1 1.4 mlelstv /* $NetBSD: vesagtf.c,v 1.4 2021/12/25 13:51:31 mlelstv Exp $ */ 2 1.1 gdamore 3 1.1 gdamore /*- 4 1.1 gdamore * Copyright (c) 2006 Itronix Inc. 5 1.1 gdamore * All rights reserved. 6 1.1 gdamore * 7 1.1 gdamore * Written by Garrett D'Amore for Itronix Inc. 8 1.1 gdamore * 9 1.1 gdamore * Redistribution and use in source and binary forms, with or without 10 1.1 gdamore * modification, are permitted provided that the following conditions 11 1.1 gdamore * are met: 12 1.1 gdamore * 1. Redistributions of source code must retain the above copyright 13 1.1 gdamore * notice, this list of conditions and the following disclaimer. 14 1.1 gdamore * 2. Redistributions in binary form must reproduce the above copyright 15 1.1 gdamore * notice, this list of conditions and the following disclaimer in the 16 1.1 gdamore * documentation and/or other materials provided with the distribution. 17 1.1 gdamore * 3. The name of Itronix Inc. may not be used to endorse 18 1.1 gdamore * or promote products derived from this software without specific 19 1.1 gdamore * prior written permission. 20 1.1 gdamore * 21 1.1 gdamore * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS 22 1.1 gdamore * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 23 1.1 gdamore * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 1.1 gdamore * ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY 25 1.1 gdamore * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 1.1 gdamore * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 27 1.1 gdamore * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 1.1 gdamore * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 29 1.1 gdamore * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 30 1.1 gdamore * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 31 1.1 gdamore * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 1.1 gdamore */ 33 1.1 gdamore 34 1.1 gdamore /* 35 1.1 gdamore * This was derived from a userland GTF program supplied by NVIDIA. 36 1.1 gdamore * NVIDIA's original boilerplate follows. 37 1.1 gdamore * 38 1.1 gdamore * Note that I have heavily modified the program for use in the EDID 39 1.1 gdamore * kernel code for NetBSD, including removing the use of floating 40 1.1 gdamore * point operations and making significant adjustments to minimize 41 1.3 dholland * error propagation while operating with integer only math. 42 1.1 gdamore * 43 1.1 gdamore * This has required the use of 64-bit integers in a few places, but 44 1.1 gdamore * the upshot is that for a calculation of 1920x1200x85 (as an 45 1.1 gdamore * example), the error deviates by only ~.004% relative to the 46 1.1 gdamore * floating point version. This error is *well* within VESA 47 1.1 gdamore * tolerances. 48 1.1 gdamore */ 49 1.1 gdamore 50 1.1 gdamore /* 51 1.1 gdamore * Copyright (c) 2001, Andy Ritger aritger (at) nvidia.com 52 1.1 gdamore * All rights reserved. 53 1.1 gdamore * 54 1.1 gdamore * Redistribution and use in source and binary forms, with or without 55 1.1 gdamore * modification, are permitted provided that the following conditions 56 1.1 gdamore * are met: 57 1.1 gdamore * 58 1.1 gdamore * o Redistributions of source code must retain the above copyright 59 1.1 gdamore * notice, this list of conditions and the following disclaimer. 60 1.1 gdamore * o Redistributions in binary form must reproduce the above copyright 61 1.1 gdamore * notice, this list of conditions and the following disclaimer 62 1.1 gdamore * in the documentation and/or other materials provided with the 63 1.1 gdamore * distribution. 64 1.1 gdamore * o Neither the name of NVIDIA nor the names of its contributors 65 1.1 gdamore * may be used to endorse or promote products derived from this 66 1.1 gdamore * software without specific prior written permission. 