vesagtf.c revision 1.1.2.2 1 1.1.2.2 elad /* $NetBSD: vesagtf.c,v 1.1.2.2 2006/05/11 23:29:59 elad Exp $ */
2 1.1.2.2 elad
3 1.1.2.2 elad /*-
4 1.1.2.2 elad * Copyright (c) 2006 Itronix Inc.
5 1.1.2.2 elad * All rights reserved.
6 1.1.2.2 elad *
7 1.1.2.2 elad * Written by Garrett D'Amore for Itronix Inc.
8 1.1.2.2 elad *
9 1.1.2.2 elad * Redistribution and use in source and binary forms, with or without
10 1.1.2.2 elad * modification, are permitted provided that the following conditions
11 1.1.2.2 elad * are met:
12 1.1.2.2 elad * 1. Redistributions of source code must retain the above copyright
13 1.1.2.2 elad * notice, this list of conditions and the following disclaimer.
14 1.1.2.2 elad * 2. Redistributions in binary form must reproduce the above copyright
15 1.1.2.2 elad * notice, this list of conditions and the following disclaimer in the
16 1.1.2.2 elad * documentation and/or other materials provided with the distribution.
17 1.1.2.2 elad * 3. The name of Itronix Inc. may not be used to endorse
18 1.1.2.2 elad * or promote products derived from this software without specific
19 1.1.2.2 elad * prior written permission.
20 1.1.2.2 elad *
21 1.1.2.2 elad * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS
22 1.1.2.2 elad * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 1.1.2.2 elad * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1.2.2 elad * ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
25 1.1.2.2 elad * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1.2.2 elad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
27 1.1.2.2 elad * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.1.2.2 elad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.1.2.2 elad * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30 1.1.2.2 elad * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31 1.1.2.2 elad * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1.2.2 elad */
33 1.1.2.2 elad
34 1.1.2.2 elad /*
35 1.1.2.2 elad * This was derived from a userland GTF program supplied by NVIDIA.
36 1.1.2.2 elad * NVIDIA's original boilerplate follows.
37 1.1.2.2 elad *
38 1.1.2.2 elad * Note that I have heavily modified the program for use in the EDID
39 1.1.2.2 elad * kernel code for NetBSD, including removing the use of floating
40 1.1.2.2 elad * point operations and making significant adjustments to minimize
41 1.1.2.2 elad * error propogation while operating with integer only math.
42 1.1.2.2 elad *
43 1.1.2.2 elad * This has required the use of 64-bit integers in a few places, but
44 1.1.2.2 elad * the upshot is that for a calculation of 1920x1200x85 (as an
45 1.1.2.2 elad * example), the error deviates by only ~.004% relative to the
46 1.1.2.2 elad * floating point version. This error is *well* within VESA
47 1.1.2.2 elad * tolerances.
48 1.1.2.2 elad */
49 1.1.2.2 elad
50 1.1.2.2 elad /*
51 1.1.2.2 elad * Copyright (c) 2001, Andy Ritger aritger (at) nvidia.com
52 1.1.2.2 elad * All rights reserved.
53 1.1.2.2 elad *
54 1.1.2.2 elad * Redistribution and use in source and binary forms, with or without
55 1.1.2.2 elad * modification, are permitted provided that the following conditions
56 1.1.2.2 elad * are met:
57 1.1.2.2 elad *
58 1.1.2.2 elad * o Redistributions of source code must retain the above copyright
59 1.1.2.2 elad * notice, this list of conditions and the following disclaimer.
60 1.1.2.2 elad * o Redistributions in binary form must reproduce the above copyright
61 1.1.2.2 elad * notice, this list of conditions and the following disclaimer
62 1.1.2.2 elad * in the documentation and/or other materials provided with the
63 1.1.2.2 elad * distribution.
64 1.1.2.2 elad * o Neither the name of NVIDIA nor the names of its contributors
65 1.1.2.2 elad * may be used to endorse or promote products derived from this
66 1.1.2.2 elad * software without specific prior written permission.
67 1.1.2.2 elad *
68 1.1.2.2 elad *
69 1.1.2.2 elad * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
70 1.1.2.2 elad * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
71 1.1.2.2 elad * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
72 1.1.2.2 elad * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
73 1.1.2.2 elad * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
74 1.1.2.2 elad * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
75 1.1.2.2 elad * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
76 1.1.2.2 elad * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
77 1.1.2.2 elad * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
78 1.1.2.2 elad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
79 1.1.2.2 elad * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
80 1.1.2.2 elad * POSSIBILITY OF SUCH DAMAGE.
