
3616 XHCI_EPCTX_1_MAXB_GET(cp[1]),
3617 (XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_GET(cp[0]) << 16) +
3618 XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_GET(cp[4]),
3619 XHCI_EPCTX_4_AVG_TRB_LEN_GET(cp[4]), 0);
3620
3621 /* rewind TR dequeue pointer in xHC */
3622 /* can't use xhci_ep_get_dci() yet? */
3623 *(uint64_t *)(&cp[2]) = htole64(
3624 xhci_ring_trbp(xs->xs_xr[dci], 0) |
3625 XHCI_EPCTX_2_DCS_SET(1));
3626
3627 cp[0] = htole32(cp[0]);
3628 cp[1] = htole32(cp[1]);
3629 cp[4] = htole32(cp[4]);
3630
3631 /* rewind TR dequeue pointer in driver */
3632 struct xhci_ring *xr = xs->xs_xr[dci];
3633 mutex_enter(&xr->xr_lock);
3634 xhci_host_dequeue(xr);
3635 mutex_exit(&xr->xr_lock);
3636
3637 /* sync input contexts before they are read from memory */
3638 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3639 }
3640
3641 /*
3642 * Setup route string and roothub port of given device for slot context
3643 */
3644 static void
3645 xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp)
3646 {
3647 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3648 struct usbd_device *dev = pipe->up_dev;
3649 struct usbd_port *up = dev->ud_powersrc;
3650 struct usbd_device *hub;
3651 struct usbd_device *adev;
3652 uint8_t rhport = 0;
3653 uint32_t route = 0;
3654
3655 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3656
3657 /* Locate root hub port and Determine route string */
3658 /* 4.3.3 route string does not include roothub port */
3659 for (hub = dev; hub != NULL; hub = hub->ud_myhub) {
3660 uint32_t dep;
3661
3662 DPRINTFN(4, "hub %#jx depth %jd upport %#jx upportno %jd",
3663 (uintptr_t)hub, hub->ud_depth, (uintptr_t)hub->ud_powersrc,
3664 hub->ud_powersrc ? (uintptr_t)hub->ud_powersrc->up_portno :
3665 -1);
3666
3667 if (hub->ud_powersrc == NULL)
3668 break;
3669 dep = hub->ud_depth;
3670 if (dep == 0)
3671 break;
3672 rhport = hub->ud_powersrc->up_portno;
3673 if (dep > USB_HUB_MAX_DEPTH)
3674 continue;
3675
3676 route |=
3677 (rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport)
3678 << ((dep - 1) * 4);
3679 }
3680 route = route >> 4;
3681 size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1;
3682
3683 /* Locate port on upstream high speed hub */
3684 for (adev = dev, hub = up->up_parent;
3685 hub != NULL && hub->ud_speed != USB_SPEED_HIGH;
3686 adev = hub, hub = hub->ud_myhub)
3687 ;
3688 if (hub) {
3689 int p;
3690 for (p = 1; p <= hub->ud_hub->uh_hubdesc.bNbrPorts; p++) {
3691 if (hub->ud_hub->uh_ports[p - 1].up_dev == adev) {
3692 dev->ud_myhsport = &hub->ud_hub->uh_ports[p - 1];
3693 goto found;
3694 }
3695 }
3696 panic("%s: cannot find HS port", __func__);
3697 found:
3698 DPRINTFN(4, "high speed port %jd", p, 0, 0, 0);
3699 } else {
3700 dev->ud_myhsport = NULL;
3701 }
3702
3703 const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport);
3704
3705 DPRINTFN(4, "rhport %ju ctlrport %ju Route %05jx hub %#jx", rhport,
3706 ctlrport, route, (uintptr_t)hub);
3707
3708 cp[0] |= XHCI_SCTX_0_ROUTE_SET(route);
3709 cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport);
3710 }
3711
3712 /*
3713 * Setup whether device is hub, whether device uses MTT, and
3714 * TT informations if it uses MTT.
3715 */
3716 static void
3717 xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp)
3718 {
3719 struct usbd_device *dev = pipe->up_dev;
3720 struct usbd_port *myhsport = dev->ud_myhsport;
3721 usb_device_descriptor_t * const dd = &dev->ud_ddesc;
3722 uint32_t speed = dev->ud_speed;
3723 uint8_t rhaddr = dev->ud_bus->ub_rhaddr;
3724 uint8_t tthubslot, ttportnum;
3725 bool ishub;
3726 bool usemtt;
3727
3728 XHCIHIST_FUNC();
3729
3730 /*
3731 * 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2
3732 * tthubslot:
3733 * This is the slot ID of parent HS hub
3734 * if LS/FS device is connected && connected through HS hub.
3735 * This is 0 if device is not LS/FS device ||
3736 * parent hub is not HS hub ||
3737 * attached to root hub.
3738 * ttportnum:
3739 * This is the downstream facing port of parent HS hub
3740 * if LS/FS device is connected.
3741 * This is 0 if device is not LS/FS device ||
3742 * parent hub is not HS hub ||
3743 * attached to root hub.
