xhci.c revision 1.70 1 /* $NetBSD: xhci.c,v 1.70 2017/01/21 07:39:30 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2013 Jonathan A. Kollasch
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
25 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
26 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * USB rev 2.0 and rev 3.1 specification
31 * http://www.usb.org/developers/docs/
32 * xHCI rev 1.1 specification
33 * http://www.intel.com/technology/usb/spec.htm
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.70 2017/01/21 07:39:30 skrll Exp $");
38
39 #ifdef _KERNEL_OPT
40 #include "opt_usb.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/device.h>
48 #include <sys/select.h>
49 #include <sys/proc.h>
50 #include <sys/queue.h>
51 #include <sys/mutex.h>
52 #include <sys/condvar.h>
53 #include <sys/bus.h>
54 #include <sys/cpu.h>
55 #include <sys/sysctl.h>
56
57 #include <machine/endian.h>
58
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdivar.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbhist.h>
64 #include <dev/usb/usb_mem.h>
65 #include <dev/usb/usb_quirks.h>
66
67 #include <dev/usb/xhcireg.h>
68 #include <dev/usb/xhcivar.h>
69 #include <dev/usb/usbroothub.h>
70
71
72 #ifdef USB_DEBUG
73 #ifndef XHCI_DEBUG
74 #define xhcidebug 0
75 #else /* !XHCI_DEBUG */
76 static int xhcidebug = 0;
77
78 SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup")
79 {
80 int err;
81 const struct sysctlnode *rnode;
82 const struct sysctlnode *cnode;
83
84 err = sysctl_createv(clog, 0, NULL, &rnode,
85 CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci",
86 SYSCTL_DESCR("xhci global controls"),
87 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
88
89 if (err)
90 goto fail;
91
92 /* control debugging printfs */
93 err = sysctl_createv(clog, 0, &rnode, &cnode,
94 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
95 "debug", SYSCTL_DESCR("Enable debugging output"),
96 NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL);
97 if (err)
98 goto fail;
99
100 return;
101 fail:
102 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
103 }
104
105 #endif /* !XHCI_DEBUG */
106 #endif /* USB_DEBUG */
107
108 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D)
109 #define XHCIHIST_FUNC() USBHIST_FUNC()
110 #define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug)
111
112 #define XHCI_DCI_SLOT 0
113 #define XHCI_DCI_EP_CONTROL 1
114
115 #define XHCI_ICI_INPUT_CONTROL 0
116
117 struct xhci_pipe {
118 struct usbd_pipe xp_pipe;
119 struct usb_task xp_async_task;
120 };
121
122 #define XHCI_COMMAND_RING_TRBS 256
123 #define XHCI_EVENT_RING_TRBS 256
124 #define XHCI_EVENT_RING_SEGMENTS 1
125 #define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT
126
127 static usbd_status xhci_open(struct usbd_pipe *);
128 static void xhci_close_pipe(struct usbd_pipe *);
129 static int xhci_intr1(struct xhci_softc * const);
130 static void xhci_softintr(void *);
131 static void xhci_poll(struct usbd_bus *);
132 static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int);
133 static void xhci_freex(struct usbd_bus *, struct usbd_xfer *);
134 static void xhci_get_lock(struct usbd_bus *, kmutex_t **);
135 static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int,
136 struct usbd_port *);
137 static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
138 void *, int);
139
140 static usbd_status xhci_configure_endpoint(struct usbd_pipe *);
141 //static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *);
142 static usbd_status xhci_reset_endpoint(struct usbd_pipe *);
143 static usbd_status xhci_stop_endpoint(struct usbd_pipe *);
144
145 static void xhci_host_dequeue(struct xhci_ring * const);
146 static usbd_status xhci_set_dequeue(struct usbd_pipe *);
147
148 static usbd_status xhci_do_command(struct xhci_softc * const,
149 struct xhci_trb * const, int);
150 static usbd_status xhci_do_command_locked(struct xhci_softc * const,
151 struct xhci_trb * const, int);
152 static usbd_status xhci_init_slot(struct usbd_device *, uint32_t);
153 static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *, int, int);
154 static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool);
155 static usbd_status xhci_enable_slot(struct xhci_softc * const,
156 uint8_t * const);
157 static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t);
158 static usbd_status xhci_address_device(struct xhci_softc * const,
159 uint64_t, uint8_t, bool);
160 static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int);
161 static usbd_status xhci_update_ep0_mps(struct xhci_softc * const,
162 struct xhci_slot * const, u_int);
163 static usbd_status xhci_ring_init(struct xhci_softc * const,
164 struct xhci_ring * const, size_t, size_t);
165 static void xhci_ring_free(struct xhci_softc * const, struct xhci_ring * const);
166
167 static void xhci_setup_ctx(struct usbd_pipe *);
168 static void xhci_setup_route(struct usbd_pipe *, uint32_t *);
169 static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *);
170 static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *);
171 static uint32_t xhci_bival2ival(uint32_t, uint32_t);
172
173 static void xhci_noop(struct usbd_pipe *);
174
175 static usbd_status xhci_root_intr_transfer(struct usbd_xfer *);
176 static usbd_status xhci_root_intr_start(struct usbd_xfer *);
177 static void xhci_root_intr_abort(struct usbd_xfer *);
178 static void xhci_root_intr_close(struct usbd_pipe *);
179 static void xhci_root_intr_done(struct usbd_xfer *);
180
181 static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *);
182 static usbd_status xhci_device_ctrl_start(struct usbd_xfer *);
183 static void xhci_device_ctrl_abort(struct usbd_xfer *);
184 static void xhci_device_ctrl_close(struct usbd_pipe *);
185 static void xhci_device_ctrl_done(struct usbd_xfer *);
186
187 static usbd_status xhci_device_intr_transfer(struct usbd_xfer *);
188 static usbd_status xhci_device_intr_start(struct usbd_xfer *);
189 static void xhci_device_intr_abort(struct usbd_xfer *);
190 static void xhci_device_intr_close(struct usbd_pipe *);
191 static void xhci_device_intr_done(struct usbd_xfer *);
192
193 static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *);
194 static usbd_status xhci_device_bulk_start(struct usbd_xfer *);
195 static void xhci_device_bulk_abort(struct usbd_xfer *);
196 static void xhci_device_bulk_close(struct usbd_pipe *);
197 static void xhci_device_bulk_done(struct usbd_xfer *);
198
199 static void xhci_timeout(void *);
200 static void xhci_timeout_task(void *);
201
202 static const struct usbd_bus_methods xhci_bus_methods = {
203 .ubm_open = xhci_open,
204 .ubm_softint = xhci_softintr,
205 .ubm_dopoll = xhci_poll,
206 .ubm_allocx = xhci_allocx,
207 .ubm_freex = xhci_freex,
208 .ubm_getlock = xhci_get_lock,
209 .ubm_newdev = xhci_new_device,
210 .ubm_rhctrl = xhci_roothub_ctrl,
211 };
212
213 static const struct usbd_pipe_methods xhci_root_intr_methods = {
214 .upm_transfer = xhci_root_intr_transfer,
215 .upm_start = xhci_root_intr_start,
216 .upm_abort = xhci_root_intr_abort,
217 .upm_close = xhci_root_intr_close,
218 .upm_cleartoggle = xhci_noop,
219 .upm_done = xhci_root_intr_done,
220 };
221
222
223 static const struct usbd_pipe_methods xhci_device_ctrl_methods = {
224 .upm_transfer = xhci_device_ctrl_transfer,
225 .upm_start = xhci_device_ctrl_start,
226 .upm_abort = xhci_device_ctrl_abort,
227 .upm_close = xhci_device_ctrl_close,
228 .upm_cleartoggle = xhci_noop,
229 .upm_done = xhci_device_ctrl_done,
230 };
231
232 static const struct usbd_pipe_methods xhci_device_isoc_methods = {
233 .upm_cleartoggle = xhci_noop,
234 };
235
236 static const struct usbd_pipe_methods xhci_device_bulk_methods = {
237 .upm_transfer = xhci_device_bulk_transfer,
238 .upm_start = xhci_device_bulk_start,
239 .upm_abort = xhci_device_bulk_abort,
240 .upm_close = xhci_device_bulk_close,
241 .upm_cleartoggle = xhci_noop,
242 .upm_done = xhci_device_bulk_done,
243 };
244
245 static const struct usbd_pipe_methods xhci_device_intr_methods = {
246 .upm_transfer = xhci_device_intr_transfer,
247 .upm_start = xhci_device_intr_start,
248 .upm_abort = xhci_device_intr_abort,
249 .upm_close = xhci_device_intr_close,
250 .upm_cleartoggle = xhci_noop,
251 .upm_done = xhci_device_intr_done,
252 };
253
254 static inline uint32_t
255 xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset)
256 {
257 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
258 }
259
260 static inline uint32_t
261 xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset)
262 {
263 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset);
264 }
265
266 static inline void
267 xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset,
268 uint32_t value)
269 {
270 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value);
271 }
272
273 #if 0 /* unused */
274 static inline void
275 xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset,
276 uint32_t value)
277 {
278 bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value);
279 }
280 #endif /* unused */
281
282 static inline uint32_t
283 xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset)
284 {
285 return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset);
286 }
287
288 static inline uint32_t
289 xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset)
290 {
291 return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
292 }
293
294 static inline void
295 xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset,
296 uint32_t value)
297 {
298 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
299 }
300
301 static inline uint64_t
302 xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset)
303 {
304 uint64_t value;
305
306 if (sc->sc_ac64) {
307 #ifdef XHCI_USE_BUS_SPACE_8
308 value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset);
309 #else
310 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
311 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh,
312 offset + 4) << 32;
313 #endif
314 } else {
315 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
316 }
317
318 return value;
319 }
320
321 static inline void
322 xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset,
323 uint64_t value)
324 {
325 if (sc->sc_ac64) {
326 #ifdef XHCI_USE_BUS_SPACE_8
327 bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value);
328 #else
329 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0,
330 (value >> 0) & 0xffffffff);
331 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4,
332 (value >> 32) & 0xffffffff);
333 #endif
334 } else {
335 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
336 }
337 }
338
339 static inline uint32_t
340 xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset)
341 {
342 return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
343 }
344
345 static inline void
346 xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset,
347 uint32_t value)
348 {
349 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
350 }
351
352 #if 0 /* unused */
353 static inline uint64_t
354 xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset)
355 {
356 uint64_t value;
357
358 if (sc->sc_ac64) {
359 #ifdef XHCI_USE_BUS_SPACE_8
360 value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset);
361 #else
362 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
363 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh,
364 offset + 4) << 32;
365 #endif
366 } else {
367 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
368 }
369
370 return value;
371 }
372 #endif /* unused */
373
374 static inline void
375 xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset,
376 uint64_t value)
377 {
378 if (sc->sc_ac64) {
379 #ifdef XHCI_USE_BUS_SPACE_8
380 bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value);
381 #else
382 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0,
383 (value >> 0) & 0xffffffff);
384 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4,
385 (value >> 32) & 0xffffffff);
386 #endif
387 } else {
388 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
389 }
390 }
391
392 #if 0 /* unused */
393 static inline uint32_t
394 xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset)
395 {
396 return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset);
397 }
398 #endif /* unused */
399
400 static inline void
401 xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset,
402 uint32_t value)
403 {
404 bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value);
405 }
406
407 /* --- */
408
409 static inline uint8_t
410 xhci_ep_get_type(usb_endpoint_descriptor_t * const ed)
411 {
412 u_int eptype = 0;
413
414 switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
415 case UE_CONTROL:
416 eptype = 0x0;
417 break;
418 case UE_ISOCHRONOUS:
419 eptype = 0x1;
420 break;
421 case UE_BULK:
422 eptype = 0x2;
423 break;
424 case UE_INTERRUPT:
425 eptype = 0x3;
426 break;
427 }
428
429 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
430 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
431 return eptype | 0x4;
432 else
433 return eptype;
434 }
435
436 static u_int
437 xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed)
438 {
439 /* xHCI 1.0 section 4.5.1 */
440 u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress);
441 u_int in = 0;
442
443 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
444 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
445 in = 1;
446
447 return epaddr * 2 + in;
448 }
449
450 static inline u_int
451 xhci_dci_to_ici(const u_int i)
452 {
453 return i + 1;
454 }
455
456 static inline void *
457 xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs,
458 const u_int dci)
459 {
460 return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
461 }
462
463 #if 0 /* unused */
464 static inline bus_addr_t
465 xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs,
466 const u_int dci)
467 {
468 return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
469 }
470 #endif /* unused */
471
472 static inline void *
473 xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs,
474 const u_int ici)
475 {
476 return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
477 }
478
479 static inline bus_addr_t
480 xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs,
481 const u_int ici)
482 {
483 return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
484 }
485
486 static inline struct xhci_trb *
487 xhci_ring_trbv(struct xhci_ring * const xr, u_int idx)
488 {
489 return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
490 }
491
492 static inline bus_addr_t
493 xhci_ring_trbp(struct xhci_ring * const xr, u_int idx)
494 {
495 return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
496 }
497
498 static inline void
499 xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status,
500 uint32_t control)
501 {
502 trb->trb_0 = htole64(parameter);
503 trb->trb_2 = htole32(status);
504 trb->trb_3 = htole32(control);
505 }
506
507 static int
508 xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx)
509 {
510 /* base address of TRBs */
511 bus_addr_t trbp = xhci_ring_trbp(xr, 0);
512
513 /* trb_0 range sanity check */
514 if (trb_0 == 0 || trb_0 < trbp ||
515 (trb_0 - trbp) % sizeof(struct xhci_trb) != 0 ||
516 (trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) {
517 return 1;
518 }
519 *idx = (trb_0 - trbp) / sizeof(struct xhci_trb);
520 return 0;
521 }
522
523 static unsigned int
524 xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs,
525 u_int dci)
526 {
527 uint32_t *cp;
528
529 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
530 cp = xhci_slot_get_dcv(sc, xs, dci);
531 return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0]));
532 }
533
534 static inline unsigned int
535 xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport)
536 {
537 const unsigned int port = ctlrport - 1;
538 const uint8_t bit = __BIT(port % NBBY);
539
540 return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit);
541 }
542
543 /*
544 * Return the roothub port for a controller port. Both are 1..n.
545 */
546 static inline unsigned int
547 xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport)
548 {
549
550 return sc->sc_ctlrportmap[ctrlport - 1];
551 }
552
553 /*
554 * Return the controller port for a bus roothub port. Both are 1..n.
