xhci.c revision 1.72.2.9 1 /* $NetBSD: xhci.c,v 1.72.2.9 2018/09/28 08:33:43 martin Exp $ */
2
3 /*
4 * Copyright (c) 2013 Jonathan A. Kollasch
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
25 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
26 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * USB rev 2.0 and rev 3.1 specification
31 * http://www.usb.org/developers/docs/
32 * xHCI rev 1.1 specification
33 * http://www.intel.com/technology/usb/spec.htm
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.72.2.9 2018/09/28 08:33:43 martin Exp $");
38
39 #ifdef _KERNEL_OPT
40 #include "opt_usb.h"
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/device.h>
48 #include <sys/select.h>
49 #include <sys/proc.h>
50 #include <sys/queue.h>
51 #include <sys/mutex.h>
52 #include <sys/condvar.h>
53 #include <sys/bus.h>
54 #include <sys/cpu.h>
55 #include <sys/sysctl.h>
56
57 #include <machine/endian.h>
58
59 #include <dev/usb/usb.h>
60 #include <dev/usb/usbdi.h>
61 #include <dev/usb/usbdivar.h>
62 #include <dev/usb/usbdi_util.h>
63 #include <dev/usb/usbhist.h>
64 #include <dev/usb/usb_mem.h>
65 #include <dev/usb/usb_quirks.h>
66
67 #include <dev/usb/xhcireg.h>
68 #include <dev/usb/xhcivar.h>
69 #include <dev/usb/usbroothub.h>
70
71
72 #ifdef USB_DEBUG
73 #ifndef XHCI_DEBUG
74 #define xhcidebug 0
75 #else /* !XHCI_DEBUG */
76 static int xhcidebug = 0;
77
78 SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup")
79 {
80 int err;
81 const struct sysctlnode *rnode;
82 const struct sysctlnode *cnode;
83
84 err = sysctl_createv(clog, 0, NULL, &rnode,
85 CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci",
86 SYSCTL_DESCR("xhci global controls"),
87 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
88
89 if (err)
90 goto fail;
91
92 /* control debugging printfs */
93 err = sysctl_createv(clog, 0, &rnode, &cnode,
94 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
95 "debug", SYSCTL_DESCR("Enable debugging output"),
96 NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL);
97 if (err)
98 goto fail;
99
100 return;
101 fail:
102 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
103 }
104
105 #endif /* !XHCI_DEBUG */
106 #endif /* USB_DEBUG */
107
108 #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D)
109 #define XHCIHIST_FUNC() USBHIST_FUNC()
110 #define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug)
111
112 #define XHCI_DCI_SLOT 0
113 #define XHCI_DCI_EP_CONTROL 1
114
115 #define XHCI_ICI_INPUT_CONTROL 0
116
117 struct xhci_pipe {
118 struct usbd_pipe xp_pipe;
119 struct usb_task xp_async_task;
120 };
121
122 #define XHCI_COMMAND_RING_TRBS 256
123 #define XHCI_EVENT_RING_TRBS 256
124 #define XHCI_EVENT_RING_SEGMENTS 1
125 #define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT
126
127 static usbd_status xhci_open(struct usbd_pipe *);
128 static void xhci_close_pipe(struct usbd_pipe *);
129 static int xhci_intr1(struct xhci_softc * const);
130 static void xhci_softintr(void *);
131 static void xhci_poll(struct usbd_bus *);
132 static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int);
133 static void xhci_freex(struct usbd_bus *, struct usbd_xfer *);
134 static void xhci_get_lock(struct usbd_bus *, kmutex_t **);
135 static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int,
136 struct usbd_port *);
137 static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
138 void *, int);
139
140 static usbd_status xhci_configure_endpoint(struct usbd_pipe *);
141 //static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *);
142 static usbd_status xhci_reset_endpoint(struct usbd_pipe *);
143 static usbd_status xhci_stop_endpoint(struct usbd_pipe *);
144
145 static void xhci_host_dequeue(struct xhci_ring * const);
146 static usbd_status xhci_set_dequeue(struct usbd_pipe *);
147
148 static usbd_status xhci_do_command(struct xhci_softc * const,
149 struct xhci_trb * const, int);
150 static usbd_status xhci_do_command_locked(struct xhci_softc * const,
151 struct xhci_trb * const, int);
152 static usbd_status xhci_init_slot(struct usbd_device *, uint32_t);
153 static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *, int, int);
154 static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool);
155 static usbd_status xhci_enable_slot(struct xhci_softc * const,
156 uint8_t * const);
157 static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t);
158 static usbd_status xhci_address_device(struct xhci_softc * const,
159 uint64_t, uint8_t, bool);
160 static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int);
161 static usbd_status xhci_update_ep0_mps(struct xhci_softc * const,
162 struct xhci_slot * const, u_int);
163 static usbd_status xhci_ring_init(struct xhci_softc * const,
164 struct xhci_ring * const, size_t, size_t);
165 static void xhci_ring_free(struct xhci_softc * const, struct xhci_ring * const);
166
167 static void xhci_setup_ctx(struct usbd_pipe *);
168 static void xhci_setup_route(struct usbd_pipe *, uint32_t *);
169 static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *);
170 static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *);
171 static uint32_t xhci_bival2ival(uint32_t, uint32_t);
172
173 static void xhci_noop(struct usbd_pipe *);
174
175 static usbd_status xhci_root_intr_transfer(struct usbd_xfer *);
176 static usbd_status xhci_root_intr_start(struct usbd_xfer *);
177 static void xhci_root_intr_abort(struct usbd_xfer *);
178 static void xhci_root_intr_close(struct usbd_pipe *);
179 static void xhci_root_intr_done(struct usbd_xfer *);
180
181 static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *);
182 static usbd_status xhci_device_ctrl_start(struct usbd_xfer *);
183 static void xhci_device_ctrl_abort(struct usbd_xfer *);
184 static void xhci_device_ctrl_close(struct usbd_pipe *);
185 static void xhci_device_ctrl_done(struct usbd_xfer *);
186
187 static usbd_status xhci_device_intr_transfer(struct usbd_xfer *);
188 static usbd_status xhci_device_intr_start(struct usbd_xfer *);
189 static void xhci_device_intr_abort(struct usbd_xfer *);
190 static void xhci_device_intr_close(struct usbd_pipe *);
191 static void xhci_device_intr_done(struct usbd_xfer *);
192
193 static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *);
194 static usbd_status xhci_device_bulk_start(struct usbd_xfer *);
195 static void xhci_device_bulk_abort(struct usbd_xfer *);
196 static void xhci_device_bulk_close(struct usbd_pipe *);
197 static void xhci_device_bulk_done(struct usbd_xfer *);
198
199 static void xhci_timeout(void *);
200 static void xhci_timeout_task(void *);
201
202 static const struct usbd_bus_methods xhci_bus_methods = {
203 .ubm_open = xhci_open,
204 .ubm_softint = xhci_softintr,
205 .ubm_dopoll = xhci_poll,
206 .ubm_allocx = xhci_allocx,
207 .ubm_freex = xhci_freex,
208 .ubm_getlock = xhci_get_lock,
209 .ubm_newdev = xhci_new_device,
210 .ubm_rhctrl = xhci_roothub_ctrl,
211 };
212
213 static const struct usbd_pipe_methods xhci_root_intr_methods = {
214 .upm_transfer = xhci_root_intr_transfer,
215 .upm_start = xhci_root_intr_start,
216 .upm_abort = xhci_root_intr_abort,
217 .upm_close = xhci_root_intr_close,
218 .upm_cleartoggle = xhci_noop,
219 .upm_done = xhci_root_intr_done,
220 };
221
222
223 static const struct usbd_pipe_methods xhci_device_ctrl_methods = {
224 .upm_transfer = xhci_device_ctrl_transfer,
225 .upm_start = xhci_device_ctrl_start,
226 .upm_abort = xhci_device_ctrl_abort,
227 .upm_close = xhci_device_ctrl_close,
228 .upm_cleartoggle = xhci_noop,
229 .upm_done = xhci_device_ctrl_done,
230 };
231
232 static const struct usbd_pipe_methods xhci_device_isoc_methods = {
233 .upm_cleartoggle = xhci_noop,
234 };
235
236 static const struct usbd_pipe_methods xhci_device_bulk_methods = {
237 .upm_transfer = xhci_device_bulk_transfer,
238 .upm_start = xhci_device_bulk_start,
239 .upm_abort = xhci_device_bulk_abort,
240 .upm_close = xhci_device_bulk_close,
241 .upm_cleartoggle = xhci_noop,
242 .upm_done = xhci_device_bulk_done,
243 };
244
245 static const struct usbd_pipe_methods xhci_device_intr_methods = {
246 .upm_transfer = xhci_device_intr_transfer,
247 .upm_start = xhci_device_intr_start,
248 .upm_abort = xhci_device_intr_abort,
249 .upm_close = xhci_device_intr_close,
250 .upm_cleartoggle = xhci_noop,
251 .upm_done = xhci_device_intr_done,
252 };
253
254 static inline uint32_t
255 xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset)
256 {
257 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
258 }
259
260 static inline uint32_t
261 xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset)
262 {
263 return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset);
264 }
265
266 static inline void
267 xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset,
268 uint32_t value)
269 {
270 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value);
271 }
272
273 #if 0 /* unused */
274 static inline void
275 xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset,
276 uint32_t value)
277 {
278 bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value);
279 }
280 #endif /* unused */
281
282 static inline uint32_t
283 xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset)
284 {
285 return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset);
286 }
287
288 static inline uint32_t
289 xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset)
290 {
291 return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
292 }
293
294 static inline void
295 xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset,
296 uint32_t value)
297 {
298 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
299 }
300
301 static inline uint64_t
302 xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset)
303 {
304 uint64_t value;
305
306 if (sc->sc_ac64) {
307 #ifdef XHCI_USE_BUS_SPACE_8
308 value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset);
309 #else
310 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
311 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh,
312 offset + 4) << 32;
313 #endif
314 } else {
315 value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
316 }
317
318 return value;
319 }
320
321 static inline void
322 xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset,
323 uint64_t value)
324 {
325 if (sc->sc_ac64) {
326 #ifdef XHCI_USE_BUS_SPACE_8
327 bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value);
328 #else
329 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0,
330 (value >> 0) & 0xffffffff);
331 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4,
332 (value >> 32) & 0xffffffff);
333 #endif
334 } else {
335 bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
336 }
337 }
338
339 static inline uint32_t
340 xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset)
341 {
342 return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
343 }
344
345 static inline void
346 xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset,
347 uint32_t value)
348 {
349 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
350 }
351
352 #if 0 /* unused */
353 static inline uint64_t
354 xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset)
355 {
356 uint64_t value;
357
358 if (sc->sc_ac64) {
359 #ifdef XHCI_USE_BUS_SPACE_8
360 value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset);
361 #else
362 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
363 value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh,
364 offset + 4) << 32;
365 #endif
366 } else {
367 value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
368 }
369
370 return value;
371 }
372 #endif /* unused */
373
374 static inline void
375 xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset,
376 uint64_t value)
377 {
378 if (sc->sc_ac64) {
379 #ifdef XHCI_USE_BUS_SPACE_8
380 bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value);
381 #else
382 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0,
383 (value >> 0) & 0xffffffff);
384 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4,
385 (value >> 32) & 0xffffffff);
386 #endif
387 } else {
388 bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
389 }
390 }
391
392 #if 0 /* unused */
393 static inline uint32_t
394 xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset)
395 {
396 return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset);
397 }
398 #endif /* unused */
399
400 static inline void
401 xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset,
402 uint32_t value)
403 {
404 bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value);
405 }
406
407 /* --- */
408
409 static inline uint8_t
410 xhci_ep_get_type(usb_endpoint_descriptor_t * const ed)
411 {
412 u_int eptype = 0;
413
414 switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
415 case UE_CONTROL:
416 eptype = 0x0;
417 break;
418 case UE_ISOCHRONOUS:
419 eptype = 0x1;
420 break;
421 case UE_BULK:
422 eptype = 0x2;
423 break;
424 case UE_INTERRUPT:
425 eptype = 0x3;
426 break;
427 }
428
429 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
430 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
431 return eptype | 0x4;
432 else
433 return eptype;
434 }
435
436 static u_int
437 xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed)
438 {
439 /* xHCI 1.0 section 4.5.1 */
440 u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress);
441 u_int in = 0;
442
443 if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
444 (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
445 in = 1;
446
447 return epaddr * 2 + in;
448 }
449
450 static inline u_int
451 xhci_dci_to_ici(const u_int i)
452 {
453 return i + 1;
454 }
455
456 static inline void *
457 xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs,
458 const u_int dci)
459 {
460 return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
461 }
462
463 #if 0 /* unused */
464 static inline bus_addr_t
465 xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs,
466 const u_int dci)
467 {
468 return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
469 }
470 #endif /* unused */
471
472 static inline void *
473 xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs,
474 const u_int ici)
475 {
476 return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
477 }
478
479 static inline bus_addr_t
480 xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs,
481 const u_int ici)
482 {
483 return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
484 }
485
486 static inline struct xhci_trb *
487 xhci_ring_trbv(struct xhci_ring * const xr, u_int idx)
488 {
489 return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
490 }
491
492 static inline bus_addr_t
493 xhci_ring_trbp(struct xhci_ring * const xr, u_int idx)
494 {
495 return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
496 }
497
498 static inline void
499 xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status,
500 uint32_t control)
501 {
502 trb->trb_0 = htole64(parameter);
503 trb->trb_2 = htole32(status);
504 trb->trb_3 = htole32(control);
505 }
506
507 static int
508 xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx)
509 {
510 /* base address of TRBs */
511 bus_addr_t trbp = xhci_ring_trbp(xr, 0);
512
513 /* trb_0 range sanity check */
514 if (trb_0 == 0 || trb_0 < trbp ||
515 (trb_0 - trbp) % sizeof(struct xhci_trb) != 0 ||
516 (trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) {
517 return 1;
518 }
519 *idx = (trb_0 - trbp) / sizeof(struct xhci_trb);
520 return 0;
521 }
522
523 static unsigned int
524 xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs,
525 u_int dci)
526 {
527 uint32_t *cp;
528
529 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
530 cp = xhci_slot_get_dcv(sc, xs, dci);
531 return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0]));
532 }
533
534 static inline unsigned int
535 xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport)
536 {
537 const unsigned int port = ctlrport - 1;
538 const uint8_t bit = __BIT(port % NBBY);
539
540 return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit);
541 }
542
543 /*
544 * Return the roothub port for a controller port. Both are 1..n.
545 */
546 static inline unsigned int
547 xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport)
548 {
549
550 return sc->sc_ctlrportmap[ctrlport - 1];
551 }
552
553 /*
554 * Return the controller port for a bus roothub port. Both are 1..n.
555 */
556 static inline unsigned int
557 xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn,
558 unsigned int rhport)
559 {
560
561 return sc->sc_rhportmap[bn][rhport - 1];
562 }
563
564 /* --- */
565
566 void
567 xhci_childdet(device_t self, device_t child)
568 {
569 struct xhci_softc * const sc = device_private(self);
570
571 KASSERT(sc->sc_child == child);
572 if (child == sc->sc_child)
573 sc->sc_child = NULL;
574 }
575
576 int
577 xhci_detach(struct xhci_softc *sc, int flags)
578 {
579 int rv = 0;
580
581 if (sc->sc_child2 != NULL) {
582 rv = config_detach(sc->sc_child2, flags);
583 if (rv != 0)
584 return rv;
585 KASSERT(sc->sc_child2 == NULL);
586 }
587
588 if (sc->sc_child != NULL) {
589 rv = config_detach(sc->sc_child, flags);
590 if (rv != 0)
591 return rv;
592 KASSERT(sc->sc_child == NULL);
593 }
594
595 /* XXX unconfigure/free slots */
596
597 /* verify: */
598 xhci_rt_write_4(sc, XHCI_IMAN(0), 0);
599 xhci_op_write_4(sc, XHCI_USBCMD, 0);
600 /* do we need to wait for stop? */
601
602 xhci_op_write_8(sc, XHCI_CRCR, 0);
603 xhci_ring_free(sc, &sc->sc_cr);
604 cv_destroy(&sc->sc_command_cv);
605 cv_destroy(&sc->sc_cmdbusy_cv);
606
607 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0);
608 xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0);
609 xhci_rt_write_8(sc, XHCI_ERDP(0), 0|XHCI_ERDP_LO_BUSY);
610 xhci_ring_free(sc, &sc->sc_er);
611
612 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
613
614 xhci_op_write_8(sc, XHCI_DCBAAP, 0);
615 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
616
617 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots);
618
619 kmem_free(sc->sc_ctlrportbus,
620 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY));
621 kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int));
622
623 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
624 kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int));
625 }
626
627 mutex_destroy(&sc->sc_lock);
628 mutex_destroy(&sc->sc_intr_lock);
629
630 pool_cache_destroy(sc->sc_xferpool);
631
632 return rv;
633 }
634
635 int
636 xhci_activate(device_t self, enum devact act)
637 {
638 struct xhci_softc * const sc = device_private(self);
639
640 switch (act) {
641 case DVACT_DEACTIVATE:
642 sc->sc_dying = true;
643 return 0;
644 default:
645 return EOPNOTSUPP;
646 }
647 }
648
649 bool
650 xhci_suspend(device_t dv, const pmf_qual_t *qual)
651 {
652 return false;
653 }
654
655 bool
656 xhci_resume(device_t dv, const pmf_qual_t *qual)
657 {
658 return false;
659 }
660
661 bool
662 xhci_shutdown(device_t self, int flags)
663 {
664 return false;
665 }
666
667 static int
668 xhci_hc_reset(struct xhci_softc * const sc)
669 {
670 uint32_t usbcmd, usbsts;
671 int i;
672
673 /* Check controller not ready */
674 for (i = 0; i < XHCI_WAIT_CNR; i++) {
675 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
676 if ((usbsts & XHCI_STS_CNR) == 0)
677 break;
678 usb_delay_ms(&sc->sc_bus, 1);
679 }
680 if (i >= XHCI_WAIT_CNR) {
681 aprint_error_dev(sc->sc_dev, "controller not ready timeout\n");
682 return EIO;
683 }
684
685 /* Halt controller */
686 usbcmd = 0;
687 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
688 usb_delay_ms(&sc->sc_bus, 1);
689
690 /* Reset controller */
691 usbcmd = XHCI_CMD_HCRST;
692 xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
693 for (i = 0; i < XHCI_WAIT_HCRST; i++) {
694 /*
695 * Wait 1ms first. Existing Intel xHCI requies 1ms delay to
696 * prevent system hang (Errata).