3744 */
3745 if (myhsport &&
3746 myhsport->up_parent->ud_addr != rhaddr &&
3747 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
3748 ttportnum = myhsport->up_portno;
3749 tthubslot = myhsport->up_parent->ud_addr;
3750 } else {
3751 ttportnum = 0;
3752 tthubslot = 0;
3753 }
3754 XHCIHIST_CALLARGS("myhsport %#jx ttportnum=%jd tthubslot=%jd",
3755 (uintptr_t)myhsport, ttportnum, tthubslot, 0);
3756
3757 /* ishub is valid after reading UDESC_DEVICE */
3758 ishub = (dd->bDeviceClass == UDCLASS_HUB);
3759
3760 /* dev->ud_hub is valid after reading UDESC_HUB */
3761 if (ishub && dev->ud_hub) {
3762 usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc;
3763 uint8_t ttt =
3764 __SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK);
3765
3766 cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts);
3767 cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt);
3768 DPRINTFN(4, "nports=%jd ttt=%jd", hd->bNbrPorts, ttt, 0, 0);
3769 }
3770
3771 #define IS_MTTHUB(dd) \
3772 ((dd)->bDeviceProtocol == UDPROTO_HSHUBMTT)
3773
3774 /*
3775 * MTT flag is set if
3776 * 1. this is HS hub && MTTs are supported and enabled; or
3777 * 2. this is LS or FS device && there is a parent HS hub where MTTs
3778 * are supported and enabled.
3779 *
3780 * XXX enabled is not tested yet
3781 */
3782 if (ishub && speed == USB_SPEED_HIGH && IS_MTTHUB(dd))
3783 usemtt = true;
3784 else if ((speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) &&
3785 myhsport &&
3786 myhsport->up_parent->ud_addr != rhaddr &&
3787 IS_MTTHUB(&myhsport->up_parent->ud_ddesc))
3788 usemtt = true;
3789 else
3790 usemtt = false;
3791 DPRINTFN(4, "class %ju proto %ju ishub %jd usemtt %jd",
3792 dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt);
3793
3794 #undef IS_MTTHUB
3795
3796 cp[0] |=
3797 XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) |
3798 XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0);
3799 cp[2] |=
3800 XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) |
3801 XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum);
3802 }
3803
3804 static const usb_endpoint_ss_comp_descriptor_t *
3805 xhci_get_essc_desc(struct usbd_pipe *pipe)
3806 {
3807 struct usbd_device *dev = pipe->up_dev;
3808 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3809 const usb_cdc_descriptor_t *cdcd;
3810 usbd_desc_iter_t iter;
3811 uint8_t ep;
3812
3813 /* config desc is NULL when opening ep0 */
3814 if (dev == NULL || dev->ud_cdesc == NULL)
3815 return NULL;
3816
3817 cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev,
3818 UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY);
3819 if (cdcd == NULL)
3820 return NULL;
3821
3822 usb_desc_iter_init(dev, &iter);
3823 iter.cur = (const void *)cdcd;
3824
3825 /* find endpoint_ss_comp desc for ep of this pipe */
3826 for (ep = 0;;) {
3827 cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter);
3828 if (cdcd == NULL)
3829 break;
3830 if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) {
3831 ep = ((const usb_endpoint_descriptor_t *)cdcd)->
3832 bEndpointAddress;
3833 if (UE_GET_ADDR(ep) ==
3834 UE_GET_ADDR(ed->bEndpointAddress)) {
3835 cdcd = (const usb_cdc_descriptor_t *)
3836 usb_desc_iter_next(&iter);
3837 break;
3838 }
3839 ep = 0;
3840 }
3841 }
3842 if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) {
3843 return (const usb_endpoint_ss_comp_descriptor_t *)cdcd;
3844 }
3845 return NULL;
3846 }
3847
3848 /* set up params for periodic endpoint */
3849 static void
3850 xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp)
3851 {
3852 struct xhci_pipe * const xpipe = (struct xhci_pipe *)pipe;
3853 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3854 struct usbd_device * const dev = pipe->up_dev;
3855 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3856 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3857 uint16_t mps = UGETW(ed->wMaxPacketSize);
3858 uint8_t speed = dev->ud_speed;
3859 uint32_t maxb, mep, atl;
3860 uint8_t ival, mult;
3861
3862 const usb_endpoint_ss_comp_descriptor_t * esscd =
3863 xhci_get_essc_desc(pipe);
3864
3865 /* USB 2.0 9.6.6, xHCI 4.8.2.4, 6.2.3.2 - 6.2.3.8 */
3866 switch (xfertype) {
3867 case UE_ISOCHRONOUS:
3868 case UE_INTERRUPT:
3869 if (USB_IS_SS(speed)) {
3870 maxb = esscd ? esscd->bMaxBurst : UE_GET_TRANS(mps);