67 1.1 gdamore * 68 1.1 gdamore * 69 1.1 gdamore * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 70 1.1 gdamore * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT 71 1.1 gdamore * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 72 1.1 gdamore * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 73 1.1 gdamore * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 74 1.1 gdamore * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 75 1.1 gdamore * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 76 1.1 gdamore * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 77 1.1 gdamore * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 78 1.1 gdamore * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 79 1.1 gdamore * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 80 1.1 gdamore * POSSIBILITY OF SUCH DAMAGE. 81 1.1 gdamore * 82 1.1 gdamore * 83 1.1 gdamore * 84 1.1 gdamore * This program is based on the Generalized Timing Formula(GTF TM) 85 1.1 gdamore * Standard Version: 1.0, Revision: 1.0 86 1.1 gdamore * 87 1.1 gdamore * The GTF Document contains the following Copyright information: 88 1.1 gdamore * 89 1.1 gdamore * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards 90 1.1 gdamore * Association. Duplication of this document within VESA member 91 1.1 gdamore * companies for review purposes is permitted. All other rights 92 1.1 gdamore * reserved. 93 1.1 gdamore * 94 1.1 gdamore * While every precaution has been taken in the preparation 95 1.1 gdamore * of this standard, the Video Electronics Standards Association and 96 1.1 gdamore * its contributors assume no responsibility for errors or omissions, 97 1.1 gdamore * and make no warranties, expressed or implied, of functionality 98 1.1 gdamore * of suitability for any purpose. The sample code contained within 99 1.1 gdamore * this standard may be used without restriction. 100 1.1 gdamore * 101 1.1 gdamore * 102 1.1 gdamore * 103 1.1 gdamore * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive) 104 1.1 gdamore * implementation of the GTF Timing Standard, is available at: 105 1.1 gdamore * 106 1.1 gdamore * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls 107 1.1 gdamore * 108 1.1 gdamore * 109 1.1 gdamore * 110 1.1 gdamore * This program takes a desired resolution and vertical refresh rate, 111 1.1 gdamore * and computes mode timings according to the GTF Timing Standard. 112 1.1 gdamore * These mode timings can then be formatted as an XFree86 modeline 113 1.1 gdamore * or a mode description for use by fbset(8). 114 1.1 gdamore * 115 1.1 gdamore * 116 1.1 gdamore * 117 1.1 gdamore * NOTES: 118 1.1 gdamore * 119 1.1 gdamore * The GTF allows for computation of "margins" (the visible border 120 1.1 gdamore * surrounding the addressable video); on most non-overscan type 121 1.1 gdamore * systems, the margin period is zero. I've implemented the margin 122 1.1 gdamore * computations but not enabled it because 1) I don't really have 123 1.1 gdamore * any experience with this, and 2) neither XFree86 modelines nor 124 1.1 gdamore * fbset fb.modes provide an obvious way for margin timings to be 125 1.1 gdamore * included in their mode descriptions (needs more investigation). 126 1.1 gdamore * 127 1.1 gdamore * The GTF provides for computation of interlaced mode timings; 128 1.1 gdamore * I've implemented the computations but not enabled them, yet. 129 1.1 gdamore * I should probably enable and test this at some point. 130 1.1 gdamore * 131 1.1 gdamore * 132 1.1 gdamore * 133 1.1 gdamore * TODO: 134 1.1 gdamore * 135 1.1 gdamore * o Add support for interlaced modes. 136 1.1 gdamore * 137 1.1 gdamore * o Implement the other portions of the GTF: compute mode timings 138 1.1 gdamore * given either the desired pixel clock or the desired horizontal 139 1.1 gdamore * frequency. 140 1.1 gdamore * 141 1.1 gdamore * o It would be nice if this were more general purpose to do things 142 1.1 gdamore * outside the scope of the GTF: like generate double scan mode 143 1.1 gdamore * timings, for example. 