555 */
556 static inline unsigned int
557 xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn,
558 unsigned int rhport)
559 {
560
561 return sc->sc_rhportmap[bn][rhport - 1];
562 }
563
564 /* --- */
565
566 void
567 xhci_childdet(device_t self, device_t child)
568 {
569 struct xhci_softc * const sc = device_private(self);
570
571 KASSERT(sc->sc_child == child);
572 if (child == sc->sc_child)
573 sc->sc_child = NULL;
574 }
575
576 int
577 xhci_detach(struct xhci_softc *sc, int flags)
578 {
579 int rv = 0;
580
581 if (sc->sc_child2 != NULL) {
582 rv = config_detach(sc->sc_child2, flags);
583 if (rv != 0)
584 return rv;
585 }
586
587 if (sc->sc_child != NULL) {
588 rv = config_detach(sc->sc_child, flags);
589 if (rv != 0)
590 return rv;
591 }
592
593 /* XXX unconfigure/free slots */
594
595 /* verify: */
596 xhci_rt_write_4(sc, XHCI_IMAN(0), 0);
597 xhci_op_write_4(sc, XHCI_USBCMD, 0);
598 /* do we need to wait for stop? */
599
600 xhci_op_write_8(sc, XHCI_CRCR, 0);
601 xhci_ring_free(sc, &sc->sc_cr);
602 cv_destroy(&sc->sc_command_cv);
603 cv_destroy(&sc->sc_cmdbusy_cv);
604
605 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0);
606 xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0);
607 xhci_rt_write_8(sc, XHCI_ERDP(0), 0|XHCI_ERDP_LO_BUSY);
608 xhci_ring_free(sc, &sc->sc_er);
609
610 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
611
612 xhci_op_write_8(sc, XHCI_DCBAAP, 0);
613 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
614
615 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots);
616
617 kmem_free(sc->sc_ctlrportbus,
618 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY));
619 kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int));
620
621 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
622 kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int));
623 }
624
625 mutex_destroy(&sc->sc_lock);
626 mutex_destroy(&sc->sc_intr_lock);
627
628 pool_cache_destroy(sc->sc_xferpool);
629
630 return rv;
631 }
632
633 int
634 xhci_activate(device_t self, enum devact act)
635 {
636 struct xhci_softc * const sc = device_private(self);
637
638 switch (act) {
639 case DVACT_DEACTIVATE:
640 sc->sc_dying = true;
641 return 0;
642 default:
643 return EOPNOTSUPP;
644 }
645 }
646
647 bool
648 xhci_suspend(device_t dv, const pmf_qual_t *qual)
649 {
650 return false;
651 }
652
653 bool
654 xhci_resume(device_t dv, const pmf_qual_t *qual)
655 {
656 return false;
657 }
658
659 bool
660 xhci_shutdown(device_t self, int flags)
661 {
662 return false;
663 }
664
665 static int
666 xhci_hc_reset(struct xhci_softc * const sc)
667 {
668 uint32_t usbcmd, usbsts;
669 int i;
670
671 /* Check controller not ready */
672 for (i = 0; i < XHCI_WAIT_CNR; i++) {
673 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
674 if ((usbsts & XHCI_STS_CNR) == 0)
675 break;
676 usb_delay_ms(&sc->sc_bus, 1);
677 }
678 if (i >= XHCI_WAIT_CNR) {
679 aprint_error_dev(sc->sc_dev, "controller not ready timeout\n");
680 return EIO;
681 }
682
683 /* Halt controller */
684 usbcmd = 0;
685 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
686 usb_delay_ms(&sc->sc_bus, 1);
687
688 /* Reset controller */
689 usbcmd = XHCI_CMD_HCRST;
690 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
691 for (i = 0; i < XHCI_WAIT_HCRST; i++) {
692 usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
693 if ((usbcmd & XHCI_CMD_HCRST) == 0)
694 break;
695 usb_delay_ms(&sc->sc_bus, 1);
696 }
697 if (i >= XHCI_WAIT_HCRST) {
698 aprint_error_dev(sc->sc_dev, "host controller reset timeout\n");
699 return EIO;
700 }
701
702 /* Check controller not ready */
703 for (i = 0; i < XHCI_WAIT_CNR; i++) {
704 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
705 if ((usbsts & XHCI_STS_CNR) == 0)
706 break;
707 usb_delay_ms(&sc->sc_bus, 1);
708 }
709 if (i >= XHCI_WAIT_CNR) {
710 aprint_error_dev(sc->sc_dev,
711 "controller not ready timeout after reset\n");
712 return EIO;
713 }
714
715 return 0;
716 }
717
718
719 static void
720 hexdump(const char *msg, const void *base, size_t len)
721 {
722 #if 0
723 size_t cnt;
724 const uint32_t *p;
725 extern paddr_t vtophys(vaddr_t);
726
727 p = base;
728 cnt = 0;
729
730 printf("*** %s (%zu bytes @ %p %p)\n", msg, len, base,
731 (void *)vtophys((vaddr_t)base));
732
733 while (cnt < len) {
734 if (cnt % 16 == 0)
735 printf("%p: ", p);
736 else if (cnt % 8 == 0)
737 printf(" |");
738 printf(" %08x", *p++);
739 cnt += 4;
740 if (cnt % 16 == 0)
741 printf("\n");
742 }
743 if (cnt % 16 != 0)
744 printf("\n");
745 #endif
746 }
747
748 /* 7.2 xHCI Support Protocol Capability */
749 static void
750 xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp)
751 {
752 /* XXX Cache this lot */
753
754 const uint32_t w0 = xhci_read_4(sc, ecp);
755 const uint32_t w4 = xhci_read_4(sc, ecp + 4);
756 const uint32_t w8 = xhci_read_4(sc, ecp + 8);
757 const uint32_t wc = xhci_read_4(sc, ecp + 0xc);
758
759 aprint_debug_dev(sc->sc_dev,
760 " SP: %08x %08x %08x %08x\n", w0, w4, w8, wc);
761
762 if (w4 != XHCI_XECP_USBID)
763 return;
764
765 const int major = XHCI_XECP_SP_W0_MAJOR(w0);
766 const int minor = XHCI_XECP_SP_W0_MINOR(w0);
767 const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8);
768 const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8);
769
770 const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16));
771 switch (mm) {
772 case 0x0200:
773 case 0x0300:
774 case 0x0301:
775 aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n",
776 major == 3 ? "ss" : "hs", cpo, cpo + cpc -1);
777 break;
778 default:
779 aprint_debug_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n",
780 major, minor);
781 return;
782 }
783
784 const size_t bus = (major == 3) ? 0 : 1;
785
786 /* Index arrays with 0..n-1 where ports are numbered 1..n */
787 for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) {
788 if (sc->sc_ctlrportmap[cp] != 0) {
789 aprint_error_dev(sc->sc_dev, "contoller port %zu "
790 "already assigned", cp);
791 continue;
792 }
793
794 sc->sc_ctlrportbus[cp / NBBY] |=
795 bus == 0 ? 0 : __BIT(cp % NBBY);
796
797 const size_t rhp = sc->sc_rhportcount[bus]++;
798
799 KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0,
800 "bus %zu rhp %zu is %d", bus, rhp,
801 sc->sc_rhportmap[bus][rhp]);
802
803 sc->sc_rhportmap[bus][rhp] = cp + 1;
804 sc->sc_ctlrportmap[cp] = rhp + 1;
805 }
806 }
807
808 /* Process extended capabilities */
809 static void
810 xhci_ecp(struct xhci_softc *sc, uint32_t hcc)
811 {
812 XHCIHIST_FUNC(); XHCIHIST_CALLED();
813
814 bus_size_t ecp = XHCI_HCC_XECP(hcc) * 4;
815 while (ecp != 0) {
816 uint32_t ecr = xhci_read_4(sc, ecp);
817 aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr);
818 switch (XHCI_XECP_ID(ecr)) {
819 case XHCI_ID_PROTOCOLS: {
820 xhci_id_protocols(sc, ecp);
821 break;
822 }
823 case XHCI_ID_USB_LEGACY: {
824 uint8_t bios_sem;
825
826 /* Take host controller ownership from BIOS */
827 bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM);
828 if (bios_sem) {
829 /* sets xHCI to be owned by OS */
830 xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1);
831 aprint_debug_dev(sc->sc_dev,
832 "waiting for BIOS to give up control\n");
833 for (int i = 0; i < 5000; i++) {
834 bios_sem = xhci_read_1(sc, ecp +
835 XHCI_XECP_BIOS_SEM);
836 if (bios_sem == 0)
837 break;
838 DELAY(1000);
839 }
840 if (bios_sem) {
841 aprint_error_dev(sc->sc_dev,
842 "timed out waiting for BIOS\n");
843 }
844 }
845 break;
846 }
847 default:
848 break;
849 }
850 ecr = xhci_read_4(sc, ecp);
851 if (XHCI_XECP_NEXT(ecr) == 0) {
852 ecp = 0;
853 } else {
854 ecp += XHCI_XECP_NEXT(ecr) * 4;
855 }
856 }
857 }
858
859 #define XHCI_HCCPREV1_BITS \
860 "\177\020" /* New bitmask */ \
861 "f\020\020XECP\0" \
862 "f\014\4MAXPSA\0" \
863 "b\013CFC\0" \
864 "b\012SEC\0" \
865 "b\011SBD\0" \
866 "b\010FSE\0" \
867 "b\7NSS\0" \
868 "b\6LTC\0" \
869 "b\5LHRC\0" \
870 "b\4PIND\0" \
871 "b\3PPC\0" \
872 "b\2CZC\0" \
873 "b\1BNC\0" \
874 "b\0AC64\0" \
875 "\0"
876 #define XHCI_HCCV1_x_BITS \
877 "\177\020" /* New bitmask */ \
878 "f\020\020XECP\0" \
879 "f\014\4MAXPSA\0" \
880 "b\013CFC\0" \
881 "b\012SEC\0" \
882 "b\011SPC\0" \
883 "b\010PAE\0" \
884 "b\7NSS\0" \
885 "b\6LTC\0" \
886 "b\5LHRC\0" \
887 "b\4PIND\0" \
888 "b\3PPC\0" \
889 "b\2CSZ\0" \
890 "b\1BNC\0" \
891 "b\0AC64\0" \
892 "\0"
893
894 int
895 xhci_init(struct xhci_softc *sc)
896 {
897 bus_size_t bsz;
898 uint32_t cap, hcs1, hcs2, hcs3, hcc, dboff, rtsoff;
899 uint32_t pagesize, config;
900 int i = 0;
901 uint16_t hciversion;
902 uint8_t caplength;
903
904 XHCIHIST_FUNC(); XHCIHIST_CALLED();
905
906 /* Set up the bus struct for the usb 3 and usb 2 buses */
907 sc->sc_bus.ub_methods = &xhci_bus_methods;
908 sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe);
909 sc->sc_bus.ub_revision = USBREV_3_0;
910 sc->sc_bus.ub_usedma = true;
911 sc->sc_bus.ub_hcpriv = sc;
912
913 sc->sc_bus2.ub_methods = &xhci_bus_methods;
914 sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe);
915 sc->sc_bus2.ub_revision = USBREV_2_0;
916 sc->sc_bus2.ub_usedma = true;
917 sc->sc_bus2.ub_hcpriv = sc;
918 sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag;
919
920 cap = xhci_read_4(sc, XHCI_CAPLENGTH);
921 caplength = XHCI_CAP_CAPLENGTH(cap);
922 hciversion = XHCI_CAP_HCIVERSION(cap);
923
924 if (hciversion < XHCI_HCIVERSION_0_96 ||
925 hciversion > XHCI_HCIVERSION_1_0) {
926 aprint_normal_dev(sc->sc_dev,
927 "xHCI version %x.%x not known to be supported\n",
928 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
929 } else {
930 aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n",
931 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
932 }
933
934 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength,
935 &sc->sc_cbh) != 0) {
936 aprint_error_dev(sc->sc_dev, "capability subregion failure\n");
937 return ENOMEM;
938 }
939
940 hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1);
941 sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1);
942 sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1);
943 sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1);
944 hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2);
945 hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3);
946 aprint_debug_dev(sc->sc_dev,
947 "hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3);
948
949 hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS);
950 sc->sc_ac64 = XHCI_HCC_AC64(hcc);
951 sc->sc_ctxsz = XHCI_HCC_CSZ(hcc) ? 64 : 32;
952
953 char sbuf[128];
954 if (hciversion < XHCI_HCIVERSION_1_0)
955 snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, hcc);
956 else
957 snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, hcc);
958 aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf);
959 aprint_debug_dev(sc->sc_dev, "xECP %x\n", XHCI_HCC_XECP(hcc) * 4);
960
961 /* default all ports to bus 0, i.e. usb 3 */
962 sc->sc_ctlrportbus = kmem_zalloc(
963 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP);
964 sc->sc_ctlrportmap = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
965
966 /* controller port to bus roothub port map */
967 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
968 sc->sc_rhportmap[j] = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
969 }
970
971 /*
972 * Process all Extended Capabilities
973 */
974 xhci_ecp(sc, hcc);
975
976 bsz = XHCI_PORTSC(sc->sc_maxports);
977 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz,
978 &sc->sc_obh) != 0) {
979 aprint_error_dev(sc->sc_dev, "operational subregion failure\n");
980 return ENOMEM;
981 }
982
983 dboff = xhci_cap_read_4(sc, XHCI_DBOFF);
984 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff,
985 sc->sc_maxslots * 4, &sc->sc_dbh) != 0) {
986 aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n");
987 return ENOMEM;
988 }
989
990 rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF);
991 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff,
992 sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) {
993 aprint_error_dev(sc->sc_dev, "runtime subregion failure\n");
994 return ENOMEM;
995 }
996
997 int rv;
998 rv = xhci_hc_reset(sc);
999 if (rv != 0) {
1000 return rv;
1001 }
1002
1003 if (sc->sc_vendor_init)
1004 sc->sc_vendor_init(sc);
1005
1006 pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE);
1007 aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize);
1008 pagesize = ffs(pagesize);
1009 if (pagesize == 0) {
1010 aprint_error_dev(sc->sc_dev, "pagesize is 0\n");
1011 return EIO;
1012 }
1013 sc->sc_pgsz = 1 << (12 + (pagesize - 1));
1014 aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz);
1015 aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n",
1016 (uint32_t)sc->sc_maxslots);
1017 aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports);
1018
1019 usbd_status err;
1020
1021 sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2);
1022 aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf);
1023 if (sc->sc_maxspbuf != 0) {
1024 err = usb_allocmem(&sc->sc_bus,
1025 sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t),
1026 &sc->sc_spbufarray_dma);
1027 if (err) {
1028 aprint_error_dev(sc->sc_dev,
1029 "spbufarray init fail, err %d\n", err);
1030 return ENOMEM;
1031 }
1032
1033 sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) *
1034 sc->sc_maxspbuf, KM_SLEEP);
1035 uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0);
1036 for (i = 0; i < sc->sc_maxspbuf; i++) {
1037 usb_dma_t * const dma = &sc->sc_spbuf_dma[i];
1038 /* allocate contexts */
1039 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz,
1040 sc->sc_pgsz, dma);
1041 if (err) {
1042 aprint_error_dev(sc->sc_dev,
1043 "spbufarray_dma init fail, err %d\n", err);
1044 rv = ENOMEM;
1045 goto bad1;
1046 }
1047 spbufarray[i] = htole64(DMAADDR(dma, 0));
1048 usb_syncmem(dma, 0, sc->sc_pgsz,
1049 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1050 }
1051
1052 usb_syncmem(&sc->sc_spbufarray_dma, 0,
1053 sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE);
1054 }
1055
1056 config = xhci_op_read_4(sc, XHCI_CONFIG);
1057 config &= ~0xFF;
1058 config |= sc->sc_maxslots & 0xFF;
1059 xhci_op_write_4(sc, XHCI_CONFIG, config);
1060
1061 err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS,
1062 XHCI_COMMAND_RING_SEGMENTS_ALIGN);
1063 if (err) {
1064 aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n",
1065 err);
1066 rv = ENOMEM;
1067 goto bad1;
1068 }
1069
1070 err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS,
1071 XHCI_EVENT_RING_SEGMENTS_ALIGN);
1072 if (err) {
1073 aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n",
1074 err);
1075 rv = ENOMEM;
1076 goto bad2;
1077 }
1078
1079 usb_dma_t *dma;
1080 size_t size;
1081 size_t align;
1082
1083 dma = &sc->sc_eventst_dma;
1084 size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE,
1085 XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN);
1086 KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size);
1087 align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN;
1088 err = usb_allocmem(&sc->sc_bus, size, align, dma);
1089 if (err) {
1090 aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n",
1091 err);
1092 rv = ENOMEM;
1093 goto bad3;
1094 }
1095
1096 memset(KERNADDR(dma, 0), 0, size);
1097 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1098 aprint_debug_dev(sc->sc_dev, "eventst: %016jx %p %zx\n",
1099 (uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0),
1100 KERNADDR(&sc->sc_eventst_dma, 0),
1101 sc->sc_eventst_dma.udma_block->size);
1102
1103 dma = &sc->sc_dcbaa_dma;
1104 size = (1 + sc->sc_maxslots) * sizeof(uint64_t);
1105 KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size);
1106 align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN;
1107 err = usb_allocmem(&sc->sc_bus, size, align, dma);
1108 if (err) {
1109 aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err);
1110 rv = ENOMEM;
1111 goto bad4;
1112 }
1113 aprint_debug_dev(sc->sc_dev, "dcbaa: %016jx %p %zx\n",
1114 (uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0),
1115 KERNADDR(&sc->sc_dcbaa_dma, 0),
1116 sc->sc_dcbaa_dma.udma_block->size);
1117
1118 memset(KERNADDR(dma, 0), 0, size);
1119 if (sc->sc_maxspbuf != 0) {
1120 /*
1121 * DCBA entry 0 hold the scratchbuf array pointer.