81 1.1.2.2 elad *
82 1.1.2.2 elad *
83 1.1.2.2 elad *
84 1.1.2.2 elad * This program is based on the Generalized Timing Formula(GTF TM)
85 1.1.2.2 elad * Standard Version: 1.0, Revision: 1.0
86 1.1.2.2 elad *
87 1.1.2.2 elad * The GTF Document contains the following Copyright information:
88 1.1.2.2 elad *
89 1.1.2.2 elad * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
90 1.1.2.2 elad * Association. Duplication of this document within VESA member
91 1.1.2.2 elad * companies for review purposes is permitted. All other rights
92 1.1.2.2 elad * reserved.
93 1.1.2.2 elad *
94 1.1.2.2 elad * While every precaution has been taken in the preparation
95 1.1.2.2 elad * of this standard, the Video Electronics Standards Association and
96 1.1.2.2 elad * its contributors assume no responsibility for errors or omissions,
97 1.1.2.2 elad * and make no warranties, expressed or implied, of functionality
98 1.1.2.2 elad * of suitability for any purpose. The sample code contained within
99 1.1.2.2 elad * this standard may be used without restriction.
100 1.1.2.2 elad *
101 1.1.2.2 elad *
102 1.1.2.2 elad *
103 1.1.2.2 elad * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
104 1.1.2.2 elad * implementation of the GTF Timing Standard, is available at:
105 1.1.2.2 elad *
106 1.1.2.2 elad * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
107 1.1.2.2 elad *
108 1.1.2.2 elad *
109 1.1.2.2 elad *
110 1.1.2.2 elad * This program takes a desired resolution and vertical refresh rate,
111 1.1.2.2 elad * and computes mode timings according to the GTF Timing Standard.
112 1.1.2.2 elad * These mode timings can then be formatted as an XFree86 modeline
113 1.1.2.2 elad * or a mode description for use by fbset(8).
114 1.1.2.2 elad *
115 1.1.2.2 elad *
116 1.1.2.2 elad *
117 1.1.2.2 elad * NOTES:
118 1.1.2.2 elad *
119 1.1.2.2 elad * The GTF allows for computation of "margins" (the visible border
120 1.1.2.2 elad * surrounding the addressable video); on most non-overscan type
121 1.1.2.2 elad * systems, the margin period is zero. I've implemented the margin
122 1.1.2.2 elad * computations but not enabled it because 1) I don't really have
123 1.1.2.2 elad * any experience with this, and 2) neither XFree86 modelines nor
124 1.1.2.2 elad * fbset fb.modes provide an obvious way for margin timings to be
125 1.1.2.2 elad * included in their mode descriptions (needs more investigation).
126 1.1.2.2 elad *
127 1.1.2.2 elad * The GTF provides for computation of interlaced mode timings;
128 1.1.2.2 elad * I've implemented the computations but not enabled them, yet.
129 1.1.2.2 elad * I should probably enable and test this at some point.
130 1.1.2.2 elad *
131 1.1.2.2 elad *
132 1.1.2.2 elad *
133 1.1.2.2 elad * TODO:
134 1.1.2.2 elad *
135 1.1.2.2 elad * o Add support for interlaced modes.
136 1.1.2.2 elad *
137 1.1.2.2 elad * o Implement the other portions of the GTF: compute mode timings
138 1.1.2.2 elad * given either the desired pixel clock or the desired horizontal
139 1.1.2.2 elad * frequency.
140 1.1.2.2 elad *
141 1.1.2.2 elad * o It would be nice if this were more general purpose to do things
142 1.1.2.2 elad * outside the scope of the GTF: like generate double scan mode
143 1.1.2.2 elad * timings, for example.
144 1.1.2.2 elad *
145 1.1.2.2 elad * o Printing digits to the right of the decimal point when the
146 1.1.2.2 elad * digits are 0 annoys me.
147 1.1.2.2 elad *
148 1.1.2.2 elad * o Error checking.