697 */
698 usb_delay_ms(&sc->sc_bus, 1);
699 usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
700 if ((usbcmd & XHCI_CMD_HCRST) == 0)
701 break;
702 }
703 if (i >= XHCI_WAIT_HCRST) {
704 aprint_error_dev(sc->sc_dev, "host controller reset timeout\n");
705 return EIO;
706 }
707
708 /* Check controller not ready */
709 for (i = 0; i < XHCI_WAIT_CNR; i++) {
710 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
711 if ((usbsts & XHCI_STS_CNR) == 0)
712 break;
713 usb_delay_ms(&sc->sc_bus, 1);
714 }
715 if (i >= XHCI_WAIT_CNR) {
716 aprint_error_dev(sc->sc_dev,
717 "controller not ready timeout after reset\n");
718 return EIO;
719 }
720
721 return 0;
722 }
723
724
725 static void
726 hexdump(const char *msg, const void *base, size_t len)
727 {
728 #if 0
729 size_t cnt;
730 const uint32_t *p;
731 extern paddr_t vtophys(vaddr_t);
732
733 p = base;
734 cnt = 0;
735
736 printf("*** %s (%zu bytes @ %p %p)\n", msg, len, base,
737 (void *)vtophys((vaddr_t)base));
738
739 while (cnt < len) {
740 if (cnt % 16 == 0)
741 printf("%p: ", p);
742 else if (cnt % 8 == 0)
743 printf(" |");
744 printf(" %08x", *p++);
745 cnt += 4;
746 if (cnt % 16 == 0)
747 printf("\n");
748 }
749 if (cnt % 16 != 0)
750 printf("\n");
751 #endif
752 }
753
754 /* 7.2 xHCI Support Protocol Capability */
755 static void
756 xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp)
757 {
758 /* XXX Cache this lot */
759
760 const uint32_t w0 = xhci_read_4(sc, ecp);
761 const uint32_t w4 = xhci_read_4(sc, ecp + 4);
762 const uint32_t w8 = xhci_read_4(sc, ecp + 8);
763 const uint32_t wc = xhci_read_4(sc, ecp + 0xc);
764
765 aprint_debug_dev(sc->sc_dev,
766 " SP: %08x %08x %08x %08x\n", w0, w4, w8, wc);
767
768 if (w4 != XHCI_XECP_USBID)
769 return;
770
771 const int major = XHCI_XECP_SP_W0_MAJOR(w0);
772 const int minor = XHCI_XECP_SP_W0_MINOR(w0);
773 const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8);
774 const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8);
775
776 const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16));
777 switch (mm) {
778 case 0x0200:
779 case 0x0300:
780 case 0x0301:
781 aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n",
782 major == 3 ? "ss" : "hs", cpo, cpo + cpc -1);
783 break;
784 default:
785 aprint_debug_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n",
786 major, minor);
787 return;
788 }
789
790 const size_t bus = (major == 3) ? 0 : 1;
791
792 /* Index arrays with 0..n-1 where ports are numbered 1..n */
793 for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) {
794 if (sc->sc_ctlrportmap[cp] != 0) {
795 aprint_error_dev(sc->sc_dev, "contoller port %zu "
796 "already assigned", cp);
797 continue;
798 }
799
800 sc->sc_ctlrportbus[cp / NBBY] |=
801 bus == 0 ? 0 : __BIT(cp % NBBY);
802
803 const size_t rhp = sc->sc_rhportcount[bus]++;
804
805 KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0,
806 "bus %zu rhp %zu is %d", bus, rhp,
807 sc->sc_rhportmap[bus][rhp]);
808
809 sc->sc_rhportmap[bus][rhp] = cp + 1;
810 sc->sc_ctlrportmap[cp] = rhp + 1;
811 }
812 }
813
814 /* Process extended capabilities */
815 static void
816 xhci_ecp(struct xhci_softc *sc, uint32_t hcc)
817 {
818 XHCIHIST_FUNC(); XHCIHIST_CALLED();
819
820 bus_size_t ecp = XHCI_HCC_XECP(hcc) * 4;
821 while (ecp != 0) {
822 uint32_t ecr = xhci_read_4(sc, ecp);
823 aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr);
824 switch (XHCI_XECP_ID(ecr)) {
825 case XHCI_ID_PROTOCOLS: {
826 xhci_id_protocols(sc, ecp);
827 break;
828 }
829 case XHCI_ID_USB_LEGACY: {
830 uint8_t bios_sem;
831
832 /* Take host controller ownership from BIOS */
833 bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM);
834 if (bios_sem) {
835 /* sets xHCI to be owned by OS */
836 xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1);
837 aprint_debug_dev(sc->sc_dev,
838 "waiting for BIOS to give up control\n");
839 for (int i = 0; i < 5000; i++) {
840 bios_sem = xhci_read_1(sc, ecp +
841 XHCI_XECP_BIOS_SEM);
842 if (bios_sem == 0)
843 break;
844 DELAY(1000);
845 }
846 if (bios_sem) {
847 aprint_error_dev(sc->sc_dev,
848 "timed out waiting for BIOS\n");
849 }
850 }
851 break;
852 }
853 default:
854 break;
855 }
856 ecr = xhci_read_4(sc, ecp);
857 if (XHCI_XECP_NEXT(ecr) == 0) {
858 ecp = 0;
859 } else {
860 ecp += XHCI_XECP_NEXT(ecr) * 4;
861 }
862 }
863 }
864
865 #define XHCI_HCCPREV1_BITS \
866 "\177\020" /* New bitmask */ \
867 "f\020\020XECP\0" \
868 "f\014\4MAXPSA\0" \
869 "b\013CFC\0" \
870 "b\012SEC\0" \
871 "b\011SBD\0" \
872 "b\010FSE\0" \
873 "b\7NSS\0" \
874 "b\6LTC\0" \
875 "b\5LHRC\0" \
876 "b\4PIND\0" \
877 "b\3PPC\0" \
878 "b\2CZC\0" \
879 "b\1BNC\0" \
880 "b\0AC64\0" \
881 "\0"
882 #define XHCI_HCCV1_x_BITS \
883 "\177\020" /* New bitmask */ \
884 "f\020\020XECP\0" \
885 "f\014\4MAXPSA\0" \
886 "b\013CFC\0" \
887 "b\012SEC\0" \
888 "b\011SPC\0" \
889 "b\010PAE\0" \
890 "b\7NSS\0" \
891 "b\6LTC\0" \
892 "b\5LHRC\0" \
893 "b\4PIND\0" \
894 "b\3PPC\0" \
895 "b\2CSZ\0" \
896 "b\1BNC\0" \
897 "b\0AC64\0" \
898 "\0"
899
900 int
901 xhci_init(struct xhci_softc *sc)
902 {
903 bus_size_t bsz;
904 uint32_t cap, hcs1, hcs2, hcs3, hcc, dboff, rtsoff;
905 uint32_t pagesize, config;
906 int i = 0;
907 uint16_t hciversion;
908 uint8_t caplength;
909
910 XHCIHIST_FUNC(); XHCIHIST_CALLED();
911
912 /* Set up the bus struct for the usb 3 and usb 2 buses */
913 sc->sc_bus.ub_methods = &xhci_bus_methods;
914 sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe);
915 sc->sc_bus.ub_revision = USBREV_3_0;
916 sc->sc_bus.ub_usedma = true;
917 sc->sc_bus.ub_hcpriv = sc;
918
919 sc->sc_bus2.ub_methods = &xhci_bus_methods;
920 sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe);
921 sc->sc_bus2.ub_revision = USBREV_2_0;
922 sc->sc_bus2.ub_usedma = true;
923 sc->sc_bus2.ub_hcpriv = sc;
924 sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag;
925
926 cap = xhci_read_4(sc, XHCI_CAPLENGTH);
927 caplength = XHCI_CAP_CAPLENGTH(cap);
928 hciversion = XHCI_CAP_HCIVERSION(cap);
929
930 if (hciversion < XHCI_HCIVERSION_0_96 ||
931 hciversion > XHCI_HCIVERSION_1_0) {
932 aprint_normal_dev(sc->sc_dev,
933 "xHCI version %x.%x not known to be supported\n",
934 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
935 } else {
936 aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n",
937 (hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
938 }
939
940 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength,
941 &sc->sc_cbh) != 0) {
942 aprint_error_dev(sc->sc_dev, "capability subregion failure\n");
943 return ENOMEM;
944 }
945
946 hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1);
947 sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1);
948 sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1);
949 sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1);
950 hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2);
951 hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3);
952 aprint_debug_dev(sc->sc_dev,
953 "hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3);
954
955 hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS);
956 sc->sc_ac64 = XHCI_HCC_AC64(hcc);
957 sc->sc_ctxsz = XHCI_HCC_CSZ(hcc) ? 64 : 32;
958
959 char sbuf[128];
960 if (hciversion < XHCI_HCIVERSION_1_0)
961 snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, hcc);
962 else
963 snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, hcc);
964 aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf);
965 aprint_debug_dev(sc->sc_dev, "xECP %x\n", XHCI_HCC_XECP(hcc) * 4);
966
967 /* default all ports to bus 0, i.e. usb 3 */
968 sc->sc_ctlrportbus = kmem_zalloc(
969 howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP);
970 sc->sc_ctlrportmap = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
971
972 /* controller port to bus roothub port map */
973 for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
974 sc->sc_rhportmap[j] = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
975 }
976
977 /*
978 * Process all Extended Capabilities
979 */
980 xhci_ecp(sc, hcc);
981
982 bsz = XHCI_PORTSC(sc->sc_maxports);
983 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz,
984 &sc->sc_obh) != 0) {
985 aprint_error_dev(sc->sc_dev, "operational subregion failure\n");
986 return ENOMEM;
987 }
988
989 dboff = xhci_cap_read_4(sc, XHCI_DBOFF);
990 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff,
991 sc->sc_maxslots * 4, &sc->sc_dbh) != 0) {
992 aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n");
993 return ENOMEM;
994 }
995
996 rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF);
997 if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff,
998 sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) {
999 aprint_error_dev(sc->sc_dev, "runtime subregion failure\n");
1000 return ENOMEM;
1001 }
1002
1003 int rv;
1004 rv = xhci_hc_reset(sc);
1005 if (rv != 0) {
1006 return rv;
1007 }
1008
1009 if (sc->sc_vendor_init)
1010 sc->sc_vendor_init(sc);
1011
1012 pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE);
1013 aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize);
1014 pagesize = ffs(pagesize);
1015 if (pagesize == 0) {
1016 aprint_error_dev(sc->sc_dev, "pagesize is 0\n");
1017 return EIO;
1018 }
1019 sc->sc_pgsz = 1 << (12 + (pagesize - 1));
1020 aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz);
1021 aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n",
1022 (uint32_t)sc->sc_maxslots);
1023 aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports);
1024
1025 usbd_status err;
1026
1027 sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2);
1028 aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf);
1029 if (sc->sc_maxspbuf != 0) {
1030 err = usb_allocmem(&sc->sc_bus,
1031 sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t),
1032 &sc->sc_spbufarray_dma);
1033 if (err) {
1034 aprint_error_dev(sc->sc_dev,
1035 "spbufarray init fail, err %d\n", err);
1036 return ENOMEM;
1037 }
1038
1039 sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) *
1040 sc->sc_maxspbuf, KM_SLEEP);
1041 uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0);
1042 for (i = 0; i < sc->sc_maxspbuf; i++) {
1043 usb_dma_t * const dma = &sc->sc_spbuf_dma[i];
1044 /* allocate contexts */
1045 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz,
1046 sc->sc_pgsz, dma);
1047 if (err) {
1048 aprint_error_dev(sc->sc_dev,
1049 "spbufarray_dma init fail, err %d\n", err);
1050 rv = ENOMEM;
1051 goto bad1;
1052 }
1053 spbufarray[i] = htole64(DMAADDR(dma, 0));
1054 usb_syncmem(dma, 0, sc->sc_pgsz,
1055 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1056 }
1057
1058 usb_syncmem(&sc->sc_spbufarray_dma, 0,
1059 sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE);
1060 }
1061
1062 config = xhci_op_read_4(sc, XHCI_CONFIG);
1063 config &= ~0xFF;
1064 config |= sc->sc_maxslots & 0xFF;
1065 xhci_op_write_4(sc, XHCI_CONFIG, config);
1066
1067 err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS,
1068 XHCI_COMMAND_RING_SEGMENTS_ALIGN);
1069 if (err) {
1070 aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n",
1071 err);
1072 rv = ENOMEM;
1073 goto bad1;
1074 }
1075
1076 err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS,
1077 XHCI_EVENT_RING_SEGMENTS_ALIGN);
1078 if (err) {
1079 aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n",
1080 err);
1081 rv = ENOMEM;
1082 goto bad2;
1083 }
1084
1085 usb_dma_t *dma;
1086 size_t size;
1087 size_t align;
1088
1089 dma = &sc->sc_eventst_dma;
1090 size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE,
1091 XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN);
1092 KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size);
1093 align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN;
1094 err = usb_allocmem(&sc->sc_bus, size, align, dma);
1095 if (err) {
1096 aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n",
1097 err);
1098 rv = ENOMEM;
1099 goto bad3;
1100 }
1101
1102 memset(KERNADDR(dma, 0), 0, size);
1103 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1104 aprint_debug_dev(sc->sc_dev, "eventst: %016jx %p %zx\n",
1105 (uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0),
1106 KERNADDR(&sc->sc_eventst_dma, 0),
1107 sc->sc_eventst_dma.udma_block->size);
1108
1109 dma = &sc->sc_dcbaa_dma;
1110 size = (1 + sc->sc_maxslots) * sizeof(uint64_t);
1111 KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size);
1112 align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN;
1113 err = usb_allocmem(&sc->sc_bus, size, align, dma);
1114 if (err) {
1115 aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err);
1116 rv = ENOMEM;
1117 goto bad4;
1118 }
1119 aprint_debug_dev(sc->sc_dev, "dcbaa: %016jx %p %zx\n",
1120 (uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0),
1121 KERNADDR(&sc->sc_dcbaa_dma, 0),
1122 sc->sc_dcbaa_dma.udma_block->size);
1123
1124 memset(KERNADDR(dma, 0), 0, size);
1125 if (sc->sc_maxspbuf != 0) {
1126 /*
1127 * DCBA entry 0 hold the scratchbuf array pointer.