1122 */
1123 *(uint64_t *)KERNADDR(dma, 0) =
1124 htole64(DMAADDR(&sc->sc_spbufarray_dma, 0));
1125 }
1126 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1127
1128 sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots,
1129 KM_SLEEP);
1130 if (sc->sc_slots == NULL) {
1131 aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err);
1132 rv = ENOMEM;
1133 goto bad;
1134 }
1135
1136 sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0,
1137 "xhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
1138 if (sc->sc_xferpool == NULL) {
1139 aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n",
1140 err);
1141 rv = ENOMEM;
1142 goto bad;
1143 }
1144
1145 cv_init(&sc->sc_command_cv, "xhcicmd");
1146 cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq");
1147 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1148 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1149
1150 struct xhci_erste *erst;
1151 erst = KERNADDR(&sc->sc_eventst_dma, 0);
1152 erst[0].erste_0 = htole64(xhci_ring_trbp(&sc->sc_er, 0));
1153 erst[0].erste_2 = htole32(sc->sc_er.xr_ntrb);
1154 erst[0].erste_3 = htole32(0);
1155 usb_syncmem(&sc->sc_eventst_dma, 0,
1156 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE);
1157
1158 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS);
1159 xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0));
1160 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(&sc->sc_er, 0) |
1161 XHCI_ERDP_LO_BUSY);
1162 xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0));
1163 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(&sc->sc_cr, 0) |
1164 sc->sc_cr.xr_cs);
1165
1166 #if 0
1167 hexdump("eventst", KERNADDR(&sc->sc_eventst_dma, 0),
1168 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS);
1169 #endif
1170
1171 xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA);
1172 if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0)
1173 /* Intel xhci needs interrupt rate moderated. */
1174 xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP);
1175 else
1176 xhci_rt_write_4(sc, XHCI_IMOD(0), 0);
1177 aprint_debug_dev(sc->sc_dev, "current IMOD %u\n",
1178 xhci_rt_read_4(sc, XHCI_IMOD(0)));
1179
1180 xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS); /* Go! */
1181 aprint_debug_dev(sc->sc_dev, "USBCMD %08"PRIx32"\n",
1182 xhci_op_read_4(sc, XHCI_USBCMD));
1183
1184 return 0;
1185
1186 bad:
1187 if (sc->sc_xferpool) {
1188 pool_cache_destroy(sc->sc_xferpool);
1189 sc->sc_xferpool = NULL;
1190 }
1191
1192 if (sc->sc_slots) {
1193 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) *
1194 sc->sc_maxslots);
1195 sc->sc_slots = NULL;
1196 }
1197
1198 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
1199 bad4:
1200 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
1201 bad3:
1202 xhci_ring_free(sc, &sc->sc_er);
1203 bad2:
1204 xhci_ring_free(sc, &sc->sc_cr);
1205 i = sc->sc_maxspbuf;
1206 bad1:
1207 for (int j = 0; j < i; j++)
1208 usb_freemem(&sc->sc_bus, &sc->sc_spbuf_dma[j]);
1209 usb_freemem(&sc->sc_bus, &sc->sc_spbufarray_dma);
1210
1211 return rv;
1212 }
1213
1214 int
1215 xhci_intr(void *v)
1216 {
1217 struct xhci_softc * const sc = v;
1218 int ret = 0;
1219
1220 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1221
1222 if (sc == NULL)
1223 return 0;
1224
1225 mutex_spin_enter(&sc->sc_intr_lock);
1226
1227 if (sc->sc_dying || !device_has_power(sc->sc_dev))
1228 goto done;
1229
1230 /* If we get an interrupt while polling, then just ignore it. */
1231 if (sc->sc_bus.ub_usepolling) {
1232 #ifdef DIAGNOSTIC
1233 DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
1234 #endif
1235 goto done;
1236 }
1237
1238 ret = xhci_intr1(sc);
1239 done:
1240 mutex_spin_exit(&sc->sc_intr_lock);
1241 return ret;
1242 }
1243
1244 int
1245 xhci_intr1(struct xhci_softc * const sc)
1246 {
1247 uint32_t usbsts;
1248 uint32_t iman;
1249
1250 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1251
1252 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1253 DPRINTFN(16, "USBSTS %08x", usbsts, 0, 0, 0);
1254 #if 0
1255 if ((usbsts & (XHCI_STS_EINT|XHCI_STS_PCD)) == 0) {
1256 return 0;
1257 }
1258 #endif
1259 xhci_op_write_4(sc, XHCI_USBSTS,
1260 usbsts & (2|XHCI_STS_EINT|XHCI_STS_PCD)); /* XXX */
1261 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1262 DPRINTFN(16, "USBSTS %08x", usbsts, 0, 0, 0);
1263
1264 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1265 DPRINTFN(16, "IMAN0 %08x", iman, 0, 0, 0);
1266 iman |= XHCI_IMAN_INTR_PEND;
1267 xhci_rt_write_4(sc, XHCI_IMAN(0), iman);
1268 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1269 DPRINTFN(16, "IMAN0 %08x", iman, 0, 0, 0);
1270 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1271 DPRINTFN(16, "USBSTS %08x", usbsts, 0, 0, 0);
1272
1273 usb_schedsoftintr(&sc->sc_bus);
1274
1275 return 1;
1276 }
1277
1278 /*
1279 * 3 port speed types used in USB stack
1280 *
1281 * usbdi speed
1282 * definition: USB_SPEED_* in usb.h
1283 * They are used in struct usbd_device in USB stack.
1284 * ioctl interface uses these values too.
1285 * port_status speed
1286 * definition: UPS_*_SPEED in usb.h
1287 * They are used in usb_port_status_t and valid only for USB 2.0.
1288 * Speed value is always 0 for Super Speed or more, and dwExtPortStatus
1289 * of usb_port_status_ext_t indicates port speed.
1290 * Note that some 3.0 values overlap with 2.0 values.
1291 * (e.g. 0x200 means UPS_POER_POWER_SS in SS and
1292 * means UPS_LOW_SPEED in HS.)
1293 * port status returned from hub also uses these values.
1294 * On NetBSD UPS_OTHER_SPEED indicates port speed is super speed
1295 * or more.
1296 * xspeed:
1297 * definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1)
1298 * They are used in only slot context and PORTSC reg of xhci.
1299 * The difference between usbdi speed and xspeed is
1300 * that FS and LS values are swapped.
1301 */
1302
1303 /* convert usbdi speed to xspeed */
1304 static int
1305 xhci_speed2xspeed(int speed)
1306 {
1307 switch (speed) {
1308 case USB_SPEED_LOW: return 2;
1309 case USB_SPEED_FULL: return 1;
1310 default: return speed;
1311 }
1312 }
1313
1314 #if 0
1315 /* convert xspeed to usbdi speed */
1316 static int
1317 xhci_xspeed2speed(int xspeed)
1318 {
1319 switch (xspeed) {
1320 case 1: return USB_SPEED_FULL;
1321 case 2: return USB_SPEED_LOW;
1322 default: return xspeed;
1323 }
1324 }
1325 #endif
1326
1327 /* convert xspeed to port status speed */
1328 static int
1329 xhci_xspeed2psspeed(int xspeed)
1330 {
1331 switch (xspeed) {
1332 case 0: return 0;
1333 case 1: return UPS_FULL_SPEED;
1334 case 2: return UPS_LOW_SPEED;
1335 case 3: return UPS_HIGH_SPEED;
1336 default: return UPS_OTHER_SPEED;
1337 }
1338 }
1339
1340 /*
1341 * Construct input contexts and issue TRB to open pipe.
1342 */
1343 static usbd_status
1344 xhci_configure_endpoint(struct usbd_pipe *pipe)
1345 {
1346 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1347 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1348 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1349 struct xhci_trb trb;
1350 usbd_status err;
1351
1352 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1353 DPRINTFN(4, "slot %u dci %u epaddr 0x%02x attr 0x%02x",
1354 xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress,
1355 pipe->up_endpoint->ue_edesc->bmAttributes);
1356
1357 /* XXX ensure input context is available? */
1358
1359 memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz);
1360
1361 /* set up context */
1362 xhci_setup_ctx(pipe);
1363
1364 hexdump("input control context", xhci_slot_get_icv(sc, xs, 0),
1365 sc->sc_ctxsz * 1);
1366 hexdump("input endpoint context", xhci_slot_get_icv(sc, xs,
1367 xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1);
1368
1369 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1370 trb.trb_2 = 0;
1371 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1372 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1373
1374 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
1375
1376 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1377 hexdump("output context", xhci_slot_get_dcv(sc, xs, dci),
1378 sc->sc_ctxsz * 1);
1379
1380 return err;
1381 }
1382
1383 #if 0
1384 static usbd_status
1385 xhci_unconfigure_endpoint(struct usbd_pipe *pipe)
1386 {
1387 #ifdef USB_DEBUG
1388 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1389 #endif
1390
1391 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1392 DPRINTFN(4, "slot %u", xs->xs_idx, 0, 0, 0);
1393
1394 return USBD_NORMAL_COMPLETION;
1395 }
1396 #endif
1397
1398 /* 4.6.8, 6.4.3.7 */
1399 static usbd_status
1400 xhci_reset_endpoint_locked(struct usbd_pipe *pipe)
1401 {
1402 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1403 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1404 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1405 struct xhci_trb trb;
1406 usbd_status err;
1407
1408 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1409 DPRINTFN(4, "slot %u dci %u", xs->xs_idx, dci, 0, 0);
1410
1411 KASSERT(mutex_owned(&sc->sc_lock));
1412
1413 trb.trb_0 = 0;
1414 trb.trb_2 = 0;
1415 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1416 XHCI_TRB_3_EP_SET(dci) |
1417 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP);
1418
1419 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1420
1421 return err;
1422 }
1423
1424 static usbd_status
1425 xhci_reset_endpoint(struct usbd_pipe *pipe)
1426 {
1427 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1428
1429 mutex_enter(&sc->sc_lock);
1430 usbd_status ret = xhci_reset_endpoint_locked(pipe);
1431 mutex_exit(&sc->sc_lock);
1432
1433 return ret;
1434 }
1435
1436 /*
1437 * 4.6.9, 6.4.3.8
1438 * Stop execution of TDs on xfer ring.
1439 * Should be called with sc_lock held.
1440 */
1441 static usbd_status
1442 xhci_stop_endpoint(struct usbd_pipe *pipe)
1443 {
1444 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1445 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1446 struct xhci_trb trb;
1447 usbd_status err;
1448 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1449
1450 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1451 DPRINTFN(4, "slot %u dci %u", xs->xs_idx, dci, 0, 0);
1452
1453 KASSERT(mutex_owned(&sc->sc_lock));
1454
1455 trb.trb_0 = 0;
1456 trb.trb_2 = 0;
1457 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1458 XHCI_TRB_3_EP_SET(dci) |
1459 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP);
1460
1461 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1462
1463 return err;
1464 }
1465
1466 /*
1467 * Set TR Dequeue Pointer.
1468 * xHCI 1.1 4.6.10 6.4.3.9
1469 * Purge all of the TRBs on ring and reinitialize ring.
1470 * Set TR dequeue Pointr to 0 and Cycle State to 1.
1471 * EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE
1472 * error will be generated.
1473 */
1474 static usbd_status
1475 xhci_set_dequeue_locked(struct usbd_pipe *pipe)
1476 {
1477 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1478 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1479 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1480 struct xhci_ring * const xr = &xs->xs_ep[dci].xe_tr;
1481 struct xhci_trb trb;
1482 usbd_status err;
1483
1484 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1485 DPRINTFN(4, "slot %u dci %u", xs->xs_idx, dci, 0, 0);
1486
1487 KASSERT(mutex_owned(&sc->sc_lock));
1488
1489 xhci_host_dequeue(xr);
1490
1491 /* set DCS */
1492 trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */
1493 trb.trb_2 = 0;
1494 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1495 XHCI_TRB_3_EP_SET(dci) |
1496 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE);
1497
1498 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1499
1500 return err;
1501 }
1502
1503 static usbd_status
1504 xhci_set_dequeue(struct usbd_pipe *pipe)
1505 {
1506 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1507
1508 mutex_enter(&sc->sc_lock);
1509 usbd_status ret = xhci_set_dequeue_locked(pipe);
1510 mutex_exit(&sc->sc_lock);
1511
1512 return ret;
1513 }
1514
1515 /*
1516 * Open new pipe: called from usbd_setup_pipe_flags.
1517 * Fills methods of pipe.
1518 * If pipe is not for ep0, calls configure_endpoint.
1519 */
1520 static usbd_status
1521 xhci_open(struct usbd_pipe *pipe)
1522 {
1523 struct usbd_device * const dev = pipe->up_dev;
1524 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
1525 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
1526 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
1527
1528 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1529 DPRINTFN(1, "addr %d depth %d port %d speed %d", dev->ud_addr,
1530 dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed);
1531 DPRINTFN(1, " dci %u type 0x%02x epaddr 0x%02x attr 0x%02x",
1532 xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress,
1533 ed->bmAttributes);
1534 DPRINTFN(1, " mps %u ival %u", UGETW(ed->wMaxPacketSize), ed->bInterval,
1535 0, 0);
1536
1537 if (sc->sc_dying)
1538 return USBD_IOERROR;
1539
1540 /* Root Hub */
1541 if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) {
1542 switch (ed->bEndpointAddress) {
1543 case USB_CONTROL_ENDPOINT:
1544 pipe->up_methods = &roothub_ctrl_methods;
1545 break;
1546 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
1547 pipe->up_methods = &xhci_root_intr_methods;
1548 break;
1549 default:
1550 pipe->up_methods = NULL;
1551 DPRINTFN(0, "bad bEndpointAddress 0x%02x",
1552 ed->bEndpointAddress, 0, 0, 0);
1553 return USBD_INVAL;
1554 }
1555 return USBD_NORMAL_COMPLETION;
1556 }
1557
1558 switch (xfertype) {
1559 case UE_CONTROL:
1560 pipe->up_methods = &xhci_device_ctrl_methods;
1561 break;
1562 case UE_ISOCHRONOUS:
1563 pipe->up_methods = &xhci_device_isoc_methods;
1564 return USBD_INVAL;
1565 break;
1566 case UE_BULK:
1567 pipe->up_methods = &xhci_device_bulk_methods;
1568 break;
1569 case UE_INTERRUPT:
1570 pipe->up_methods = &xhci_device_intr_methods;
1571 break;
1572 default:
1573 return USBD_IOERROR;
1574 break;
1575 }
1576
1577 if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT)
1578 return xhci_configure_endpoint(pipe);
1579
1580 return USBD_NORMAL_COMPLETION;
1581 }
1582
1583 /*
1584 * Closes pipe, called from usbd_kill_pipe via close methods.
1585 * If the endpoint to be closed is ep0, disable_slot.
1586 * Should be called with sc_lock held.
1587 */
1588 static void
1589 xhci_close_pipe(struct usbd_pipe *pipe)
1590 {
1591 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1592 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1593 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
1594 const u_int dci = xhci_ep_get_dci(ed);
1595 struct xhci_trb trb;
1596 uint32_t *cp;
1597
1598 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1599
1600 if (sc->sc_dying)
1601 return;
1602
1603 /* xs is uninitialized before xhci_init_slot */
1604 if (xs == NULL || xs->xs_idx == 0)
1605 return;
1606
1607 DPRINTFN(4, "pipe %p slot %u dci %u", pipe, xs->xs_idx, dci, 0);
1608
1609 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
1610 KASSERT(mutex_owned(&sc->sc_lock));
1611
1612 if (pipe->up_dev->ud_depth == 0)
1613 return;
1614
1615 if (dci == XHCI_DCI_EP_CONTROL) {
1616 DPRINTFN(4, "closing ep0", 0, 0, 0, 0);
1617 xhci_disable_slot(sc, xs->xs_idx);
1618 return;
1619 }
1620
1621 if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED)
1622 (void)xhci_stop_endpoint(pipe);
1623
1624 /*
1625 * set appropriate bit to be dropped.
1626 * don't set DC bit to 1, otherwise all endpoints
1627 * would be deconfigured.
1628 */
1629 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
1630 cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci));
1631 cp[1] = htole32(0);
1632
1633 /* XXX should be most significant one, not dci? */
1634 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
1635 cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci));
1636
1637 /* configure ep context performs an implicit dequeue */
1638 xhci_host_dequeue(&xs->xs_ep[dci].xe_tr);
1639
1640 /* sync input contexts before they are read from memory */
1641 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
1642
1643 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1644 trb.trb_2 = 0;
1645 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1646 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1647
1648 (void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1649 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1650 }
1651
1652 /*
1653 * Abort transfer.
1654 * Should be called with sc_lock held.
