Home | History | Annotate | Line # | Download | only in videomode
vesagtf.c revision 1.1.110.1
      1  1.1.110.1     yamt /* $NetBSD: vesagtf.c,v 1.1.110.1 2014/05/22 11:40:37 yamt Exp $ */
      2        1.1  gdamore 
      3        1.1  gdamore /*-
      4        1.1  gdamore  * Copyright (c) 2006 Itronix Inc.
      5        1.1  gdamore  * All rights reserved.
      6        1.1  gdamore  *
      7        1.1  gdamore  * Written by Garrett D'Amore for Itronix Inc.
      8        1.1  gdamore  *
      9        1.1  gdamore  * Redistribution and use in source and binary forms, with or without
     10        1.1  gdamore  * modification, are permitted provided that the following conditions
     11        1.1  gdamore  * are met:
     12        1.1  gdamore  * 1. Redistributions of source code must retain the above copyright
     13        1.1  gdamore  *    notice, this list of conditions and the following disclaimer.
     14        1.1  gdamore  * 2. Redistributions in binary form must reproduce the above copyright
     15        1.1  gdamore  *    notice, this list of conditions and the following disclaimer in the
     16        1.1  gdamore  *    documentation and/or other materials provided with the distribution.
     17        1.1  gdamore  * 3. The name of Itronix Inc. may not be used to endorse
     18        1.1  gdamore  *    or promote products derived from this software without specific
     19        1.1  gdamore  *    prior written permission.
     20        1.1  gdamore  *
     21        1.1  gdamore  * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS
     22        1.1  gdamore  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     23        1.1  gdamore  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24        1.1  gdamore  * ARE DISCLAIMED.  IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
     25        1.1  gdamore  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26        1.1  gdamore  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     27        1.1  gdamore  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28        1.1  gdamore  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     29        1.1  gdamore  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     30        1.1  gdamore  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     31        1.1  gdamore  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32        1.1  gdamore  */
     33        1.1  gdamore 
     34        1.1  gdamore /*
     35        1.1  gdamore  * This was derived from a userland GTF program supplied by NVIDIA.
     36        1.1  gdamore  * NVIDIA's original boilerplate follows.
     37        1.1  gdamore  *
     38        1.1  gdamore  * Note that I have heavily modified the program for use in the EDID
     39        1.1  gdamore  * kernel code for NetBSD, including removing the use of floating
     40        1.1  gdamore  * point operations and making significant adjustments to minimize
     41  1.1.110.1     yamt  * error propagation while operating with integer only math.
     42        1.1  gdamore  *
     43        1.1  gdamore  * This has required the use of 64-bit integers in a few places, but
     44        1.1  gdamore  * the upshot is that for a calculation of 1920x1200x85 (as an
     45        1.1  gdamore  * example), the error deviates by only ~.004% relative to the
     46        1.1  gdamore  * floating point version.  This error is *well* within VESA
     47        1.1  gdamore  * tolerances.
     48        1.1  gdamore  */
     49        1.1  gdamore 
     50        1.1  gdamore /*
     51        1.1  gdamore  * Copyright (c) 2001, Andy Ritger  aritger (at) nvidia.com
     52        1.1  gdamore  * All rights reserved.
     53        1.1  gdamore  *
     54        1.1  gdamore  * Redistribution and use in source and binary forms, with or without
     55        1.1  gdamore  * modification, are permitted provided that the following conditions
     56        1.1  gdamore  * are met:
     57        1.1  gdamore  *
     58        1.1  gdamore  * o Redistributions of source code must retain the above copyright
     59        1.1  gdamore  *   notice, this list of conditions and the following disclaimer.
     60        1.1  gdamore  * o Redistributions in binary form must reproduce the above copyright
     61        1.1  gdamore  *   notice, this list of conditions and the following disclaimer
     62        1.1  gdamore  *   in the documentation and/or other materials provided with the
     63        1.1  gdamore  *   distribution.
     64        1.1  gdamore  * o Neither the name of NVIDIA nor the names of its contributors
     65        1.1  gdamore  *   may be used to endorse or promote products derived from this
     66        1.1  gdamore  *   software without specific prior written permission.
     67        1.1  gdamore  *
     68        1.1  gdamore  *
     69        1.1  gdamore  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     70        1.1  gdamore  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
     71        1.1  gdamore  * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
     72        1.1  gdamore  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     73        1.1  gdamore  * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     74        1.1  gdamore  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     75        1.1  gdamore  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     76        1.1  gdamore  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     77        1.1  gdamore  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     78        1.1  gdamore  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     79        1.1  gdamore  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     80        1.1  gdamore  * POSSIBILITY OF SUCH DAMAGE.