3871 mep = esscd ? UGETW(esscd->wBytesPerInterval) :
3872 UE_GET_SIZE(mps) * (maxb + 1);
3873 if (esscd && xfertype == UE_ISOCHRONOUS &&
3874 XHCI_HCC2_LEC(sc->sc_hcc2) == 0) {
3875 mult = UE_GET_SS_ISO_MULT(esscd->bmAttributes);
3876 mult = (mult > 2) ? 2 : mult;
3877 } else
3878 mult = 0;
3879
3880 } else {
3881 switch (speed) {
3882 case USB_SPEED_HIGH:
3883 maxb = UE_GET_TRANS(mps);
3884 mep = UE_GET_SIZE(mps) * (maxb + 1);
3885 break;
3886 case USB_SPEED_FULL:
3887 maxb = 0;
3888 mep = UE_GET_SIZE(mps);
3889 break;
3890 default:
3891 maxb = 0;
3892 mep = 0;
3893 break;
3894 }
3895 mult = 0;
3896 }
3897 mps = UE_GET_SIZE(mps);
3898
3899 if (pipe->up_interval == USBD_DEFAULT_INTERVAL)
3900 ival = ed->bInterval;
3901 else
3902 ival = pipe->up_interval;
3903
3904 ival = xhci_bival2ival(ival, speed, xfertype);
3905 atl = mep;
3906 break;
3907 case UE_CONTROL:
3908 case UE_BULK:
3909 default:
3910 if (USB_IS_SS(speed)) {
3911 maxb = esscd ? esscd->bMaxBurst : 0;
3912 } else
3913 maxb = 0;
3914
3915 mps = UE_GET_SIZE(mps);
3916 mep = 0;
3917 mult = 0;
3918 ival = 0;
3919 if (xfertype == UE_CONTROL)
3920 atl = 8; /* 6.2.3 */
3921 else
3922 atl = mps;
3923 break;
3924 }
3925
3926 switch (speed) {
3927 case USB_SPEED_LOW:
3928 break;
3929 case USB_SPEED_FULL:
3930 if (xfertype == UE_INTERRUPT)
3931 if (mep > XHCI_EPCTX_MEP_FS_INTR)
3932 mep = XHCI_EPCTX_MEP_FS_INTR;
3933 if (xfertype == UE_ISOCHRONOUS)
3934 if (mep > XHCI_EPCTX_MEP_FS_ISOC)
3935 mep = XHCI_EPCTX_MEP_FS_ISOC;
3936 break;
3937 case USB_SPEED_HIGH:
3938 if (xfertype == UE_INTERRUPT)
3939 if (mep > XHCI_EPCTX_MEP_HS_INTR)
3940 mep = XHCI_EPCTX_MEP_HS_INTR;
3941 if (xfertype == UE_ISOCHRONOUS)
3942 if (mep > XHCI_EPCTX_MEP_HS_ISOC)
3943 mep = XHCI_EPCTX_MEP_HS_ISOC;
3944 break;
3945 case USB_SPEED_SUPER:
3946 case USB_SPEED_SUPER_PLUS:
3947 default:
3948 if (xfertype == UE_INTERRUPT)
3949 if (mep > XHCI_EPCTX_MEP_SS_INTR)
3950 mep = XHCI_EPCTX_MEP_SS_INTR;
3951 if (xfertype == UE_ISOCHRONOUS) {
3952 if (speed == USB_SPEED_SUPER ||
3953 XHCI_HCC2_LEC(sc->sc_hcc2) == 0) {
3954 if (mep > XHCI_EPCTX_MEP_SS_ISOC)
3955 mep = XHCI_EPCTX_MEP_SS_ISOC;
3956 } else {
3957 if (mep > XHCI_EPCTX_MEP_SS_ISOC_LEC)
3958 mep = XHCI_EPCTX_MEP_SS_ISOC_LEC;
3959 }
3960 }
3961 break;
3962 }
3963
3964 xpipe->xp_maxb = maxb + 1;
3965 xpipe->xp_mult = mult + 1;
3966
3967 cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(mep >> 16);
3968 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3969 cp[0] |= XHCI_EPCTX_0_MULT_SET(mult);
3970 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps);
3971 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3972 cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(mep & 0xffff);
3973 cp[4] |= XHCI_EPCTX_4_AVG_TRB_LEN_SET(atl);
3974 }
3975
3976 /*
3977 * Convert usbdi bInterval value to xhci endpoint context interval value
3978 * for periodic pipe.
3979 * xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6
3980 */
3981 static uint32_t
3982 xhci_bival2ival(uint32_t ival, uint32_t speed, uint32_t xfertype)
3983 {
3984 if (xfertype != UE_INTERRUPT && xfertype != UE_ISOCHRONOUS)
3985 return 0;
3986
3987 if (xfertype == UE_INTERRUPT &&
3988 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
3989 u_int i;
3990
3991 /*
3992 * round ival down to "the nearest base 2 multiple of
3993 * bInterval * 8".
3994 * bInterval is at most 255 as its type is uByte.
3995 * 255(ms) = 2040(x 125us) < 2^11, so start with 10.
3996 */
3997 for (i = 10; i > 0; i--) {
3998 if ((ival * 8) >= (1 << i))
3999 break;
4000 }
4001 ival = i;
4002
4003 /* 3 - 10 */
4004 ival = (ival < 3) ? 3 : ival;
4005 } else if (speed == USB_SPEED_FULL) {
4006 /* FS isoc */
4007 ival += 3; /* 1ms -> 125us */
4008 ival--; /* Interval = bInterval-1 */
4009 /* 3 - 18 */
4010 ival = (ival > 18) ? 18 : ival;
4011 ival = (ival < 3) ? 3 : ival;
4012 } else {
4013 /* SS/HS intr/isoc */
4014 if (ival > 0)
4015 ival--; /* Interval = bInterval-1 */
4016 /* 0 - 15 */
4017 ival = (ival > 15) ? 15 : ival;
4018 }
4019
4020 return ival;
4021 }
4022
4023 /* ----- */
4024
4025 static void
4026 xhci_noop(struct usbd_pipe *pipe)
4027 {
4028 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4029 }
4030
4031 /*
4032 * Process root hub request.