1655 */
1656 static void
1657 xhci_abort_xfer(struct usbd_xfer *xfer, usbd_status status)
1658 {
1659 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
1660 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
1661 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
1662
1663 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1664 DPRINTFN(4, "xfer %p pipe %p status %d",
1665 xfer, xfer->ux_pipe, status, 0);
1666
1667 KASSERT(mutex_owned(&sc->sc_lock));
1668
1669 if (sc->sc_dying) {
1670 /* If we're dying, just do the software part. */
1671 DPRINTFN(4, "xfer %p dying %u", xfer, xfer->ux_status, 0, 0);
1672 xfer->ux_status = status;
1673 callout_stop(&xfer->ux_callout);
1674 usb_transfer_complete(xfer);
1675 return;
1676 }
1677
1678 /*
1679 * If an abort is already in progress then just wait for it to
1680 * complete and return.
1681 */
1682 if (xfer->ux_hcflags & UXFER_ABORTING) {
1683 DPRINTFN(4, "already aborting", 0, 0, 0, 0);
1684 #ifdef DIAGNOSTIC
1685 if (status == USBD_TIMEOUT)
1686 DPRINTFN(4, "TIMEOUT while aborting", 0, 0, 0, 0);
1687 #endif
1688 /* Override the status which might be USBD_TIMEOUT. */
1689 xfer->ux_status = status;
1690 DPRINTFN(4, "xfer %p waiting for abort to finish", xfer, 0, 0,
1691 0);
1692 xfer->ux_hcflags |= UXFER_ABORTWAIT;
1693 while (xfer->ux_hcflags & UXFER_ABORTING)
1694 cv_wait(&xfer->ux_hccv, &sc->sc_lock);
1695 return;
1696 }
1697 xfer->ux_hcflags |= UXFER_ABORTING;
1698
1699 /*
1700 * Step 1: Stop xfer timeout timer.
1701 */
1702 xfer->ux_status = status;
1703 callout_stop(&xfer->ux_callout);
1704
1705 /*
1706 * Step 2: Stop execution of TD on the ring.
1707 */
1708 switch (xhci_get_epstate(sc, xs, dci)) {
1709 case XHCI_EPSTATE_HALTED:
1710 (void)xhci_reset_endpoint_locked(xfer->ux_pipe);
1711 break;
1712 case XHCI_EPSTATE_STOPPED:
1713 break;
1714 default:
1715 (void)xhci_stop_endpoint(xfer->ux_pipe);
1716 break;
1717 }
1718 #ifdef DIAGNOSTIC
1719 uint32_t epst = xhci_get_epstate(sc, xs, dci);
1720 if (epst != XHCI_EPSTATE_STOPPED)
1721 DPRINTFN(4, "dci %u not stopped %u", dci, epst, 0, 0);
1722 #endif
1723
1724 /*
1725 * Step 3: Remove any vestiges of the xfer from the ring.
1726 */
1727 xhci_set_dequeue_locked(xfer->ux_pipe);
1728
1729 /*
1730 * Step 4: Notify completion to waiting xfers.
1731 */
1732 int wake = xfer->ux_hcflags & UXFER_ABORTWAIT;
1733 xfer->ux_hcflags &= ~(UXFER_ABORTING | UXFER_ABORTWAIT);
1734 usb_transfer_complete(xfer);
1735 if (wake) {
1736 cv_broadcast(&xfer->ux_hccv);
1737 }
1738 DPRINTFN(14, "end", 0, 0, 0, 0);
1739
1740 KASSERT(mutex_owned(&sc->sc_lock));
1741 }
1742
1743 static void
1744 xhci_host_dequeue(struct xhci_ring * const xr)
1745 {
1746 /* When dequeueing the controller, update our struct copy too */
1747 memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE);
1748 usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE,
1749 BUS_DMASYNC_PREWRITE);
1750 memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies));
1751
1752 xr->xr_ep = 0;
1753 xr->xr_cs = 1;
1754 }
1755
1756 /*
1757 * Recover STALLed endpoint.
1758 * xHCI 1.1 sect 4.10.2.1
1759 * Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove
1760 * all transfers on transfer ring.
1761 * These are done in thread context asynchronously.
1762 */
1763 static void
1764 xhci_clear_endpoint_stall_async_task(void *cookie)
1765 {
1766 struct usbd_xfer * const xfer = cookie;
1767 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
1768 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
1769 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
1770 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
1771
1772 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1773 DPRINTFN(4, "xfer %p slot %u dci %u", xfer, xs->xs_idx, dci, 0);
1774
1775 xhci_reset_endpoint(xfer->ux_pipe);
1776 xhci_set_dequeue(xfer->ux_pipe);
1777
1778 mutex_enter(&sc->sc_lock);
1779 tr->is_halted = false;
1780 usb_transfer_complete(xfer);
1781 mutex_exit(&sc->sc_lock);
1782 DPRINTFN(4, "ends", 0, 0, 0, 0);
1783 }
1784
1785 static usbd_status
1786 xhci_clear_endpoint_stall_async(struct usbd_xfer *xfer)
1787 {
1788 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
1789 struct xhci_pipe * const xp = (struct xhci_pipe *)xfer->ux_pipe;
1790
1791 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1792 DPRINTFN(4, "xfer %p", xfer, 0, 0, 0);
1793
1794 if (sc->sc_dying) {
1795 return USBD_IOERROR;
1796 }
1797
1798 usb_init_task(&xp->xp_async_task,
1799 xhci_clear_endpoint_stall_async_task, xfer, USB_TASKQ_MPSAFE);
1800 usb_add_task(xfer->ux_pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC);
1801 DPRINTFN(4, "ends", 0, 0, 0, 0);
1802
1803 return USBD_NORMAL_COMPLETION;
1804 }
1805
1806 /* Process roothub port status/change events and notify to uhub_intr. */
1807 static void
1808 xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport)
1809 {
1810 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1811 DPRINTFN(4, "xhci%d: port %u status change", device_unit(sc->sc_dev),
1812 ctlrport, 0, 0);
1813
1814 if (ctlrport > sc->sc_maxports)
1815 return;
1816
1817 const size_t bn = xhci_ctlrport2bus(sc, ctlrport);
1818 const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport);
1819 struct usbd_xfer * const xfer = sc->sc_intrxfer[bn];
1820
1821 DPRINTFN(4, "xhci%d: bus %d bp %u xfer %p status change",
1822 device_unit(sc->sc_dev), bn, rhp, xfer);
1823
1824 if (xfer == NULL)
1825 return;
1826
1827 uint8_t *p = xfer->ux_buf;
1828 memset(p, 0, xfer->ux_length);
1829 p[rhp / NBBY] |= 1 << (rhp % NBBY);
1830 xfer->ux_actlen = xfer->ux_length;
1831 xfer->ux_status = USBD_NORMAL_COMPLETION;
1832 usb_transfer_complete(xfer);
1833 }
1834
1835 /* Process Transfer Events */
1836 static void
1837 xhci_event_transfer(struct xhci_softc * const sc,
1838 const struct xhci_trb * const trb)
1839 {
1840 uint64_t trb_0;
1841 uint32_t trb_2, trb_3;
1842 uint8_t trbcode;
1843 u_int slot, dci;
1844 struct xhci_slot *xs;
1845 struct xhci_ring *xr;
1846 struct xhci_xfer *xx;
1847 struct usbd_xfer *xfer;
1848 usbd_status err;
1849
1850 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1851
1852 trb_0 = le64toh(trb->trb_0);
1853 trb_2 = le32toh(trb->trb_2);
1854 trb_3 = le32toh(trb->trb_3);
1855 trbcode = XHCI_TRB_2_ERROR_GET(trb_2);
1856 slot = XHCI_TRB_3_SLOT_GET(trb_3);
1857 dci = XHCI_TRB_3_EP_GET(trb_3);
1858 xs = &sc->sc_slots[slot];
1859 xr = &xs->xs_ep[dci].xe_tr;
1860
1861 /* sanity check */
1862 KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots,
1863 "invalid xs_idx %u slot %u", xs->xs_idx, slot);
1864
1865 int idx = 0;
1866 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
1867 if (xhci_trb_get_idx(xr, trb_0, &idx)) {
1868 DPRINTFN(0, "invalid trb_0 0x%"PRIx64, trb_0, 0, 0, 0);
1869 return;
1870 }
1871 xx = xr->xr_cookies[idx];
1872
1873 /* clear cookie of consumed TRB */
1874 xr->xr_cookies[idx] = NULL;
1875
1876 /*
1877 * xx is NULL if pipe is opened but xfer is not started.
1878 * It happens when stopping idle pipe.
1879 */
1880 if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) {
1881 DPRINTFN(1, "Ignore #%u: cookie %p cc %u dci %u",
1882 idx, xx, trbcode, dci);
1883 DPRINTFN(1, " orig TRB %"PRIx64" type %u", trb_0,
1884 XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)),
1885 0, 0);
1886 return;
1887 }
1888 } else {
1889 /* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */
1890 xx = (void *)(uintptr_t)(trb_0 & ~0x3);
1891 }
1892 /* XXX this may not happen */
1893 if (xx == NULL) {
1894 DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0);
1895 return;
1896 }
1897 xfer = &xx->xx_xfer;
1898 /* XXX this may happen when detaching */
1899 if (xfer == NULL) {
1900 DPRINTFN(1, "xx(%p)->xx_xfer is NULL trb_0 %#"PRIx64,
1901 xx, trb_0, 0, 0);
1902 return;
1903 }
1904 DPRINTFN(14, "xfer %p", xfer, 0, 0, 0);
1905 /* XXX I dunno why this happens */
1906 KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer);
1907
1908 if (!xfer->ux_pipe->up_repeat &&
1909 SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) {
1910 DPRINTFN(1, "xfer(%p)->pipe not queued", xfer, 0, 0, 0);
1911 return;
1912 }
1913
1914 /* 4.11.5.2 Event Data TRB */
1915 if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
1916 DPRINTFN(14, "transfer Event Data: 0x%016"PRIx64" 0x%08"PRIx32
1917 " %02x", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0);
1918 if ((trb_0 & 0x3) == 0x3) {
1919 xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2);
1920 }
1921 }
1922
1923 switch (trbcode) {
1924 case XHCI_TRB_ERROR_SHORT_PKT:
1925 case XHCI_TRB_ERROR_SUCCESS:
1926 /*
1927 * A ctrl transfer can generate two events if it has a Data
1928 * stage. A short data stage can be OK and should not
1929 * complete the transfer as the status stage needs to be
1930 * performed.
1931 *
1932 * Note: Data and Status stage events point at same xfer.
1933 * ux_actlen and ux_dmabuf will be passed to
1934 * usb_transfer_complete after the Status stage event.
1935 *
1936 * It can be distingished which stage generates the event:
1937 * + by checking least 3 bits of trb_0 if ED==1.
1938 * (see xhci_device_ctrl_start).
1939 * + by checking the type of original TRB if ED==0.
1940 *
1941 * In addition, intr, bulk, and isoc transfer currently
1942 * consists of single TD, so the "skip" is not needed.
1943 * ctrl xfer uses EVENT_DATA, and others do not.
1944 * Thus driver can switch the flow by checking ED bit.
1945 */
1946 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
1947 if (xfer->ux_actlen == 0)
1948 xfer->ux_actlen = xfer->ux_length -
1949 XHCI_TRB_2_REM_GET(trb_2);
1950 if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3))
1951 == XHCI_TRB_TYPE_DATA_STAGE) {
1952 return;
1953 }
1954 } else if ((trb_0 & 0x3) == 0x3) {
1955 return;
1956 }
1957 err = USBD_NORMAL_COMPLETION;
1958 break;
1959 case XHCI_TRB_ERROR_STOPPED:
1960 case XHCI_TRB_ERROR_LENGTH:
1961 case XHCI_TRB_ERROR_STOPPED_SHORT:
1962 /*
1963 * don't complete the transfer being aborted
1964 * as abort_xfer does instead.
1965 */
1966 if (xfer->ux_hcflags & UXFER_ABORTING) {
1967 DPRINTFN(14, "ignore aborting xfer %p", xfer, 0, 0, 0);
1968 return;
1969 }
1970 err = USBD_CANCELLED;
1971 break;
1972 case XHCI_TRB_ERROR_STALL:
1973 case XHCI_TRB_ERROR_BABBLE:
1974 DPRINTFN(1, "ERR %u slot %u dci %u", trbcode, slot, dci, 0);
1975 xr->is_halted = true;
1976 err = USBD_STALLED;
1977 /*
1978 * Stalled endpoints can be recoverd by issuing
1979 * command TRB TYPE_RESET_EP on xHCI instead of
1980 * issuing request CLEAR_FEATURE UF_ENDPOINT_HALT
1981 * on the endpoint. However, this function may be
1982 * called from softint context (e.g. from umass),
1983 * in that case driver gets KASSERT in cv_timedwait
1984 * in xhci_do_command.
1985 * To avoid this, this runs reset_endpoint and
1986 * usb_transfer_complete in usb task thread
1987 * asynchronously (and then umass issues clear
1988 * UF_ENDPOINT_HALT).
1989 */
1990 xfer->ux_status = err;
1991 callout_stop(&xfer->ux_callout);
1992 xhci_clear_endpoint_stall_async(xfer);
1993 return;
1994 default:
1995 DPRINTFN(1, "ERR %u slot %u dci %u", trbcode, slot, dci, 0);
1996 err = USBD_IOERROR;
1997 break;
1998 }
1999 xfer->ux_status = err;
2000
2001 if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
2002 if ((trb_0 & 0x3) == 0x0) {
2003 callout_stop(&xfer->ux_callout);
2004 usb_transfer_complete(xfer);
2005 }
2006 } else {
2007 callout_stop(&xfer->ux_callout);
2008 usb_transfer_complete(xfer);
2009 }
2010 }
2011
2012 /* Process Command complete events */
2013 static void
2014 xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb)
2015 {
2016 uint64_t trb_0;
2017 uint32_t trb_2, trb_3;
2018
2019 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2020
2021 KASSERT(mutex_owned(&sc->sc_lock));
2022
2023 trb_0 = le64toh(trb->trb_0);
2024 trb_2 = le32toh(trb->trb_2);
2025 trb_3 = le32toh(trb->trb_3);
2026
2027 if (trb_0 == sc->sc_command_addr) {
2028 sc->sc_resultpending = false;
2029
2030 sc->sc_result_trb.trb_0 = trb_0;
2031 sc->sc_result_trb.trb_2 = trb_2;
2032 sc->sc_result_trb.trb_3 = trb_3;
2033 if (XHCI_TRB_2_ERROR_GET(trb_2) !=
2034 XHCI_TRB_ERROR_SUCCESS) {
2035 DPRINTFN(1, "command completion "
2036 "failure: 0x%016"PRIx64" 0x%08"PRIx32" "
2037 "0x%08"PRIx32, trb_0, trb_2, trb_3, 0);
2038 }
2039 cv_signal(&sc->sc_command_cv);
2040 } else {
2041 DPRINTFN(1, "spurious event: %p 0x%016"PRIx64" "
2042 "0x%08"PRIx32" 0x%08"PRIx32, trb, trb_0,
2043 trb_2, trb_3);
2044 }
2045 }
2046
2047 /*
2048 * Process events.
2049 * called from xhci_softintr
2050 */
2051 static void
2052 xhci_handle_event(struct xhci_softc * const sc,
2053 const struct xhci_trb * const trb)
2054 {
2055 uint64_t trb_0;
2056 uint32_t trb_2, trb_3;
2057
2058 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2059
2060 trb_0 = le64toh(trb->trb_0);
2061 trb_2 = le32toh(trb->trb_2);
2062 trb_3 = le32toh(trb->trb_3);
2063
2064 DPRINTFN(14, "event: %p 0x%016"PRIx64" 0x%08"PRIx32" 0x%08"PRIx32,
2065 trb, trb_0, trb_2, trb_3);
2066
2067 /*
2068 * 4.11.3.1, 6.4.2.1
2069 * TRB Pointer is invalid for these completion codes.