1128 */
1129 *(uint64_t *)KERNADDR(dma, 0) =
1130 htole64(DMAADDR(&sc->sc_spbufarray_dma, 0));
1131 }
1132 usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
1133
1134 sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots,
1135 KM_SLEEP);
1136 if (sc->sc_slots == NULL) {
1137 aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err);
1138 rv = ENOMEM;
1139 goto bad;
1140 }
1141
1142 sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0,
1143 "xhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
1144 if (sc->sc_xferpool == NULL) {
1145 aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n",
1146 err);
1147 rv = ENOMEM;
1148 goto bad;
1149 }
1150
1151 cv_init(&sc->sc_command_cv, "xhcicmd");
1152 cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq");
1153 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1154 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1155
1156 struct xhci_erste *erst;
1157 erst = KERNADDR(&sc->sc_eventst_dma, 0);
1158 erst[0].erste_0 = htole64(xhci_ring_trbp(&sc->sc_er, 0));
1159 erst[0].erste_2 = htole32(sc->sc_er.xr_ntrb);
1160 erst[0].erste_3 = htole32(0);
1161 usb_syncmem(&sc->sc_eventst_dma, 0,
1162 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE);
1163
1164 xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS);
1165 xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0));
1166 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(&sc->sc_er, 0) |
1167 XHCI_ERDP_LO_BUSY);
1168 xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0));
1169 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(&sc->sc_cr, 0) |
1170 sc->sc_cr.xr_cs);
1171
1172 #if 0
1173 hexdump("eventst", KERNADDR(&sc->sc_eventst_dma, 0),
1174 XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS);
1175 #endif
1176
1177 xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA);
1178 if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0)
1179 /* Intel xhci needs interrupt rate moderated. */
1180 xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP);
1181 else
1182 xhci_rt_write_4(sc, XHCI_IMOD(0), 0);
1183 aprint_debug_dev(sc->sc_dev, "current IMOD %u\n",
1184 xhci_rt_read_4(sc, XHCI_IMOD(0)));
1185
1186 xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS); /* Go! */
1187 aprint_debug_dev(sc->sc_dev, "USBCMD %08"PRIx32"\n",
1188 xhci_op_read_4(sc, XHCI_USBCMD));
1189
1190 return 0;
1191
1192 bad:
1193 if (sc->sc_xferpool) {
1194 pool_cache_destroy(sc->sc_xferpool);
1195 sc->sc_xferpool = NULL;
1196 }
1197
1198 if (sc->sc_slots) {
1199 kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) *
1200 sc->sc_maxslots);
1201 sc->sc_slots = NULL;
1202 }
1203
1204 usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
1205 bad4:
1206 usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
1207 bad3:
1208 xhci_ring_free(sc, &sc->sc_er);
1209 bad2:
1210 xhci_ring_free(sc, &sc->sc_cr);
1211 i = sc->sc_maxspbuf;
1212 bad1:
1213 for (int j = 0; j < i; j++)
1214 usb_freemem(&sc->sc_bus, &sc->sc_spbuf_dma[j]);
1215 usb_freemem(&sc->sc_bus, &sc->sc_spbufarray_dma);
1216
1217 return rv;
1218 }
1219
1220 static inline bool
1221 xhci_polling_p(struct xhci_softc * const sc)
1222 {
1223 return sc->sc_bus.ub_usepolling || sc->sc_bus2.ub_usepolling;
1224 }
1225
1226 int
1227 xhci_intr(void *v)
1228 {
1229 struct xhci_softc * const sc = v;
1230 int ret = 0;
1231
1232 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1233
1234 if (sc == NULL)
1235 return 0;
1236
1237 mutex_spin_enter(&sc->sc_intr_lock);
1238
1239 if (sc->sc_dying || !device_has_power(sc->sc_dev))
1240 goto done;
1241
1242 /* If we get an interrupt while polling, then just ignore it. */
1243 if (xhci_polling_p(sc)) {
1244 #ifdef DIAGNOSTIC
1245 DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
1246 #endif
1247 goto done;
1248 }
1249
1250 ret = xhci_intr1(sc);
1251 if (ret) {
1252 KASSERT(sc->sc_child || sc->sc_child2);
1253
1254 /*
1255 * One of child busses could be already detached. It doesn't
1256 * matter on which of the two the softintr is scheduled.
1257 */
1258 if (sc->sc_child)
1259 usb_schedsoftintr(&sc->sc_bus);
1260 else
1261 usb_schedsoftintr(&sc->sc_bus2);
1262 }
1263 done:
1264 mutex_spin_exit(&sc->sc_intr_lock);
1265 return ret;
1266 }
1267
1268 int
1269 xhci_intr1(struct xhci_softc * const sc)
1270 {
1271 uint32_t usbsts;
1272 uint32_t iman;
1273
1274 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1275
1276 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1277 DPRINTFN(16, "USBSTS %08jx", usbsts, 0, 0, 0);
1278 if ((usbsts & (XHCI_STS_HSE | XHCI_STS_EINT | XHCI_STS_PCD |
1279 XHCI_STS_HCE)) == 0) {
1280 DPRINTFN(16, "ignored intr not for %s",
1281 device_xname(sc->sc_dev), 0, 0, 0);
1282 return 0;
1283 }
1284
1285 /*
1286 * Clear EINT and other transient flags, to not misenterpret
1287 * next shared interrupt. Also, to avoid race, EINT must be cleared
1288 * before XHCI_IMAN_INTR_PEND is cleared.
1289 */
1290 xhci_op_write_4(sc, XHCI_USBSTS, usbsts & XHCI_STS_RSVDP0);
1291
1292 #ifdef XHCI_DEBUG
1293 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1294 DPRINTFN(16, "USBSTS %08jx", usbsts, 0, 0, 0);
1295 #endif
1296
1297 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1298 DPRINTFN(16, "IMAN0 %08jx", iman, 0, 0, 0);
1299 iman |= XHCI_IMAN_INTR_PEND;
1300 xhci_rt_write_4(sc, XHCI_IMAN(0), iman);
1301
1302 #ifdef XHCI_DEBUG
1303 iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
1304 DPRINTFN(16, "IMAN0 %08jx", iman, 0, 0, 0);
1305 usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
1306 DPRINTFN(16, "USBSTS %08jx", usbsts, 0, 0, 0);
1307 #endif
1308
1309 return 1;
1310 }
1311
1312 /*
1313 * 3 port speed types used in USB stack
1314 *
1315 * usbdi speed
1316 * definition: USB_SPEED_* in usb.h
1317 * They are used in struct usbd_device in USB stack.
1318 * ioctl interface uses these values too.
1319 * port_status speed
1320 * definition: UPS_*_SPEED in usb.h
1321 * They are used in usb_port_status_t and valid only for USB 2.0.
1322 * Speed value is always 0 for Super Speed or more, and dwExtPortStatus
1323 * of usb_port_status_ext_t indicates port speed.
1324 * Note that some 3.0 values overlap with 2.0 values.
1325 * (e.g. 0x200 means UPS_POER_POWER_SS in SS and
1326 * means UPS_LOW_SPEED in HS.)
1327 * port status returned from hub also uses these values.
1328 * On NetBSD UPS_OTHER_SPEED indicates port speed is super speed
1329 * or more.
1330 * xspeed:
1331 * definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1)
1332 * They are used in only slot context and PORTSC reg of xhci.
1333 * The difference between usbdi speed and xspeed is
1334 * that FS and LS values are swapped.
1335 */
1336
1337 /* convert usbdi speed to xspeed */
1338 static int
1339 xhci_speed2xspeed(int speed)
1340 {
1341 switch (speed) {
1342 case USB_SPEED_LOW: return 2;
1343 case USB_SPEED_FULL: return 1;
1344 default: return speed;
1345 }
1346 }
1347
1348 #if 0
1349 /* convert xspeed to usbdi speed */
1350 static int
1351 xhci_xspeed2speed(int xspeed)
1352 {
1353 switch (xspeed) {
1354 case 1: return USB_SPEED_FULL;
1355 case 2: return USB_SPEED_LOW;
1356 default: return xspeed;
1357 }
1358 }
1359 #endif
1360
1361 /* convert xspeed to port status speed */
1362 static int
1363 xhci_xspeed2psspeed(int xspeed)
1364 {
1365 switch (xspeed) {
1366 case 0: return 0;
1367 case 1: return UPS_FULL_SPEED;
1368 case 2: return UPS_LOW_SPEED;
1369 case 3: return UPS_HIGH_SPEED;
1370 default: return UPS_OTHER_SPEED;
1371 }
1372 }
1373
1374 /*
1375 * Construct input contexts and issue TRB to open pipe.
1376 */
1377 static usbd_status
1378 xhci_configure_endpoint(struct usbd_pipe *pipe)
1379 {
1380 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1381 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1382 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1383 struct xhci_trb trb;
1384 usbd_status err;
1385
1386 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1387 DPRINTFN(4, "slot %ju dci %ju epaddr 0x%02jx attr 0x%02jx",
1388 xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress,
1389 pipe->up_endpoint->ue_edesc->bmAttributes);
1390
1391 /* XXX ensure input context is available? */
1392
1393 memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz);
1394
1395 /* set up context */
1396 xhci_setup_ctx(pipe);
1397
1398 hexdump("input control context", xhci_slot_get_icv(sc, xs, 0),
1399 sc->sc_ctxsz * 1);
1400 hexdump("input endpoint context", xhci_slot_get_icv(sc, xs,
1401 xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1);
1402
1403 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1404 trb.trb_2 = 0;
1405 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1406 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1407
1408 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
1409
1410 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1411 hexdump("output context", xhci_slot_get_dcv(sc, xs, dci),
1412 sc->sc_ctxsz * 1);
1413
1414 return err;
1415 }
1416
1417 #if 0
1418 static usbd_status
1419 xhci_unconfigure_endpoint(struct usbd_pipe *pipe)
1420 {
1421 #ifdef USB_DEBUG
1422 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1423 #endif
1424
1425 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1426 DPRINTFN(4, "slot %ju", xs->xs_idx, 0, 0, 0);
1427
1428 return USBD_NORMAL_COMPLETION;
1429 }
1430 #endif
1431
1432 /* 4.6.8, 6.4.3.7 */
1433 static usbd_status
1434 xhci_reset_endpoint_locked(struct usbd_pipe *pipe)
1435 {
1436 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1437 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1438 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1439 struct xhci_trb trb;
1440 usbd_status err;
1441
1442 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1443 DPRINTFN(4, "slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1444
1445 KASSERT(mutex_owned(&sc->sc_lock));
1446
1447 trb.trb_0 = 0;
1448 trb.trb_2 = 0;
1449 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1450 XHCI_TRB_3_EP_SET(dci) |
1451 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP);
1452
1453 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1454
1455 return err;
1456 }
1457
1458 static usbd_status
1459 xhci_reset_endpoint(struct usbd_pipe *pipe)
1460 {
1461 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1462
1463 mutex_enter(&sc->sc_lock);
1464 usbd_status ret = xhci_reset_endpoint_locked(pipe);
1465 mutex_exit(&sc->sc_lock);
1466
1467 return ret;
1468 }
1469
1470 /*
1471 * 4.6.9, 6.4.3.8
1472 * Stop execution of TDs on xfer ring.
1473 * Should be called with sc_lock held.
1474 */
1475 static usbd_status
1476 xhci_stop_endpoint(struct usbd_pipe *pipe)
1477 {
1478 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1479 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1480 struct xhci_trb trb;
1481 usbd_status err;
1482 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1483
1484 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1485 DPRINTFN(4, "slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1486
1487 KASSERT(mutex_owned(&sc->sc_lock));
1488
1489 trb.trb_0 = 0;
1490 trb.trb_2 = 0;
1491 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1492 XHCI_TRB_3_EP_SET(dci) |
1493 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP);
1494
1495 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1496
1497 return err;
1498 }
1499
1500 /*
1501 * Set TR Dequeue Pointer.
1502 * xHCI 1.1 4.6.10 6.4.3.9
1503 * Purge all of the TRBs on ring and reinitialize ring.
1504 * Set TR dequeue Pointr to 0 and Cycle State to 1.
1505 * EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE
1506 * error will be generated.
1507 */
1508 static usbd_status
1509 xhci_set_dequeue_locked(struct usbd_pipe *pipe)
1510 {
1511 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1512 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1513 const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
1514 struct xhci_ring * const xr = &xs->xs_ep[dci].xe_tr;
1515 struct xhci_trb trb;
1516 usbd_status err;
1517
1518 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1519 DPRINTFN(4, "slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
1520
1521 KASSERT(mutex_owned(&sc->sc_lock));
1522
1523 xhci_host_dequeue(xr);
1524
1525 /* set DCS */
1526 trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */
1527 trb.trb_2 = 0;
1528 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1529 XHCI_TRB_3_EP_SET(dci) |
1530 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE);
1531
1532 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1533
1534 return err;
1535 }
1536
1537 static usbd_status
1538 xhci_set_dequeue(struct usbd_pipe *pipe)
1539 {
1540 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1541
1542 mutex_enter(&sc->sc_lock);
1543 usbd_status ret = xhci_set_dequeue_locked(pipe);
1544 mutex_exit(&sc->sc_lock);
1545
1546 return ret;
1547 }
1548
1549 /*
1550 * Open new pipe: called from usbd_setup_pipe_flags.
1551 * Fills methods of pipe.
1552 * If pipe is not for ep0, calls configure_endpoint.
1553 */
1554 static usbd_status
1555 xhci_open(struct usbd_pipe *pipe)
1556 {
1557 struct usbd_device * const dev = pipe->up_dev;
1558 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
1559 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
1560 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
1561
1562 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1563 DPRINTFN(1, "addr %jd depth %jd port %jd speed %jd", dev->ud_addr,
1564 dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed);
1565 DPRINTFN(1, " dci %ju type 0x%02jx epaddr 0x%02jx attr 0x%02jx",
1566 xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress,
1567 ed->bmAttributes);
1568 DPRINTFN(1, " mps %ju ival %ju", UGETW(ed->wMaxPacketSize),
1569 ed->bInterval, 0, 0);
1570
1571 if (sc->sc_dying)
1572 return USBD_IOERROR;
1573
1574 /* Root Hub */
1575 if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) {
1576 switch (ed->bEndpointAddress) {
1577 case USB_CONTROL_ENDPOINT:
1578 pipe->up_methods = &roothub_ctrl_methods;
1579 break;
1580 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
1581 pipe->up_methods = &xhci_root_intr_methods;
1582 break;
1583 default:
1584 pipe->up_methods = NULL;
1585 DPRINTFN(0, "bad bEndpointAddress 0x%02jx",
1586 ed->bEndpointAddress, 0, 0, 0);
1587 return USBD_INVAL;
1588 }
1589 return USBD_NORMAL_COMPLETION;
1590 }
1591
1592 switch (xfertype) {
1593 case UE_CONTROL:
1594 pipe->up_methods = &xhci_device_ctrl_methods;
1595 break;
1596 case UE_ISOCHRONOUS:
1597 pipe->up_methods = &xhci_device_isoc_methods;
1598 return USBD_INVAL;
1599 break;
1600 case UE_BULK:
1601 pipe->up_methods = &xhci_device_bulk_methods;
1602 break;
1603 case UE_INTERRUPT:
1604 pipe->up_methods = &xhci_device_intr_methods;
1605 break;
1606 default:
1607 return USBD_IOERROR;
1608 break;
1609 }
1610
1611 if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT)
1612 return xhci_configure_endpoint(pipe);
1613
1614 return USBD_NORMAL_COMPLETION;
1615 }
1616
1617 /*
1618 * Closes pipe, called from usbd_kill_pipe via close methods.
1619 * If the endpoint to be closed is ep0, disable_slot.
1620 * Should be called with sc_lock held.
1621 */
1622 static void
1623 xhci_close_pipe(struct usbd_pipe *pipe)
1624 {
1625 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
1626 struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
1627 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
1628 const u_int dci = xhci_ep_get_dci(ed);
1629 struct xhci_trb trb;
1630 uint32_t *cp;
1631
1632 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1633
1634 if (sc->sc_dying)
1635 return;
1636
1637 /* xs is uninitialized before xhci_init_slot */
1638 if (xs == NULL || xs->xs_idx == 0)
1639 return;
1640
1641 DPRINTFN(4, "pipe %#jx slot %ju dci %ju", (uintptr_t)pipe, xs->xs_idx,
1642 dci, 0);
1643
1644 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
1645 KASSERT(mutex_owned(&sc->sc_lock));
1646
1647 if (pipe->up_dev->ud_depth == 0)
1648 return;
1649
1650 if (dci == XHCI_DCI_EP_CONTROL) {
1651 DPRINTFN(4, "closing ep0", 0, 0, 0, 0);
1652 xhci_disable_slot(sc, xs->xs_idx);
1653 return;
1654 }
1655
1656 if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED)
1657 (void)xhci_stop_endpoint(pipe);
1658
1659 /*
1660 * set appropriate bit to be dropped.
1661 * don't set DC bit to 1, otherwise all endpoints
1662 * would be deconfigured.