144 1.1 gdamore * 145 1.1 gdamore * o Printing digits to the right of the decimal point when the 146 1.1 gdamore * digits are 0 annoys me. 147 1.1 gdamore * 148 1.1 gdamore * o Error checking. 149 1.1 gdamore * 150 1.1 gdamore */ 151 1.1 gdamore 152 1.1 gdamore 153 1.1 gdamore #ifdef _KERNEL 154 1.1 gdamore #include <sys/cdefs.h> 155 1.1 gdamore 156 1.4 mlelstv __KERNEL_RCSID(0, "$NetBSD: vesagtf.c,v 1.4 2021/12/25 13:51:31 mlelstv Exp $"); 157 1.1 gdamore #include <sys/types.h> 158 1.1 gdamore #include <sys/param.h> 159 1.1 gdamore #include <sys/systm.h> 160 1.1 gdamore #else 161 1.1 gdamore #include <stdio.h> 162 1.1 gdamore #include <stdlib.h> 163 1.4 mlelstv #include <inttypes.h> 164 1.1 gdamore #endif 165 1.4 mlelstv #include <dev/videomode/videomode.h> 166 1.4 mlelstv #include <dev/videomode/vesagtf.h> 167 1.1 gdamore 168 1.1 gdamore #define CELL_GRAN 8 /* assumed character cell granularity */ 169 1.1 gdamore 170 1.1 gdamore /* C' and M' are part of the Blanking Duty Cycle computation */ 171 1.1 gdamore /* 172 1.1 gdamore * #define C_PRIME (((C - J) * K/256.0) + J) 173 1.1 gdamore * #define M_PRIME (K/256.0 * M) 174 1.1 gdamore */ 175 1.1 gdamore 176 1.1 gdamore /* 177 1.1 gdamore * C' and M' multiplied by 256 to give integer math. Make sure to 178 1.1 gdamore * scale results using these back down, appropriately. 179 1.1 gdamore */ 180 1.1 gdamore #define C_PRIME256(p) (((p->C - p->J) * p->K) + (p->J * 256)) 181 1.1 gdamore #define M_PRIME256(p) (p->K * p->M) 182 1.1 gdamore 183 1.1 gdamore #define DIVIDE(x,y) (((x) + ((y) / 2)) / (y)) 184 1.1 gdamore 185 1.1 gdamore /* 186 1.1 gdamore * print_value() - print the result of the named computation; this is 187 1.1 gdamore * useful when comparing against the GTF EXCEL spreadsheet. 188 1.1 gdamore */ 189 1.1 gdamore 190 1.1 gdamore #ifdef GTFDEBUG 191 1.1 gdamore 192 1.1 gdamore static void 193 1.1 gdamore print_value(int n, const char *name, unsigned val) 194 1.1 gdamore { 195 1.1 gdamore printf("%2d: %-27s: %u\n", n, name, val); 196 1.1 gdamore } 197 1.1 gdamore #else 198 1.1 gdamore #define print_value(n, name, val) 199 1.1 gdamore #endif 200 1.1 gdamore 201 1.1 gdamore 202 1.1 gdamore /* 203 1.1 gdamore * vert_refresh() - as defined by the GTF Timing Standard, compute the 204 1.1 gdamore * Stage 1 Parameters using the vertical refresh frequency. In other 205 1.1 gdamore * words: input a desired resolution and desired refresh rate, and 206 1.1 gdamore * output the GTF mode timings. 207 1.1 gdamore * 208 1.1 gdamore * XXX All the code is in place to compute interlaced modes, but I don't 209 1.1 gdamore * feel like testing it right now. 210 1.1 gdamore * 211 1.1 gdamore * XXX margin computations are implemented but not tested (nor used by 212 1.1 gdamore * XFree86 of fbset mode descriptions, from what I can tell). 213 1.1 gdamore */ 214 1.1 gdamore 215 1.1 gdamore void 216 1.1 gdamore vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq, 217 1.1 gdamore struct vesagtf_params *params, int flags, struct videomode *vmp) 218 1.1 gdamore { 219 1.1 gdamore unsigned v_field_rqd; 220 1.1 gdamore unsigned top_margin; 221 1.1 gdamore unsigned bottom_margin; 222 1.1 gdamore unsigned interlace; 223 1.1 gdamore uint64_t h_period_est; 224 1.1 gdamore unsigned vsync_plus_bp; 225 1.2 martin unsigned v_back_porch __unused; 226 1.1 gdamore unsigned total_v_lines; 227 1.1 gdamore uint64_t v_field_est; 228 1.1 gdamore uint64_t h_period; 229 1.1 gdamore unsigned v_field_rate; 230 1.2 martin unsigned v_frame_rate __unused; 231 1.1 gdamore unsigned left_margin; 232 1.1 gdamore unsigned right_margin; 233 1.1 gdamore unsigned total_active_pixels; 234 1.1 gdamore uint64_t ideal_duty_cycle; 235 1.1 gdamore unsigned h_blank; 236 1.1 gdamore unsigned total_pixels; 237 1.1 gdamore unsigned