4033 */
4034 static int
4035 xhci_roothub_ctrl_locked(struct usbd_bus *bus, usb_device_request_t *req,
4036 void *buf, int buflen)
4037 {
4038 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
4039 usb_port_status_t ps;
4040 int l, totlen = 0;
4041 uint16_t len, value, index;
4042 int port, i;
4043 uint32_t v;
4044
4045 XHCIHIST_FUNC();
4046
4047 KASSERT(mutex_owned(&sc->sc_rhlock));
4048
4049 if (sc->sc_dying)
4050 return -1;
4051
4052 size_t bn = bus == &sc->sc_bus ? 0 : 1;
4053
4054 len = UGETW(req->wLength);
4055 value = UGETW(req->wValue);
4056 index = UGETW(req->wIndex);
4057
4058 XHCIHIST_CALLARGS("rhreq: %04jx %04jx %04jx %04jx",
4059 req->bmRequestType | (req->bRequest << 8), value, index, len);
4060
4061 #define C(x,y) ((x) | ((y) << 8))
4062 switch (C(req->bRequest, req->bmRequestType)) {
4063 case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
4064 DPRINTFN(8, "getdesc: wValue=0x%04jx", value, 0, 0, 0);
4065 if (len == 0)
4066 break;
4067 switch (value) {
4068 #define sd ((usb_string_descriptor_t *)buf)
4069 case C(2, UDESC_STRING):
4070 /* Product */
4071 totlen = usb_makestrdesc(sd, len, "xHCI root hub");
4072 break;
4073 #undef sd
4074 default:
4075 /* default from usbroothub */
4076 return buflen;
4077 }
4078 break;
4079
4080 /* Hub requests */
4081 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
4082 break;
4083 /* Clear Port Feature request */
4084 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): {
4085 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
4086
4087 DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%jd feat=%jd bus=%jd cp=%jd",
4088 index, value, bn, cp);
4089 if (index < 1 || index > sc->sc_rhportcount[bn]) {
4090 return -1;
4091 }
4092 port = XHCI_PORTSC(cp);
4093 v = xhci_op_read_4(sc, port);
4094 DPRINTFN(4, "portsc=0x%08jx", v, 0, 0, 0);
4095 v &= ~XHCI_PS_CLEAR;
4096 switch (value) {
4097 case UHF_PORT_ENABLE:
4098 xhci_op_write_4(sc, port, v & ~XHCI_PS_PED);
4099 break;
4100 case UHF_PORT_SUSPEND:
4101 return -1;
4102 case UHF_PORT_POWER:
4103 break;
4104 case UHF_PORT_TEST:
4105 case UHF_PORT_INDICATOR:
4106 return -1;
4107 case UHF_C_PORT_CONNECTION:
4108 xhci_op_write_4(sc, port, v | XHCI_PS_CSC);
4109 break;
4110 case UHF_C_PORT_ENABLE:
4111 case UHF_C_PORT_SUSPEND:
4112 case UHF_C_PORT_OVER_CURRENT:
4113 return -1;
4114 case UHF_C_BH_PORT_RESET:
4115 xhci_op_write_4(sc, port, v | XHCI_PS_WRC);
4116 break;
4117 case UHF_C_PORT_RESET:
4118 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
4119 break;
4120 case UHF_C_PORT_LINK_STATE:
4121 xhci_op_write_4(sc, port, v | XHCI_PS_PLC);
4122 break;
4123 case UHF_C_PORT_CONFIG_ERROR:
4124 xhci_op_write_4(sc, port, v | XHCI_PS_CEC);
4125 break;
4126 default:
4127 return -1;
4128 }
4129 break;
4130 }
4131 case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
4132 if (len == 0)
4133 break;
4134 if ((value & 0xff) != 0) {
4135 return -1;
4136 }
4137 usb_hub_descriptor_t hubd;
4138
4139 totlen = uimin(buflen, sizeof(hubd));
4140 memcpy(&hubd, buf, totlen);
4141 hubd.bNbrPorts = sc->sc_rhportcount[bn];
4142 USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH);
4143 hubd.bPwrOn2PwrGood = 200;
4144 for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) {
4145 /* XXX can't find out? */
4146 hubd.DeviceRemovable[i++] = 0;
4147 }
4148 hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
4149 totlen = uimin(totlen, hubd.bDescLength);
4150 memcpy(buf, &hubd, totlen);
4151 break;
4152 case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
4153 if (len != 4) {
4154 return -1;
4155 }
4156 memset(buf, 0, len); /* ? XXX */
4157 totlen = len;
4158 break;
4159 /* Get Port Status request */
4160 case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
4161 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
4162
4163 DPRINTFN(8, "get port status bn=%jd i=%jd cp=%ju",
4164 bn, index, cp, 0);
4165 if (index < 1 || index > sc->sc_rhportcount[bn]) {
4166 DPRINTFN(5, "bad get port status: index=%jd bn=%jd "
4167 "portcount=%jd",
4168 index, bn, sc->sc_rhportcount[bn], 0);
4169 return -1;
4170 }
4171 if (len != 4) {
4172 DPRINTFN(5, "bad get port status: len %jd != 4",
4173 len, 0, 0, 0);
4174 return -1;
4175 }
4176 v = xhci_op_read_4(sc, XHCI_PORTSC(cp));
4177 DPRINTFN(4, "getrhportsc %jd 0x%08jx", cp, v, 0, 0);
4178 i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v));
4179 if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS;
4180 if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED;
4181 if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR;
4182 //if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND;
4183 if (v & XHCI_PS_PR) i |= UPS_RESET;
4184 if (v & XHCI_PS_PP) {
4185 if (i & UPS_OTHER_SPEED)
4186 i |= UPS_PORT_POWER_SS;
4187 else
4188 i |= UPS_PORT_POWER;
4189 }
4190 if (i & UPS_OTHER_SPEED)
4191 i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v));
4192 if (sc->sc_vendor_port_status)
4193 i = sc->sc_vendor_port_status(sc, v, i);
4194 USETW(ps.wPortStatus, i);
4195 i = 0;
4196 if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS;
4197 if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED;
4198 if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR;
4199 if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET;
4200 if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET;
4201 if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE;