1663 */
1664 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
1665 cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci));
1666 cp[1] = htole32(0);
1667
1668 /* XXX should be most significant one, not dci? */
1669 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
1670 cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci));
1671
1672 /* configure ep context performs an implicit dequeue */
1673 xhci_host_dequeue(&xs->xs_ep[dci].xe_tr);
1674
1675 /* sync input contexts before they are read from memory */
1676 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
1677
1678 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
1679 trb.trb_2 = 0;
1680 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
1681 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
1682
1683 (void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
1684 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
1685 }
1686
1687 /*
1688 * Abort transfer.
1689 * Should be called with sc_lock held.
1690 */
1691 static void
1692 xhci_abort_xfer(struct usbd_xfer *xfer, usbd_status status)
1693 {
1694 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1695 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
1696 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
1697 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
1698
1699 KASSERTMSG((status == USBD_CANCELLED || status == USBD_TIMEOUT),
1700 "invalid status for abort: %d", (int)status);
1701
1702 DPRINTFN(4, "xfer %#jx pipe %#jx status %jd",
1703 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, status, 0);
1704
1705 KASSERT(mutex_owned(&sc->sc_lock));
1706 ASSERT_SLEEPABLE();
1707
1708 if (status == USBD_CANCELLED) {
1709 /*
1710 * We are synchronously aborting. Try to stop the
1711 * callout and task, but if we can't, wait for them to
1712 * complete.
1713 */
1714 callout_halt(&xfer->ux_callout, &sc->sc_lock);
1715 usb_rem_task_wait(xfer->ux_pipe->up_dev, &xfer->ux_aborttask,
1716 USB_TASKQ_HC, &sc->sc_lock);
1717 } else {
1718 /* Otherwise, we are timing out. */
1719 KASSERT(status == USBD_TIMEOUT);
1720 }
1721
1722 /*
1723 * The xfer cannot have been cancelled already. It is the
1724 * responsibility of the caller of usbd_abort_pipe not to try
1725 * to abort a pipe multiple times, whether concurrently or
1726 * sequentially.
1727 */
1728 KASSERT(xfer->ux_status != USBD_CANCELLED);
1729
1730 /* Only the timeout, which runs only once, can time it out. */
1731 KASSERT(xfer->ux_status != USBD_TIMEOUT);
1732
1733 /* If anyone else beat us, we're done. */
1734 if (xfer->ux_status != USBD_IN_PROGRESS)
1735 return;
1736
1737 /* We beat everyone else. Claim the status. */
1738 xfer->ux_status = status;
1739
1740 /*
1741 * If we're dying, skip the hardware action and just notify the
1742 * software that we're done.
1743 */
1744 if (sc->sc_dying) {
1745 DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer,
1746 xfer->ux_status, 0, 0);
1747 goto dying;
1748 }
1749
1750 /*
1751 * HC Step 1: Stop execution of TD on the ring.
1752 */
1753 switch (xhci_get_epstate(sc, xs, dci)) {
1754 case XHCI_EPSTATE_HALTED:
1755 (void)xhci_reset_endpoint_locked(xfer->ux_pipe);
1756 break;
1757 case XHCI_EPSTATE_STOPPED:
1758 break;
1759 default:
1760 (void)xhci_stop_endpoint(xfer->ux_pipe);
1761 break;
1762 }
1763 #ifdef DIAGNOSTIC
1764 uint32_t epst = xhci_get_epstate(sc, xs, dci);
1765 if (epst != XHCI_EPSTATE_STOPPED)
1766 DPRINTFN(4, "dci %ju not stopped %ju", dci, epst, 0, 0);
1767 #endif
1768
1769 /*
1770 * HC Step 2: Remove any vestiges of the xfer from the ring.
1771 */
1772 xhci_set_dequeue_locked(xfer->ux_pipe);
1773
1774 /*
1775 * Final Step: Notify completion to waiting xfers.
1776 */
1777 dying:
1778 usb_transfer_complete(xfer);
1779 DPRINTFN(14, "end", 0, 0, 0, 0);
1780
1781 KASSERT(mutex_owned(&sc->sc_lock));
1782 }
1783
1784 static void
1785 xhci_host_dequeue(struct xhci_ring * const xr)
1786 {
1787 /* When dequeueing the controller, update our struct copy too */
1788 memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE);
1789 usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE,
1790 BUS_DMASYNC_PREWRITE);
1791 memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies));
1792
1793 xr->xr_ep = 0;
1794 xr->xr_cs = 1;
1795 }
1796
1797 /*
1798 * Recover STALLed endpoint.
1799 * xHCI 1.1 sect 4.10.2.1
1800 * Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove
1801 * all transfers on transfer ring.
1802 * These are done in thread context asynchronously.
1803 */
1804 static void
1805 xhci_clear_endpoint_stall_async_task(void *cookie)
1806 {
1807 struct usbd_xfer * const xfer = cookie;
1808 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
1809 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
1810 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
1811 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
1812
1813 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1814 DPRINTFN(4, "xfer %#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx,
1815 dci, 0);
1816
1817 xhci_reset_endpoint(xfer->ux_pipe);
1818 xhci_set_dequeue(xfer->ux_pipe);
1819
1820 mutex_enter(&sc->sc_lock);
1821 tr->is_halted = false;
1822 usb_transfer_complete(xfer);
1823 mutex_exit(&sc->sc_lock);
1824 DPRINTFN(4, "ends", 0, 0, 0, 0);
1825 }
1826
1827 static usbd_status
1828 xhci_clear_endpoint_stall_async(struct usbd_xfer *xfer)
1829 {
1830 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
1831 struct xhci_pipe * const xp = (struct xhci_pipe *)xfer->ux_pipe;
1832
1833 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1834 DPRINTFN(4, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
1835
1836 if (sc->sc_dying) {
1837 return USBD_IOERROR;
1838 }
1839
1840 usb_init_task(&xp->xp_async_task,
1841 xhci_clear_endpoint_stall_async_task, xfer, USB_TASKQ_MPSAFE);
1842 usb_add_task(xfer->ux_pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC);
1843 DPRINTFN(4, "ends", 0, 0, 0, 0);
1844
1845 return USBD_NORMAL_COMPLETION;
1846 }
1847
1848 /* Process roothub port status/change events and notify to uhub_intr. */
1849 static void
1850 xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport)
1851 {
1852 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1853 DPRINTFN(4, "xhci%jd: port %ju status change", device_unit(sc->sc_dev),
1854 ctlrport, 0, 0);
1855
1856 if (ctlrport > sc->sc_maxports)
1857 return;
1858
1859 const size_t bn = xhci_ctlrport2bus(sc, ctlrport);
1860 const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport);
1861 struct usbd_xfer * const xfer = sc->sc_intrxfer[bn];
1862
1863 DPRINTFN(4, "xhci%jd: bus %jd bp %ju xfer %#jx status change",
1864 device_unit(sc->sc_dev), bn, rhp, (uintptr_t)xfer);
1865
1866 if (xfer == NULL)
1867 return;
1868
1869 uint8_t *p = xfer->ux_buf;
1870 memset(p, 0, xfer->ux_length);
1871 p[rhp / NBBY] |= 1 << (rhp % NBBY);
1872 xfer->ux_actlen = xfer->ux_length;
1873 xfer->ux_status = USBD_NORMAL_COMPLETION;
1874 usb_transfer_complete(xfer);
1875 }
1876
1877 /* Process Transfer Events */
1878 static void
1879 xhci_event_transfer(struct xhci_softc * const sc,
1880 const struct xhci_trb * const trb)
1881 {
1882 uint64_t trb_0;
1883 uint32_t trb_2, trb_3;
1884 uint8_t trbcode;
1885 u_int slot, dci;
1886 struct xhci_slot *xs;
1887 struct xhci_ring *xr;
1888 struct xhci_xfer *xx;
1889 struct usbd_xfer *xfer;
1890 usbd_status err;
1891
1892 XHCIHIST_FUNC(); XHCIHIST_CALLED();
1893
1894 trb_0 = le64toh(trb->trb_0);
1895 trb_2 = le32toh(trb->trb_2);
1896 trb_3 = le32toh(trb->trb_3);
1897 trbcode = XHCI_TRB_2_ERROR_GET(trb_2);
1898 slot = XHCI_TRB_3_SLOT_GET(trb_3);
1899 dci = XHCI_TRB_3_EP_GET(trb_3);
1900 xs = &sc->sc_slots[slot];
1901 xr = &xs->xs_ep[dci].xe_tr;
1902
1903 /* sanity check */
1904 KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots,
1905 "invalid xs_idx %u slot %u", xs->xs_idx, slot);
1906
1907 int idx = 0;
1908 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
1909 if (xhci_trb_get_idx(xr, trb_0, &idx)) {
1910 DPRINTFN(0, "invalid trb_0 0x%jx", trb_0, 0, 0, 0);
1911 return;
1912 }
1913 xx = xr->xr_cookies[idx];
1914
1915 /* clear cookie of consumed TRB */
1916 xr->xr_cookies[idx] = NULL;
1917
1918 /*
1919 * xx is NULL if pipe is opened but xfer is not started.
1920 * It happens when stopping idle pipe.
1921 */
1922 if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) {
1923 DPRINTFN(1, "Ignore #%ju: cookie %#jx cc %ju dci %ju",
1924 idx, (uintptr_t)xx, trbcode, dci);
1925 DPRINTFN(1, " orig TRB %jx type %ju", trb_0,
1926 XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)),
1927 0, 0);
1928 return;
1929 }
1930 } else {
1931 /* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */
1932 xx = (void *)(uintptr_t)(trb_0 & ~0x3);
1933 }
1934 /* XXX this may not happen */
1935 if (xx == NULL) {
1936 DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0);
1937 return;
1938 }
1939 xfer = &xx->xx_xfer;
1940 /* XXX this may happen when detaching */
1941 if (xfer == NULL) {
1942 DPRINTFN(1, "xx(%#jx)->xx_xfer is NULL trb_0 %#jx",
1943 (uintptr_t)xx, trb_0, 0, 0);
1944 return;
1945 }
1946 DPRINTFN(14, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
1947 /* XXX I dunno why this happens */
1948 KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer);
1949
1950 if (!xfer->ux_pipe->up_repeat &&
1951 SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) {
1952 DPRINTFN(1, "xfer(%#jx)->pipe not queued", (uintptr_t)xfer,
1953 0, 0, 0);
1954 return;
1955 }
1956
1957 /* 4.11.5.2 Event Data TRB */
1958 if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
1959 DPRINTFN(14, "transfer Event Data: 0x%016jx 0x%08jx"
1960 " %02jx", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0);
1961 if ((trb_0 & 0x3) == 0x3) {
1962 xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2);
1963 }
1964 }
1965
1966 switch (trbcode) {
1967 case XHCI_TRB_ERROR_SHORT_PKT:
1968 case XHCI_TRB_ERROR_SUCCESS:
1969 /*
1970 * A ctrl transfer can generate two events if it has a Data
1971 * stage. A short data stage can be OK and should not
1972 * complete the transfer as the status stage needs to be
1973 * performed.
1974 *
1975 * Note: Data and Status stage events point at same xfer.
1976 * ux_actlen and ux_dmabuf will be passed to
1977 * usb_transfer_complete after the Status stage event.
1978 *
1979 * It can be distingished which stage generates the event:
1980 * + by checking least 3 bits of trb_0 if ED==1.
1981 * (see xhci_device_ctrl_start).
1982 * + by checking the type of original TRB if ED==0.
1983 *
1984 * In addition, intr, bulk, and isoc transfer currently
1985 * consists of single TD, so the "skip" is not needed.
1986 * ctrl xfer uses EVENT_DATA, and others do not.
1987 * Thus driver can switch the flow by checking ED bit.
1988 */
1989 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
1990 if (xfer->ux_actlen == 0)
1991 xfer->ux_actlen = xfer->ux_length -
1992 XHCI_TRB_2_REM_GET(trb_2);
1993 if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3))
1994 == XHCI_TRB_TYPE_DATA_STAGE) {
1995 return;
1996 }
1997 } else if ((trb_0 & 0x3) == 0x3) {
1998 return;
1999 }
2000 err = USBD_NORMAL_COMPLETION;
2001 break;
2002 case XHCI_TRB_ERROR_STOPPED:
2003 case XHCI_TRB_ERROR_LENGTH:
2004 case XHCI_TRB_ERROR_STOPPED_SHORT:
2005 /*
2006 * don't complete the transfer being aborted
2007 * as abort_xfer does instead.
2008 */
2009 if (xfer->ux_status == USBD_CANCELLED ||
2010 xfer->ux_status == USBD_TIMEOUT) {
2011 DPRINTFN(14, "ignore aborting xfer %#jx",
2012 (uintptr_t)xfer, 0, 0, 0);
2013 return;
2014 }
2015 err = USBD_CANCELLED;
2016 break;
2017 case XHCI_TRB_ERROR_STALL:
2018 case XHCI_TRB_ERROR_BABBLE:
2019 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2020 xr->is_halted = true;
2021 /*
2022 * Stalled endpoints can be recoverd by issuing
2023 * command TRB TYPE_RESET_EP on xHCI instead of
2024 * issuing request CLEAR_FEATURE UF_ENDPOINT_HALT
2025 * on the endpoint. However, this function may be
2026 * called from softint context (e.g. from umass),
2027 * in that case driver gets KASSERT in cv_timedwait
2028 * in xhci_do_command.
2029 * To avoid this, this runs reset_endpoint and
2030 * usb_transfer_complete in usb task thread
2031 * asynchronously (and then umass issues clear
2032 * UF_ENDPOINT_HALT).
2033 */
2034
2035 /* Override the status. */
2036 xfer->ux_status = USBD_STALLED;
2037
2038 /*
2039 * Cancel the timeout and the task, which have not yet
2040 * run. If they have already fired, at worst they are
2041 * waiting for the lock. They will see that the xfer
2042 * is no longer in progress and give up.
2043 */
2044 callout_stop(&xfer->ux_callout);
2045 usb_rem_task(xfer->ux_pipe->up_dev, &xfer->ux_aborttask);
2046
2047 xhci_clear_endpoint_stall_async(xfer);
2048 return;
2049 default:
2050 DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
2051 err = USBD_IOERROR;
2052 break;
2053 }
2054
2055 /*
2056 * If software has completed it, either by cancellation
2057 * or timeout, drop it on the floor.
2058 */
2059 if (xfer->ux_status != USBD_IN_PROGRESS) {
2060 KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
2061 xfer->ux_status == USBD_TIMEOUT),
2062 "xfer %p status %x", xfer, xfer->ux_status);
2063 return;;
2064 }
2065
2066 /* Otherwise, set the status. */
2067 xfer->ux_status = err;
2068
2069 /*
2070 * Cancel the timeout and the task, which have not yet
2071 * run. If they have already fired, at worst they are
2072 * waiting for the lock. They will see that the xfer
2073 * is no longer in progress and give up.
2074 */
2075 callout_stop(&xfer->ux_callout);
2076 usb_rem_task(xfer->ux_pipe->up_dev, &xfer->ux_aborttask);
2077
2078 if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0 ||
2079 (trb_0 & 0x3) == 0x0) {
2080 usb_transfer_complete(xfer);
2081 }
2082 }
2083
2084 /* Process Command complete events */
2085 static void
2086 xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb)
2087 {
2088 uint64_t trb_0;
2089 uint32_t trb_2, trb_3;
2090
2091 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2092
2093 KASSERT(mutex_owned(&sc->sc_lock));
2094
2095 trb_0 = le64toh(trb->trb_0);
2096 trb_2 = le32toh(trb->trb_2);
2097 trb_3 = le32toh(trb->trb_3);
2098
2099 if (trb_0 == sc->sc_command_addr) {
2100 sc->sc_resultpending = false;
2101
2102 sc->sc_result_trb.trb_0 = trb_0;
2103 sc->sc_result_trb.trb_2 = trb_2;
2104 sc->sc_result_trb.trb_3 = trb_3;
2105 if (XHCI_TRB_2_ERROR_GET(trb_2) !=
2106 XHCI_TRB_ERROR_SUCCESS) {
2107 DPRINTFN(1, "command completion "
2108 "failure: 0x%016jx 0x%08jx 0x%08jx",
2109 trb_0, trb_2, trb_3, 0);
2110 }
2111 cv_signal(&sc->sc_command_cv);
2112 } else {
2113 DPRINTFN(1, "spurious event: %#jx 0x%016jx "
2114 "0x%08jx 0x%08jx", (uintptr_t)trb, trb_0, trb_2, trb_3);
2115 }
2116 }
2117
2118 /*
2119 * Process events.
2120 * called from xhci_softintr
2121 */
2122 static void
2123 xhci_handle_event(struct xhci_softc * const sc,
2124 const struct xhci_trb * const trb)
2125 {
2126 uint64_t trb_0;
2127 uint32_t trb_2, trb_3;
2128
2129 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2130
2131 trb_0 = le64toh(trb->trb_0);
2132 trb_2 = le32toh(trb->trb_2);
2133 trb_3 = le32toh(trb->trb_3);
2134
2135 DPRINTFN(14, "event: %#jx 0x%016jx 0x%08jx 0x%08jx",
2136 (uintptr_t)trb, trb_0, trb_2, trb_3);
2137
2138 /*
2139 * 4.11.3.1, 6.4.2.1
2140 * TRB Pointer is invalid for these completion codes.