     81        1.1  gdamore  *
     82        1.1  gdamore  *
     83        1.1  gdamore  *
     84        1.1  gdamore  * This program is based on the Generalized Timing Formula(GTF TM)
     85        1.1  gdamore  * Standard Version: 1.0, Revision: 1.0
     86        1.1  gdamore  *
     87        1.1  gdamore  * The GTF Document contains the following Copyright information:
     88        1.1  gdamore  *
     89        1.1  gdamore  * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
     90        1.1  gdamore  * Association. Duplication of this document within VESA member
     91        1.1  gdamore  * companies for review purposes is permitted. All other rights
     92        1.1  gdamore  * reserved.
     93        1.1  gdamore  *
     94        1.1  gdamore  * While every precaution has been taken in the preparation
     95        1.1  gdamore  * of this standard, the Video Electronics Standards Association and
     96        1.1  gdamore  * its contributors assume no responsibility for errors or omissions,
     97        1.1  gdamore  * and make no warranties, expressed or implied, of functionality
     98        1.1  gdamore  * of suitability for any purpose. The sample code contained within
     99        1.1  gdamore  * this standard may be used without restriction.
    100        1.1  gdamore  *
    101        1.1  gdamore  *
    102        1.1  gdamore  *
    103        1.1  gdamore  * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
    104        1.1  gdamore  * implementation of the GTF Timing Standard, is available at:
    105        1.1  gdamore  *
    106        1.1  gdamore  * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
    107        1.1  gdamore  *
    108        1.1  gdamore  *
    109        1.1  gdamore  *
    110        1.1  gdamore  * This program takes a desired resolution and vertical refresh rate,
    111        1.1  gdamore  * and computes mode timings according to the GTF Timing Standard.
    112        1.1  gdamore  * These mode timings can then be formatted as an XFree86 modeline
    113        1.1  gdamore  * or a mode description for use by fbset(8).
    114        1.1  gdamore  *
    115        1.1  gdamore  *
    116        1.1  gdamore  *
    117        1.1  gdamore  * NOTES:
    118        1.1  gdamore  *
    119        1.1  gdamore  * The GTF allows for computation of "margins" (the visible border
    120        1.1  gdamore  * surrounding the addressable video); on most non-overscan type
    121        1.1  gdamore  * systems, the margin period is zero.  I've implemented the margin
    122        1.1  gdamore  * computations but not enabled it because 1) I don't really have
    123        1.1  gdamore  * any experience with this, and 2) neither XFree86 modelines nor
    124        1.1  gdamore  * fbset fb.modes provide an obvious way for margin timings to be
    125        1.1  gdamore  * included in their mode descriptions (needs more investigation).
    126        1.1  gdamore  *
    127        1.1  gdamore  * The GTF provides for computation of interlaced mode timings;
    128        1.1  gdamore  * I've implemented the computations but not enabled them, yet.
    129        1.1  gdamore  * I should probably enable and test this at some point.
    130        1.1  gdamore  *
    131        1.1  gdamore  *
    132        1.1  gdamore  *
    133        1.1  gdamore  * TODO:
    134        1.1  gdamore  *
    135        1.1  gdamore  * o Add support for interlaced modes.
    136        1.1  gdamore  *
    137        1.1  gdamore  * o Implement the other portions of the GTF: compute mode timings
    138        1.1  gdamore  *   given either the desired pixel clock or the desired horizontal
    139        1.1  gdamore  *   frequency.
    140        1.1  gdamore  *
    141        1.1  gdamore  * o It would be nice if this were more general purpose to do things
    142        1.1  gdamore  *   outside the scope of the GTF: like generate double scan mode
    143        1.1  gdamore  *   timings, for example.
    144        1.1  gdamore  *
    145        1.1  gdamore  * o Printing digits to the right of the decimal point when the
    146        1.1  gdamore  *   digits are 0 annoys me.
    147        1.1  gdamore  *
    148        1.1  gdamore  * o Error checking.
    149        1.1  gdamore  *
    150        1.1  gdamore  */
    151        1.1  gdamore 
    152        1.1  gdamore 
    153        1.1  gdamore #ifdef	_KERNEL
    154        1.1  gdamore #include <sys/cdefs.h>
    155        1.1  gdamore 
    156  1.1.110.1     yamt __KERNEL_RCSID(0, "$NetBSD: vesagtf.c,v 1.1.110.1 2014/05/22 11:40:37 yamt Exp $");
    157        1.1  gdamore #include <sys/types.h>
    158        1.1  gdamore #include <sys/param.h>
    159        1.1  gdamore #include <sys/systm.h>
    160        1.1  gdamore #include <dev/videomode/videomode.h>
    161        1.1  gdamore #include <dev/videomode/vesagtf.h>
    162        1.1  gdamore #else
    163        1.1  gdamore #include <stdio.h>
    164        1.1  gdamore #include <stdlib.h>
    165        1.1  gdamore #include <sys/types.h>
    166        1.1  gdamore #include "videomode.h"
    167        1.1  gdamore #include "vesagtf.h"
    168        1.1  gdamore 
    169        1.1  gdamore void print_xf86_mode(struct videomode *m);
    170        1.1  gdamore #endif
    171        1.1  gdamore 
    172        1.1  gdamore #define CELL_GRAN         8     /* assumed character cell granularity        */
    173        1.1  gdamore 
    174        1.1  gdamore /* C' and M' are part of the Blanking Duty Cycle computation */
    175        1.1  gdamore /*
    176        1.1  gdamore  * #define C_PRIME           (((C - J) * K/256.0) + J)
    177        1.1  gdamore  * #define M_PRIME           (K/256.0 * M)
    178        1.1  gdamore  */
    179        1.1  gdamore 
    180        1.1  gdamore /*
    181        1.1  gdamore  * C' and M' multiplied by 256 to give integer math.  Make sure to
    182        1.1  gdamore  * scale results using these back down, appropriately.