4202 if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR;
4203 USETW(ps.wPortChange, i);
4204 totlen = uimin(len, sizeof(ps));
4205 memcpy(buf, &ps, totlen);
4206 DPRINTFN(5, "get port status: wPortStatus %#jx wPortChange %#jx"
4207 " totlen %jd",
4208 UGETW(ps.wPortStatus), UGETW(ps.wPortChange), totlen, 0);
4209 break;
4210 }
4211 case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
4212 return -1;
4213 case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE):
4214 break;
4215 case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
4216 break;
4217 /* Set Port Feature request */
4218 case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): {
4219 int optval = (index >> 8) & 0xff;
4220 index &= 0xff;
4221 if (index < 1 || index > sc->sc_rhportcount[bn]) {
4222 return -1;
4223 }
4224
4225 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
4226
4227 port = XHCI_PORTSC(cp);
4228 v = xhci_op_read_4(sc, port);
4229 DPRINTFN(4, "index %jd cp %jd portsc=0x%08jx", index, cp, v, 0);
4230 v &= ~XHCI_PS_CLEAR;
4231 switch (value) {
4232 case UHF_PORT_ENABLE:
4233 xhci_op_write_4(sc, port, v | XHCI_PS_PED);
4234 break;
4235 case UHF_PORT_SUSPEND:
4236 /* XXX suspend */
4237 break;
4238 case UHF_PORT_RESET:
4239 xhci_op_write_4(sc, port, v | XHCI_PS_PR);
4240 /* Wait for reset to complete. */
4241 for (i = 0; i < USB_PORT_ROOT_RESET_DELAY / 10; i++) {
4242 if (sc->sc_dying) {
4243 return -1;
4244 }
4245 v = xhci_op_read_4(sc, port);
4246 if ((v & XHCI_PS_PR) == 0) {
4247 break;
4248 }
4249 usb_delay_ms(&sc->sc_bus, 10);
4250 }
4251 break;
4252 case UHF_PORT_POWER:
4253 /* XXX power control */
4254 break;
4255 /* XXX more */
4256 case UHF_C_PORT_RESET:
4257 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
4258 break;
4259 case UHF_PORT_U1_TIMEOUT:
4260 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
4261 return -1;
4262 }
4263 port = XHCI_PORTPMSC(cp);
4264 v = xhci_op_read_4(sc, port);
4265 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
4266 index, cp, v, 0);
4267 v &= ~XHCI_PM3_U1TO_SET(0xff);
4268 v |= XHCI_PM3_U1TO_SET(optval);
4269 xhci_op_write_4(sc, port, v);
4270 break;
4271 case UHF_PORT_U2_TIMEOUT:
4272 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
4273 return -1;
4274 }
4275 port = XHCI_PORTPMSC(cp);
4276 v = xhci_op_read_4(sc, port);
4277 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
4278 index, cp, v, 0);
4279 v &= ~XHCI_PM3_U2TO_SET(0xff);
4280 v |= XHCI_PM3_U2TO_SET(optval);
4281 xhci_op_write_4(sc, port, v);
4282 break;
4283 default:
4284 return -1;
4285 }
4286 }
4287 break;
4288 case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
4289 case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
4290 case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
4291 case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
4292 break;
4293 default:
4294 /* default from usbroothub */
4295 return buflen;
4296 }
4297
4298 return totlen;
4299 }
4300
4301 static int
4302 xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
4303 void *buf, int buflen)
4304 {
4305 struct xhci_softc *sc = XHCI_BUS2SC(bus);
4306 int actlen;
4307
4308 mutex_enter(&sc->sc_rhlock);
4309 actlen = xhci_roothub_ctrl_locked(bus, req, buf, buflen);
4310 mutex_exit(&sc->sc_rhlock);
4311
4312 return actlen;
4313 }
4314
4315 /* root hub interrupt */
4316
4317 static usbd_status
4318 xhci_root_intr_transfer(struct usbd_xfer *xfer)
4319 {
4320 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4321
4322 /* Pipe isn't running, start first */
4323 return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4324 }
4325
4326 /* Wait for roothub port status/change */
4327 static usbd_status
4328 xhci_root_intr_start(struct usbd_xfer *xfer)
4329 {
4330 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4331 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4332
4333 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4334
4335 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
4336
4337 if (sc->sc_dying)
4338 return USBD_IOERROR;
4339
4340 KASSERT(sc->sc_intrxfer[bn] == NULL);
4341 sc->sc_intrxfer[bn] = xfer;
4342 xfer->ux_status = USBD_IN_PROGRESS;
4343
4344 return USBD_IN_PROGRESS;
4345 }
4346
4347 static void
4348 xhci_root_intr_abort(struct usbd_xfer *xfer)
4349 {
4350 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4351 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4352
4353 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4354
4355 KASSERT(mutex_owned(&sc->sc_lock));
4356 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
4357
4358 /* If xfer has already completed, nothing to do here. */
4359 if (sc->sc_intrxfer[bn] == NULL)
4360 return;
4361
4362 /*
4363 * Otherwise, sc->sc_intrxfer[bn] had better be this transfer.
4364 * Cancel it.
4365 */
4366 KASSERT(sc->sc_intrxfer[bn] == xfer);
4367 xfer->ux_status = USBD_CANCELLED;
4368 usb_transfer_complete(xfer);
4369 }
4370
4371 static void
4372 xhci_root_intr_close(struct usbd_pipe *pipe)
4373 {
4374 struct xhci_softc * const sc __diagused = XHCI_PIPE2SC(pipe);
4375 const struct usbd_xfer *xfer __diagused = pipe->up_intrxfer;
4376 const size_t bn __diagused = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4377
4378 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4379
4380 KASSERT(mutex_owned(&sc->sc_lock));
4381
4382 /*
4383 * Caller must guarantee the xfer has completed first, by
4384 * closing the pipe only after normal completion or an abort.