2141 */
2142 switch (XHCI_TRB_2_ERROR_GET(trb_2)) {
2143 case XHCI_TRB_ERROR_RING_UNDERRUN:
2144 case XHCI_TRB_ERROR_RING_OVERRUN:
2145 case XHCI_TRB_ERROR_VF_RING_FULL:
2146 return;
2147 default:
2148 if (trb_0 == 0) {
2149 return;
2150 }
2151 break;
2152 }
2153
2154 switch (XHCI_TRB_3_TYPE_GET(trb_3)) {
2155 case XHCI_TRB_EVENT_TRANSFER:
2156 xhci_event_transfer(sc, trb);
2157 break;
2158 case XHCI_TRB_EVENT_CMD_COMPLETE:
2159 xhci_event_cmd(sc, trb);
2160 break;
2161 case XHCI_TRB_EVENT_PORT_STS_CHANGE:
2162 xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff));
2163 break;
2164 default:
2165 break;
2166 }
2167 }
2168
2169 static void
2170 xhci_softintr(void *v)
2171 {
2172 struct usbd_bus * const bus = v;
2173 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2174 struct xhci_ring * const er = &sc->sc_er;
2175 struct xhci_trb *trb;
2176 int i, j, k;
2177
2178 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2179
2180 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
2181
2182 i = er->xr_ep;
2183 j = er->xr_cs;
2184
2185 DPRINTFN(16, "er: xr_ep %jd xr_cs %jd", i, j, 0, 0);
2186
2187 while (1) {
2188 usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE,
2189 BUS_DMASYNC_POSTREAD);
2190 trb = &er->xr_trb[i];
2191 k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
2192
2193 if (j != k)
2194 break;
2195
2196 xhci_handle_event(sc, trb);
2197
2198 i++;
2199 if (i == er->xr_ntrb) {
2200 i = 0;
2201 j ^= 1;
2202 }
2203 }
2204
2205 er->xr_ep = i;
2206 er->xr_cs = j;
2207
2208 xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) |
2209 XHCI_ERDP_LO_BUSY);
2210
2211 DPRINTFN(16, "ends", 0, 0, 0, 0);
2212
2213 return;
2214 }
2215
2216 static void
2217 xhci_poll(struct usbd_bus *bus)
2218 {
2219 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2220
2221 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2222
2223 mutex_spin_enter(&sc->sc_intr_lock);
2224 int ret = xhci_intr1(sc);
2225 if (ret) {
2226 xhci_softintr(bus);
2227 }
2228 mutex_spin_exit(&sc->sc_intr_lock);
2229
2230 return;
2231 }
2232
2233 static struct usbd_xfer *
2234 xhci_allocx(struct usbd_bus *bus, unsigned int nframes)
2235 {
2236 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2237 struct usbd_xfer *xfer;
2238
2239 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2240
2241 xfer = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
2242 if (xfer != NULL) {
2243 memset(xfer, 0, sizeof(struct xhci_xfer));
2244 usb_init_task(&xfer->ux_aborttask, xhci_timeout_task, xfer,
2245 USB_TASKQ_MPSAFE);
2246 #ifdef DIAGNOSTIC
2247 xfer->ux_state = XFER_BUSY;
2248 #endif
2249 }
2250
2251 return xfer;
2252 }
2253
2254 static void
2255 xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
2256 {
2257 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2258
2259 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2260
2261 #ifdef DIAGNOSTIC
2262 if (xfer->ux_state != XFER_BUSY) {
2263 DPRINTFN(0, "xfer=%#jx not busy, 0x%08jx",
2264 (uintptr_t)xfer, xfer->ux_state, 0, 0);
2265 }
2266 xfer->ux_state = XFER_FREE;
2267 #endif
2268 pool_cache_put(sc->sc_xferpool, xfer);
2269 }
2270
2271 static void
2272 xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
2273 {
2274 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2275
2276 *lock = &sc->sc_lock;
2277 }
2278
2279 extern uint32_t usb_cookie_no;
2280
2281 /*
2282 * xHCI 4.3
2283 * Called when uhub_explore finds a new device (via usbd_new_device).
2284 * Port initialization and speed detection (4.3.1) are already done in uhub.c.
2285 * This function does:
2286 * Allocate and construct dev structure of default endpoint (ep0).
2287 * Allocate and open pipe of ep0.
2288 * Enable slot and initialize slot context.
2289 * Set Address.
2290 * Read initial device descriptor.
2291 * Determine initial MaxPacketSize (mps) by speed.
2292 * Read full device descriptor.
2293 * Register this device.
2294 * Finally state of device transitions ADDRESSED.
2295 */
2296 static usbd_status
2297 xhci_new_device(device_t parent, struct usbd_bus *bus, int depth,
2298 int speed, int port, struct usbd_port *up)
2299 {
2300 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
2301 struct usbd_device *dev;
2302 usbd_status err;
2303 usb_device_descriptor_t *dd;
2304 struct xhci_slot *xs;
2305 uint32_t *cp;
2306
2307 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2308 DPRINTFN(4, "port %ju depth %ju speed %ju up %#jx",
2309 port, depth, speed, (uintptr_t)up);
2310
2311 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
2312 dev->ud_bus = bus;
2313 dev->ud_quirks = &usbd_no_quirk;
2314 dev->ud_addr = 0;
2315 dev->ud_ddesc.bMaxPacketSize = 0;
2316 dev->ud_depth = depth;
2317 dev->ud_powersrc = up;
2318 dev->ud_myhub = up->up_parent;
2319 dev->ud_speed = speed;
2320 dev->ud_langid = USBD_NOLANG;
2321 dev->ud_cookie.cookie = ++usb_cookie_no;
2322
2323 /* Set up default endpoint handle. */
2324 dev->ud_ep0.ue_edesc = &dev->ud_ep0desc;
2325 /* doesn't matter, just don't let it uninitialized */
2326 dev->ud_ep0.ue_toggle = 0;
2327
2328 /* Set up default endpoint descriptor. */
2329 dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE;
2330 dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT;
2331 dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
2332 dev->ud_ep0desc.bmAttributes = UE_CONTROL;
2333 dev->ud_ep0desc.bInterval = 0;
2334
2335 /* 4.3, 4.8.2.1 */
2336 switch (speed) {
2337 case USB_SPEED_SUPER:
2338 case USB_SPEED_SUPER_PLUS:
2339 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET);
2340 break;
2341 case USB_SPEED_FULL:
2342 /* XXX using 64 as initial mps of ep0 in FS */
2343 case USB_SPEED_HIGH:
2344 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET);
2345 break;
2346 case USB_SPEED_LOW:
2347 default:
2348 USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET);
2349 break;
2350 }
2351
2352 up->up_dev = dev;
2353
2354 /* Establish the default pipe. */
2355 err = usbd_setup_pipe(dev, 0, &dev->ud_ep0, USBD_DEFAULT_INTERVAL,
2356 &dev->ud_pipe0);
2357 if (err) {
2358 goto bad;
2359 }
2360
2361 dd = &dev->ud_ddesc;
2362
2363 if (depth == 0 && port == 0) {
2364 KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL);
2365 bus->ub_devices[USB_ROOTHUB_INDEX] = dev;
2366 err = usbd_get_initial_ddesc(dev, dd);
2367 if (err) {
2368 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2369 goto bad;
2370 }
2371
2372 err = usbd_reload_device_desc(dev);
2373 if (err) {
2374 DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
2375 goto bad;
2376 }
2377 } else {
2378 uint8_t slot = 0;
2379
2380 /* 4.3.2 */
2381 err = xhci_enable_slot(sc, &slot);
2382 if (err) {
2383 DPRINTFN(1, "enable slot %ju", err, 0, 0, 0);
2384 goto bad;
2385 }
2386
2387 xs = &sc->sc_slots[slot];
2388 dev->ud_hcpriv = xs;
2389
2390 /* 4.3.3 initialize slot structure */
2391 err = xhci_init_slot(dev, slot);
2392 if (err) {
2393 DPRINTFN(1, "init slot %ju", err, 0, 0, 0);
2394 dev->ud_hcpriv = NULL;
2395 /*
2396 * We have to disable_slot here because
2397 * xs->xs_idx == 0 when xhci_init_slot fails,
2398 * in that case usbd_remove_dev won't work.
2399 */
2400 mutex_enter(&sc->sc_lock);
2401 xhci_disable_slot(sc, slot);
2402 mutex_exit(&sc->sc_lock);
2403 goto bad;
2404 }
2405
2406 /* 4.3.4 Address Assignment */
2407 err = xhci_set_address(dev, slot, false);
2408 if (err) {
2409 DPRINTFN(1, "set address w/o bsr %ju", err, 0, 0, 0);
2410 goto bad;
2411 }
2412
2413 /* Allow device time to set new address */
2414 usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE);
2415
2416 cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT);
2417 //hexdump("slot context", cp, sc->sc_ctxsz);
2418 uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3]));
2419 DPRINTFN(4, "device address %ju", addr, 0, 0, 0);
2420 /*
2421 * XXX ensure we know when the hardware does something
2422 * we can't yet cope with
2423 */
2424 KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr);
2425 dev->ud_addr = addr;
2426
2427 KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL,
2428 "addr %d already allocated", dev->ud_addr);
2429 /*
2430 * The root hub is given its own slot
2431 */
2432 bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev;
2433
2434 err = usbd_get_initial_ddesc(dev, dd);
2435 if (err) {
2436 DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
2437 goto bad;
2438 }
2439
2440 /* 4.8.2.1 */
2441 if (USB_IS_SS(speed)) {
2442 if (dd->bMaxPacketSize != 9) {
2443 printf("%s: invalid mps 2^%u for SS ep0,"
2444 " using 512\n",
2445 device_xname(sc->sc_dev),
2446 dd->bMaxPacketSize);
2447 dd->bMaxPacketSize = 9;
2448 }
2449 USETW(dev->ud_ep0desc.wMaxPacketSize,
2450 (1 << dd->bMaxPacketSize));
2451 } else
2452 USETW(dev->ud_ep0desc.wMaxPacketSize,
2453 dd->bMaxPacketSize);
2454 DPRINTFN(4, "bMaxPacketSize %ju", dd->bMaxPacketSize, 0, 0, 0);
2455 err = xhci_update_ep0_mps(sc, xs,
2456 UGETW(dev->ud_ep0desc.wMaxPacketSize));
2457 if (err) {
2458 DPRINTFN(1, "update mps of ep0 %ju", err, 0, 0, 0);
2459 goto bad;
2460 }
2461
2462 err = usbd_reload_device_desc(dev);
2463 if (err) {
2464 DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
2465 goto bad;
2466 }
2467 }
2468
2469 DPRINTFN(1, "adding unit addr=%jd, rev=%02jx,",
2470 dev->ud_addr, UGETW(dd->bcdUSB), 0, 0);
2471 DPRINTFN(1, " class=%jd, subclass=%jd, protocol=%jd,",
2472 dd->bDeviceClass, dd->bDeviceSubClass,
2473 dd->bDeviceProtocol, 0);
2474 DPRINTFN(1, " mps=%jd, len=%jd, noconf=%jd, speed=%jd",
2475 dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations,
2476 dev->ud_speed);
2477
2478 usbd_get_device_strings(dev);
2479
2480 usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev);
2481
2482 if (depth == 0 && port == 0) {
2483 usbd_attach_roothub(parent, dev);
2484 DPRINTFN(1, "root hub %#jx", (uintptr_t)dev, 0, 0, 0);
2485 return USBD_NORMAL_COMPLETION;
2486 }
2487
2488 err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr);
2489 bad:
2490 if (err != USBD_NORMAL_COMPLETION) {
2491 usbd_remove_device(dev, up);
2492 }
2493
2494 return err;
2495 }
2496
2497 static usbd_status
2498 xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring * const xr,
2499 size_t ntrb, size_t align)
2500 {
2501 usbd_status err;
2502 size_t size = ntrb * XHCI_TRB_SIZE;
2503
2504 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2505
2506 err = usb_allocmem(&sc->sc_bus, size, align, &xr->xr_dma);
2507 if (err)
2508 return err;
2509 mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
2510 xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP);
2511 xr->xr_trb = xhci_ring_trbv(xr, 0);
2512 xr->xr_ntrb = ntrb;
2513 xr->is_halted = false;
2514 xhci_host_dequeue(xr);
2515
2516 return USBD_NORMAL_COMPLETION;
2517 }
2518
2519 static void
2520 xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring * const xr)
2521 {
2522 usb_freemem(&sc->sc_bus, &xr->xr_dma);
2523 mutex_destroy(&xr->xr_lock);
2524 kmem_free(xr->xr_cookies, sizeof(*xr->xr_cookies) * xr->xr_ntrb);
2525 }
2526
2527 static void
2528 xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr,
2529 void *cookie, struct xhci_trb * const trbs, size_t ntrbs)
2530 {
2531 size_t i;
2532 u_int ri;
2533 u_int cs;
2534 uint64_t parameter;
2535 uint32_t status;
2536 uint32_t control;
2537
2538 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2539
2540 KASSERTMSG(ntrbs <= XHCI_XFER_NTRB, "ntrbs %zu", ntrbs);
2541 for (i = 0; i < ntrbs; i++) {
2542 DPRINTFN(12, "xr %#jx trbs %#jx num %ju", (uintptr_t)xr,
2543 (uintptr_t)trbs, i, 0);
2544 DPRINTFN(12, " %016jx %08jx %08jx",
2545 trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0);
2546 KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) !=
2547 XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3);
2548 }
2549
2550 DPRINTFN(12, "%#jx xr_ep 0x%jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep,
2551 xr->xr_cs, 0);
2552
2553 ri = xr->xr_ep;
2554 cs = xr->xr_cs;
2555
2556 /*
2557 * Although the xhci hardware can do scatter/gather dma from
2558 * arbitrary sized buffers, there is a non-obvious restriction
2559 * that a LINK trb is only allowed at the end of a burst of
2560 * transfers - which might be 16kB.
2561 * Arbitrary aligned LINK trb definitely fail on Ivy bridge.
2562 * The simple solution is not to allow a LINK trb in the middle
2563 * of anything - as here.
2564 * XXX: (dsl) There are xhci controllers out there (eg some made by
2565 * ASMedia) that seem to lock up if they process a LINK trb but
2566 * cannot process the linked-to trb yet.
2567 * The code should write the 'cycle' bit on the link trb AFTER
2568 * adding the other trb.
2569 */
2570 u_int firstep = xr->xr_ep;
2571 u_int firstcs = xr->xr_cs;
2572
2573 for (i = 0; i < ntrbs; ) {
2574 u_int oldri = ri;
2575 u_int oldcs = cs;
2576
2577 if (ri >= (xr->xr_ntrb - 1)) {
2578 /* Put Link TD at the end of ring */
2579 parameter = xhci_ring_trbp(xr, 0);
2580 status = 0;
2581 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
2582 XHCI_TRB_3_TC_BIT;
2583 xr->xr_cookies[ri] = NULL;
2584 xr->xr_ep = 0;
2585 xr->xr_cs ^= 1;
2586 ri = xr->xr_ep;
2587 cs = xr->xr_cs;
2588 } else {
2589 parameter = trbs[i].trb_0;
2590 status = trbs[i].trb_2;
2591 control = trbs[i].trb_3;
2592
2593 xr->xr_cookies[ri] = cookie;
2594 ri++;
2595 i++;
2596 }
2597 /*
2598 * If this is a first TRB, mark it invalid to prevent
2599 * xHC from running it immediately.
2600 */
2601 if (oldri == firstep) {
2602 if (oldcs) {
2603 control &= ~XHCI_TRB_3_CYCLE_BIT;
2604 } else {
2605 control |= XHCI_TRB_3_CYCLE_BIT;
2606 }
2607 } else {
2608 if (oldcs) {
2609 control |= XHCI_TRB_3_CYCLE_BIT;
2610 } else {
2611 control &= ~XHCI_TRB_3_CYCLE_BIT;
2612 }
2613 }
2614 xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control);
2615 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri,
2616 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
2617 }
2618
2619 /* Now invert cycle bit of first TRB */
2620 if (firstcs) {
2621 xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
2622 } else {
2623 xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
2624 }
2625 usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep,
2626 XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
2627
2628 xr->xr_ep = ri;
2629 xr->xr_cs = cs;
2630
2631 DPRINTFN(12, "%#jx xr_ep 0x%jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep,
2632 xr->xr_cs, 0);
2633 }
2634
2635 /*
2636 * Stop execution commands, purge all commands on command ring, and
2637 * rewind dequeue pointer.