    183        1.1  gdamore  */
    184        1.1  gdamore #define	C_PRIME256(p)	  (((p->C - p->J) * p->K) + (p->J * 256))
    185        1.1  gdamore #define	M_PRIME256(p)	  (p->K * p->M)
    186        1.1  gdamore 
    187        1.1  gdamore #define	DIVIDE(x,y)	(((x) + ((y) / 2)) / (y))
    188        1.1  gdamore 
    189        1.1  gdamore /*
    190        1.1  gdamore  * print_value() - print the result of the named computation; this is
    191        1.1  gdamore  * useful when comparing against the GTF EXCEL spreadsheet.
    192        1.1  gdamore  */
    193        1.1  gdamore 
    194        1.1  gdamore #ifdef GTFDEBUG
    195        1.1  gdamore 
    196        1.1  gdamore static void
    197        1.1  gdamore print_value(int n, const char *name, unsigned val)
    198        1.1  gdamore {
    199        1.1  gdamore         printf("%2d: %-27s: %u\n", n, name, val);
    200        1.1  gdamore }
    201        1.1  gdamore #else
    202        1.1  gdamore #define	print_value(n, name, val)
    203        1.1  gdamore #endif
    204        1.1  gdamore 
    205        1.1  gdamore 
    206        1.1  gdamore /*
    207        1.1  gdamore  * vert_refresh() - as defined by the GTF Timing Standard, compute the
    208        1.1  gdamore  * Stage 1 Parameters using the vertical refresh frequency.  In other
    209        1.1  gdamore  * words: input a desired resolution and desired refresh rate, and
    210        1.1  gdamore  * output the GTF mode timings.
    211        1.1  gdamore  *
    212        1.1  gdamore  * XXX All the code is in place to compute interlaced modes, but I don't
    213        1.1  gdamore  * feel like testing it right now.
    214        1.1  gdamore  *
    215        1.1  gdamore  * XXX margin computations are implemented but not tested (nor used by
    216        1.1  gdamore  * XFree86 of fbset mode descriptions, from what I can tell).
    217        1.1  gdamore  */
    218        1.1  gdamore 
    219        1.1  gdamore void
    220        1.1  gdamore vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq,
    221        1.1  gdamore     struct vesagtf_params *params, int flags, struct videomode *vmp)
    222        1.1  gdamore {
    223        1.1  gdamore     unsigned v_field_rqd;
    224        1.1  gdamore     unsigned top_margin;
    225        1.1  gdamore     unsigned bottom_margin;
    226        1.1  gdamore     unsigned interlace;
    227        1.1  gdamore     uint64_t h_period_est;
    228        1.1  gdamore     unsigned vsync_plus_bp;
    229  1.1.110.1     yamt     unsigned v_back_porch __unused;
    230        1.1  gdamore     unsigned total_v_lines;
    231        1.1  gdamore     uint64_t v_field_est;
    232        1.1  gdamore     uint64_t h_period;
    233        1.1  gdamore     unsigned v_field_rate;
    234  1.1.110.1     yamt     unsigned v_frame_rate __unused;
    235        1.1  gdamore     unsigned left_margin;
    236        1.1  gdamore     unsigned right_margin;
    237        1.1  gdamore     unsigned total_active_pixels;
    238        1.1  gdamore     uint64_t ideal_duty_cycle;
    239        1.1  gdamore     unsigned h_blank;
    240        1.1  gdamore     unsigned total_pixels;
    241        1.1  gdamore     unsigned pixel_freq;
    242        1.1  gdamore 
    243        1.1  gdamore     unsigned h_sync;
    244        1.1  gdamore     unsigned h_front_porch;
    245        1.1  gdamore     unsigned v_odd_front_porch_lines;
    246        1.1  gdamore 
    247        1.1  gdamore #ifdef	GTFDEBUG
    248        1.1  gdamore     unsigned h_freq;
    249        1.1  gdamore #endif
    250        1.1  gdamore 
    251        1.1  gdamore     /*  1. In order to give correct results, the number of horizontal
    252        1.1  gdamore      *  pixels requested is first processed to ensure that it is divisible
    253        1.1  gdamore      *  by the character size, by rounding it to the nearest character
    254        1.1  gdamore      *  cell boundary:
    255        1.1  gdamore      *
    256        1.1  gdamore      *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
    257        1.1  gdamore      */
    258        1.1  gdamore 
    259        1.1  gdamore     h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN;
    260        1.1  gdamore 
    261        1.1  gdamore     print_value(1, "[H PIXELS RND]", h_pixels);
    262        1.1  gdamore 
    263        1.1  gdamore 
    264        1.1  gdamore     /*  2. If interlace is requested, the number of vertical lines assumed
    265        1.1  gdamore      *  by the calculation must be halved, as the computation calculates
    266        1.1  gdamore      *  the number of vertical lines per field. In either case, the
    267        1.1  gdamore      *  number of lines is rounded to the nearest integer.