pixel_freq; 238 1.1 gdamore 239 1.1 gdamore unsigned h_sync; 240 1.1 gdamore unsigned h_front_porch; 241 1.1 gdamore unsigned v_odd_front_porch_lines; 242 1.1 gdamore 243 1.1 gdamore #ifdef GTFDEBUG 244 1.1 gdamore unsigned h_freq; 245 1.1 gdamore #endif 246 1.1 gdamore 247 1.1 gdamore /* 1. In order to give correct results, the number of horizontal 248 1.1 gdamore * pixels requested is first processed to ensure that it is divisible 249 1.1 gdamore * by the character size, by rounding it to the nearest character 250 1.1 gdamore * cell boundary: 251 1.1 gdamore * 252 1.1 gdamore * [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND]) 253 1.1 gdamore */ 254 1.1 gdamore 255 1.1 gdamore h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN; 256 1.1 gdamore 257 1.1 gdamore print_value(1, "[H PIXELS RND]", h_pixels); 258 1.1 gdamore 259 1.1 gdamore 260 1.1 gdamore /* 2. If interlace is requested, the number of vertical lines assumed 261 1.1 gdamore * by the calculation must be halved, as the computation calculates 262 1.1 gdamore * the number of vertical lines per field. In either case, the 263 1.1 gdamore * number of lines is rounded to the nearest integer. 264 1.1 gdamore * 265 1.1 gdamore * [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0), 266 1.1 gdamore * ROUND([V LINES],0)) 267 1.1 gdamore */ 268 1.1 gdamore 269 1.1 gdamore v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines; 270 1.1 gdamore 271 1.1 gdamore print_value(2, "[V LINES RND]", v_lines); 272 1.1 gdamore 273 1.1 gdamore 274 1.1 gdamore /* 3. Find the frame rate required: 275 1.1 gdamore * 276 1.1 gdamore * [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2, 277 1.1 gdamore * [I/P FREQ RQD]) 278 1.1 gdamore */ 279 1.1 gdamore 280 1.1 gdamore v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq); 281 1.1 gdamore 282 1.1 gdamore print_value(3, "[V FIELD RATE RQD]", v_field_rqd); 283 1.1 gdamore 284 1.1 gdamore 285 1.1 gdamore /* 4. Find number of lines in Top margin: 286 1.1 gdamore * 5. Find number of lines in Bottom margin: 287 1.1 gdamore * 288 1.1 gdamore * [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y", 289 1.1 gdamore * ROUND(([MARGIN%]/100*[V LINES RND]),0), 290 1.1 gdamore * 0) 291 1.1 gdamore * 292 1.1 gdamore * Ditto for bottom margin. Note that instead of %, we use PPT, which 293 1.1 gdamore * is parts per thousand. This helps us with integer math. 294 1.1 gdamore */ 295 1.1 gdamore 296 1.1 gdamore top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ? 297 1.1 gdamore DIVIDE(v_lines * params->margin_ppt, 1000) : 0; 298 1.1 gdamore 299 1.1 gdamore print_value(4, "[TOP MARGIN (LINES)]", top_margin); 300 1.1 gdamore print_value(5, "[BOT MARGIN (LINES)]", bottom_margin); 301 1.1 gdamore 302 1.1 gdamore 303 1.1 gdamore /* 6. If interlace is required, then set variable [INTERLACE]=0.5: 304 1.1 gdamore * 305 1.1 gdamore * [INTERLACE]=(IF([INT RQD?]="y",0.5,0)) 306 1.1 gdamore * 307 1.1 gdamore * To make this integer friendly, we use some special hacks in step 308 1.1 gdamore * 7 below. Please read those comments to understand why I am using 309 1.1 gdamore * a whole number of 1.0 instead of 0.5 here. 310 1.1 gdamore */ 311 1.1 gdamore interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0; 312 1.1 gdamore 313 1.1 gdamore print_value(6, "[2*INTERLACE]", interlace); 314 1.1 gdamore 315 1.1 gdamore 316 1.1 gdamore /* 7. Estimate the Horizontal period 317 1.1 gdamore * 318 1.1 gdamore * [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) / 319 1.1 gdamore * ([V LINES RND] + (2*[TOP MARGIN (LINES)]) + 320 1.1 gdamore * [MIN PORCH RND]+[INTERLACE]) * 1000000 321 1.1 gdamore * 322 1.1 gdamore * To make it integer friendly, we pre-multiply the 1000000 to get to 323 1.1 gdamore * usec. This gives us: 324 1.1 gdamore * 325 1.1 gdamore * [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) / 326 1.1 gdamore * ([V LINES RND] + (2 * [TOP MARGIN (LINES)]) + 327 1.1 gdamore * [MIN PORCH RND]+[INTERLACE]) 328 1.1 gdamore * 329 1.1 gdamore * The other problem is that the interlace value is wrong. To get 330 1.1 gdamore * the interlace to a whole number, we multiply both the numerator and 331 1.1 gdamore * divisor by 2, so we can use a value of either 1 or 0 for the interlace 332 1.1 gdamore * factor. 