2638 */
2639 static void
2640 xhci_abort_command(struct xhci_softc *sc)
2641 {
2642 struct xhci_ring * const cr = &sc->sc_cr;
2643 uint64_t crcr;
2644 int i;
2645
2646 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2647 DPRINTFN(14, "command %#jx timeout, aborting",
2648 sc->sc_command_addr, 0, 0, 0);
2649
2650 mutex_enter(&cr->xr_lock);
2651
2652 /* 4.6.1.2 Aborting a Command */
2653 crcr = xhci_op_read_8(sc, XHCI_CRCR);
2654 xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA);
2655
2656 for (i = 0; i < 500; i++) {
2657 crcr = xhci_op_read_8(sc, XHCI_CRCR);
2658 if ((crcr & XHCI_CRCR_LO_CRR) == 0)
2659 break;
2660 usb_delay_ms(&sc->sc_bus, 1);
2661 }
2662 if ((crcr & XHCI_CRCR_LO_CRR) != 0) {
2663 DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0);
2664 /* reset HC here? */
2665 }
2666
2667 /* reset command ring dequeue pointer */
2668 cr->xr_ep = 0;
2669 cr->xr_cs = 1;
2670 xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs);
2671
2672 mutex_exit(&cr->xr_lock);
2673 }
2674
2675 /*
2676 * Put a command on command ring, ring bell, set timer, and cv_timedwait.
2677 * Command completion is notified by cv_signal from xhci_event_cmd()
2678 * (called from xhci_softint), or timed-out.
2679 * The completion code is copied to sc->sc_result_trb in xhci_event_cmd(),
2680 * then do_command examines it.
2681 */
2682 static usbd_status
2683 xhci_do_command_locked(struct xhci_softc * const sc,
2684 struct xhci_trb * const trb, int timeout)
2685 {
2686 struct xhci_ring * const cr = &sc->sc_cr;
2687 usbd_status err;
2688
2689 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2690 DPRINTFN(12, "input: 0x%016jx 0x%08jx 0x%08jx",
2691 trb->trb_0, trb->trb_2, trb->trb_3, 0);
2692
2693 KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
2694 KASSERT(mutex_owned(&sc->sc_lock));
2695
2696 while (sc->sc_command_addr != 0)
2697 cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
2698
2699 /*
2700 * If enqueue pointer points at last of ring, it's Link TRB,
2701 * command TRB will be stored in 0th TRB.
2702 */
2703 if (cr->xr_ep == cr->xr_ntrb - 1)
2704 sc->sc_command_addr = xhci_ring_trbp(cr, 0);
2705 else
2706 sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep);
2707
2708 sc->sc_resultpending = true;
2709
2710 mutex_enter(&cr->xr_lock);
2711 xhci_ring_put(sc, cr, NULL, trb, 1);
2712 mutex_exit(&cr->xr_lock);
2713
2714 xhci_db_write_4(sc, XHCI_DOORBELL(0), 0);
2715
2716 while (sc->sc_resultpending) {
2717 if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock,
2718 MAX(1, mstohz(timeout))) == EWOULDBLOCK) {
2719 xhci_abort_command(sc);
2720 err = USBD_TIMEOUT;
2721 goto timedout;
2722 }
2723 }
2724
2725 trb->trb_0 = sc->sc_result_trb.trb_0;
2726 trb->trb_2 = sc->sc_result_trb.trb_2;
2727 trb->trb_3 = sc->sc_result_trb.trb_3;
2728
2729 DPRINTFN(12, "output: 0x%016jx 0x%08jx 0x%08jx",
2730 trb->trb_0, trb->trb_2, trb->trb_3, 0);
2731
2732 switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) {
2733 case XHCI_TRB_ERROR_SUCCESS:
2734 err = USBD_NORMAL_COMPLETION;
2735 break;
2736 default:
2737 case 192 ... 223:
2738 err = USBD_IOERROR;
2739 break;
2740 case 224 ... 255:
2741 err = USBD_NORMAL_COMPLETION;
2742 break;
2743 }
2744
2745 timedout:
2746 sc->sc_resultpending = false;
2747 sc->sc_command_addr = 0;
2748 cv_broadcast(&sc->sc_cmdbusy_cv);
2749
2750 return err;
2751 }
2752
2753 static usbd_status
2754 xhci_do_command(struct xhci_softc * const sc, struct xhci_trb * const trb,
2755 int timeout)
2756 {
2757
2758 mutex_enter(&sc->sc_lock);
2759 usbd_status ret = xhci_do_command_locked(sc, trb, timeout);
2760 mutex_exit(&sc->sc_lock);
2761
2762 return ret;
2763 }
2764
2765 static usbd_status
2766 xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp)
2767 {
2768 struct xhci_trb trb;
2769 usbd_status err;
2770
2771 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2772
2773 trb.trb_0 = 0;
2774 trb.trb_2 = 0;
2775 trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT);
2776
2777 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
2778 if (err != USBD_NORMAL_COMPLETION) {
2779 return err;
2780 }
2781
2782 *slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3);
2783
2784 return err;
2785 }
2786
2787 /*
2788 * xHCI 4.6.4
2789 * Deallocate ring and device/input context DMA buffers, and disable_slot.
2790 * All endpoints in the slot should be stopped.
2791 * Should be called with sc_lock held.
2792 */
2793 static usbd_status
2794 xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot)
2795 {
2796 struct xhci_trb trb;
2797 struct xhci_slot *xs;
2798 usbd_status err;
2799
2800 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2801
2802 if (sc->sc_dying)
2803 return USBD_IOERROR;
2804
2805 trb.trb_0 = 0;
2806 trb.trb_2 = 0;
2807 trb.trb_3 = htole32(
2808 XHCI_TRB_3_SLOT_SET(slot) |
2809 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT));
2810
2811 err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
2812
2813 if (!err) {
2814 xs = &sc->sc_slots[slot];
2815 if (xs->xs_idx != 0) {
2816 xhci_free_slot(sc, xs, XHCI_DCI_SLOT + 1, 32);
2817 xhci_set_dcba(sc, 0, slot);
2818 memset(xs, 0, sizeof(*xs));
2819 }
2820 }
2821
2822 return err;
2823 }
2824
2825 /*
2826 * Set address of device and transition slot state from ENABLED to ADDRESSED
2827 * if Block Setaddress Request (BSR) is false.
2828 * If BSR==true, transition slot state from ENABLED to DEFAULT.
2829 * see xHCI 1.1 4.5.3, 3.3.4
2830 * Should be called without sc_lock held.
2831 */
2832 static usbd_status
2833 xhci_address_device(struct xhci_softc * const sc,
2834 uint64_t icp, uint8_t slot_id, bool bsr)
2835 {
2836 struct xhci_trb trb;
2837 usbd_status err;
2838
2839 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2840
2841 trb.trb_0 = icp;
2842 trb.trb_2 = 0;
2843 trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) |
2844 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
2845 (bsr ? XHCI_TRB_3_BSR_BIT : 0);
2846
2847 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
2848
2849 if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS)
2850 err = USBD_NO_ADDR;
2851
2852 return err;
2853 }
2854
2855 static usbd_status
2856 xhci_update_ep0_mps(struct xhci_softc * const sc,
2857 struct xhci_slot * const xs, u_int mps)
2858 {
2859 struct xhci_trb trb;
2860 usbd_status err;
2861 uint32_t * cp;
2862
2863 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2864 DPRINTFN(4, "slot %ju mps %ju", xs->xs_idx, mps, 0, 0);
2865
2866 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
2867 cp[0] = htole32(0);
2868 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL));
2869
2870 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL));
2871 cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps));
2872
2873 /* sync input contexts before they are read from memory */
2874 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
2875 hexdump("input context", xhci_slot_get_icv(sc, xs, 0),
2876 sc->sc_ctxsz * 4);
2877
2878 trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
2879 trb.trb_2 = 0;
2880 trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
2881 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX);
2882
2883 err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
2884 return err;
2885 }
2886
2887 static void
2888 xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si)
2889 {
2890 uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0);
2891
2892 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2893 DPRINTFN(4, "dcbaa %#jx dc %016jx slot %jd",
2894 (uintptr_t)&dcbaa[si], dcba, si, 0);
2895
2896 dcbaa[si] = htole64(dcba);
2897 usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t),
2898 BUS_DMASYNC_PREWRITE);
2899 }
2900
2901 /*
2902 * Allocate device and input context DMA buffer, and
2903 * TRB DMA buffer for each endpoint.
2904 */
2905 static usbd_status
2906 xhci_init_slot(struct usbd_device *dev, uint32_t slot)
2907 {
2908 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
2909 struct xhci_slot *xs;
2910 usbd_status err;
2911 u_int dci;
2912
2913 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2914 DPRINTFN(4, "slot %ju", slot, 0, 0, 0);
2915
2916 xs = &sc->sc_slots[slot];
2917
2918 /* allocate contexts */
2919 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
2920 &xs->xs_dc_dma);
2921 if (err)
2922 return err;
2923 memset(KERNADDR(&xs->xs_dc_dma, 0), 0, sc->sc_pgsz);
2924
2925 err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
2926 &xs->xs_ic_dma);
2927 if (err)
2928 goto bad1;
2929 memset(KERNADDR(&xs->xs_ic_dma, 0), 0, sc->sc_pgsz);
2930
2931 for (dci = 0; dci < 32; dci++) {
2932 //CTASSERT(sizeof(xs->xs_ep[dci]) == sizeof(struct xhci_endpoint));
2933 memset(&xs->xs_ep[dci], 0, sizeof(xs->xs_ep[dci]));
2934 if (dci == XHCI_DCI_SLOT)
2935 continue;
2936 err = xhci_ring_init(sc, &xs->xs_ep[dci].xe_tr,
2937 XHCI_TRANSFER_RING_TRBS, XHCI_TRB_ALIGN);
2938 if (err) {
2939 DPRINTFN(0, "ring init failure", 0, 0, 0, 0);
2940 goto bad2;
2941 }
2942 }
2943
2944 bad2:
2945 if (err == USBD_NORMAL_COMPLETION) {
2946 xs->xs_idx = slot;
2947 } else {
2948 xhci_free_slot(sc, xs, XHCI_DCI_SLOT + 1, dci);
2949 }
2950
2951 return err;
2952
2953 bad1:
2954 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
2955 xs->xs_idx = 0;
2956 return err;
2957 }
2958
2959 static void
2960 xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs, int start_dci,
2961 int end_dci)
2962 {
2963 u_int dci;
2964
2965 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2966 DPRINTFN(4, "slot %ju start %ju end %ju", xs->xs_idx, start_dci,
2967 end_dci, 0);
2968
2969 for (dci = start_dci; dci < end_dci; dci++) {
2970 xhci_ring_free(sc, &xs->xs_ep[dci].xe_tr);
2971 memset(&xs->xs_ep[dci], 0, sizeof(xs->xs_ep[dci]));
2972 }
2973 usb_freemem(&sc->sc_bus, &xs->xs_ic_dma);
2974 usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
2975 xs->xs_idx = 0;
2976 }
2977
2978 /*
2979 * Setup slot context, set Device Context Base Address, and issue
2980 * Set Address Device command.
2981 */
2982 static usbd_status
2983 xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr)
2984 {
2985 struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
2986 struct xhci_slot *xs;
2987 usbd_status err;
2988
2989 XHCIHIST_FUNC(); XHCIHIST_CALLED();
2990 DPRINTFN(4, "slot %ju bsr %ju", slot, bsr, 0, 0);
2991
2992 xs = &sc->sc_slots[slot];
2993
2994 xhci_setup_ctx(dev->ud_pipe0);
2995
2996 hexdump("input context", xhci_slot_get_icv(sc, xs, 0),
2997 sc->sc_ctxsz * 3);
2998
2999 xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot);
3000
3001 err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr);
3002
3003 usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
3004 hexdump("output context", xhci_slot_get_dcv(sc, xs, 0),
3005 sc->sc_ctxsz * 2);
3006
3007 return err;
3008 }
3009
3010 /*
3011 * 4.8.2, 6.2.3.2
3012 * construct slot/endpoint context parameters and do syncmem
3013 */
3014 static void
3015 xhci_setup_ctx(struct usbd_pipe *pipe)
3016 {
3017 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3018 struct usbd_device *dev = pipe->up_dev;
3019 struct xhci_slot * const xs = dev->ud_hcpriv;
3020 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3021 const u_int dci = xhci_ep_get_dci(ed);
3022 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3023 uint32_t *cp;
3024 uint16_t mps = UGETW(ed->wMaxPacketSize);
3025 uint8_t speed = dev->ud_speed;
3026 uint8_t ival = ed->bInterval;
3027
3028 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3029 DPRINTFN(4, "pipe %#jx: slot %ju dci %ju speed %ju",
3030 (uintptr_t)pipe, xs->xs_idx, dci, speed);
3031
3032 /* set up initial input control context */
3033 cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
3034 cp[0] = htole32(0);
3035 cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci));
3036 cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT));
3037 cp[7] = htole32(0);
3038
3039 /* set up input slot context */
3040 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
3041 cp[0] =
3042 XHCI_SCTX_0_CTX_NUM_SET(dci) |
3043 XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed));
3044 cp[1] = 0;
3045 cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0);
3046 cp[3] = 0;
3047 xhci_setup_route(pipe, cp);
3048 xhci_setup_tthub(pipe, cp);
3049
3050 cp[0] = htole32(cp[0]);
3051 cp[1] = htole32(cp[1]);
3052 cp[2] = htole32(cp[2]);
3053 cp[3] = htole32(cp[3]);
3054
3055 /* set up input endpoint context */
3056 cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci));
3057 cp[0] =
3058 XHCI_EPCTX_0_EPSTATE_SET(0) |
3059 XHCI_EPCTX_0_MULT_SET(0) |
3060 XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
3061 XHCI_EPCTX_0_LSA_SET(0) |
3062 XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0);
3063 cp[1] =
3064 XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) |
3065 XHCI_EPCTX_1_HID_SET(0) |
3066 XHCI_EPCTX_1_MAXB_SET(0);
3067
3068 if (xfertype != UE_ISOCHRONOUS)
3069 cp[1] |= XHCI_EPCTX_1_CERR_SET(3);
3070
3071 if (xfertype == UE_CONTROL)
3072 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); /* 6.2.3 */
3073 else if (USB_IS_SS(speed))
3074 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(mps);
3075 else
3076 cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(UE_GET_SIZE(mps));
3077
3078 xhci_setup_maxburst(pipe, cp);
3079
3080 switch (xfertype) {
3081 case UE_CONTROL:
3082 break;
3083 case UE_BULK:
3084 /* XXX Set MaxPStreams, HID, and LSA if streams enabled */
3085 break;
3086 case UE_INTERRUPT:
3087 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3088 ival = pipe->up_interval;
3089
3090 ival = xhci_bival2ival(ival, speed);
3091 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3092 break;
3093 case UE_ISOCHRONOUS:
3094 if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
3095 ival = pipe->up_interval;
3096
3097 /* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 */
3098 if (speed == USB_SPEED_FULL)
3099 ival += 3; /* 1ms -> 125us */
3100 ival--;
3101 cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
3102 break;
3103 default:
3104 break;
3105 }
3106 DPRINTFN(4, "setting ival %ju MaxBurst %#jx",
3107 XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_1_MAXB_GET(cp[1]), 0, 0);
3108
3109 /* rewind TR dequeue pointer in xHC */
3110 /* can't use xhci_ep_get_dci() yet? */
3111 *(uint64_t *)(&cp[2]) = htole64(
3112 xhci_ring_trbp(&xs->xs_ep[dci].xe_tr, 0) |
3113 XHCI_EPCTX_2_DCS_SET(1));
3114
3115 cp[0] = htole32(cp[0]);
3116 cp[1] = htole32(cp[1]);
3117 cp[4] = htole32(cp[4]);
3118
3119 /* rewind TR dequeue pointer in driver */
3120 struct xhci_ring *xr = &xs->xs_ep[dci].xe_tr;
3121 mutex_enter(&xr->xr_lock);
3122 xhci_host_dequeue(xr);
3123 mutex_exit(&xr->xr_lock);
3124
3125 /* sync input contexts before they are read from memory */
3126 usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
3127 }
3128
3129 /*
3130 * Setup route string and roothub port of given device for slot context
3131 */
3132 static void
3133 xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp)
3134 {
3135 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3136 struct usbd_device *dev = pipe->up_dev;
3137 struct usbd_port *up = dev->ud_powersrc;
3138 struct usbd_device *hub;
3139 struct usbd_device *adev;
3140 uint8_t rhport = 0;
3141 uint32_t route = 0;
3142
3143 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3144
3145 /* Locate root hub port and Determine route string */
3146 /* 4.3.3 route string does not include roothub port */
3147 for (hub = dev; hub != NULL; hub = hub->ud_myhub) {
3148 uint32_t dep;
3149
3150 DPRINTFN(4, "hub %#jx depth %jd upport %jp upportno %jd",
3151 (uintptr_t)hub, hub->ud_depth, (uintptr_t)hub->ud_powersrc,
3152 hub->ud_powersrc ? (uintptr_t)hub->ud_powersrc->up_portno :
3153 -1);
3154
3155 if (hub->ud_powersrc == NULL)
3156 break;
3157 dep = hub->ud_depth;
3158 if (dep == 0)
3159 break;
3160 rhport = hub->ud_powersrc->up_portno;
3161 if (dep > USB_HUB_MAX_DEPTH)
3162 continue;
3163
3164 route |=
3165 (rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport)
3166 << ((dep - 1) * 4);
3167 }
3168 route = route >> 4;
3169 size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1;
3170
3171 /* Locate port on upstream high speed hub */
3172 for (adev = dev, hub = up->up_parent;
3173 hub != NULL && hub->ud_speed != USB_SPEED_HIGH;
3174 adev = hub, hub = hub->ud_myhub)
3175 ;
3176 if (hub) {
3177 int p;
3178 for (p = 0; p < hub->ud_hub->uh_hubdesc.bNbrPorts; p++) {
3179 if (hub->ud_hub->uh_ports[p].up_dev == adev) {
3180 dev->ud_myhsport = &hub->ud_hub->uh_ports[p];
3181 goto found;
3182 }
3183 }
3184 panic("%s: cannot find HS port", __func__);
3185 found:
3186 DPRINTFN(4, "high speed port %jd", p, 0, 0, 0);
3187 } else {
3188 dev->ud_myhsport = NULL;
3189 }
3190
3191 const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport);
3192
3193 DPRINTFN(4, "rhport %ju ctlrport %ju Route %05jx hub %#jx", rhport,
3194 ctlrport, route, (uintptr_t)hub);
3195
3196 cp[0] |= XHCI_SCTX_0_ROUTE_SET(route);
3197 cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport);
3198 }
3199
3200 /*
3201 * Setup whether device is hub, whether device uses MTT, and
3202 * TT informations if it uses MTT.