4385 */
4386 KASSERT(sc->sc_intrxfer[bn] == NULL);
4387 }
4388
4389 static void
4390 xhci_root_intr_done(struct usbd_xfer *xfer)
4391 {
4392 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4393 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
4394
4395 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4396
4397 KASSERT(mutex_owned(&sc->sc_lock));
4398
4399 /* Claim the xfer so it doesn't get completed again. */
4400 KASSERT(sc->sc_intrxfer[bn] == xfer);
4401 KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
4402 sc->sc_intrxfer[bn] = NULL;
4403 }
4404
4405 /* -------------- */
4406 /* device control */
4407
4408 static usbd_status
4409 xhci_device_ctrl_transfer(struct usbd_xfer *xfer)
4410 {
4411 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4412
4413 /* Pipe isn't running, start first */
4414 return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4415 }
4416
4417 static usbd_status
4418 xhci_device_ctrl_start(struct usbd_xfer *xfer)
4419 {
4420 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4421 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4422 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4423 struct xhci_ring * const tr = xs->xs_xr[dci];
4424 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4425 usb_device_request_t * const req = &xfer->ux_request;
4426 const bool isread = usbd_xfer_isread(xfer);
4427 const uint32_t len = UGETW(req->wLength);
4428 usb_dma_t * const dma = &xfer->ux_dmabuf;
4429 uint64_t parameter;
4430 uint32_t status;
4431 uint32_t control;
4432 u_int i;
4433 const bool polling = xhci_polling_p(sc);
4434
4435 XHCIHIST_FUNC();
4436 XHCIHIST_CALLARGS("req: %04jx %04jx %04jx %04jx",
4437 req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue),
4438 UGETW(req->wIndex), UGETW(req->wLength));
4439
4440 KASSERT(polling || mutex_owned(&sc->sc_lock));
4441
4442 /* we rely on the bottom bits for extra info */
4443 KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %p", xfer);
4444
4445 KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0);
4446
4447 if (tr->is_halted)
4448 goto out;
4449
4450 i = 0;
4451
4452 /* setup phase */
4453 parameter = le64dec(req); /* to keep USB endian after xhci_trb_put() */
4454 status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req));
4455 control = ((len == 0) ? XHCI_TRB_3_TRT_NONE :
4456 (isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) |
4457 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
4458 XHCI_TRB_3_IDT_BIT;
4459 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4460
4461 if (len != 0) {
4462 /* data phase */
4463 parameter = DMAADDR(dma, 0);
4464 KASSERTMSG(len <= 0x10000, "len %d", len);
4465 status = XHCI_TRB_2_IRQ_SET(0) |
4466 XHCI_TRB_2_TDSZ_SET(0) |
4467 XHCI_TRB_2_BYTES_SET(len);
4468 control = (isread ? XHCI_TRB_3_DIR_IN : 0) |
4469 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) |
4470 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4471 XHCI_TRB_3_IOC_BIT;
4472 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4473
4474 usb_syncmem(dma, 0, len,
4475 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4476 }
4477
4478 parameter = 0;
4479 status = XHCI_TRB_2_IRQ_SET(0);
4480 /* the status stage has inverted direction */
4481 control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) |
4482 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) |
4483 XHCI_TRB_3_IOC_BIT;
4484 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4485
4486 if (!polling)
4487 mutex_enter(&tr->xr_lock);
4488 xhci_ring_put_xfer(sc, tr, xx, i);
4489 if (!polling)
4490 mutex_exit(&tr->xr_lock);
4491
4492 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4493
4494 out: if (xfer->ux_status == USBD_NOT_STARTED) {
4495 xfer->ux_status = USBD_IN_PROGRESS;
4496 usbd_xfer_schedule_timeout(xfer);
4497 } else {
4498 /*
4499 * We must be coming from xhci_pipe_restart -- timeout
4500 * already set up, nothing to do.
4501 */
4502 }
4503 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
4504
4505 return USBD_IN_PROGRESS;
4506 }
4507
4508 static void
4509 xhci_device_ctrl_done(struct usbd_xfer *xfer)
4510 {
4511 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4512 usb_device_request_t *req = &xfer->ux_request;
4513 int len = UGETW(req->wLength);
4514 int rd = req->bmRequestType & UT_READ;
4515
4516 if (len)
4517 usb_syncmem(&xfer->ux_dmabuf, 0, len,
4518 rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4519 }
4520
4521 static void
4522 xhci_device_ctrl_abort(struct usbd_xfer *xfer)
4523 {
4524 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4525
4526 usbd_xfer_abort(xfer);
4527 }
4528
4529 static void
4530 xhci_device_ctrl_close(struct usbd_pipe *pipe)
4531 {
4532 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4533
4534 xhci_close_pipe(pipe);
4535 }
4536
4537 /* ------------------ */
4538 /* device isochronous */
4539
4540 static usbd_status
4541 xhci_device_isoc_transfer(struct usbd_xfer *xfer)
4542 {
4543 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4544
4545 return xhci_device_isoc_enter(xfer);
4546 }
4547
4548 static usbd_status
4549 xhci_device_isoc_enter(struct usbd_xfer *xfer)
4550 {
4551 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4552 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4553 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4554 struct xhci_ring * const tr = xs->xs_xr[dci];
4555 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4556 struct xhci_pipe * const xpipe = (struct xhci_pipe *)xfer->ux_pipe;
4557 usb_dma_t * const dma = &xfer->ux_dmabuf;
4558 uint64_t parameter;
4559 uint32_t status;
4560 uint32_t control;
4561 uint32_t offs;
4562 int i, ival;
4563 const bool polling = xhci_polling_p(sc);