    268        1.1  gdamore      *
    269        1.1  gdamore      *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
    270        1.1  gdamore      *                                     ROUND([V LINES],0))
    271        1.1  gdamore      */
    272        1.1  gdamore 
    273        1.1  gdamore     v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines;
    274        1.1  gdamore 
    275        1.1  gdamore     print_value(2, "[V LINES RND]", v_lines);
    276        1.1  gdamore 
    277        1.1  gdamore 
    278        1.1  gdamore     /*  3. Find the frame rate required:
    279        1.1  gdamore      *
    280        1.1  gdamore      *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
    281        1.1  gdamore      *                                          [I/P FREQ RQD])
    282        1.1  gdamore      */
    283        1.1  gdamore 
    284        1.1  gdamore     v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq);
    285        1.1  gdamore 
    286        1.1  gdamore     print_value(3, "[V FIELD RATE RQD]", v_field_rqd);
    287        1.1  gdamore 
    288        1.1  gdamore 
    289        1.1  gdamore     /*  4. Find number of lines in Top margin:
    290        1.1  gdamore      *  5. Find number of lines in Bottom margin:
    291        1.1  gdamore      *
    292        1.1  gdamore      *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
    293        1.1  gdamore      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
    294        1.1  gdamore      *          0)
    295        1.1  gdamore      *
    296        1.1  gdamore      *  Ditto for bottom margin.  Note that instead of %, we use PPT, which
    297        1.1  gdamore      *  is parts per thousand.  This helps us with integer math.
    298        1.1  gdamore      */
    299        1.1  gdamore 
    300        1.1  gdamore     top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ?
    301        1.1  gdamore 	DIVIDE(v_lines * params->margin_ppt, 1000) : 0;
    302        1.1  gdamore 
    303        1.1  gdamore     print_value(4, "[TOP MARGIN (LINES)]", top_margin);
    304        1.1  gdamore     print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
    305        1.1  gdamore 
    306        1.1  gdamore 
    307        1.1  gdamore     /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
    308        1.1  gdamore      *
    309        1.1  gdamore      *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
    310        1.1  gdamore      *
    311        1.1  gdamore      *  To make this integer friendly, we use some special hacks in step
    312        1.1  gdamore      *  7 below.  Please read those comments to understand why I am using
    313        1.1  gdamore      *  a whole number of 1.0 instead of 0.5 here.
    314        1.1  gdamore      */
    315        1.1  gdamore     interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0;
    316        1.1  gdamore 
    317        1.1  gdamore     print_value(6, "[2*INTERLACE]", interlace);
    318        1.1  gdamore 
    319        1.1  gdamore 
    320        1.1  gdamore     /*  7. Estimate the Horizontal period
    321        1.1  gdamore      *
    322        1.1  gdamore      *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
    323        1.1  gdamore      *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
    324        1.1  gdamore      *                     [MIN PORCH RND]+[INTERLACE]) * 1000000
    325        1.1  gdamore      *
    326        1.1  gdamore      *  To make it integer friendly, we pre-multiply the 1000000 to get to
    327        1.1  gdamore      *  usec.  This gives us:
    328        1.1  gdamore      *
    329        1.1  gdamore      *  [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) /
    330        1.1  gdamore      *			([V LINES RND] + (2 * [TOP MARGIN (LINES)]) +
    331        1.1  gdamore      *			 [MIN PORCH RND]+[INTERLACE])
    332        1.1  gdamore      *
    333        1.1  gdamore      *  The other problem is that the interlace value is wrong.  To get
    334        1.1  gdamore      *  the interlace to a whole number, we multiply both the numerator and
    335        1.1  gdamore      *  divisor by 2, so we can use a value of either 1 or 0 for the interlace
    336        1.1  gdamore      *  factor.