2070 */
2071 switch (XHCI_TRB_2_ERROR_GET(trb_2)) {
2072 case XHCI_TRB_ERROR_RING_UNDERRUN:
2073 case XHCI_TRB_ERROR_RING_OVERRUN:
2074 case XHCI_TRB_ERROR_VF_RING_FULL:
2075 return;
2076 default:
2077 if (trb_0 == 0) {
2078 return;
2079 }
2080 break;
2081 }
2082
2083 switch (XHCI_TRB_3_TYPE_GET(trb_3)) {
2084 case XHCI_TRB_EVENT_TRANSFER:
2085 xhci_event_transfer(sc, trb);
2086 break;
2087 case XHCI_TRB_EVENT_CMD_COMPLETE:
2088 xhci_event_cmd(sc, trb);
2089 break;
2090 case XHCI_TRB_EVENT_PORT_STS_CHANGE:
2091 xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff));
2092 break;
2093 default:
2094 break;
2095 }
2096 }
2097
2098 static void
2099 xhci_softintr(void *v)
2100 {
2101 struct usbd_bus * const bus = v;
2102 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2103 struct xhci_ring * const er = &sc->sc_er;
2104 struct xhci_trb *trb;
2105 int i, j, k;
2106
2107 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2108
2109 KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
2110
2111 i = er->xr_ep;
2112 j = er->xr_cs;
2113
2114 DPRINTFN(16, "er: xr_ep %d xr_cs %d", i, j, 0, 0);
2115
2116 while (1) {
2117 usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE,
2118 BUS_DMASYNC_POSTREAD);
2119 trb = &er->xr_trb[i];
2120 k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
2121
2122 if (j != k)
2123 break;
2124
2125 xhci_handle_event(sc, trb);
2126
2127 i++;
2128 if (i == er->xr_ntrb) {
2129 i = 0;
2130 j ^= 1;
2131 }
2132 }
2133
2134 er->xr_ep = i;
2135 er->xr_cs = j;
2136
2137 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) |
2138 XHCI_ERDP_LO_BUSY);
2139
2140 DPRINTFN(16, "ends", 0, 0, 0, 0);
2141
2142 return;
2143 }
2144
2145 static void
2146 xhci_poll(struct usbd_bus *bus)
2147 {
2148 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2149
2150 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2151
2152 mutex_spin_enter(&sc->sc_intr_lock);
2153 xhci_intr1(sc);
2154 mutex_spin_exit(&sc->sc_intr_lock);
2155
2156 return;
2157 }
2158
2159 static struct usbd_xfer *
2160 xhci_allocx(struct usbd_bus *bus, unsigned int nframes)
2161 {
2162 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2163 struct usbd_xfer *xfer;
2164
2165 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2166
2167 xfer = pool_cache_get(sc->sc_xferpool, PR_NOWAIT);
2168 if (xfer != NULL) {
2169 memset(xfer, 0, sizeof(struct xhci_xfer));
2170 #ifdef DIAGNOSTIC
2171 xfer->ux_state = XFER_BUSY;
2172 #endif
2173 }
2174
2175 return xfer;
2176 }
2177
2178 static void
2179 xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
2180 {
2181 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2182
2183 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2184
2185 #ifdef DIAGNOSTIC
2186 if (xfer->ux_state != XFER_BUSY) {
2187 DPRINTFN(0, "xfer=%p not busy, 0x%08x",
2188 xfer, xfer->ux_state, 0, 0);
2189 }
2190 xfer->ux_state = XFER_FREE;
2191 #endif
2192 pool_cache_put(sc->sc_xferpool, xfer);
2193 }
2194
2195 static void
2196 xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
2197 {
2198 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2199
2200 *lock = &sc->sc_lock;
2201 }
2202
2203 extern uint32_t usb_cookie_no;
2204
2205 /*
2206 * xHCI 4.3
2207 * Called when uhub_explore finds a new device (via usbd_new_device).
2208 * Port initialization and speed detection (4.3.1) are already done in uhub.c.
2209 * This function does:
2210 * Allocate and construct dev structure of default endpoint (ep0).
2211 * Allocate and open pipe of ep0.
2212 * Enable slot and initialize slot context.
2213 * Set Address.
2214 * Read initial device descriptor.
2215 * Determine initial MaxPacketSize (mps) by speed.
2216 * Read full device descriptor.
2217 * Register this device.
2218 * Finally state of device transitions ADDRESSED.
2219 */
2220 static usbd_status
2221 xhci_new_device(device_t parent, struct usbd_bus *bus, int depth,
2222 int speed, int port, struct usbd_port *up)
2223 {
2224 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2225 struct usbd_device *dev;
2226 usbd_status err;
2227 usb_device_descriptor_t *dd;
2228 struct xhci_slot *xs;
2229 uint32_t *cp;
2230
2231 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2232 DPRINTFN(4, "port %u depth %u speed %u up %p", port, depth, speed, up);
2233
2234 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
2235 if (dev == NULL)
2236 return USBD_NOMEM;
2237
2238 dev->ud_bus = bus;
2239 dev->ud_quirks = &usbd_no_quirk;
2240 dev->ud_addr = 0;
2241 dev->ud_ddesc.bMaxPacketSize = 0;
2242 dev->ud_depth = depth;
2243 dev->ud_powersrc = up;
2244 dev->ud_myhub = up->up_parent;
2245 dev->ud_speed = speed;
2246 dev->ud_langid = USBD_NOLANG;
2247 dev->ud_cookie.cookie = ++usb_cookie_no;
2248
2249 /* Set up default endpoint handle. */
2250 dev->ud_ep0.ue_edesc = &dev->ud_ep0desc;
2251 /* doesn't matter, just don't let it uninitialized */
2252 dev->ud_ep0.ue_toggle = 0;
2253
2254 /* Set up default endpoint descriptor. */
2255 dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE;
2256 dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT;
2257 dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
2258 dev->ud_ep0desc.bmAttributes = UE_CONTROL;
2259 dev->ud_ep0desc.bInterval = 0;
2260
2261 /* 4.3, 4.8.2.1 */
2262 switch (speed) {
2263 case USB_SPEED_SUPER:
2264 case USB_SPEED_SUPER_PLUS:
2265 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET);
2266 break;
2267 case USB_SPEED_FULL:
2268 /* XXX using 64 as initial mps of ep0 in FS */
2269 case USB_SPEED_HIGH:
2270 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET);
2271 break;
2272 case USB_SPEED_LOW:
2273 default:
2274 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET);
2275 break;
2276 }
2277
2278 up->up_dev = dev;
2279
2280 /* Establish the default pipe. */
2281 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0, USBD_DEFAULT_INTERVAL,
2282 &dev->ud_pipe0);
2283 if (err) {
2284 goto bad;
2285 }
2286
2287 dd = &dev->ud_ddesc;
2288
2289 if (depth == 0 && port == 0) {
2290 KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL);
2291 bus->ub_devices[USB_ROOTHUB_INDEX] = dev;
2292 err = usbd_get_initial_ddesc(dev, dd);
2293 if (err) {
2294 DPRINTFN(1, "get_initial_ddesc %u", err, 0, 0, 0);
2295 goto bad;
2296 }
2297
2298 err = usbd_reload_device_desc(dev);
2299 if (err) {
2300 DPRINTFN(1, "reload desc %u", err, 0, 0, 0);
2301 goto bad;
2302 }
2303 } else {
2304 uint8_t slot = 0;
2305
2306 /* 4.3.2 */
2307 err = xhci_enable_slot(sc, &slot);
2308 if (err) {
2309 DPRINTFN(1, "enable slot %u", err, 0, 0, 0);
2310 goto bad;
2311 }
2312
2313 xs = &sc->sc_slots[slot];
2314 dev->ud_hcpriv = xs;
2315
2316 /* 4.3.3 initialize slot structure */
2317 err = xhci_init_slot(dev, slot);
2318 if (err) {
2319 DPRINTFN(1, "init slot %u", err, 0, 0, 0);
2320 dev->ud_hcpriv = NULL;
2321 /*
2322 * We have to disable_slot here because
2323 * xs->xs_idx == 0 when xhci_init_slot fails,
2324 * in that case usbd_remove_dev won't work.
2325 */
2326 mutex_enter(&sc->sc_lock);
2327 xhci_disable_slot(sc, slot);
2328 mutex_exit(&sc->sc_lock);
2329 goto bad;
2330 }
2331
2332 /* 4.3.4 Address Assignment */
2333 err = xhci_set_address(dev, slot, false);
2334 if (err) {
2335 DPRINTFN(1, "set address w/o bsr %u", err, 0, 0, 0);
2336 goto bad;
2337 }
2338
2339 /* Allow device time to set new address */
2340 usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE);
2341
2342 cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT);
2343 //hexdump("slot context", cp, sc->sc_ctxsz);
2344 uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3]));
2345 DPRINTFN(4, "device address %u", addr, 0, 0, 0);
2346 /*
2347 * XXX ensure we know when the hardware does something
2348 * we can't yet cope with
2349 */
2350 KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr);
2351 dev->ud_addr = addr;
2352
2353 KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL,
2354 "addr %d already allocated", dev->ud_addr);
2355 /*
2356 * The root hub is given its own slot
2357 */
2358 bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev;
2359
2360 err = usbd_get_initial_ddesc(dev, dd);
2361 if (err) {
2362 DPRINTFN(1, "get_initial_ddesc %u", err, 0, 0, 0);
2363 goto bad;
2364 }
2365
2366 /* 4.8.2.1 */
2367 if (USB_IS_SS(speed)) {
2368 if (dd->bMaxPacketSize != 9) {
2369 printf("%s: invalid mps 2^%u for SS ep0,"
2370 " using 512\n",
2371 device_xname(sc->sc_dev),
2372 dd->bMaxPacketSize);
2373 dd->bMaxPacketSize = 9;
2374 }
2375 USETW(dev->ud_ep0desc.wMaxPacketSize,
2376 (1 << dd->bMaxPacketSize));
2377 } else
2378 USETW(dev->ud_ep0desc.wMaxPacketSize,
2379 dd->bMaxPacketSize);
2380 DPRINTFN(4, "bMaxPacketSize %u", dd->bMaxPacketSize, 0, 0, 0);
2381 err = xhci_update_ep0_mps(sc, xs,
2382 UGETW(dev->ud_ep0desc.wMaxPacketSize));
2383 if (err) {
2384 DPRINTFN(1, "update mps of ep0 %u", err, 0, 0, 0);
2385 goto bad;
2386 }
2387
2388 err = usbd_reload_device_desc(dev);
2389 if (err) {
2390 DPRINTFN(1, "reload desc %u", err, 0, 0, 0);
2391 goto bad;
2392 }
2393 }
2394
2395 DPRINTFN(1, "adding unit addr=%d, rev=%02x,",
2396 dev->ud_addr, UGETW(dd->bcdUSB), 0, 0);
2397 DPRINTFN(1, " class=%d, subclass=%d, protocol=%d,",
2398 dd->bDeviceClass, dd->bDeviceSubClass,
2399 dd->bDeviceProtocol, 0);
2400 DPRINTFN(1, " mps=%d, len=%d, noconf=%d, speed=%d",
2401 dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations,
2402 dev->ud_speed);
2403
2404 usbd_get_device_strings(dev);
2405
2406 usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev);
2407
2408 if (depth == 0 && port == 0) {
2409 usbd_attach_roothub(parent, dev);
2410 DPRINTFN(1, "root hub %p", dev, 0, 0, 0);
2411 return USBD_NORMAL_COMPLETION;
2412 }
2413
2414 err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr);
2415 bad:
2416 if (err != USBD_NORMAL_COMPLETION) {
2417 usbd_remove_device(dev, up);
2418 }
2419
2420 return err;
2421 }
2422
2423 static usbd_status
2424 xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring * const xr,
2425 size_t ntrb, size_t align)
2426 {
2427 usbd_status err;
2428 size_t size = ntrb * XHCI_TRB_SIZE;
2429
2430 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2431
2432 err = usb_allocmem(&sc->sc_bus, size, align, &xr->xr_dma);
2433 if (err)
2434 return err;
2435 mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
2436 xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP);
2437 xr->xr_trb = xhci_ring_trbv(xr, 0);
2438 xr->xr_ntrb = ntrb;
2439 xr->is_halted = false;
2440 xhci_host_dequeue(xr);
2441
2442 return USBD_NORMAL_COMPLETION;
2443 }
2444
2445 static void
2446 xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring * const xr)
2447 {
2448 usb_freemem(&sc->sc_bus, &xr->xr_dma);
2449 mutex_destroy(&xr->xr_lock);
2450 kmem_free(xr->xr_cookies, sizeof(*xr->xr_cookies) * xr->xr_ntrb);
2451 }
2452
2453 static void
2454 xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr,
2455 void *cookie, struct xhci_trb * const trbs, size_t ntrbs)
2456 {
2457 size_t i;
2458 u_int ri;
2459 u_int cs;
2460 uint64_t parameter;
2461 uint32_t status;
2462 uint32_t control;
2463
2464 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2465
2466 KASSERTMSG(ntrbs <= XHCI_XFER_NTRB, "ntrbs %zu", ntrbs);
2467 for (i = 0; i < ntrbs; i++) {
2468 DPRINTFN(12, "xr %p trbs %p num %zu", xr, trbs, i, 0);
2469 DPRINTFN(12, " %016"PRIx64" %08"PRIx32" %08"PRIx32,
2470 trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0);
2471 KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) !=
2472 XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3);
2473 }
2474
2475 DPRINTFN(12, "%p xr_ep 0x%x xr_cs %u", xr, xr->xr_ep, xr->xr_cs, 0);
2476
2477 ri = xr->xr_ep;
2478 cs = xr->xr_cs;
2479
2480 /*
2481 * Although the xhci hardware can do scatter/gather dma from
2482 * arbitrary sized buffers, there is a non-obvious restriction
2483 * that a LINK trb is only allowed at the end of a burst of
2484 * transfers - which might be 16kB.
2485 * Arbitrary aligned LINK trb definitely fail on Ivy bridge.
2486 * The simple solution is not to allow a LINK trb in the middle
2487 * of anything - as here.
2488 * XXX: (dsl) There are xhci controllers out there (eg some made by
2489 * ASMedia) that seem to lock up if they process a LINK trb but
2490 * cannot process the linked-to trb yet.
2491 * The code should write the 'cycle' bit on the link trb AFTER
2492 * adding the other trb.
2493 */
2494 u_int firstep = xr->xr_ep;
2495 u_int firstcs = xr->xr_cs;
2496
2497 for (i = 0; i < ntrbs; ) {
2498 u_int oldri = ri;
2499 u_int oldcs = cs;
2500
2501 if (ri >= (xr->xr_ntrb - 1)) {
2502 /* Put Link TD at the end of ring */
2503 parameter = xhci_ring_trbp(xr, 0);
2504 status = 0;
2505 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
2506 XHCI_TRB_3_TC_BIT;
2507 xr->xr_cookies[ri] = NULL;
2508 xr->xr_ep = 0;
2509 xr->xr_cs ^= 1;
2510 ri = xr->xr_ep;
2511 cs = xr->xr_cs;
2512 } else {
2513 parameter = trbs[i].trb_0;
2514 status = trbs[i].trb_2;
2515 control = trbs[i].trb_3;
2516
2517 xr->xr_cookies[ri] = cookie;
2518 ri++;
2519 i++;
2520 }
2521 /*
2522 * If this is a first TRB, mark it invalid to prevent
2523 * xHC from running it immediately.
2524 */
2525 if (oldri == firstep) {
2526 if (oldcs) {
2527 control &= ~XHCI_TRB_3_CYCLE_BIT;
2528 } else {
2529 control |= XHCI_TRB_3_CYCLE_BIT;
2530 }
2531 } else {
2532 if (oldcs) {
2533 control |= XHCI_TRB_3_CYCLE_BIT;
2534 } else {
2535 control &= ~XHCI_TRB_3_CYCLE_BIT;
2536 }
2537 }
2538 xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control);
2539 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri,
2540 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
2541 }
2542
2543 /* Now invert cycle bit of first TRB */
2544 if (firstcs) {
2545 xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
2546 } else {
2547 xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
2548 }
2549 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep,
2550 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
2551
2552 xr->xr_ep = ri;
2553 xr->xr_cs = cs;
2554
2555 DPRINTFN(12, "%p xr_ep 0x%x xr_cs %u", xr, xr->xr_ep, xr->xr_cs, 0);
2556 }
2557
2558 /*
2559 * Stop execution commands, purge all commands on command ring, and
2560 * rewind dequeue pointer.