4564 const uint16_t MPS = UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize);
4565 const uint16_t mps = UE_GET_SIZE(MPS);
4566 const uint8_t maxb = xpipe->xp_maxb;
4567
4568 XHCIHIST_FUNC();
4569 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4570 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4571
4572 KASSERT(polling || mutex_owned(&sc->sc_lock));
4573
4574 if (sc->sc_dying)
4575 return USBD_IOERROR;
4576
4577 KASSERT(xfer->ux_nframes != 0 && xfer->ux_frlengths);
4578 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4579
4580 const bool isread = usbd_xfer_isread(xfer);
4581 if (xfer->ux_length)
4582 usb_syncmem(dma, 0, xfer->ux_length,
4583 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4584
4585 ival = xfer->ux_pipe->up_endpoint->ue_edesc->bInterval;
4586 if (ival >= 1 && ival <= 16)
4587 ival = 1 << (ival - 1);
4588 else
4589 ival = 1; /* fake something up */
4590
4591 if (xpipe->xp_isoc_next == -1) {
4592 uint32_t mfindex = xhci_rt_read_4(sc, XHCI_MFINDEX);
4593
4594 DPRINTF("mfindex %jx", (uintmax_t)mfindex, 0, 0, 0);
4595 mfindex = XHCI_MFINDEX_GET(mfindex + 1);
4596 mfindex /= USB_UFRAMES_PER_FRAME;
4597 mfindex += 7; /* 7 frames is max possible IST */
4598 xpipe->xp_isoc_next = roundup2(mfindex, ival);
4599 }
4600
4601 offs = 0;
4602 for (i = 0; i < xfer->ux_nframes; i++) {
4603 const uint32_t len = xfer->ux_frlengths[i];
4604 const unsigned tdpc = howmany(len, mps);
4605 const unsigned tbc = howmany(tdpc, maxb) - 1;
4606 const unsigned tlbpc1 = tdpc % maxb;
4607 const unsigned tlbpc = tlbpc1 ? tlbpc1 - 1 : maxb - 1;
4608
4609 KASSERTMSG(len <= 0x10000, "len %d", len);
4610 parameter = DMAADDR(dma, offs);
4611 status = XHCI_TRB_2_IRQ_SET(0) |
4612 XHCI_TRB_2_TDSZ_SET(0) |
4613 XHCI_TRB_2_BYTES_SET(len);
4614 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ISOCH) |
4615 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4616 XHCI_TRB_3_TBC_SET(tbc) |
4617 XHCI_TRB_3_TLBPC_SET(tlbpc) |
4618 XHCI_TRB_3_IOC_BIT;
4619 if (XHCI_HCC_CFC(sc->sc_hcc)) {
4620 control |= XHCI_TRB_3_FRID_SET(xpipe->xp_isoc_next);
4621 #if 0
4622 } else if (xpipe->xp_isoc_next == -1) {
4623 control |= XHCI_TRB_3_FRID_SET(xpipe->xp_isoc_next);
4624 #endif
4625 } else {
4626 control |= XHCI_TRB_3_ISO_SIA_BIT;
4627 }
4628 #if 0
4629 if (i != xfer->ux_nframes - 1)
4630 control |= XHCI_TRB_3_BEI_BIT;
4631 #endif
4632 xhci_xfer_put_trb(xx, i, parameter, status, control);
4633
4634 xpipe->xp_isoc_next += ival;
4635 offs += len;
4636 }
4637
4638 xx->xx_isoc_done = 0;
4639
4640 if (!polling)
4641 mutex_enter(&tr->xr_lock);
4642 xhci_ring_put_xfer(sc, tr, xx, i);
4643 if (!polling)
4644 mutex_exit(&tr->xr_lock);
4645
4646 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4647 xfer->ux_status = USBD_IN_PROGRESS;
4648 usbd_xfer_schedule_timeout(xfer);
4649
4650 return USBD_IN_PROGRESS;
4651 }
4652
4653 static void
4654 xhci_device_isoc_abort(struct usbd_xfer *xfer)
4655 {
4656 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4657
4658 usbd_xfer_abort(xfer);
4659 }
4660
4661 static void
4662 xhci_device_isoc_close(struct usbd_pipe *pipe)
4663 {
4664 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4665
4666 xhci_close_pipe(pipe);
4667 }
4668
4669 static void
4670 xhci_device_isoc_done(struct usbd_xfer *xfer)
4671 {
4672 #ifdef USB_DEBUG
4673 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4674 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4675 #endif
4676 const bool isread = usbd_xfer_isread(xfer);
4677
4678 XHCIHIST_FUNC();
4679 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4680 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4681
4682 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4683 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4684 }
4685
4686 /* ----------- */
4687 /* device bulk */
4688
4689 static usbd_status
4690 xhci_device_bulk_transfer(struct usbd_xfer *xfer)
4691 {
4692 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4693
4694 /* Pipe isn't running, so start it first. */
4695 return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4696 }
4697
4698 static usbd_status
4699 xhci_device_bulk_start(struct usbd_xfer *xfer)
4700 {
4701 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4702 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4703 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4704 struct xhci_ring * const tr = xs->xs_xr[dci];
4705 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4706 const uint32_t len = xfer->ux_length;
4707 usb_dma_t * const dma = &xfer->ux_dmabuf;
4708 uint64_t parameter;
4709 uint32_t status;
4710 uint32_t control;
4711 u_int i = 0;
4712 const bool polling = xhci_polling_p(sc);
4713
4714 XHCIHIST_FUNC();
4715 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4716 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4717
4718 KASSERT(polling || mutex_owned(&sc->sc_lock));
4719
4720 if (sc->sc_dying)
4721 return USBD_IOERROR;
4722
4723 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4724
4725 if (tr->is_halted)
4726 goto out;
4727
4728 parameter = DMAADDR(dma, 0);
4729 const bool isread = usbd_xfer_isread(xfer);
4730 if (len)
4731 usb_syncmem(dma, 0, len,
4732 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4733
4734 /*
4735 * XXX: (dsl) The physical buffer must not cross a 64k boundary.
4736 * If the user supplied buffer crosses such a boundary then 2
4737 * (or more) TRB should be used.
4738 * If multiple TRB are used the td_size field must be set correctly.
4739 * For v1.0 devices (like ivy bridge) this is the number of usb data
4740 * blocks needed to complete the transfer.
4741 * Setting it to 1 in the last TRB causes an extra zero-length
4742 * data block be sent.