    337        1.1  gdamore      *
    338        1.1  gdamore      * This gives us:
    339        1.1  gdamore      *
    340        1.1  gdamore      * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) /
    341        1.1  gdamore      *			 (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
    342        1.1  gdamore      *			  [MIN PORCH RND]) + [2*INTERLACE]))
    343        1.1  gdamore      *
    344        1.1  gdamore      * Finally we multiply by another 1000, to get value in picosec.
    345        1.1  gdamore      * Why picosec?  To minimize rounding errors.  Gotta love integer
    346  1.1.110.1     yamt      * math and error propagation.
    347        1.1  gdamore      */
    348        1.1  gdamore 
    349        1.1  gdamore     h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) -
    350        1.1  gdamore 			      (2000000 * params->min_vsbp)),
    351        1.1  gdamore 	((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace));
    352        1.1  gdamore 
    353        1.1  gdamore     print_value(7, "[H PERIOD EST (ps)]", h_period_est);
    354        1.1  gdamore 
    355        1.1  gdamore 
    356        1.1  gdamore     /*  8. Find the number of lines in V sync + back porch:
    357        1.1  gdamore      *
    358        1.1  gdamore      *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
    359        1.1  gdamore      *
    360        1.1  gdamore      *  But recall that h_period_est is in psec. So multiply by 1000000.
    361        1.1  gdamore      */
    362        1.1  gdamore 
    363        1.1  gdamore     vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est);
    364        1.1  gdamore 
    365        1.1  gdamore     print_value(8, "[V SYNC+BP]", vsync_plus_bp);
    366        1.1  gdamore 
    367        1.1  gdamore 
    368        1.1  gdamore     /*  9. Find the number of lines in V back porch alone:
    369        1.1  gdamore      *
    370        1.1  gdamore      *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
    371        1.1  gdamore      *
    372        1.1  gdamore      *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
    373        1.1  gdamore      */
    374        1.1  gdamore 
    375        1.1  gdamore     v_back_porch = vsync_plus_bp - params->vsync_rqd;
    376        1.1  gdamore 
    377        1.1  gdamore     print_value(9, "[V BACK PORCH]", v_back_porch);
    378        1.1  gdamore 
    379        1.1  gdamore 
    380        1.1  gdamore     /*  10. Find the total number of lines in Vertical field period:
    381        1.1  gdamore      *
    382        1.1  gdamore      *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
    383        1.1  gdamore      *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
    384        1.1  gdamore      *                    [MIN PORCH RND]
    385        1.1  gdamore      */
    386        1.1  gdamore 
    387        1.1  gdamore     total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp +
    388        1.1  gdamore         interlace + params->min_porch;
    389        1.1  gdamore 
    390        1.1  gdamore     print_value(10, "[TOTAL V LINES]", total_v_lines);
    391        1.1  gdamore 
    392        1.1  gdamore 
    393        1.1  gdamore     /*  11. Estimate the Vertical field frequency:
    394        1.1  gdamore      *
    395        1.1  gdamore      *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
    396        1.1  gdamore      *
    397        1.1  gdamore      *  Again, we want to pre multiply by 10^9 to convert for nsec, thereby
    398        1.1  gdamore      *  making it usable in integer math.
    399        1.1  gdamore      *
    400        1.1  gdamore      *  So we get:
    401        1.1  gdamore      *
    402        1.1  gdamore      *  [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES]
    403        1.1  gdamore      *
    404        1.1  gdamore      *  This is all scaled to get the result in uHz.  Again, we're trying to
    405  1.1.110.1     yamt      *  minimize error propagation.
    406        1.1  gdamore      */
    407        1.1  gdamore     v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est),
    408        1.1  gdamore 	total_v_lines);
    409        1.1  gdamore 
    410        1.1  gdamore     print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est);
    411        1.1  gdamore 
    412        1.1  gdamore 
    413        1.1  gdamore     /*  12. Find the actual horizontal period:
    414        1.1  gdamore      *
    415        1.1  gdamore      *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
    416        1.1  gdamore      */
    417        1.1  gdamore 
    418        1.1  gdamore     h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000);
    419        1.1  gdamore 
    420        1.1  gdamore     print_value(12, "[H PERIOD(ps)]", h_period);
    421        1.1  gdamore 
    422        1.1  gdamore 
    423        1.1  gdamore     /*  13. Find the actual Vertical field frequency:
    424        1.1  gdamore      *
    425        1.1  gdamore      *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
    426        1.1  gdamore      *
    427        1.1  gdamore      *  And again, we convert to nsec ahead of time, giving us:
    428        1.1  gdamore      *
    429        1.1  gdamore      *  [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES]
    430        1.1  gdamore      *
    431        1.1  gdamore      *  And another rescaling back to mHz.  Gotta love it.