333 1.1 gdamore * 334 1.1 gdamore * This gives us: 335 1.1 gdamore * 336 1.1 gdamore * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) / 337 1.1 gdamore * (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) + 338 1.1 gdamore * [MIN PORCH RND]) + [2*INTERLACE])) 339 1.1 gdamore * 340 1.1 gdamore * Finally we multiply by another 1000, to get value in picosec. 341 1.1 gdamore * Why picosec? To minimize rounding errors. Gotta love integer 342 1.3 dholland * math and error propagation. 343 1.1 gdamore */ 344 1.1 gdamore 345 1.1 gdamore h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) - 346 1.1 gdamore (2000000 * params->min_vsbp)), 347 1.1 gdamore ((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace)); 348 1.1 gdamore 349 1.1 gdamore print_value(7, "[H PERIOD EST (ps)]", h_period_est); 350 1.1 gdamore 351 1.1 gdamore 352 1.1 gdamore /* 8. Find the number of lines in V sync + back porch: 353 1.1 gdamore * 354 1.1 gdamore * [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0) 355 1.1 gdamore * 356 1.1 gdamore * But recall that h_period_est is in psec. So multiply by 1000000. 357 1.1 gdamore */ 358 1.1 gdamore 359 1.1 gdamore vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est); 360 1.1 gdamore 361 1.1 gdamore print_value(8, "[V SYNC+BP]", vsync_plus_bp); 362 1.1 gdamore 363 1.1 gdamore 364 1.1 gdamore /* 9. Find the number of lines in V back porch alone: 365 1.1 gdamore * 366 1.1 gdamore * [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND] 367 1.1 gdamore * 368 1.1 gdamore * XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]? 369 1.1 gdamore */ 370 1.1 gdamore 371 1.1 gdamore v_back_porch = vsync_plus_bp - params->vsync_rqd; 372 1.1 gdamore 373 1.1 gdamore print_value(9, "[V BACK PORCH]", v_back_porch); 374 1.1 gdamore 375 1.1 gdamore 376 1.1 gdamore /* 10. Find the total number of lines in Vertical field period: 377 1.1 gdamore * 378 1.1 gdamore * [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] + 379 1.1 gdamore * [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] + 380 1.1 gdamore * [MIN PORCH RND] 381 1.1 gdamore */ 382 1.1 gdamore 383 1.1 gdamore total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp + 384 1.1 gdamore interlace + params->min_porch; 385 1.1 gdamore 386 1.1 gdamore print_value(10, "[TOTAL V LINES]", total_v_lines); 387 1.1 gdamore 388 1.1 gdamore 389 1.1 gdamore /* 11. Estimate the Vertical field frequency: 390 1.1 gdamore * 391 1.1 gdamore * [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000 392 1.1 gdamore * 393 1.1 gdamore * Again, we want to pre multiply by 10^9 to convert for nsec, thereby 394 1.1 gdamore * making it usable in integer math. 395 1.1 gdamore * 396 1.1 gdamore * So we get: 397 1.1 gdamore * 398 1.1 gdamore * [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES] 399 1.1 gdamore * 400 1.1 gdamore * This is all scaled to get the result in uHz. Again, we're trying to 401 1.3 dholland * minimize error propagation. 