2561 */
2562 static void
2563 xhci_abort_command(struct xhci_softc *sc)
2564 {
2565 struct xhci_ring * const cr = &sc->sc_cr;
2566 uint64_t crcr;
2567 int i;
2568
2569 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2570 DPRINTFN(14, "command %#"PRIx64" timeout, aborting",
2571 sc->sc_command_addr, 0, 0, 0);
2572
2573 mutex_enter(&cr->xr_lock);
2574
2575 /* 4.6.1.2 Aborting a Command */
2576 crcr = xhci_op_read_8(sc, XHCI_CRCR);
2577 xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA);
2578
2579 for (i = 0; i < 500; i++) {
2580 crcr = xhci_op_read_8(sc, XHCI_CRCR);
2581 if ((crcr & XHCI_CRCR_LO_CRR) == 0)
2582 break;
2583 usb_delay_ms(&sc->sc_bus, 1);
2584 }
2585 if ((crcr & XHCI_CRCR_LO_CRR) != 0) {
2586 DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0);
2587 /* reset HC here? */
2588 }
2589
2590 /* reset command ring dequeue pointer */
2591 cr->xr_ep = 0;
2592 cr->xr_cs = 1;
2593 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs);
2594
2595 mutex_exit(&cr->xr_lock);
2596 }
2597
2598 /*
2599 * Put a command on command ring, ring bell, set timer, and cv_timedwait.
2600 * Command completion is notified by cv_signal from xhci_event_cmd()
2601 * (called from xhci_softint), or timed-out.
2602 * The completion code is copied to sc->sc_result_trb in xhci_event_cmd(),
2603 * then do_command examines it.
2604 */
2605 static usbd_status
2606 xhci_do_command_locked(struct xhci_softc * const sc,
2607 struct xhci_trb * const trb, int timeout)
2608 {
2609 struct xhci_ring * const cr = &sc->sc_cr;
2610 usbd_status err;
2611
2612 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2613 DPRINTFN(12, "input: 0x%016"PRIx64" 0x%08"PRIx32" 0x%08"PRIx32,
2614 trb->trb_0, trb->trb_2, trb->trb_3, 0);
2615
2616 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
2617 KASSERT(mutex_owned(&sc->sc_lock));
2618
2619 while (sc->sc_command_addr != 0)
2620 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
2621
2622 /*
2623 * If enqueue pointer points at last of ring, it's Link TRB,
2624 * command TRB will be stored in 0th TRB.
2625 */
2626 if (cr->xr_ep == cr->xr_ntrb - 1)
2627 sc->sc_command_addr = xhci_ring_trbp(cr, 0);
2628 else
2629 sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep);
2630
2631 sc->sc_resultpending = true;
2632
2633 mutex_enter(&cr->xr_lock);
2634 xhci_ring_put(sc, cr, NULL, trb, 1);
2635 mutex_exit(&cr->xr_lock);
2636
2637 xhci_db_write_4(sc, XHCI_DOORBELL(0), 0);
2638
2639 while (sc->sc_resultpending) {
2640 if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock,
2641 MAX(1, mstohz(timeout))) == EWOULDBLOCK) {
2642 xhci_abort_command(sc);
2643 err = USBD_TIMEOUT;
2644 goto timedout;
2645 }
2646 }
2647
2648 trb->trb_0 = sc->sc_result_trb.trb_0;
2649 trb->trb_2 = sc->sc_result_trb.trb_2;
2650 trb->trb_3 = sc->sc_result_trb.trb_3;
2651
2652 DPRINTFN(12, "output: 0x%016"PRIx64" 0x%08"PRIx32" 0x%08"PRIx32"",
2653 trb->trb_0, trb->trb_2, trb->trb_3, 0);
2654
2655 switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) {
2656 case XHCI_TRB_ERROR_SUCCESS:
2657 err = USBD_NORMAL_COMPLETION;
2658 break;
2659 default:
2660 case 192 ... 223:
2661 err = USBD_IOERROR;
2662 break;
2663 case 224 ... 255:
2664 err = USBD_NORMAL_COMPLETION;
2665 break;
2666 }
2667
2668 timedout:
2669 sc->sc_resultpending = false;
2670 sc->sc_command_addr = 0;
2671 cv_broadcast(&sc->sc_cmdbusy_cv);
2672
2673 return err;
2674 }
2675
2676 static usbd_status
2677 xhci_do_command(struct xhci_softc * const sc, struct xhci_trb * const trb,
2678 int timeout)
2679 {
2680
2681 mutex_enter(&sc->sc_lock);
2682 usbd_status ret = xhci_do_command_locked(sc, trb, timeout);
2683 mutex_exit(&sc->sc_lock);
2684
2685 return ret;
2686 }
2687
2688 static usbd_status
2689 xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp)
2690 {
2691 struct xhci_trb trb;
2692 usbd_status err;
2693
2694 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2695
2696 trb.trb_0 = 0;
2697 trb.trb_2 = 0;
2698 trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT);
2699
2700 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
2701 if (err != USBD_NORMAL_COMPLETION) {
2702 return err;
2703 }
2704
2705 *slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3);
2706
2707 return err;
2708 }
2709
2710 /*
2711 * xHCI 4.6.4
2712 * Deallocate ring and device/input context DMA buffers, and disable_slot.
2713 * All endpoints in the slot should be stopped.
2714 * Should be called with sc_lock held.
2715 */
2716 static usbd_status
2717 xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot)
2718 {
2719 struct xhci_trb trb;
2720 struct xhci_slot *xs;
2721 usbd_status err;
2722
2723 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2724
2725 if (sc->sc_dying)
2726 return USBD_IOERROR;
2727
2728 trb.trb_0 = 0;
2729 trb.trb_2 = 0;
2730 trb.trb_3 = htole32(
2731 XHCI_TRB_3_SLOT_SET(slot) |
2732 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT));
2733
2734 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
2735
2736 if (!err) {
2737 xs = &sc->sc_slots[slot];
2738 if (xs->xs_idx != 0) {
2739 xhci_free_slot(sc, xs, XHCI_DCI_SLOT + 1, 32);
2740 xhci_set_dcba(sc, 0, slot);
2741 memset(xs, 0, sizeof(*xs));
2742 }
2743 }
2744
2745 return err;
2746 }
2747
2748 /*
2749 * Set address of device and transition slot state from ENABLED to ADDRESSED
2750 * if Block Setaddress Request (BSR) is false.
2751 * If BSR==true, transition slot state from ENABLED to DEFAULT.
2752 * see xHCI 1.1 4.5.3, 3.3.4
2753 * Should be called without sc_lock held.
2754 */
2755 static usbd_status
2756 xhci_address_device(struct xhci_softc * const sc,
2757 uint64_t icp, uint8_t slot_id, bool bsr)
2758 {
2759 struct xhci_trb trb;
2760 usbd_status err;
2761
2762 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2763
2764 trb.trb_0 = icp;
2765 trb.trb_2 = 0;
2766 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) |
2767 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
2768 (bsr ? XHCI_TRB_3_BSR_BIT : 0);
2769
2770 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
2771
2772 if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS)
2773 err = USBD_NO_ADDR;
2774
2775 return err;
2776 }
2777
2778 static usbd_status
2779 xhci_update_ep0_mps(struct xhci_softc * const sc,
2780 struct xhci_slot * const xs, u_int mps)
2781 {
2782 struct xhci_trb trb;
2783 usbd_status err;
2784 uint32_t * cp;
2785
2786 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2787 DPRINTFN(4, "slot %u mps %u", xs->xs_idx, mps, 0, 0);
2788
2789 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
2790 cp[0] = htole32(0);
2791 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL));
2792
2793 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL));
2794 cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps));
2795
2796 /* sync input contexts before they are read from memory */
2797 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
2798 hexdump("input context", xhci_slot_get_icv(sc, xs, 0),
2799 sc->sc_ctxsz * 4);
2800
2801 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
2802 trb.trb_2 = 0;
2803 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
2804 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX);
2805
2806 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
2807 return err;
2808 }
2809
2810 static void
2811 xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si)
2812 {
2813 uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0);
2814
2815 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2816 DPRINTFN(4, "dcbaa %p dc %016"PRIx64" slot %d",
2817 &dcbaa[si], dcba, si, 0);
2818
2819 dcbaa[si] = htole64(dcba);
2820 usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t),
2821 BUS_DMASYNC_PREWRITE);
2822 }
2823
2824 /*
2825 * Allocate device and input context DMA buffer, and
2826 * TRB DMA buffer for each endpoint.
2827 */
2828 static usbd_status
2829 xhci_init_slot(struct usbd_device *dev, uint32_t slot)
2830 {
2831 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
2832 struct xhci_slot *xs;
2833 usbd_status err;
2834 u_int dci;
2835
2836 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2837 DPRINTFN(4, "slot %u", slot, 0, 0, 0);
2838
2839 xs = &sc->sc_slots[slot];
2840
2841 /* allocate contexts */
2842 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
2843 &xs->xs_dc_dma);
2844 if (err)
2845 return err;
2846 memset(KERNADDR(&xs->xs_dc_dma, 0), 0, sc->sc_pgsz);
2847
2848 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
2849 &xs->xs_ic_dma);
2850 if (err)
2851 goto bad1;
2852 memset(KERNADDR(&xs->xs_ic_dma, 0), 0, sc->sc_pgsz);
2853
2854 for (dci = 0; dci < 32; dci++) {
2855 //CTASSERT(sizeof(xs->xs_ep[dci]) == sizeof(struct xhci_endpoint));
2856 memset(&xs->xs_ep[dci], 0, sizeof(xs->xs_ep[dci]));
2857 if (dci == XHCI_DCI_SLOT)
2858 continue;
2859 err = xhci_ring_init(sc, &xs->xs_ep[dci].xe_tr,
2860 XHCI_TRANSFER_RING_TRBS, XHCI_TRB_ALIGN);
2861 if (err) {
2862 DPRINTFN(0, "ring init failure", 0, 0, 0, 0);
2863 goto bad2;
2864 }
2865 }
2866
2867 bad2:
2868 if (err == USBD_NORMAL_COMPLETION) {
2869 xs->xs_idx = slot;
2870 } else {
2871 xhci_free_slot(sc, xs, XHCI_DCI_SLOT + 1, dci);
2872 }
2873
2874 return err;
2875
2876 bad1:
2877 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
2878 xs->xs_idx = 0;
2879 return err;
2880 }
2881
2882 static void
2883 xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs, int start_dci,
2884 int end_dci)
2885 {
2886 u_int dci;
2887
2888 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2889 DPRINTFN(4, "slot %u start %u end %u", xs->xs_idx, start_dci, end_dci,
2890 0);
2891
2892 for (dci = start_dci; dci < end_dci; dci++) {
2893 xhci_ring_free(sc, &xs->xs_ep[dci].xe_tr);
2894 memset(&xs->xs_ep[dci], 0, sizeof(xs->xs_ep[dci]));
2895 }
2896 usb_freemem(&sc->sc_bus, &xs->xs_ic_dma);
2897 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
2898 xs->xs_idx = 0;
2899 }
2900
2901 /*
2902 * Setup slot context, set Device Context Base Address, and issue
2903 * Set Address Device command.
2904 */
2905 static usbd_status
2906 xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr)
2907 {
2908 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
2909 struct xhci_slot *xs;
2910 usbd_status err;
2911
2912 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2913 DPRINTFN(4, "slot %u bsr %u", slot, bsr, 0, 0);
2914
2915 xs = &sc->sc_slots[slot];
2916
2917 xhci_setup_ctx(dev->ud_pipe0);
2918
2919 hexdump("input context", xhci_slot_get_icv(sc, xs, 0),
2920 sc->sc_ctxsz * 3);
2921
2922 xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot);
2923
2924 err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr);
2925
2926 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
2927 hexdump("output context", xhci_slot_get_dcv(sc, xs, 0),
2928 sc->sc_ctxsz * 2);
2929
2930 return err;
2931 }
2932
2933 /*
2934 * 4.8.2, 6.2.3.2
2935 * construct slot/endpoint context parameters and do syncmem
2936 */
2937 static void
2938 xhci_setup_ctx(struct usbd_pipe *pipe)
2939 {
2940 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
2941 struct usbd_device *dev = pipe->up_dev;
2942 struct xhci_slot * const xs = dev->ud_hcpriv;
2943 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
2944 const u_int dci = xhci_ep_get_dci(ed);
2945 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
2946 uint32_t *cp;
2947 uint16_t mps = UGETW(ed->wMaxPacketSize);
2948 uint8_t speed = dev->ud_speed;
2949 uint8_t ival = ed->bInterval;
2950
2951 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2952 DPRINTFN(4, "pipe %p: slot %u dci %u speed %u", pipe, xs->xs_idx, dci,
2953 speed);
2954
2955 /* set up initial input control context */
2956 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
2957 cp[0] = htole32(0);
2958 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci));
2959 if (dci == XHCI_DCI_EP_CONTROL)
2960 cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT));
2961 cp[7] = htole32(0);
2962
2963 /* set up input slot context */
2964 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
2965 cp[0] =
2966 XHCI_SCTX_0_CTX_NUM_SET(dci) |
2967 XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed));
2968 cp[1] = 0;
2969 cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0);
2970 cp[3] = 0;
2971 xhci_setup_route(pipe, cp);
2972 xhci_setup_tthub(pipe, cp);
2973
2974 cp[0] = htole32(cp[0]);
2975 cp[1] = htole32(cp[1]);
2976 cp[2] = htole32(cp[2]);
2977 cp[3] = htole32(cp[3]);
2978
2979 /* set up input endpoint context */
2980 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci));
2981 cp[0] =
2982 XHCI_EPCTX_0_EPSTATE_SET(0) |
2983 XHCI_EPCTX_0_MULT_SET(0) |
2984 XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
2985 XHCI_EPCTX_0_LSA_SET(0) |
2986 XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0);
2987 cp[1] =
2988 XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) |
2989 XHCI_EPCTX_1_HID_SET(0) |
2990 XHCI_EPCTX_1_MAXB_SET(0);
2991
2992 if (xfertype != UE_ISOCHRONOUS)
2993 cp[1] |= XHCI_EPCTX_1_CERR_SET(3);
2994
2995 if (xfertype == UE_CONTROL)
2996 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); /* 6.2.3 */
2997 else if (USB_IS_SS(speed))
2998 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(mps);
2999 else
3000 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(UE_GET_SIZE(mps));
3001
3002 xhci_setup_maxburst(pipe, cp);
3003
3004 switch (xfertype) {
3005 case UE_CONTROL:
3006 break;
3007 case UE_BULK:
3008 /* XXX Set MaxPStreams, HID, and LSA if streams enabled */
3009 break;
3010 case UE_INTERRUPT:
3011 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3012 ival = pipe->up_interval;
3013
3014 ival = xhci_bival2ival(ival, speed);
3015 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3016 break;
3017 case UE_ISOCHRONOUS:
3018 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3019 ival = pipe->up_interval;
3020
3021 /* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 */
3022 if (speed == USB_SPEED_FULL)
3023 ival += 3; /* 1ms -> 125us */
3024 ival--;
3025 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3026 break;
3027 default:
3028 break;
3029 }
3030 DPRINTFN(4, "setting ival %u MaxBurst %#x",
3031 XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_1_MAXB_GET(cp[1]), 0, 0);
3032
3033 /* rewind TR dequeue pointer in xHC */
3034 /* can't use xhci_ep_get_dci() yet? */
3035 *(uint64_t *)(&cp[2]) = htole64(
3036 xhci_ring_trbp(&xs->xs_ep[dci].xe_tr, 0) |
3037 XHCI_EPCTX_2_DCS_SET(1));
3038
3039 cp[0] = htole32(cp[0]);
3040 cp[1] = htole32(cp[1]);
3041 cp[4] = htole32(cp[4]);
3042
3043 /* rewind TR dequeue pointer in driver */
3044 struct xhci_ring *xr = &xs->xs_ep[dci].xe_tr;
3045 mutex_enter(&xr->xr_lock);
3046 xhci_host_dequeue(xr);
3047 mutex_exit(&xr->xr_lock);
3048
3049 /* sync input contexts before they are read from memory */
3050 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3051 }
3052
3053 /*
3054 * Setup route string and roothub port of given device for slot context
3055 */
3056 static void
3057 xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp)
3058 {
3059 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3060 struct usbd_device *dev = pipe->up_dev;
3061 struct usbd_port *up = dev->ud_powersrc;
3062 struct usbd_device *hub;
3063 struct usbd_device *adev;
3064 uint8_t rhport = 0;
3065 uint32_t route = 0;
3066
3067 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3068
3069 /* Locate root hub port and Determine route string */
3070 /* 4.3.3 route string does not include roothub port */
3071 for (hub = dev; hub != NULL; hub = hub->ud_myhub) {
3072 uint32_t dep;
3073
3074 DPRINTFN(4, "hub %p depth %d upport %p upportno %d",
3075 hub, hub->ud_depth, hub->ud_powersrc,
3076 hub->ud_powersrc ? hub->ud_powersrc->up_portno : -1);
3077
3078 if (hub->ud_powersrc == NULL)
3079 break;
3080 dep = hub->ud_depth;
3081 if (dep == 0)
3082 break;
3083 rhport = hub->ud_powersrc->up_portno;
3084 if (dep > USB_HUB_MAX_DEPTH)
3085 continue;
3086
3087 route |=
3088 (rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport)
3089 << ((dep - 1) * 4);
3090 }
3091 route = route >> 4;
3092 size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1;
3093
3094 /* Locate port on upstream high speed hub */
3095 for (adev = dev, hub = up->up_parent;
3096 hub != NULL && hub->ud_speed != USB_SPEED_HIGH;
3097 adev = hub, hub = hub->ud_myhub)
3098 ;
3099 if (hub) {
3100 int p;
3101 for (p = 0; p < hub->ud_hub->uh_hubdesc.bNbrPorts; p++) {
3102 if (hub->ud_hub->uh_ports[p].up_dev == adev) {
3103 dev->ud_myhsport = &hub->ud_hub->uh_ports[p];
3104 goto found;
3105 }
3106 }
3107 panic("%s: cannot find HS port", __func__);
3108 found:
3109 DPRINTFN(4, "high speed port %d", p, 0, 0, 0);
3110 } else {
3111 dev->ud_myhsport = NULL;
3112 }
3113
3114 const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport);
3115
3116 DPRINTFN(4, "rhport %u ctlrport %u Route %05x hub %p", rhport,
3117 ctlrport, route, hub);
3118
3119 cp[0] |= XHCI_SCTX_0_ROUTE_SET(route);
3120 cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport);
3121 }
3122
3123 /*
3124 * Setup whether device is hub, whether device uses MTT, and
3125 * TT informations if it uses MTT.