    432        1.1  gdamore      */
    433        1.1  gdamore 
    434        1.1  gdamore     v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines);
    435        1.1  gdamore 
    436        1.1  gdamore     print_value(13, "[V FIELD RATE]", v_field_rate);
    437        1.1  gdamore 
    438        1.1  gdamore 
    439        1.1  gdamore     /*  14. Find the Vertical frame frequency:
    440        1.1  gdamore      *
    441        1.1  gdamore      *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
    442        1.1  gdamore      *
    443        1.1  gdamore      *  N.B. that the result here is in mHz.
    444        1.1  gdamore      */
    445        1.1  gdamore 
    446        1.1  gdamore     v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ?
    447        1.1  gdamore 	v_field_rate / 2 : v_field_rate;
    448        1.1  gdamore 
    449        1.1  gdamore     print_value(14, "[V FRAME RATE]", v_frame_rate);
    450        1.1  gdamore 
    451        1.1  gdamore 
    452        1.1  gdamore     /*  15. Find number of pixels in left margin:
    453        1.1  gdamore      *  16. Find number of pixels in right margin:
    454        1.1  gdamore      *
    455        1.1  gdamore      *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
    456        1.1  gdamore      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
    457        1.1  gdamore      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
    458        1.1  gdamore      *          0))
    459        1.1  gdamore      *
    460        1.1  gdamore      *  Again, we deal with margin percentages as PPT (parts per thousand).
    461        1.1  gdamore      *  And the calculations for left and right are the same.
    462        1.1  gdamore      */
    463        1.1  gdamore 
    464        1.1  gdamore     left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ?
    465        1.1  gdamore 	DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000),
    466        1.1  gdamore 	    CELL_GRAN) * CELL_GRAN : 0;
    467        1.1  gdamore 
    468        1.1  gdamore     print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
    469        1.1  gdamore     print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
    470        1.1  gdamore 
    471        1.1  gdamore 
    472        1.1  gdamore     /*  17. Find total number of active pixels in image and left and right
    473        1.1  gdamore      *  margins:
    474        1.1  gdamore      *
    475        1.1  gdamore      *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
    476        1.1  gdamore      *                          [RIGHT MARGIN (PIXELS)]
    477        1.1  gdamore      */
    478        1.1  gdamore 
    479        1.1  gdamore     total_active_pixels = h_pixels + left_margin + right_margin;
    480        1.1  gdamore 
    481        1.1  gdamore     print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
    482        1.1  gdamore 
    483        1.1  gdamore 
    484        1.1  gdamore     /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
    485        1.1  gdamore      *  equation:
    486        1.1  gdamore      *
    487        1.1  gdamore      *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
    488        1.1  gdamore      *
    489        1.1  gdamore      *  However, we have modified values for [C'] as [256*C'] and
    490        1.1  gdamore      *  [M'] as [256*M'].  Again the idea here is to get good scaling.
    491        1.1  gdamore      *  We use 256 as the factor to make the math fast.
    492        1.1  gdamore      *
    493        1.1  gdamore      *  Note that this means that we have to scale it appropriately in
    494        1.1  gdamore      *  later calculations.
    495        1.1  gdamore      *
    496        1.1  gdamore      *  The ending result is that our ideal_duty_cycle is 256000x larger
    497        1.1  gdamore      *  than the duty cycle used by VESA.  But again, this reduces error
    498  1.1.110.1     yamt      *  propagation.
    499        1.1  gdamore      */
    500        1.1  gdamore 
    501        1.1  gdamore     ideal_duty_cycle =
    502        1.1  gdamore 	((C_PRIME256(params) * 1000) -
    503        1.1  gdamore 	    (M_PRIME256(params) * h_period / 1000000));
    504        1.1  gdamore 
    505        1.1  gdamore     print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
    506        1.1  gdamore 
    507        1.1  gdamore 
    508        1.1  gdamore     /*  19. Find the number of pixels in the blanking time to the nearest
    509        1.1  gdamore      *  double character cell:
    510        1.1  gdamore      *
    511        1.1  gdamore      *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
    512        1.1  gdamore      *                               [IDEAL DUTY CYCLE] /
    513        1.1  gdamore      *                               (100-[IDEAL DUTY CYCLE]) /
    514        1.1  gdamore      *                               (2*[CELL GRAN RND])), 0))
    515        1.1  gdamore      *                       * (2*[CELL GRAN RND])
    516        1.1  gdamore      *
    517        1.1  gdamore      *  Of course, we adjust to make this rounding work in integer math.