402 1.1 gdamore */ 403 1.1 gdamore v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est), 404 1.1 gdamore total_v_lines); 405 1.1 gdamore 406 1.1 gdamore print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est); 407 1.1 gdamore 408 1.1 gdamore 409 1.1 gdamore /* 12. Find the actual horizontal period: 410 1.1 gdamore * 411 1.1 gdamore * [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST]) 412 1.1 gdamore */ 413 1.1 gdamore 414 1.1 gdamore h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000); 415 1.1 gdamore 416 1.1 gdamore print_value(12, "[H PERIOD(ps)]", h_period); 417 1.1 gdamore 418 1.1 gdamore 419 1.1 gdamore /* 13. Find the actual Vertical field frequency: 420 1.1 gdamore * 421 1.1 gdamore * [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000 422 1.1 gdamore * 423 1.1 gdamore * And again, we convert to nsec ahead of time, giving us: 424 1.1 gdamore * 425 1.1 gdamore * [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES] 426 1.1 gdamore * 427 1.1 gdamore * And another rescaling back to mHz. Gotta love it. 428 1.1 gdamore */ 429 1.1 gdamore 430 1.1 gdamore v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines); 431 1.1 gdamore 432 1.1 gdamore print_value(13, "[V FIELD RATE]", v_field_rate); 433 1.1 gdamore 434 1.1 gdamore 435 1.1 gdamore /* 14. Find the Vertical frame frequency: 436 1.1 gdamore * 437 1.1 gdamore * [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE])) 438 1.1 gdamore * 439 1.1 gdamore * N.B. that the result here is in mHz. 440 1.1 gdamore */ 441 1.1 gdamore 442 1.1 gdamore v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ? 443 1.1 gdamore v_field_rate / 2 : v_field_rate; 444 1.1 gdamore 445 1.1 gdamore print_value(14, "[V FRAME RATE]", v_frame_rate); 446 1.1 gdamore 447 1.1 gdamore 448 1.1 gdamore /* 15. Find number of pixels in left margin: 449 1.1 gdamore * 16. Find number of pixels in right margin: 450 1.1 gdamore * 451 1.1 gdamore * [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", 452 1.1 gdamore * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / 453 1.1 gdamore * [CELL GRAN RND]),0)) * [CELL GRAN RND], 454 1.1 gdamore * 0)) 455 1.1 gdamore * 456 1.1 gdamore * Again, we deal with margin percentages as PPT (parts per thousand). 457 1.1 gdamore * And the calculations for left and right are the same. 458 1.1 gdamore */ 459 1.1 gdamore 460 1.1 gdamore left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ? 461 1.1 gdamore DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000), 462 1.1 gdamore CELL_GRAN) * CELL_GRAN : 0; 463 1.1 gdamore 464 1.1 gdamore print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin); 465 1.1 gdamore print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin); 466 1.1 gdamore 467 1.1 gdamore 468 1.1 gdamore /* 17. Find total number of active pixels in image and left and right 469 1.1 gdamore * margins: 470 1.1 gdamore * 471 1.1 gdamore * [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] + 472 1.1 gdamore * [RIGHT MARGIN (PIXELS)] 473 1.1 gdamore */ 474 1.1 gdamore 475 1.1 gdamore total_active_pixels = h_pixels + left_margin + right_margin; 476 1.1 gdamore 477 1.1 gdamore print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels); 478 1.1 gdamore 479 1.1 gdamore 480 1.1 gdamore /* 18. Find the ideal blanking duty cycle from the blanking duty cycle 481 1.1 gdamore * equation: 482 1.1 gdamore * 483 1.1 gdamore * [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000) 484 1.1 gdamore * 485 1.1 gdamore * However, we have modified values for [C'] as [256*C'] and 486 1.1 gdamore * [M'] as [256*M']. Again the idea here is to get good scaling. 487 1.1 gdamore * We use 256 as the factor to make the math fast. 488 1.1 gdamore * 489 1.1 gdamore * Note that this means that we have to scale it appropriately in 490 1.1 gdamore * later calculations. 491 1.1 gdamore * 492 1.1 gdamore * The ending result is that our ideal_duty_cycle is 256000x larger 493 1.1 gdamore * than the duty cycle used by VESA. But again, this reduces error 494 1.3 dholland * propagation. 