3126 */
3127 static void
3128 xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp)
3129 {
3130 struct usbd_device *dev = pipe->up_dev;
3131 usb_device_descriptor_t * const dd = &dev->ud_ddesc;
3132 uint32_t speed = dev->ud_speed;
3133 uint8_t tthubslot, ttportnum;
3134 bool ishub;
3135 bool usemtt;
3136
3137 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3138
3139 /*
3140 * 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2
3141 * tthubslot:
3142 * This is the slot ID of parent HS hub
3143 * if LS/FS device is connected && connected through HS hub.
3144 * This is 0 if device is not LS/FS device ||
3145 * parent hub is not HS hub ||
3146 * attached to root hub.
3147 * ttportnum:
3148 * This is the downstream facing port of parent HS hub
3149 * if LS/FS device is connected.
3150 * This is 0 if device is not LS/FS device ||
3151 * parent hub is not HS hub ||
3152 * attached to root hub.
3153 */
3154 if (dev->ud_myhsport != NULL &&
3155 dev->ud_myhub != NULL && dev->ud_myhub->ud_depth != 0 &&
3156 (dev->ud_myhub != NULL &&
3157 dev->ud_myhub->ud_speed == USB_SPEED_HIGH) &&
3158 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
3159 ttportnum = dev->ud_myhsport->up_portno;
3160 tthubslot = dev->ud_myhsport->up_parent->ud_addr;
3161 } else {
3162 ttportnum = 0;
3163 tthubslot = 0;
3164 }
3165 DPRINTFN(4, "myhsport %p ttportnum=%d tthubslot=%d",
3166 dev->ud_myhsport, ttportnum, tthubslot, 0);
3167
3168 /* ishub is valid after reading UDESC_DEVICE */
3169 ishub = (dd->bDeviceClass == UDCLASS_HUB);
3170
3171 /* dev->ud_hub is valid after reading UDESC_HUB */
3172 if (ishub && dev->ud_hub) {
3173 usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc;
3174 uint8_t ttt =
3175 __SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK);
3176
3177 cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts);
3178 cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt);
3179 DPRINTFN(4, "nports=%d ttt=%d", hd->bNbrPorts, ttt, 0, 0);
3180 }
3181
3182 #define IS_TTHUB(dd) \
3183 ((dd)->bDeviceProtocol == UDPROTO_HSHUBSTT || \
3184 (dd)->bDeviceProtocol == UDPROTO_HSHUBMTT)
3185
3186 /*
3187 * MTT flag is set if
3188 * 1. this is HS hub && MTT is enabled
3189 * or
3190 * 2. this is not hub && this is LS or FS device &&
3191 * MTT of parent HS hub (and its parent, too) is enabled
3192 */
3193 if (ishub && speed == USB_SPEED_HIGH && IS_TTHUB(dd))
3194 usemtt = true;
3195 else if (!ishub &&
3196 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) &&
3197 dev->ud_myhub != NULL && dev->ud_myhub->ud_depth != 0 &&
3198 (dev->ud_myhub != NULL &&
3199 dev->ud_myhub->ud_speed == USB_SPEED_HIGH) &&
3200 dev->ud_myhsport != NULL &&
3201 IS_TTHUB(&dev->ud_myhsport->up_parent->ud_ddesc))
3202 usemtt = true;
3203 else
3204 usemtt = false;
3205 DPRINTFN(4, "class %u proto %u ishub %d usemtt %d",
3206 dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt);
3207
3208 #undef IS_TTHUB
3209
3210 cp[0] |=
3211 XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) |
3212 XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0);
3213 cp[2] |=
3214 XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) |
3215 XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum);
3216 }
3217
3218 /* set up params for periodic endpoint */
3219 static void
3220 xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp)
3221 {
3222 struct usbd_device *dev = pipe->up_dev;
3223 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3224 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3225 usbd_desc_iter_t iter;
3226 const usb_cdc_descriptor_t *cdcd;
3227 uint32_t maxb = 0;
3228 uint16_t mps = UGETW(ed->wMaxPacketSize);
3229 uint8_t speed = dev->ud_speed;
3230 uint8_t ep;
3231
3232 /* config desc is NULL when opening ep0 */
3233 if (dev == NULL || dev->ud_cdesc == NULL)
3234 goto no_cdcd;
3235 cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev,
3236 UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY);
3237 if (cdcd == NULL)
3238 goto no_cdcd;
3239 usb_desc_iter_init(dev, &iter);
3240 iter.cur = (const void *)cdcd;
3241
3242 /* find endpoint_ss_comp desc for ep of this pipe */
3243 for (ep = 0;;) {
3244 cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter);
3245 if (cdcd == NULL)
3246 break;
3247 if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) {
3248 ep = ((const usb_endpoint_descriptor_t *)cdcd)->
3249 bEndpointAddress;
3250 if (UE_GET_ADDR(ep) ==
3251 UE_GET_ADDR(ed->bEndpointAddress)) {
3252 cdcd = (const usb_cdc_descriptor_t *)
3253 usb_desc_iter_next(&iter);
3254 break;
3255 }
3256 ep = 0;
3257 }
3258 }
3259 if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) {
3260 const usb_endpoint_ss_comp_descriptor_t * esscd =
3261 (const usb_endpoint_ss_comp_descriptor_t *)cdcd;
3262 maxb = esscd->bMaxBurst;
3263 }
3264
3265 no_cdcd:
3266 /* 6.2.3.4, 4.8.2.4 */
3267 if (USB_IS_SS(speed)) {
3268 /* USB 3.1 9.6.6 */
3269 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps);
3270 /* USB 3.1 9.6.7 */
3271 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3272 #ifdef notyet
3273 if (xfertype == UE_ISOCHRONOUS) {
3274 }
3275 if (XHCI_HCC2_LEC(sc->sc_hcc2) != 0) {
3276 /* use ESIT */
3277 cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(x);
3278 cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(x);
3279
3280 /* XXX if LEC = 1, set ESIT instead */
3281 cp[0] |= XHCI_EPCTX_0_MULT_SET(0);
3282 } else {
3283 /* use ival */
3284 }
3285 #endif
3286 } else {
3287 /* USB 2.0 9.6.6 */
3288 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(UE_GET_SIZE(mps));
3289
3290 /* 6.2.3.4 */
3291 if (speed == USB_SPEED_HIGH &&
3292 (xfertype == UE_ISOCHRONOUS || xfertype == UE_INTERRUPT)) {
3293 maxb = UE_GET_TRANS(mps);
3294 } else {
3295 /* LS/FS or HS CTRL or HS BULK */
3296 maxb = 0;
3297 }
3298 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3299 }
3300 }
3301
3302 /*
3303 * Convert endpoint bInterval value to endpoint context interval value
3304 * for Interrupt pipe.
3305 * xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6
3306 */
3307 static uint32_t
3308 xhci_bival2ival(uint32_t ival, uint32_t speed)
3309 {
3310 if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
3311 int i;
3312
3313 /*
3314 * round ival down to "the nearest base 2 multiple of
3315 * bInterval * 8".
3316 * bInterval is at most 255 as its type is uByte.
3317 * 255(ms) = 2040(x 125us) < 2^11, so start with 10.
3318 */
3319 for (i = 10; i > 0; i--) {
3320 if ((ival * 8) >= (1 << i))
3321 break;
3322 }
3323 ival = i;
3324 } else {
3325 /* Interval = bInterval-1 for SS/HS */
3326 ival--;
3327 }
3328
3329 return ival;
3330 }
3331
3332 /* ----- */
3333
3334 static void
3335 xhci_noop(struct usbd_pipe *pipe)
3336 {
3337 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3338 }
3339
3340 /*
3341 * Process root hub request.
3342 */
3343 static int
3344 xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3345 void *buf, int buflen)
3346 {
3347 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
3348 usb_port_status_t ps;
3349 int l, totlen = 0;
3350 uint16_t len, value, index;
3351 int port, i;
3352 uint32_t v;
3353
3354 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3355
3356 if (sc->sc_dying)
3357 return -1;
3358
3359 size_t bn = bus == &sc->sc_bus ? 0 : 1;
3360
3361 len = UGETW(req->wLength);
3362 value = UGETW(req->wValue);
3363 index = UGETW(req->wIndex);
3364
3365 DPRINTFN(12, "rhreq: %04x %04x %04x %04x",
3366 req->bmRequestType | (req->bRequest << 8), value, index, len);
3367
3368 #define C(x,y) ((x) | ((y) << 8))
3369 switch (C(req->bRequest, req->bmRequestType)) {
3370 case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
3371 DPRINTFN(8, "getdesc: wValue=0x%04x", value, 0, 0, 0);
3372 if (len == 0)
3373 break;
3374 switch (value) {
3375 case C(0, UDESC_DEVICE): {
3376 usb_device_descriptor_t devd;
3377 totlen = min(buflen, sizeof(devd));
3378 memcpy(&devd, buf, totlen);
3379 USETW(devd.idVendor, sc->sc_id_vendor);
3380 memcpy(buf, &devd, totlen);
3381 break;
3382 }
3383 #define sd ((usb_string_descriptor_t *)buf)
3384 case C(1, UDESC_STRING):
3385 /* Vendor */
3386 totlen = usb_makestrdesc(sd, len, sc->sc_vendor);
3387 break;
3388 case C(2, UDESC_STRING):
3389 /* Product */
3390 totlen = usb_makestrdesc(sd, len, "xHCI Root Hub");
3391 break;
3392 #undef sd
3393 default:
3394 /* default from usbroothub */
3395 return buflen;
3396 }
3397 break;
3398
3399 /* Hub requests */
3400 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
3401 break;
3402 /* Clear Port Feature request */
3403 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): {
3404 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3405
3406 DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%d feat=%d bus=%d cp=%d",
3407 index, value, bn, cp);
3408 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3409 return -1;
3410 }
3411 port = XHCI_PORTSC(cp);
3412 v = xhci_op_read_4(sc, port);
3413 DPRINTFN(4, "portsc=0x%08x", v, 0, 0, 0);
3414 v &= ~XHCI_PS_CLEAR;
3415 switch (value) {
3416 case UHF_PORT_ENABLE:
3417 xhci_op_write_4(sc, port, v & ~XHCI_PS_PED);
3418 break;
3419 case UHF_PORT_SUSPEND:
3420 return -1;
3421 case UHF_PORT_POWER:
3422 break;
3423 case UHF_PORT_TEST:
3424 case UHF_PORT_INDICATOR:
3425 return -1;
3426 case UHF_C_PORT_CONNECTION:
3427 xhci_op_write_4(sc, port, v | XHCI_PS_CSC);
3428 break;
3429 case UHF_C_PORT_ENABLE:
3430 case UHF_C_PORT_SUSPEND:
3431 case UHF_C_PORT_OVER_CURRENT:
3432 return -1;
3433 case UHF_C_BH_PORT_RESET:
3434 xhci_op_write_4(sc, port, v | XHCI_PS_WRC);
3435 break;
3436 case UHF_C_PORT_RESET:
3437 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
3438 break;
3439 case UHF_C_PORT_LINK_STATE:
3440 xhci_op_write_4(sc, port, v | XHCI_PS_PLC);
3441 break;
3442 case UHF_C_PORT_CONFIG_ERROR:
3443 xhci_op_write_4(sc, port, v | XHCI_PS_CEC);
3444 break;
3445 default:
3446 return -1;
3447 }
3448 break;
3449 }
3450 case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
3451 if (len == 0)
3452 break;
3453 if ((value & 0xff) != 0) {
3454 return -1;
3455 }
3456 usb_hub_descriptor_t hubd;
3457
3458 totlen = min(buflen, sizeof(hubd));
3459 memcpy(&hubd, buf, totlen);
3460 hubd.bNbrPorts = sc->sc_rhportcount[bn];
3461 USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH);
3462 hubd.bPwrOn2PwrGood = 200;
3463 for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) {
3464 /* XXX can't find out? */
3465 hubd.DeviceRemovable[i++] = 0;
3466 }
3467 hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
3468 totlen = min(totlen, hubd.bDescLength);
3469 memcpy(buf, &hubd, totlen);
3470 break;
3471 case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
3472 if (len != 4) {
3473 return -1;
3474 }
3475 memset(buf, 0, len); /* ? XXX */
3476 totlen = len;
3477 break;
3478 /* Get Port Status request */
3479 case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
3480 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3481
3482 DPRINTFN(8, "get port status bn=%d i=%d cp=%zu", bn, index, cp,
3483 0);
3484 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3485 return -1;
3486 }
3487 if (len != 4) {
3488 return -1;
3489 }
3490 v = xhci_op_read_4(sc, XHCI_PORTSC(cp));
3491 DPRINTFN(4, "getrhportsc %d %08x", cp, v, 0, 0);
3492 i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v));
3493 if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS;
3494 if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED;
3495 if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR;
3496 //if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND;
3497 if (v & XHCI_PS_PR) i |= UPS_RESET;
3498 if (v & XHCI_PS_PP) {
3499 if (i & UPS_OTHER_SPEED)
3500 i |= UPS_PORT_POWER_SS;
3501 else
3502 i |= UPS_PORT_POWER;
3503 }
3504 if (i & UPS_OTHER_SPEED)
3505 i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v));
3506 if (sc->sc_vendor_port_status)
3507 i = sc->sc_vendor_port_status(sc, v, i);
3508 USETW(ps.wPortStatus, i);
3509 i = 0;
3510 if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS;
3511 if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED;
3512 if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR;
3513 if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET;
3514 if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET;
3515 if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE;
3516 if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR;
3517 USETW(ps.wPortChange, i);
3518 totlen = min(len, sizeof(ps));
3519 memcpy(buf, &ps, totlen);
3520 break;
3521 }
3522 case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
3523 return -1;
3524 case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE):
3525 break;
3526 case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
3527 break;
3528 /* Set Port Feature request */
3529 case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): {
3530 int optval = (index >> 8) & 0xff;
3531 index &= 0xff;
3532 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3533 return -1;
3534 }
3535
3536 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3537
3538 port = XHCI_PORTSC(cp);
3539 v = xhci_op_read_4(sc, port);
3540 DPRINTFN(4, "index %d cp %d portsc=0x%08x", index, cp, v, 0);
3541 v &= ~XHCI_PS_CLEAR;
3542 switch (value) {
3543 case UHF_PORT_ENABLE:
3544 xhci_op_write_4(sc, port, v | XHCI_PS_PED);
3545 break;
3546 case UHF_PORT_SUSPEND:
3547 /* XXX suspend */
3548 break;
3549 case UHF_PORT_RESET:
3550 v &= ~(XHCI_PS_PED | XHCI_PS_PR);
3551 xhci_op_write_4(sc, port, v | XHCI_PS_PR);
3552 /* Wait for reset to complete. */
3553 usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
3554 if (sc->sc_dying) {
3555 return -1;
3556 }
3557 v = xhci_op_read_4(sc, port);
3558 if (v & XHCI_PS_PR) {
3559 xhci_op_write_4(sc, port, v & ~XHCI_PS_PR);
3560 usb_delay_ms(&sc->sc_bus, 10);
3561 /* XXX */
3562 }
3563 break;
3564 case UHF_PORT_POWER:
3565 /* XXX power control */
3566 break;
3567 /* XXX more */
3568 case UHF_C_PORT_RESET:
3569 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
3570 break;
3571 case UHF_PORT_U1_TIMEOUT:
3572 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
3573 return -1;
3574 }
3575 port = XHCI_PORTPMSC(cp);
3576 v = xhci_op_read_4(sc, port);
3577 DPRINTFN(4, "index %d cp %d portpmsc=0x%08x", index, cp, v, 0);
3578 v &= ~XHCI_PM3_U1TO_SET(0xff);
3579 v |= XHCI_PM3_U1TO_SET(optval);
3580 xhci_op_write_4(sc, port, v);
3581 break;
3582 case UHF_PORT_U2_TIMEOUT:
3583 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
3584 return -1;
3585 }
3586 port = XHCI_PORTPMSC(cp);
3587 v = xhci_op_read_4(sc, port);
3588 DPRINTFN(4, "index %d cp %d portpmsc=0x%08x", index, cp, v, 0);
3589 v &= ~XHCI_PM3_U2TO_SET(0xff);
3590 v |= XHCI_PM3_U2TO_SET(optval);
3591 xhci_op_write_4(sc, port, v);
3592 break;
3593 default:
3594 return -1;
3595 }
3596 }