3203 */
3204 static void
3205 xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp)
3206 {
3207 struct usbd_device *dev = pipe->up_dev;
3208 struct usbd_port *myhsport = dev->ud_myhsport;
3209 usb_device_descriptor_t * const dd = &dev->ud_ddesc;
3210 uint32_t speed = dev->ud_speed;
3211 uint8_t rhaddr = dev->ud_bus->ub_rhaddr;
3212 uint8_t tthubslot, ttportnum;
3213 bool ishub;
3214 bool usemtt;
3215
3216 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3217
3218 /*
3219 * 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2
3220 * tthubslot:
3221 * This is the slot ID of parent HS hub
3222 * if LS/FS device is connected && connected through HS hub.
3223 * This is 0 if device is not LS/FS device ||
3224 * parent hub is not HS hub ||
3225 * attached to root hub.
3226 * ttportnum:
3227 * This is the downstream facing port of parent HS hub
3228 * if LS/FS device is connected.
3229 * This is 0 if device is not LS/FS device ||
3230 * parent hub is not HS hub ||
3231 * attached to root hub.
3232 */
3233 if (myhsport &&
3234 myhsport->up_parent->ud_addr != rhaddr &&
3235 (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
3236 ttportnum = myhsport->up_portno;
3237 tthubslot = myhsport->up_parent->ud_addr;
3238 } else {
3239 ttportnum = 0;
3240 tthubslot = 0;
3241 }
3242 DPRINTFN(4, "myhsport %#jx ttportnum=%jd tthubslot=%jd",
3243 (uintptr_t)myhsport, ttportnum, tthubslot, 0);
3244
3245 /* ishub is valid after reading UDESC_DEVICE */
3246 ishub = (dd->bDeviceClass == UDCLASS_HUB);
3247
3248 /* dev->ud_hub is valid after reading UDESC_HUB */
3249 if (ishub && dev->ud_hub) {
3250 usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc;
3251 uint8_t ttt =
3252 __SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK);
3253
3254 cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts);
3255 cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt);
3256 DPRINTFN(4, "nports=%jd ttt=%jd", hd->bNbrPorts, ttt, 0, 0);
3257 }
3258
3259 #define IS_MTTHUB(dd) \
3260 ((dd)->bDeviceProtocol == UDPROTO_HSHUBMTT)
3261
3262 /*
3263 * MTT flag is set if
3264 * 1. this is HS hub && MTTs are supported and enabled; or
3265 * 2. this is LS or FS device && there is a parent HS hub where MTTs
3266 * are supported and enabled.
3267 *
3268 * XXX enabled is not tested yet
3269 */
3270 if (ishub && speed == USB_SPEED_HIGH && IS_MTTHUB(dd))
3271 usemtt = true;
3272 else if ((speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) &&
3273 myhsport &&
3274 myhsport->up_parent->ud_addr != rhaddr &&
3275 IS_MTTHUB(&myhsport->up_parent->ud_ddesc))
3276 usemtt = true;
3277 else
3278 usemtt = false;
3279 DPRINTFN(4, "class %ju proto %ju ishub %jd usemtt %jd",
3280 dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt);
3281
3282 #undef IS_MTTHUB
3283
3284 cp[0] |=
3285 XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) |
3286 XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0);
3287 cp[2] |=
3288 XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) |
3289 XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum);
3290 }
3291
3292 /* set up params for periodic endpoint */
3293 static void
3294 xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp)
3295 {
3296 struct usbd_device *dev = pipe->up_dev;
3297 usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
3298 const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
3299 usbd_desc_iter_t iter;
3300 const usb_cdc_descriptor_t *cdcd;
3301 uint32_t maxb = 0;
3302 uint16_t mps = UGETW(ed->wMaxPacketSize);
3303 uint8_t speed = dev->ud_speed;
3304 uint8_t ep;
3305
3306 /* config desc is NULL when opening ep0 */
3307 if (dev == NULL || dev->ud_cdesc == NULL)
3308 goto no_cdcd;
3309 cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev,
3310 UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY);
3311 if (cdcd == NULL)
3312 goto no_cdcd;
3313 usb_desc_iter_init(dev, &iter);
3314 iter.cur = (const void *)cdcd;
3315
3316 /* find endpoint_ss_comp desc for ep of this pipe */
3317 for (ep = 0;;) {
3318 cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter);
3319 if (cdcd == NULL)
3320 break;
3321 if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) {
3322 ep = ((const usb_endpoint_descriptor_t *)cdcd)->
3323 bEndpointAddress;
3324 if (UE_GET_ADDR(ep) ==
3325 UE_GET_ADDR(ed->bEndpointAddress)) {
3326 cdcd = (const usb_cdc_descriptor_t *)
3327 usb_desc_iter_next(&iter);
3328 break;
3329 }
3330 ep = 0;
3331 }
3332 }
3333 if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) {
3334 const usb_endpoint_ss_comp_descriptor_t * esscd =
3335 (const usb_endpoint_ss_comp_descriptor_t *)cdcd;
3336 maxb = esscd->bMaxBurst;
3337 }
3338
3339 no_cdcd:
3340 /* 6.2.3.4, 4.8.2.4 */
3341 if (USB_IS_SS(speed)) {
3342 /* USB 3.1 9.6.6 */
3343 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps);
3344 /* USB 3.1 9.6.7 */
3345 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3346 #ifdef notyet
3347 if (xfertype == UE_ISOCHRONOUS) {
3348 }
3349 if (XHCI_HCC2_LEC(sc->sc_hcc2) != 0) {
3350 /* use ESIT */
3351 cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(x);
3352 cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(x);
3353
3354 /* XXX if LEC = 1, set ESIT instead */
3355 cp[0] |= XHCI_EPCTX_0_MULT_SET(0);
3356 } else {
3357 /* use ival */
3358 }
3359 #endif
3360 } else {
3361 /* USB 2.0 9.6.6 */
3362 cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(UE_GET_SIZE(mps));
3363
3364 /* 6.2.3.4 */
3365 if (speed == USB_SPEED_HIGH &&
3366 (xfertype == UE_ISOCHRONOUS || xfertype == UE_INTERRUPT)) {
3367 maxb = UE_GET_TRANS(mps);
3368 } else {
3369 /* LS/FS or HS CTRL or HS BULK */
3370 maxb = 0;
3371 }
3372 cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
3373 }
3374 }
3375
3376 /*
3377 * Convert endpoint bInterval value to endpoint context interval value
3378 * for Interrupt pipe.
3379 * xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6
3380 */
3381 static uint32_t
3382 xhci_bival2ival(uint32_t ival, uint32_t speed)
3383 {
3384 if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
3385 int i;
3386
3387 /*
3388 * round ival down to "the nearest base 2 multiple of
3389 * bInterval * 8".
3390 * bInterval is at most 255 as its type is uByte.
3391 * 255(ms) = 2040(x 125us) < 2^11, so start with 10.
3392 */
3393 for (i = 10; i > 0; i--) {
3394 if ((ival * 8) >= (1 << i))
3395 break;
3396 }
3397 ival = i;
3398 } else {
3399 /* Interval = bInterval-1 for SS/HS */
3400 ival--;
3401 }
3402
3403 return ival;
3404 }
3405
3406 /* ----- */
3407
3408 static void
3409 xhci_noop(struct usbd_pipe *pipe)
3410 {
3411 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3412 }
3413
3414 /*
3415 * Process root hub request.
3416 */
3417 static int
3418 xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3419 void *buf, int buflen)
3420 {
3421 struct xhci_softc * const sc = XHCI_BUS2SC(bus);
3422 usb_port_status_t ps;
3423 int l, totlen = 0;
3424 uint16_t len, value, index;
3425 int port, i;
3426 uint32_t v;
3427
3428 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3429
3430 if (sc->sc_dying)
3431 return -1;
3432
3433 size_t bn = bus == &sc->sc_bus ? 0 : 1;
3434
3435 len = UGETW(req->wLength);
3436 value = UGETW(req->wValue);
3437 index = UGETW(req->wIndex);
3438
3439 DPRINTFN(12, "rhreq: %04jx %04jx %04jx %04jx",
3440 req->bmRequestType | (req->bRequest << 8), value, index, len);
3441
3442 #define C(x,y) ((x) | ((y) << 8))
3443 switch (C(req->bRequest, req->bmRequestType)) {
3444 case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
3445 DPRINTFN(8, "getdesc: wValue=0x%04jx", value, 0, 0, 0);
3446 if (len == 0)
3447 break;
3448 switch (value) {
3449 case C(0, UDESC_DEVICE): {
3450 usb_device_descriptor_t devd;
3451 totlen = min(buflen, sizeof(devd));
3452 memcpy(&devd, buf, totlen);
3453 USETW(devd.idVendor, sc->sc_id_vendor);
3454 memcpy(buf, &devd, totlen);
3455 break;
3456 }
3457 #define sd ((usb_string_descriptor_t *)buf)
3458 case C(1, UDESC_STRING):
3459 /* Vendor */
3460 totlen = usb_makestrdesc(sd, len, sc->sc_vendor);
3461 break;
3462 case C(2, UDESC_STRING):
3463 /* Product */
3464 totlen = usb_makestrdesc(sd, len, "xHCI Root Hub");
3465 break;
3466 #undef sd
3467 default:
3468 /* default from usbroothub */
3469 return buflen;
3470 }
3471 break;
3472
3473 /* Hub requests */
3474 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
3475 break;
3476 /* Clear Port Feature request */
3477 case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): {
3478 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3479
3480 DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%jd feat=%jd bus=%jd cp=%jd",
3481 index, value, bn, cp);
3482 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3483 return -1;
3484 }
3485 port = XHCI_PORTSC(cp);
3486 v = xhci_op_read_4(sc, port);
3487 DPRINTFN(4, "portsc=0x%08jx", v, 0, 0, 0);
3488 v &= ~XHCI_PS_CLEAR;
3489 switch (value) {
3490 case UHF_PORT_ENABLE:
3491 xhci_op_write_4(sc, port, v & ~XHCI_PS_PED);
3492 break;
3493 case UHF_PORT_SUSPEND:
3494 return -1;
3495 case UHF_PORT_POWER:
3496 break;
3497 case UHF_PORT_TEST:
3498 case UHF_PORT_INDICATOR:
3499 return -1;
3500 case UHF_C_PORT_CONNECTION:
3501 xhci_op_write_4(sc, port, v | XHCI_PS_CSC);
3502 break;
3503 case UHF_C_PORT_ENABLE:
3504 case UHF_C_PORT_SUSPEND:
3505 case UHF_C_PORT_OVER_CURRENT:
3506 return -1;
3507 case UHF_C_BH_PORT_RESET:
3508 xhci_op_write_4(sc, port, v | XHCI_PS_WRC);
3509 break;
3510 case UHF_C_PORT_RESET:
3511 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
3512 break;
3513 case UHF_C_PORT_LINK_STATE:
3514 xhci_op_write_4(sc, port, v | XHCI_PS_PLC);
3515 break;
3516 case UHF_C_PORT_CONFIG_ERROR:
3517 xhci_op_write_4(sc, port, v | XHCI_PS_CEC);
3518 break;
3519 default:
3520 return -1;
3521 }
3522 break;
3523 }
3524 case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
3525 if (len == 0)
3526 break;
3527 if ((value & 0xff) != 0) {
3528 return -1;
3529 }
3530 usb_hub_descriptor_t hubd;
3531
3532 totlen = min(buflen, sizeof(hubd));
3533 memcpy(&hubd, buf, totlen);
3534 hubd.bNbrPorts = sc->sc_rhportcount[bn];
3535 USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH);
3536 hubd.bPwrOn2PwrGood = 200;
3537 for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) {
3538 /* XXX can't find out? */
3539 hubd.DeviceRemovable[i++] = 0;
3540 }
3541 hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
3542 totlen = min(totlen, hubd.bDescLength);
3543 memcpy(buf, &hubd, totlen);
3544 break;
3545 case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
3546 if (len != 4) {
3547 return -1;
3548 }
3549 memset(buf, 0, len); /* ? XXX */
3550 totlen = len;
3551 break;
3552 /* Get Port Status request */
3553 case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
3554 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3555
3556 DPRINTFN(8, "get port status bn=%jd i=%jd cp=%ju",
3557 bn, index, cp, 0);
3558 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3559 return -1;
3560 }
3561 if (len != 4) {
3562 return -1;
3563 }
3564 v = xhci_op_read_4(sc, XHCI_PORTSC(cp));
3565 DPRINTFN(4, "getrhportsc %jd %08jx", cp, v, 0, 0);
3566 i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v));
3567 if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS;
3568 if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED;
3569 if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR;
3570 //if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND;
3571 if (v & XHCI_PS_PR) i |= UPS_RESET;
3572 if (v & XHCI_PS_PP) {
3573 if (i & UPS_OTHER_SPEED)
3574 i |= UPS_PORT_POWER_SS;
3575 else
3576 i |= UPS_PORT_POWER;
3577 }
3578 if (i & UPS_OTHER_SPEED)
3579 i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v));
3580 if (sc->sc_vendor_port_status)
3581 i = sc->sc_vendor_port_status(sc, v, i);
3582 USETW(ps.wPortStatus, i);
3583 i = 0;
3584 if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS;
3585 if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED;
3586 if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR;
3587 if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET;
3588 if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET;
3589 if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE;
3590 if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR;
3591 USETW(ps.wPortChange, i);
3592 totlen = min(len, sizeof(ps));
3593 memcpy(buf, &ps, totlen);
3594 break;
3595 }
3596 case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
3597 return -1;
3598 case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE):
3599 break;
3600 case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
3601 break;
3602 /* Set Port Feature request */
3603 case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): {
3604 int optval = (index >> 8) & 0xff;
3605 index &= 0xff;
3606 if (index < 1 || index > sc->sc_rhportcount[bn]) {
3607 return -1;
3608 }
3609
3610 const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
3611
3612 port = XHCI_PORTSC(cp);
3613 v = xhci_op_read_4(sc, port);
3614 DPRINTFN(4, "index %jd cp %jd portsc=0x%08jx", index, cp, v, 0);
3615 v &= ~XHCI_PS_CLEAR;
3616 switch (value) {
3617 case UHF_PORT_ENABLE:
3618 xhci_op_write_4(sc, port, v | XHCI_PS_PED);
3619 break;
3620 case UHF_PORT_SUSPEND:
3621 /* XXX suspend */
3622 break;
3623 case UHF_PORT_RESET:
3624 v &= ~(XHCI_PS_PED | XHCI_PS_PR);
3625 xhci_op_write_4(sc, port, v | XHCI_PS_PR);
3626 /* Wait for reset to complete. */
3627 usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
3628 if (sc->sc_dying) {
3629 return -1;
3630 }
3631 v = xhci_op_read_4(sc, port);
3632 if (v & XHCI_PS_PR) {
3633 xhci_op_write_4(sc, port, v & ~XHCI_PS_PR);
3634 usb_delay_ms(&sc->sc_bus, 10);
3635 /* XXX */
3636 }
3637 break;
3638 case UHF_PORT_POWER:
3639 /* XXX power control */
3640 break;
3641 /* XXX more */
3642 case UHF_C_PORT_RESET:
3643 xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
3644 break;
3645 case UHF_PORT_U1_TIMEOUT:
3646 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
3647 return -1;
3648 }
3649 port = XHCI_PORTPMSC(cp);
3650 v = xhci_op_read_4(sc, port);
3651 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
3652 index, cp, v, 0);
3653 v &= ~XHCI_PM3_U1TO_SET(0xff);
3654 v |= XHCI_PM3_U1TO_SET(optval);
3655 xhci_op_write_4(sc, port, v);
3656 break;
3657 case UHF_PORT_U2_TIMEOUT:
3658 if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
3659 return -1;
3660 }
3661 port = XHCI_PORTPMSC(cp);
3662 v = xhci_op_read_4(sc, port);
3663 DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
3664 index, cp, v, 0);
3665 v &= ~XHCI_PM3_U2TO_SET(0xff);
3666 v |= XHCI_PM3_U2TO_SET(optval);
3667 xhci_op_write_4(sc, port, v);
3668 break;
3669 default:
3670 return -1;
3671 }
3672 }
3673 break;
3674 case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
3675 case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
3676 case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
3677 case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
3678 break;
3679 default:
3680 /* default from usbroothub */
3681 return buflen;
3682 }