4743 * The earlier documentation differs, I don't know how it behaves.
4744 */
4745 KASSERTMSG(len <= 0x10000, "len %d", len);
4746 status = XHCI_TRB_2_IRQ_SET(0) |
4747 XHCI_TRB_2_TDSZ_SET(0) |
4748 XHCI_TRB_2_BYTES_SET(len);
4749 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4750 (isread ? XHCI_TRB_3_ISP_BIT : 0) |
4751 XHCI_TRB_3_IOC_BIT;
4752 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4753
4754 if (!polling)
4755 mutex_enter(&tr->xr_lock);
4756 xhci_ring_put_xfer(sc, tr, xx, i);
4757 if (!polling)
4758 mutex_exit(&tr->xr_lock);
4759
4760 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4761
4762 out: if (xfer->ux_status == USBD_NOT_STARTED) {
4763 xfer->ux_status = USBD_IN_PROGRESS;
4764 usbd_xfer_schedule_timeout(xfer);
4765 } else {
4766 /*
4767 * We must be coming from xhci_pipe_restart -- timeout
4768 * already set up, nothing to do.
4769 */
4770 }
4771 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
4772
4773 return USBD_IN_PROGRESS;
4774 }
4775
4776 static void
4777 xhci_device_bulk_done(struct usbd_xfer *xfer)
4778 {
4779 #ifdef USB_DEBUG
4780 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4781 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4782 #endif
4783 const bool isread = usbd_xfer_isread(xfer);
4784
4785 XHCIHIST_FUNC();
4786 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4787 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4788
4789 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4790 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4791 }
4792
4793 static void
4794 xhci_device_bulk_abort(struct usbd_xfer *xfer)
4795 {
4796 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4797
4798 usbd_xfer_abort(xfer);
4799 }
4800
4801 static void
4802 xhci_device_bulk_close(struct usbd_pipe *pipe)
4803 {
4804 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4805
4806 xhci_close_pipe(pipe);
4807 }
4808
4809 /* ---------------- */
4810 /* device interrupt */
4811
4812 static usbd_status
4813 xhci_device_intr_transfer(struct usbd_xfer *xfer)
4814 {
4815 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4816
4817 /* Pipe isn't running, so start it first. */
4818 return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4819 }
4820
4821 static usbd_status
4822 xhci_device_intr_start(struct usbd_xfer *xfer)
4823 {
4824 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4825 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4826 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4827 struct xhci_ring * const tr = xs->xs_xr[dci];
4828 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4829 const uint32_t len = xfer->ux_length;
4830 const bool polling = xhci_polling_p(sc);
4831 usb_dma_t * const dma = &xfer->ux_dmabuf;
4832 uint64_t parameter;
4833 uint32_t status;
4834 uint32_t control;
4835 u_int i = 0;
4836
4837 XHCIHIST_FUNC();
4838 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4839 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4840
4841 KASSERT(polling || mutex_owned(&sc->sc_lock));
4842
4843 if (sc->sc_dying)
4844 return USBD_IOERROR;
4845
4846 if (tr->is_halted)
4847 goto out;
4848
4849 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4850
4851 const bool isread = usbd_xfer_isread(xfer);
4852 if (len)
4853 usb_syncmem(dma, 0, len,
4854 isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
4855
4856 parameter = DMAADDR(dma, 0);
4857 KASSERTMSG(len <= 0x10000, "len %d", len);
4858 status = XHCI_TRB_2_IRQ_SET(0) |
4859 XHCI_TRB_2_TDSZ_SET(0) |
4860 XHCI_TRB_2_BYTES_SET(len);
4861 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4862 (isread ? XHCI_TRB_3_ISP_BIT : 0) | XHCI_TRB_3_IOC_BIT;
4863 xhci_xfer_put_trb(xx, i++, parameter, status, control);
4864
4865 if (!polling)
4866 mutex_enter(&tr->xr_lock);
4867 xhci_ring_put_xfer(sc, tr, xx, i);
4868 if (!polling)
4869 mutex_exit(&tr->xr_lock);
4870
4871 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4872
4873 out: if (xfer->ux_status == USBD_NOT_STARTED) {
4874 xfer->ux_status = USBD_IN_PROGRESS;
4875 usbd_xfer_schedule_timeout(xfer);
4876 } else {
4877 /*
4878 * We must be coming from xhci_pipe_restart -- timeout
4879 * already set up, nothing to do.
4880 */
4881 }
4882 KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
4883
4884 return USBD_IN_PROGRESS;
4885 }
4886
4887 static void
4888 xhci_device_intr_done(struct usbd_xfer *xfer)
4889 {
4890 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4891 #ifdef USB_DEBUG
4892 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4893 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4894 #endif
4895 const bool isread = usbd_xfer_isread(xfer);
4896
4897 XHCIHIST_FUNC();
4898 XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
4899 (uintptr_t)xfer, xs->xs_idx, dci, 0);
4900
4901 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
4902
4903 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4904 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4905 }
4906
4907 static void
4908 xhci_device_intr_abort(struct usbd_xfer *xfer)
4909 {
4910 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4911
4912 XHCIHIST_FUNC();
4913 XHCIHIST_CALLARGS("%#jx", (uintptr_t)xfer, 0, 0, 0);
4914
4915 KASSERT(mutex_owned(&sc->sc_lock));
4916 usbd_xfer_abort(xfer);
4917 }
4918
4919 static void
4920 xhci_device_intr_close(struct usbd_pipe *pipe)
4921 {
4922 //struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
4923
4924 XHCIHIST_FUNC();
4925 XHCIHIST_CALLARGS("%#jx", (uintptr_t)pipe, 0, 0, 0);
4926
4927 xhci_close_pipe(pipe);
4928 }
4929