3597 break;
3598 case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
3599 case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
3600 case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
3601 case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
3602 break;
3603 default:
3604 /* default from usbroothub */
3605 return buflen;
3606 }
3607
3608 return totlen;
3609 }
3610
3611 /* root hub interrupt */
3612
3613 static usbd_status
3614 xhci_root_intr_transfer(struct usbd_xfer *xfer)
3615 {
3616 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3617 usbd_status err;
3618
3619 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3620
3621 /* Insert last in queue. */
3622 mutex_enter(&sc->sc_lock);
3623 err = usb_insert_transfer(xfer);
3624 mutex_exit(&sc->sc_lock);
3625 if (err)
3626 return err;
3627
3628 /* Pipe isn't running, start first */
3629 return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
3630 }
3631
3632 /* Wait for roothub port status/change */
3633 static usbd_status
3634 xhci_root_intr_start(struct usbd_xfer *xfer)
3635 {
3636 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3637 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3638
3639 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3640
3641 if (sc->sc_dying)
3642 return USBD_IOERROR;
3643
3644 mutex_enter(&sc->sc_lock);
3645 sc->sc_intrxfer[bn] = xfer;
3646 mutex_exit(&sc->sc_lock);
3647
3648 return USBD_IN_PROGRESS;
3649 }
3650
3651 static void
3652 xhci_root_intr_abort(struct usbd_xfer *xfer)
3653 {
3654 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3655 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3656
3657 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3658
3659 KASSERT(mutex_owned(&sc->sc_lock));
3660 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
3661
3662 sc->sc_intrxfer[bn] = NULL;
3663
3664 xfer->ux_status = USBD_CANCELLED;
3665 usb_transfer_complete(xfer);
3666 }
3667
3668 static void
3669 xhci_root_intr_close(struct usbd_pipe *pipe)
3670 {
3671 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3672 const struct usbd_xfer *xfer = pipe->up_intrxfer;
3673 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3674
3675 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3676
3677 KASSERT(mutex_owned(&sc->sc_lock));
3678
3679 sc->sc_intrxfer[bn] = NULL;
3680 }
3681
3682 static void
3683 xhci_root_intr_done(struct usbd_xfer *xfer)
3684 {
3685 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3686
3687 }
3688
3689 /* -------------- */
3690 /* device control */
3691
3692 static usbd_status
3693 xhci_device_ctrl_transfer(struct usbd_xfer *xfer)
3694 {
3695 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3696 usbd_status err;
3697
3698 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3699
3700 /* Insert last in queue. */
3701 mutex_enter(&sc->sc_lock);
3702 err = usb_insert_transfer(xfer);
3703 mutex_exit(&sc->sc_lock);
3704 if (err)
3705 return err;
3706
3707 /* Pipe isn't running, start first */
3708 return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
3709 }
3710
3711 static usbd_status
3712 xhci_device_ctrl_start(struct usbd_xfer *xfer)
3713 {
3714 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3715 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
3716 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
3717 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
3718 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
3719 usb_device_request_t * const req = &xfer->ux_request;
3720 const int isread = usbd_xfer_isread(xfer);
3721 const uint32_t len = UGETW(req->wLength);
3722 usb_dma_t * const dma = &xfer->ux_dmabuf;
3723 uint64_t parameter;
3724 uint32_t status;
3725 uint32_t control;
3726 u_int i;
3727
3728 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3729 DPRINTFN(12, "req: %04x %04x %04x %04x",
3730 req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue),
3731 UGETW(req->wIndex), UGETW(req->wLength));
3732
3733 /* we rely on the bottom bits for extra info */
3734 KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %zx",
3735 (uintptr_t) xfer);
3736
3737 KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0);
3738
3739 i = 0;
3740
3741 /* setup phase */
3742 memcpy(¶meter, req, sizeof(parameter));
3743 status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req));
3744 control = ((len == 0) ? XHCI_TRB_3_TRT_NONE :
3745 (isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) |
3746 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
3747 XHCI_TRB_3_IDT_BIT;
3748 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
3749
3750 if (len != 0) {
3751 /* data phase */
3752 parameter = DMAADDR(dma, 0);
3753 KASSERTMSG(len <= 0x10000, "len %d", len);
3754 status = XHCI_TRB_2_IRQ_SET(0) |
3755 XHCI_TRB_2_TDSZ_SET(1) |
3756 XHCI_TRB_2_BYTES_SET(len);
3757 control = (isread ? XHCI_TRB_3_DIR_IN : 0) |
3758 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) |
3759 (usbd_xfer_isread(xfer) ? XHCI_TRB_3_ISP_BIT : 0) |
3760 XHCI_TRB_3_IOC_BIT;
3761 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
3762 }
3763
3764 parameter = 0;
3765 status = XHCI_TRB_2_IRQ_SET(0);
3766 /* the status stage has inverted direction */
3767 control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) |
3768 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) |
3769 XHCI_TRB_3_IOC_BIT;
3770 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
3771
3772 mutex_enter(&tr->xr_lock);
3773 xhci_ring_put(sc, tr, xfer, xx->xx_trb, i);
3774 mutex_exit(&tr->xr_lock);
3775
3776 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
3777
3778 if (xfer->ux_timeout && !sc->sc_bus.ub_usepolling) {
3779 callout_reset(&xfer->ux_callout, mstohz(xfer->ux_timeout),
3780 xhci_timeout, xfer);
3781 }
3782
3783 return USBD_IN_PROGRESS;
3784 }
3785
3786 static void
3787 xhci_device_ctrl_done(struct usbd_xfer *xfer)
3788 {
3789 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3790 usb_device_request_t *req = &xfer->ux_request;
3791 int len = UGETW(req->wLength);
3792 int rd = req->bmRequestType & UT_READ;
3793
3794 if (len)
3795 usb_syncmem(&xfer->ux_dmabuf, 0, len,
3796 rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
3797 }
3798
3799 static void
3800 xhci_device_ctrl_abort(struct usbd_xfer *xfer)
3801 {
3802 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3803
3804 xhci_abort_xfer(xfer, USBD_CANCELLED);
3805 }
3806
3807 static void
3808 xhci_device_ctrl_close(struct usbd_pipe *pipe)
3809 {
3810 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3811
3812 xhci_close_pipe(pipe);
3813 }
3814
3815 /* ------------------ */
3816 /* device isochronous */
3817
3818 /* ----------- */
3819 /* device bulk */
3820
3821 static usbd_status
3822 xhci_device_bulk_transfer(struct usbd_xfer *xfer)
3823 {
3824 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3825 usbd_status err;
3826
3827 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3828
3829 /* Insert last in queue. */
3830 mutex_enter(&sc->sc_lock);
3831 err = usb_insert_transfer(xfer);
3832 mutex_exit(&sc->sc_lock);
3833 if (err)
3834 return err;
3835
3836 /*
3837 * Pipe isn't running (otherwise err would be USBD_INPROG),
3838 * so start it first.
3839 */
3840 return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
3841 }
3842
3843 static usbd_status
3844 xhci_device_bulk_start(struct usbd_xfer *xfer)
3845 {
3846 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3847 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
3848 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
3849 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
3850 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
3851 const uint32_t len = xfer->ux_length;
3852 usb_dma_t * const dma = &xfer->ux_dmabuf;
3853 uint64_t parameter;
3854 uint32_t status;
3855 uint32_t control;
3856 u_int i = 0;
3857
3858 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3859
3860 DPRINTFN(15, "%p slot %u dci %u", xfer, xs->xs_idx, dci, 0);
3861
3862 if (sc->sc_dying)
3863 return USBD_IOERROR;
3864
3865 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
3866
3867 parameter = DMAADDR(dma, 0);
3868 /*
3869 * XXX: (dsl) The physical buffer must not cross a 64k boundary.
3870 * If the user supplied buffer crosses such a boundary then 2
3871 * (or more) TRB should be used.
3872 * If multiple TRB are used the td_size field must be set correctly.
3873 * For v1.0 devices (like ivy bridge) this is the number of usb data
3874 * blocks needed to complete the transfer.
3875 * Setting it to 1 in the last TRB causes an extra zero-length
3876 * data block be sent.
3877 * The earlier documentation differs, I don't know how it behaves.
3878 */
3879 KASSERTMSG(len <= 0x10000, "len %d", len);
3880 status = XHCI_TRB_2_IRQ_SET(0) |
3881 XHCI_TRB_2_TDSZ_SET(1) |
3882 XHCI_TRB_2_BYTES_SET(len);
3883 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
3884 (usbd_xfer_isread(xfer) ? XHCI_TRB_3_ISP_BIT : 0) |
3885 XHCI_TRB_3_IOC_BIT;
3886 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
3887
3888 mutex_enter(&tr->xr_lock);
3889 xhci_ring_put(sc, tr, xfer, xx->xx_trb, i);
3890 mutex_exit(&tr->xr_lock);
3891
3892 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
3893
3894 if (xfer->ux_timeout && !sc->sc_bus.ub_usepolling) {
3895 callout_reset(&xfer->ux_callout, mstohz(xfer->ux_timeout),
3896 xhci_timeout, xfer);
3897 }
3898
3899 return USBD_IN_PROGRESS;
3900 }
3901
3902 static void
3903 xhci_device_bulk_done(struct usbd_xfer *xfer)
3904 {
3905 #ifdef USB_DEBUG
3906 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
3907 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
3908 #endif
3909 const int isread = usbd_xfer_isread(xfer);
3910
3911 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3912
3913 DPRINTFN(15, "%p slot %u dci %u", xfer, xs->xs_idx, dci, 0);
3914
3915 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
3916 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
3917 }
3918
3919 static void
3920 xhci_device_bulk_abort(struct usbd_xfer *xfer)
3921 {
3922 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3923
3924 xhci_abort_xfer(xfer, USBD_CANCELLED);
3925 }
3926
3927 static void
3928 xhci_device_bulk_close(struct usbd_pipe *pipe)
3929 {
3930 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3931
3932 xhci_close_pipe(pipe);
3933 }
3934
3935 /* ---------------- */
3936 /* device interrupt */
3937
3938 static usbd_status
3939 xhci_device_intr_transfer(struct usbd_xfer *xfer)
3940 {
3941 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3942 usbd_status err;
3943
3944 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3945
3946 /* Insert last in queue. */
3947 mutex_enter(&sc->sc_lock);
3948 err = usb_insert_transfer(xfer);
3949 mutex_exit(&sc->sc_lock);
3950 if (err)
3951 return err;
3952
3953 /*
3954 * Pipe isn't running (otherwise err would be USBD_INPROG),
3955 * so start it first.
3956 */
3957 return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
3958 }
3959
3960 static usbd_status
3961 xhci_device_intr_start(struct usbd_xfer *xfer)
3962 {
3963 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3964 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
3965 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
3966 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
3967 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
3968 const uint32_t len = xfer->ux_length;
3969 usb_dma_t * const dma = &xfer->ux_dmabuf;
3970 uint64_t parameter;
3971 uint32_t status;
3972 uint32_t control;
3973 u_int i = 0;
3974
3975 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3976
3977 DPRINTFN(15, "%p slot %u dci %u", xfer, xs->xs_idx, dci, 0);
3978
3979 if (sc->sc_dying)
3980 return USBD_IOERROR;
3981
3982 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
3983
3984 parameter = DMAADDR(dma, 0);
3985 KASSERTMSG(len <= 0x10000, "len %d", len);
3986 status = XHCI_TRB_2_IRQ_SET(0) |
3987 XHCI_TRB_2_TDSZ_SET(1) |
3988 XHCI_TRB_2_BYTES_SET(len);
3989 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
3990 (usbd_xfer_isread(xfer) ? XHCI_TRB_3_ISP_BIT : 0) |
3991 XHCI_TRB_3_IOC_BIT;
3992 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
3993
3994 mutex_enter(&tr->xr_lock);
3995 xhci_ring_put(sc, tr, xfer, xx->xx_trb, i);
3996 mutex_exit(&tr->xr_lock);
3997
3998 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
3999
4000 if (xfer->ux_timeout && !sc->sc_bus.ub_usepolling) {
4001 callout_reset(&xfer->ux_callout, mstohz(xfer->ux_timeout),
4002 xhci_timeout, xfer);
4003 }
4004
4005 return USBD_IN_PROGRESS;
4006 }
4007
4008 static void
4009 xhci_device_intr_done(struct usbd_xfer *xfer)
4010 {
4011 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4012 #ifdef USB_DEBUG
4013 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4014 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4015 #endif
4016 const int isread = usbd_xfer_isread(xfer);
4017
4018 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4019
4020 DPRINTFN(15, "%p slot %u dci %u", xfer, xs->xs_idx, dci, 0);
4021
4022 KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
4023
4024 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4025 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4026 }
4027
4028 static void
4029 xhci_device_intr_abort(struct usbd_xfer *xfer)
4030 {
4031 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4032
4033 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4034
4035 KASSERT(mutex_owned(&sc->sc_lock));
4036 DPRINTFN(15, "%p", xfer, 0, 0, 0);
4037 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
4038 xhci_abort_xfer(xfer, USBD_CANCELLED);
4039 }
4040
4041 static void
4042 xhci_device_intr_close(struct usbd_pipe *pipe)
4043 {
4044 //struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
4045
4046 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4047 DPRINTFN(15, "%p", pipe, 0, 0, 0);
4048
4049 xhci_close_pipe(pipe);
4050 }
4051
4052 /* ------------ */
4053
4054 static void
4055 xhci_timeout(void *addr)
4056 {
4057 struct xhci_xfer * const xx = addr;
4058 struct usbd_xfer * const xfer = &xx->xx_xfer;
4059 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4060
4061 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4062
4063 if (sc->sc_dying) {
4064 return;
4065 }
4066
4067 usb_init_task(&xx->xx_abort_task, xhci_timeout_task, addr,
4068 USB_TASKQ_MPSAFE);
4069 usb_add_task(xx->xx_xfer.ux_pipe->up_dev, &xx->xx_abort_task,
4070 USB_TASKQ_HC);
4071 }
4072
4073 static void
4074 xhci_timeout_task(void *addr)
4075 {
4076 struct usbd_xfer * const xfer = addr;
4077 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4078
4079 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4080
4081 mutex_enter(&sc->sc_lock);
4082 xhci_abort_xfer(xfer, USBD_TIMEOUT);
4083 mutex_exit(&sc->sc_lock);
4084 }
4085