495 1.1 gdamore */ 496 1.1 gdamore 497 1.1 gdamore ideal_duty_cycle = 498 1.1 gdamore ((C_PRIME256(params) * 1000) - 499 1.1 gdamore (M_PRIME256(params) * h_period / 1000000)); 500 1.1 gdamore 501 1.1 gdamore print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle); 502 1.1 gdamore 503 1.1 gdamore 504 1.1 gdamore /* 19. Find the number of pixels in the blanking time to the nearest 505 1.1 gdamore * double character cell: 506 1.1 gdamore * 507 1.1 gdamore * [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] * 508 1.1 gdamore * [IDEAL DUTY CYCLE] / 509 1.1 gdamore * (100-[IDEAL DUTY CYCLE]) / 510 1.1 gdamore * (2*[CELL GRAN RND])), 0)) 511 1.1 gdamore * * (2*[CELL GRAN RND]) 512 1.1 gdamore * 513 1.1 gdamore * Of course, we adjust to make this rounding work in integer math. 514 1.1 gdamore */ 515 1.1 gdamore 516 1.1 gdamore h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle, 517 1.1 gdamore (256000 * 100ULL) - ideal_duty_cycle), 518 1.1 gdamore 2 * CELL_GRAN) * (2 * CELL_GRAN); 519 1.1 gdamore 520 1.1 gdamore print_value(19, "[H BLANK (PIXELS)]", h_blank); 521 1.1 gdamore 522 1.1 gdamore 523 1.1 gdamore /* 20. Find total number of pixels: 524 1.1 gdamore * 525 1.1 gdamore * [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)] 526 1.1 gdamore */ 527 1.1 gdamore 528 1.1 gdamore total_pixels = total_active_pixels + h_blank; 529 1.1 gdamore 530 1.1 gdamore print_value(20, "[TOTAL PIXELS]", total_pixels); 531 1.1 gdamore 532 1.1 gdamore 533 1.1 gdamore /* 21. Find pixel clock frequency: 534 1.1 gdamore * 535 1.1 gdamore * [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD] 536 1.1 gdamore * 537 1.1 gdamore * We calculate this in Hz rather than MHz, to get a value that 538 1.1 gdamore * is usable with integer math. Recall that the [H PERIOD] is in 539 1.1 gdamore * nsec. 540 1.1 gdamore */ 541 1.1 gdamore 542 1.1 gdamore pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000)); 543 1.1 gdamore 544 1.1 gdamore print_value(21, "[PIXEL FREQ]", pixel_freq); 545 1.1 gdamore 546 1.1 gdamore 547 1.1 gdamore /* 22. Find horizontal frequency: 548 1.1 gdamore * 549 1.1 gdamore * [H FREQ] = 1000 / [H PERIOD] 550 1.1 gdamore * 551 1.1 gdamore * I've ifdef'd this out, because we don't need it for any of 552 1.1 gdamore * our calculations. 553 1.1 gdamore * We calculate this in Hz rather than kHz, to avoid rounding 554 1.1 gdamore * errors. Recall that the [H PERIOD] is in usec. 555 1.1 gdamore */ 556 1.1 gdamore 557 1.1 gdamore #ifdef GTFDEBUG 558 1.1 gdamore h_freq = 1000000000 / h_period; 559 1.1 gdamore 560 1.1 gdamore print_value(22, "[H FREQ]", h_freq); 561 1.1 gdamore #endif 562 1.1 gdamore 563 1.1 gdamore 564 1.1 gdamore 565 1.1 gdamore /* Stage 1 computations are now complete; I should really pass 566 1.1 gdamore the results to another function and do the Stage 2 567 1.1 gdamore computations, but I only need a few more values so I'll just 568 1.1 gdamore append the computations here for now */ 569 1.1 gdamore 570 1.1 gdamore 571 1.1 gdamore 572 1.1 gdamore /* 17. Find the number of pixels in the horizontal sync period: 573 1.1 gdamore * 574 1.1 gdamore * [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] / 575 1.1 gdamore * [CELL GRAN RND]),0))*[CELL GRAN RND] 576 1.1 gdamore * 577 1.1 gdamore * Rewriting for integer math: 578 1.1 gdamore * 579 1.1 gdamore * [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 / 580 1.1 gdamore * [CELL GRAN RND),0))*[CELL GRAN RND] 581 1.1 gdamore */ 582 1.1 gdamore 583 1.1 gdamore h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) * 584 1.1 gdamore CELL_GRAN; 585 1.1 gdamore 586 1.1 gdamore print_value(17, "[H SYNC (PIXELS)]", h_sync); 587 1.1 gdamore 588 1.1 gdamore 589 1.1 gdamore /* 18. Find the number of pixels in the horizontal front porch period: 590 1.1 gdamore * 591 1.1 gdamore * [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)] 592 1.1 gdamore * 593 1.1 gdamore * Note that h_blank is always an even number of characters (i.e. 594 1.1 gdamore * h_blank % (CELL_GRAN * 2) == 0) 595 1.1 gdamore */ 596 1.1 gdamore 597 1.1 gdamore h_front_porch = (h_blank / 2) - h_sync; 598 1.1 gdamore 599 1.1 gdamore print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch); 600 1.1 gdamore 601 