149 1.1.2.2 elad *
150 1.1.2.2 elad */
151 1.1.2.2 elad
152 1.1.2.2 elad
153 1.1.2.2 elad #ifdef _KERNEL
154 1.1.2.2 elad #include <sys/cdefs.h>
155 1.1.2.2 elad
156 1.1.2.2 elad __KERNEL_RCSID(0, "$NetBSD: vesagtf.c,v 1.1.2.2 2006/05/11 23:29:59 elad Exp $");
157 1.1.2.2 elad #include <sys/types.h>
158 1.1.2.2 elad #include <sys/param.h>
159 1.1.2.2 elad #include <sys/systm.h>
160 1.1.2.2 elad #include <dev/videomode/videomode.h>
161 1.1.2.2 elad #include <dev/videomode/vesagtf.h>
162 1.1.2.2 elad #else
163 1.1.2.2 elad #include <stdio.h>
164 1.1.2.2 elad #include <stdlib.h>
165 1.1.2.2 elad #include <sys/types.h>
166 1.1.2.2 elad #include "videomode.h"
167 1.1.2.2 elad #include "vesagtf.h"
168 1.1.2.2 elad
169 1.1.2.2 elad void print_xf86_mode(struct videomode *m);
170 1.1.2.2 elad #endif
171 1.1.2.2 elad
172 1.1.2.2 elad #define CELL_GRAN 8 /* assumed character cell granularity */
173 1.1.2.2 elad
174 1.1.2.2 elad /* C' and M' are part of the Blanking Duty Cycle computation */
175 1.1.2.2 elad /*
176 1.1.2.2 elad * #define C_PRIME (((C - J) * K/256.0) + J)
177 1.1.2.2 elad * #define M_PRIME (K/256.0 * M)
178 1.1.2.2 elad */
179 1.1.2.2 elad
180 1.1.2.2 elad /*
181 1.1.2.2 elad * C' and M' multiplied by 256 to give integer math. Make sure to
182 1.1.2.2 elad * scale results using these back down, appropriately.
183 1.1.2.2 elad */
184 1.1.2.2 elad #define C_PRIME256(p) (((p->C - p->J) * p->K) + (p->J * 256))
185 1.1.2.2 elad #define M_PRIME256(p) (p->K * p->M)
186 1.1.2.2 elad
187 1.1.2.2 elad #define DIVIDE(x,y) (((x) + ((y) / 2)) / (y))
188 1.1.2.2 elad
189 1.1.2.2 elad /*
190 1.1.2.2 elad * print_value() - print the result of the named computation; this is
191 1.1.2.2 elad * useful when comparing against the GTF EXCEL spreadsheet.
192 1.1.2.2 elad */
193 1.1.2.2 elad
194 1.1.2.2 elad #ifdef GTFDEBUG
195 1.1.2.2 elad
196 1.1.2.2 elad static void
197 1.1.2.2 elad print_value(int n, const char *name, unsigned val)
198 1.1.2.2 elad {
199 1.1.2.2 elad printf("%2d: %-27s: %u\n", n, name, val);
200 1.1.2.2 elad }
201 1.1.2.2 elad #else
202 1.1.2.2 elad #define print_value(n, name, val)
203 1.1.2.2 elad #endif
204 1.1.2.2 elad
205 1.1.2.2 elad
206 1.1.2.2 elad /*
207 1.1.2.2 elad * vert_refresh() - as defined by the GTF Timing Standard, compute the
208 1.1.2.2 elad * Stage 1 Parameters using the vertical refresh frequency. In other
209 1.1.2.2 elad * words: input a desired resolution and desired refresh rate, and
210 1.1.2.2 elad * output the GTF mode timings.
211 1.1.2.2 elad *
212 1.1.2.2 elad * XXX All the code is in place to compute interlaced modes, but I don't
213 1.1.2.2 elad * feel like testing it right now.
214 1.1.2.2 elad *
215 1.1.2.2 elad * XXX margin computations are implemented but not tested (nor used by
216 1.1.2.2 elad * XFree86 of fbset mode descriptions, from what I can tell).