    518        1.1  gdamore      */
    519        1.1  gdamore 
    520        1.1  gdamore     h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle,
    521        1.1  gdamore 			 (256000 * 100ULL) - ideal_duty_cycle),
    522        1.1  gdamore 	2 * CELL_GRAN) * (2 * CELL_GRAN);
    523        1.1  gdamore 
    524        1.1  gdamore     print_value(19, "[H BLANK (PIXELS)]", h_blank);
    525        1.1  gdamore 
    526        1.1  gdamore 
    527        1.1  gdamore     /*  20. Find total number of pixels:
    528        1.1  gdamore      *
    529        1.1  gdamore      *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
    530        1.1  gdamore      */
    531        1.1  gdamore 
    532        1.1  gdamore     total_pixels = total_active_pixels + h_blank;
    533        1.1  gdamore 
    534        1.1  gdamore     print_value(20, "[TOTAL PIXELS]", total_pixels);
    535        1.1  gdamore 
    536        1.1  gdamore 
    537        1.1  gdamore     /*  21. Find pixel clock frequency:
    538        1.1  gdamore      *
    539        1.1  gdamore      *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
    540        1.1  gdamore      *
    541        1.1  gdamore      *  We calculate this in Hz rather than MHz, to get a value that
    542        1.1  gdamore      *  is usable with integer math.  Recall that the [H PERIOD] is in
    543        1.1  gdamore      *  nsec.
    544        1.1  gdamore      */
    545        1.1  gdamore 
    546        1.1  gdamore     pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000));
    547        1.1  gdamore 
    548        1.1  gdamore     print_value(21, "[PIXEL FREQ]", pixel_freq);
    549        1.1  gdamore 
    550        1.1  gdamore 
    551        1.1  gdamore     /*  22. Find horizontal frequency:
    552        1.1  gdamore      *
    553        1.1  gdamore      *  [H FREQ] = 1000 / [H PERIOD]
    554        1.1  gdamore      *
    555        1.1  gdamore      *  I've ifdef'd this out, because we don't need it for any of
    556        1.1  gdamore      *  our calculations.
    557        1.1  gdamore      *  We calculate this in Hz rather than kHz, to avoid rounding
    558        1.1  gdamore      *  errors.  Recall that the [H PERIOD] is in usec.
    559        1.1  gdamore      */
    560        1.1  gdamore 
    561        1.1  gdamore #ifdef	GTFDEBUG
    562        1.1  gdamore     h_freq = 1000000000 / h_period;
    563        1.1  gdamore 
    564        1.1  gdamore     print_value(22, "[H FREQ]", h_freq);
    565        1.1  gdamore #endif
    566        1.1  gdamore 
    567        1.1  gdamore 
    568        1.1  gdamore 
    569        1.1  gdamore     /* Stage 1 computations are now complete; I should really pass
    570        1.1  gdamore        the results to another function and do the Stage 2
    571        1.1  gdamore        computations, but I only need a few more values so I'll just
    572        1.1  gdamore        append the computations here for now */
    573        1.1  gdamore 
    574        1.1  gdamore 
    575        1.1  gdamore 
    576        1.1  gdamore     /*  17. Find the number of pixels in the horizontal sync period:
    577        1.1  gdamore      *
    578        1.1  gdamore      *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
    579        1.1  gdamore      *                             [CELL GRAN RND]),0))*[CELL GRAN RND]
    580        1.1  gdamore      *
    581        1.1  gdamore      *  Rewriting for integer math:
    582        1.1  gdamore      *
    583        1.1  gdamore      *  [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 /
    584        1.1  gdamore      *				   [CELL GRAN RND),0))*[CELL GRAN RND]
    585        1.1  gdamore      */
    586        1.1  gdamore 
    587        1.1  gdamore     h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) *
    588        1.1  gdamore 	CELL_GRAN;
    589        1.1  gdamore 
    590        1.1  gdamore     print_value(17, "[H SYNC (PIXELS)]", h_sync);
    591        1.1  gdamore 
    592        1.1  gdamore 
    593        1.1  gdamore     /*  18. Find the number of pixels in the horizontal front porch period:
    594        1.1  gdamore      *
    595        1.1  gdamore      *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
    596        1.1  gdamore      *
    597        1.1  gdamore      *  Note that h_blank is always an even number of characters (i.e.