1.1 gdamore 602 1.1 gdamore /* 36. Find the number of lines in the odd front porch period: 603 1.1 gdamore * 604 1.1 gdamore * [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE]) 605 1.1 gdamore * 606 1.1 gdamore * Adjusting for the fact that the interlace is scaled: 607 1.1 gdamore * 608 1.1 gdamore * [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2 609 1.1 gdamore */ 610 1.1 gdamore 611 1.1 gdamore v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2; 612 1.1 gdamore 613 1.1 gdamore print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines); 614 1.1 gdamore 615 1.1 gdamore 616 1.1 gdamore /* finally, pack the results in the mode struct */ 617 1.1 gdamore 618 1.1 gdamore vmp->hsync_start = h_pixels + h_front_porch; 619 1.1 gdamore vmp->hsync_end = vmp->hsync_start + h_sync; 620 1.1 gdamore vmp->htotal = total_pixels; 621 1.1 gdamore vmp->hdisplay = h_pixels; 622 1.1 gdamore 623 1.1 gdamore vmp->vsync_start = v_lines + v_odd_front_porch_lines; 624 1.1 gdamore vmp->vsync_end = vmp->vsync_start + params->vsync_rqd; 625 1.1 gdamore vmp->vtotal = total_v_lines; 626 1.1 gdamore vmp->vdisplay = v_lines; 627 1.1 gdamore 628 1.1 gdamore vmp->dot_clock = pixel_freq; 629 1.1 gdamore 630 1.1 gdamore } 631 1.1 gdamore 632 1.1 gdamore void 633 1.1 gdamore vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp) 634 1.1 gdamore { 635 1.1 gdamore struct vesagtf_params params; 636 1.1 gdamore 637 1.1 gdamore params.margin_ppt = VESAGTF_MARGIN_PPT; 638 1.1 gdamore params.min_porch = VESAGTF_MIN_PORCH; 639 1.1 gdamore params.vsync_rqd = VESAGTF_VSYNC_RQD; 640 1.1 gdamore params.hsync_pct = VESAGTF_HSYNC_PCT; 641 1.1 gdamore params.min_vsbp = VESAGTF_MIN_VSBP; 642 1.1 gdamore params.M = VESAGTF_M; 643 1.1 gdamore params.C = VESAGTF_C; 644 1.1 gdamore params.K = VESAGTF_K; 645 1.1 gdamore params.J = VESAGTF_J; 646 1.1 gdamore 647 1.1 gdamore vesagtf_mode_params(x, y, refresh, ¶ms, 0, vmp); 648 1.1 gdamore } 649 1.1 gdamore 650 1.1 gdamore /* 651 1.1 gdamore * The tidbit here is so that you can compile this file as a 652 1.1 gdamore * standalone user program to generate X11 modelines using VESA GTF. 653 1.1 gdamore * This also allows for testing of the code itself, without 654 1.1 gdamore * necessitating a full kernel recompile. 655 1.1 gdamore */ 656 1.1 gdamore 657 1.1 gdamore /* print_xf86_mode() - print the XFree86 modeline, given mode timings. */ 658 1.1 gdamore 659 1.4 mlelstv #if 0 660 1.1 gdamore #ifndef _KERNEL 661 1.1 gdamore void 662 1.1 gdamore print_xf86_mode (struct videomode *vmp) 663 1.1 gdamore { 664 1.1 gdamore float vf, hf; 665 1.1 gdamore 666 1.1 gdamore hf = 1000.0 * vmp->dot_clock / vmp->htotal; 667 1.1 gdamore vf = 1.0 * hf / vmp->vtotal; 668 1.1 gdamore 669 1.1 gdamore printf("\n"); 670 1.1 gdamore printf(" # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n", 671 1.1 gdamore vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0); 672 1.1 gdamore 673 1.1 gdamore printf(" Modeline \"%dx%d_%.2f\" %.2f" 674 1.1 gdamore " %d %d %d %d" 675 1.1 gdamore " %d %d %d %d" 676 1.1 gdamore " -HSync +Vsync\n\n", 677 1.1 gdamore vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0), 678 1.1 gdamore vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal, 679 1.1 gdamore vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal); 680 1.1 gdamore } 681 1.1 gdamore 682 1.1 gdamore int 683 1.1 gdamore main (int argc, char *argv[]) 684 1.1 gdamore { 685 1.1 gdamore struct videomode m; 686 1.1 gdamore 687 1.1 gdamore if (argc != 4) { 688 1.1 gdamore printf("usage: %s x y refresh\n", argv[0]); 689 1.1 gdamore exit(1); 690 1.1 gdamore } 691 1.1 gdamore 692 1.1 gdamore vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m); 693 1.1 gdamore 694 1.1 gdamore print_xf86_mode(&m); 695 1.1 gdamore 696 1.1 gdamore return 0; 697 1.1 gdamore 698 1.1 gdamore } 699 1.1 gdamore #endif 700 1.4 mlelstv #endif 701