3683
3684 return totlen;
3685 }
3686
3687 /* root hub interrupt */
3688
3689 static usbd_status
3690 xhci_root_intr_transfer(struct usbd_xfer *xfer)
3691 {
3692 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3693 usbd_status err;
3694
3695 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3696
3697 /* Insert last in queue. */
3698 mutex_enter(&sc->sc_lock);
3699 err = usb_insert_transfer(xfer);
3700 mutex_exit(&sc->sc_lock);
3701 if (err)
3702 return err;
3703
3704 /* Pipe isn't running, start first */
3705 return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
3706 }
3707
3708 /* Wait for roothub port status/change */
3709 static usbd_status
3710 xhci_root_intr_start(struct usbd_xfer *xfer)
3711 {
3712 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3713 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3714 const bool polling = sc->sc_bus.ub_usepolling;
3715
3716 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3717
3718 if (sc->sc_dying)
3719 return USBD_IOERROR;
3720
3721 if (!polling)
3722 mutex_enter(&sc->sc_lock);
3723 sc->sc_intrxfer[bn] = xfer;
3724 if (!polling)
3725 mutex_exit(&sc->sc_lock);
3726
3727 return USBD_IN_PROGRESS;
3728 }
3729
3730 static void
3731 xhci_root_intr_abort(struct usbd_xfer *xfer)
3732 {
3733 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3734 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3735
3736 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3737
3738 KASSERT(mutex_owned(&sc->sc_lock));
3739 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
3740
3741 sc->sc_intrxfer[bn] = NULL;
3742
3743 xfer->ux_status = USBD_CANCELLED;
3744 usb_transfer_complete(xfer);
3745 }
3746
3747 static void
3748 xhci_root_intr_close(struct usbd_pipe *pipe)
3749 {
3750 struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
3751 const struct usbd_xfer *xfer = pipe->up_intrxfer;
3752 const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
3753
3754 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3755
3756 KASSERT(mutex_owned(&sc->sc_lock));
3757
3758 sc->sc_intrxfer[bn] = NULL;
3759 }
3760
3761 static void
3762 xhci_root_intr_done(struct usbd_xfer *xfer)
3763 {
3764 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3765
3766 }
3767
3768 /* -------------- */
3769 /* device control */
3770
3771 static usbd_status
3772 xhci_device_ctrl_transfer(struct usbd_xfer *xfer)
3773 {
3774 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3775 usbd_status err;
3776
3777 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3778
3779 /* Insert last in queue. */
3780 mutex_enter(&sc->sc_lock);
3781 err = usb_insert_transfer(xfer);
3782 mutex_exit(&sc->sc_lock);
3783 if (err)
3784 return err;
3785
3786 /* Pipe isn't running, start first */
3787 return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
3788 }
3789
3790 static usbd_status
3791 xhci_device_ctrl_start(struct usbd_xfer *xfer)
3792 {
3793 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3794 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
3795 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
3796 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
3797 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
3798 usb_device_request_t * const req = &xfer->ux_request;
3799 const int isread = usbd_xfer_isread(xfer);
3800 const uint32_t len = UGETW(req->wLength);
3801 usb_dma_t * const dma = &xfer->ux_dmabuf;
3802 uint64_t parameter;
3803 uint32_t status;
3804 uint32_t control;
3805 u_int i;
3806 const bool polling = sc->sc_bus.ub_usepolling;
3807
3808 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3809 DPRINTFN(12, "req: %04jx %04jx %04jx %04jx",
3810 req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue),
3811 UGETW(req->wIndex), UGETW(req->wLength));
3812
3813 /* we rely on the bottom bits for extra info */
3814 KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %zx",
3815 (uintptr_t) xfer);
3816
3817 KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0);
3818
3819 i = 0;
3820
3821 /* setup phase */
3822 memcpy(¶meter, req, sizeof(parameter));
3823 status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req));
3824 control = ((len == 0) ? XHCI_TRB_3_TRT_NONE :
3825 (isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) |
3826 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
3827 XHCI_TRB_3_IDT_BIT;
3828 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
3829
3830 if (len != 0) {
3831 /* data phase */
3832 parameter = DMAADDR(dma, 0);
3833 KASSERTMSG(len <= 0x10000, "len %d", len);
3834 status = XHCI_TRB_2_IRQ_SET(0) |
3835 XHCI_TRB_2_TDSZ_SET(1) |
3836 XHCI_TRB_2_BYTES_SET(len);
3837 control = (isread ? XHCI_TRB_3_DIR_IN : 0) |
3838 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) |
3839 (usbd_xfer_isread(xfer) ? XHCI_TRB_3_ISP_BIT : 0) |
3840 XHCI_TRB_3_IOC_BIT;
3841 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
3842 }
3843
3844 parameter = 0;
3845 status = XHCI_TRB_2_IRQ_SET(0);
3846 /* the status stage has inverted direction */
3847 control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) |
3848 XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) |
3849 XHCI_TRB_3_IOC_BIT;
3850 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
3851 xfer->ux_status = USBD_IN_PROGRESS;
3852
3853 if (!polling)
3854 mutex_enter(&tr->xr_lock);
3855 xhci_ring_put(sc, tr, xfer, xx->xx_trb, i);
3856 if (!polling)
3857 mutex_exit(&tr->xr_lock);
3858
3859 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
3860
3861 if (xfer->ux_timeout && !xhci_polling_p(sc)) {
3862 callout_reset(&xfer->ux_callout, mstohz(xfer->ux_timeout),
3863 xhci_timeout, xfer);
3864 }
3865
3866 return USBD_IN_PROGRESS;
3867 }
3868
3869 static void
3870 xhci_device_ctrl_done(struct usbd_xfer *xfer)
3871 {
3872 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3873 usb_device_request_t *req = &xfer->ux_request;
3874 int len = UGETW(req->wLength);
3875 int rd = req->bmRequestType & UT_READ;
3876
3877 if (len)
3878 usb_syncmem(&xfer->ux_dmabuf, 0, len,
3879 rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
3880 }
3881
3882 static void
3883 xhci_device_ctrl_abort(struct usbd_xfer *xfer)
3884 {
3885 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3886
3887 xhci_abort_xfer(xfer, USBD_CANCELLED);
3888 }
3889
3890 static void
3891 xhci_device_ctrl_close(struct usbd_pipe *pipe)
3892 {
3893 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3894
3895 xhci_close_pipe(pipe);
3896 }
3897
3898 /* ------------------ */
3899 /* device isochronous */
3900
3901 /* ----------- */
3902 /* device bulk */
3903
3904 static usbd_status
3905 xhci_device_bulk_transfer(struct usbd_xfer *xfer)
3906 {
3907 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3908 usbd_status err;
3909
3910 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3911
3912 /* Insert last in queue. */
3913 mutex_enter(&sc->sc_lock);
3914 err = usb_insert_transfer(xfer);
3915 mutex_exit(&sc->sc_lock);
3916 if (err)
3917 return err;
3918
3919 /*
3920 * Pipe isn't running (otherwise err would be USBD_INPROG),
3921 * so start it first.
3922 */
3923 return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
3924 }
3925
3926 static usbd_status
3927 xhci_device_bulk_start(struct usbd_xfer *xfer)
3928 {
3929 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
3930 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
3931 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
3932 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
3933 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
3934 const uint32_t len = xfer->ux_length;
3935 usb_dma_t * const dma = &xfer->ux_dmabuf;
3936 uint64_t parameter;
3937 uint32_t status;
3938 uint32_t control;
3939 u_int i = 0;
3940 const bool polling = sc->sc_bus.ub_usepolling;
3941
3942 XHCIHIST_FUNC(); XHCIHIST_CALLED();
3943
3944 DPRINTFN(15, "%#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx, dci,
3945 0);
3946
3947 if (sc->sc_dying)
3948 return USBD_IOERROR;
3949
3950 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
3951
3952 parameter = DMAADDR(dma, 0);
3953 /*
3954 * XXX: (dsl) The physical buffer must not cross a 64k boundary.
3955 * If the user supplied buffer crosses such a boundary then 2
3956 * (or more) TRB should be used.
3957 * If multiple TRB are used the td_size field must be set correctly.
3958 * For v1.0 devices (like ivy bridge) this is the number of usb data
3959 * blocks needed to complete the transfer.
3960 * Setting it to 1 in the last TRB causes an extra zero-length
3961 * data block be sent.
3962 * The earlier documentation differs, I don't know how it behaves.
3963 */
3964 KASSERTMSG(len <= 0x10000, "len %d", len);
3965 status = XHCI_TRB_2_IRQ_SET(0) |
3966 XHCI_TRB_2_TDSZ_SET(1) |
3967 XHCI_TRB_2_BYTES_SET(len);
3968 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
3969 (usbd_xfer_isread(xfer) ? XHCI_TRB_3_ISP_BIT : 0) |
3970 XHCI_TRB_3_IOC_BIT;
3971 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
3972 xfer->ux_status = USBD_IN_PROGRESS;
3973
3974 if (!polling)
3975 mutex_enter(&tr->xr_lock);
3976 xhci_ring_put(sc, tr, xfer, xx->xx_trb, i);
3977 if (!polling)
3978 mutex_exit(&tr->xr_lock);
3979
3980 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
3981
3982 if (xfer->ux_timeout && !polling) {
3983 callout_reset(&xfer->ux_callout, mstohz(xfer->ux_timeout),
3984 xhci_timeout, xfer);
3985 }
3986
3987 return USBD_IN_PROGRESS;
3988 }
3989
3990 static void
3991 xhci_device_bulk_done(struct usbd_xfer *xfer)
3992 {
3993 #ifdef USB_DEBUG
3994 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
3995 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
3996 #endif
3997 const int isread = usbd_xfer_isread(xfer);
3998
3999 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4000
4001 DPRINTFN(15, "%#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx, dci,
4002 0);
4003
4004 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4005 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4006 }
4007
4008 static void
4009 xhci_device_bulk_abort(struct usbd_xfer *xfer)
4010 {
4011 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4012
4013 xhci_abort_xfer(xfer, USBD_CANCELLED);
4014 }
4015
4016 static void
4017 xhci_device_bulk_close(struct usbd_pipe *pipe)
4018 {
4019 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4020
4021 xhci_close_pipe(pipe);
4022 }
4023
4024 /* ---------------- */
4025 /* device interrupt */
4026
4027 static usbd_status
4028 xhci_device_intr_transfer(struct usbd_xfer *xfer)
4029 {
4030 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4031 usbd_status err;
4032
4033 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4034
4035 /* Insert last in queue. */
4036 mutex_enter(&sc->sc_lock);
4037 err = usb_insert_transfer(xfer);
4038 mutex_exit(&sc->sc_lock);
4039 if (err)
4040 return err;
4041
4042 /*
4043 * Pipe isn't running (otherwise err would be USBD_INPROG),
4044 * so start it first.
4045 */
4046 return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
4047 }
4048
4049 static usbd_status
4050 xhci_device_intr_start(struct usbd_xfer *xfer)
4051 {
4052 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4053 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4054 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4055 struct xhci_ring * const tr = &xs->xs_ep[dci].xe_tr;
4056 struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
4057 const uint32_t len = xfer->ux_length;
4058 const bool polling = xhci_polling_p(sc);
4059 usb_dma_t * const dma = &xfer->ux_dmabuf;
4060 uint64_t parameter;
4061 uint32_t status;
4062 uint32_t control;
4063 u_int i = 0;
4064
4065 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4066
4067 DPRINTFN(15, "%#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx, dci,
4068 0);
4069
4070 if (sc->sc_dying)
4071 return USBD_IOERROR;
4072
4073 KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
4074
4075 parameter = DMAADDR(dma, 0);
4076 KASSERTMSG(len <= 0x10000, "len %d", len);
4077 status = XHCI_TRB_2_IRQ_SET(0) |
4078 XHCI_TRB_2_TDSZ_SET(1) |
4079 XHCI_TRB_2_BYTES_SET(len);
4080 control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
4081 (usbd_xfer_isread(xfer) ? XHCI_TRB_3_ISP_BIT : 0) |
4082 XHCI_TRB_3_IOC_BIT;
4083 xhci_trb_put(&xx->xx_trb[i++], parameter, status, control);
4084 xfer->ux_status = USBD_IN_PROGRESS;
4085
4086 if (!polling)
4087 mutex_enter(&tr->xr_lock);
4088 xhci_ring_put(sc, tr, xfer, xx->xx_trb, i);
4089 if (!polling)
4090 mutex_exit(&tr->xr_lock);
4091
4092 xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
4093
4094 if (xfer->ux_timeout && !xhci_polling_p(sc)) {
4095 callout_reset(&xfer->ux_callout, mstohz(xfer->ux_timeout),
4096 xhci_timeout, xfer);
4097 }
4098
4099 return USBD_IN_PROGRESS;
4100 }
4101
4102 static void
4103 xhci_device_intr_done(struct usbd_xfer *xfer)
4104 {
4105 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4106 #ifdef USB_DEBUG
4107 struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
4108 const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
4109 #endif
4110 const int isread = usbd_xfer_isread(xfer);
4111
4112 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4113
4114 DPRINTFN(15, "%#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx, dci,
4115 0);
4116
4117 KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
4118
4119 usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
4120 isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
4121 }
4122
4123 static void
4124 xhci_device_intr_abort(struct usbd_xfer *xfer)
4125 {
4126 struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
4127
4128 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4129
4130 KASSERT(mutex_owned(&sc->sc_lock));
4131 DPRINTFN(15, "%#jx", (uintptr_t)xfer, 0, 0, 0);
4132 KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
4133 xhci_abort_xfer(xfer, USBD_CANCELLED);
4134 }
4135
4136 static void
4137 xhci_device_intr_close(struct usbd_pipe *pipe)
4138 {
4139 //struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
4140
4141 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4142 DPRINTFN(15, "%#jx", (uintptr_t)pipe, 0, 0, 0);
4143
4144 xhci_close_pipe(pipe);
4145 }
4146
4147 /* ------------ */
4148
4149 static void
4150 xhci_timeout(void *addr)
4151 {
4152 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4153 struct xhci_xfer * const xx = addr;
4154 struct usbd_xfer * const xfer = &xx->xx_xfer;
4155 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4156 struct usbd_device *dev = xfer->ux_pipe->up_dev;
4157
4158 mutex_enter(&sc->sc_lock);
4159 if (!sc->sc_dying && xfer->ux_status == USBD_IN_PROGRESS)
4160 usb_add_task(dev, &xfer->ux_aborttask, USB_TASKQ_HC);
4161 mutex_exit(&sc->sc_lock);
4162 }
4163
4164 static void
4165 xhci_timeout_task(void *addr)
4166 {
4167 XHCIHIST_FUNC(); XHCIHIST_CALLED();
4168 struct usbd_xfer * const xfer = addr;
4169 struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
4170
4171 mutex_enter(&sc->sc_lock);
4172 xhci_abort_xfer(xfer, USBD_TIMEOUT);
4173 mutex_exit(&sc->sc_lock);
4174 }
4175