    598        1.1  gdamore      *  h_blank % (CELL_GRAN * 2) == 0)
    599        1.1  gdamore      */
    600        1.1  gdamore 
    601        1.1  gdamore     h_front_porch = (h_blank / 2) - h_sync;
    602        1.1  gdamore 
    603        1.1  gdamore     print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
    604        1.1  gdamore 
    605        1.1  gdamore 
    606        1.1  gdamore     /*  36. Find the number of lines in the odd front porch period:
    607        1.1  gdamore      *
    608        1.1  gdamore      *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
    609        1.1  gdamore      *
    610        1.1  gdamore      *  Adjusting for the fact that the interlace is scaled:
    611        1.1  gdamore      *
    612        1.1  gdamore      *  [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2
    613        1.1  gdamore      */
    614        1.1  gdamore 
    615        1.1  gdamore     v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2;
    616        1.1  gdamore 
    617        1.1  gdamore     print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
    618        1.1  gdamore 
    619        1.1  gdamore 
    620        1.1  gdamore     /* finally, pack the results in the mode struct */
    621        1.1  gdamore 
    622        1.1  gdamore     vmp->hsync_start = h_pixels + h_front_porch;
    623        1.1  gdamore     vmp->hsync_end = vmp->hsync_start + h_sync;
    624        1.1  gdamore     vmp->htotal = total_pixels;
    625        1.1  gdamore     vmp->hdisplay = h_pixels;
    626        1.1  gdamore 
    627        1.1  gdamore     vmp->vsync_start = v_lines + v_odd_front_porch_lines;
    628        1.1  gdamore     vmp->vsync_end = vmp->vsync_start + params->vsync_rqd;
    629        1.1  gdamore     vmp->vtotal = total_v_lines;
    630        1.1  gdamore     vmp->vdisplay = v_lines;
    631        1.1  gdamore 
    632        1.1  gdamore     vmp->dot_clock = pixel_freq;
    633        1.1  gdamore 
    634        1.1  gdamore }
    635        1.1  gdamore 
    636        1.1  gdamore void
    637        1.1  gdamore vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp)
    638        1.1  gdamore {
    639        1.1  gdamore 	struct vesagtf_params	params;
    640        1.1  gdamore 
    641        1.1  gdamore 	params.margin_ppt = VESAGTF_MARGIN_PPT;
    642        1.1  gdamore 	params.min_porch = VESAGTF_MIN_PORCH;
    643        1.1  gdamore 	params.vsync_rqd = VESAGTF_VSYNC_RQD;
    644        1.1  gdamore 	params.hsync_pct = VESAGTF_HSYNC_PCT;
    645        1.1  gdamore 	params.min_vsbp = VESAGTF_MIN_VSBP;
    646        1.1  gdamore 	params.M = VESAGTF_M;
    647        1.1  gdamore 	params.C = VESAGTF_C;
    648        1.1  gdamore 	params.K = VESAGTF_K;
    649        1.1  gdamore 	params.J = VESAGTF_J;
    650        1.1  gdamore 
    651        1.1  gdamore 	vesagtf_mode_params(x, y, refresh, &params, 0, vmp);
    652        1.1  gdamore }
    653        1.1  gdamore 
    654        1.1  gdamore /*
    655        1.1  gdamore  * The tidbit here is so that you can compile this file as a
    656        1.1  gdamore  * standalone user program to generate X11 modelines using VESA GTF.
    657        1.1  gdamore  * This also allows for testing of the code itself, without
    658        1.1  gdamore  * necessitating a full kernel recompile.
    659        1.1  gdamore  */
    660        1.1  gdamore 
    661        1.1  gdamore /* print_xf86_mode() - print the XFree86 modeline, given mode timings. */
    662        1.1  gdamore 
    663        1.1  gdamore #ifndef _KERNEL
    664        1.1  gdamore void
    665        1.1  gdamore print_xf86_mode (struct videomode *vmp)
    666        1.1  gdamore {
    667        1.1  gdamore 	float	vf, hf;
    668        1.1  gdamore 
    669        1.1  gdamore 	hf = 1000.0 * vmp->dot_clock / vmp->htotal;
    670        1.1  gdamore 	vf = 1.0 * hf / vmp->vtotal;
    671        1.1  gdamore 
    672        1.1  gdamore     printf("\n");
    673        1.1  gdamore     printf("  # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
    674        1.1  gdamore 	vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0);
    675        1.1  gdamore 
    676        1.1  gdamore     printf("  Modeline \"%dx%d_%.2f\"  %.2f"
    677        1.1  gdamore 	"  %d %d %d %d"
    678        1.1  gdamore 	"  %d %d %d %d"
    679        1.1  gdamore 	"  -HSync +Vsync\n\n",
    680        1.1  gdamore 	vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0),
    681        1.1  gdamore 	vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal,
    682        1.1  gdamore 	vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal);
    683        1.1  gdamore }
    684        1.1  gdamore 
    685        1.1  gdamore int
    686        1.1  gdamore main (int argc, char *argv[])
    687        1.1  gdamore {
    688        1.1  gdamore 	struct videomode m;
    689        1.1  gdamore 
    690        1.1  gdamore 	if (argc != 4) {
    691        1.1  gdamore 		printf("usage: %s x y refresh\n", argv[0]);
    692        1.1  gdamore 		exit(1);
    693        1.1  gdamore 	}
    694        1.1  gdamore 
    695        1.1  gdamore 	vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m);
    696        1.1  gdamore 
    697        1.1  gdamore         print_xf86_mode(&m);
    698        1.1  gdamore 
    699        1.1  gdamore 	return 0;
    700        1.1  gdamore 
    701        1.1  gdamore }
    702        1.1  gdamore #endif
    703