217 1.1.2.2 elad */
218 1.1.2.2 elad
219 1.1.2.2 elad void
220 1.1.2.2 elad vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq,
221 1.1.2.2 elad struct vesagtf_params *params, int flags, struct videomode *vmp)
222 1.1.2.2 elad {
223 1.1.2.2 elad unsigned v_field_rqd;
224 1.1.2.2 elad unsigned top_margin;
225 1.1.2.2 elad unsigned bottom_margin;
226 1.1.2.2 elad unsigned interlace;
227 1.1.2.2 elad uint64_t h_period_est;
228 1.1.2.2 elad unsigned vsync_plus_bp;
229 1.1.2.2 elad unsigned v_back_porch;
230 1.1.2.2 elad unsigned total_v_lines;
231 1.1.2.2 elad uint64_t v_field_est;
232 1.1.2.2 elad uint64_t h_period;
233 1.1.2.2 elad unsigned v_field_rate;
234 1.1.2.2 elad unsigned v_frame_rate;
235 1.1.2.2 elad unsigned left_margin;
236 1.1.2.2 elad unsigned right_margin;
237 1.1.2.2 elad unsigned total_active_pixels;
238 1.1.2.2 elad uint64_t ideal_duty_cycle;
239 1.1.2.2 elad unsigned h_blank;
240 1.1.2.2 elad unsigned total_pixels;
241 1.1.2.2 elad unsigned pixel_freq;
242 1.1.2.2 elad
243 1.1.2.2 elad unsigned h_sync;
244 1.1.2.2 elad unsigned h_front_porch;
245 1.1.2.2 elad unsigned v_odd_front_porch_lines;
246 1.1.2.2 elad
247 1.1.2.2 elad #ifdef GTFDEBUG
248 1.1.2.2 elad unsigned h_freq;
249 1.1.2.2 elad #endif
250 1.1.2.2 elad
251 1.1.2.2 elad /* 1. In order to give correct results, the number of horizontal
252 1.1.2.2 elad * pixels requested is first processed to ensure that it is divisible
253 1.1.2.2 elad * by the character size, by rounding it to the nearest character
254 1.1.2.2 elad * cell boundary:
255 1.1.2.2 elad *
256 1.1.2.2 elad * [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
257 1.1.2.2 elad */
258 1.1.2.2 elad
259 1.1.2.2 elad h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN;
260 1.1.2.2 elad
261 1.1.2.2 elad print_value(1, "[H PIXELS RND]", h_pixels);
262 1.1.2.2 elad
263 1.1.2.2 elad
264 1.1.2.2 elad /* 2. If interlace is requested, the number of vertical lines assumed
265 1.1.2.2 elad * by the calculation must be halved, as the computation calculates
266 1.1.2.2 elad * the number of vertical lines per field. In either case, the
267 1.1.2.2 elad * number of lines is rounded to the nearest integer.
268 1.1.2.2 elad *
269 1.1.2.2 elad * [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
270 1.1.2.2 elad * ROUND([V LINES],0))
271 1.1.2.2 elad */
272 1.1.2.2 elad
273 1.1.2.2 elad v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines;
274 1.1.2.2 elad
275 1.1.2.2 elad print_value(2, "[V LINES RND]", v_lines);
276 1.1.2.2 elad
277 1.1.2.2 elad
278 1.1.2.2 elad /* 3. Find the frame rate required:
279 1.1.2.2 elad *
280 1.1.2.2 elad * [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
281 1.1.2.2 elad * [I/P FREQ RQD])
282 1.1.2.2 elad */
283 1.1.2.2 elad
284 1.1.2.2 elad v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq);
285 1.1.2.2 elad
286 1.1.2.2 elad print_value(3, "[V FIELD RATE RQD]", v_field_rqd);
287 1.1.2.2 elad
288 1.1.2.2 elad
289 1.1.2.2 elad /* 4. Find number of lines in Top margin:
290 1.1.2.2 elad * 5. Find number of lines in Bottom margin:
291 1.1.2.2 elad *
292 1.1.2.2 elad * [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
293 1.1.2.2 elad * ROUND(([MARGIN%]/100*[V LINES RND]),0),
294 1.1.2.2 elad * 0)
295 1.1.2.2 elad *
296 1.1.2.2 elad * Ditto for bottom margin. Note that instead of %, we use PPT, which
297 1.1.2.2 elad * is parts per thousand. This helps us with integer math.
298 1.1.2.2 elad */
299 1.1.2.2 elad
300 1.1.2.2 elad top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ?
301 1.1.2.2 elad DIVIDE(v_lines * params->margin_ppt, 1000) : 0;
302 1.1.2.2 elad
303 1.1.2.2 elad print_value(4, "[TOP MARGIN (LINES)]", top_margin);
304 1.1.2.2 elad print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
305 1.1.2.2 elad
306 1.1.2.2 elad
307 1.1.2.2 elad /* 6. If interlace is required, then set variable [INTERLACE]=0.5:
308 1.1.2.2 elad *
309 1.1.2.2 elad * [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
310 1.1.2.2 elad *
311 1.1.2.2 elad * To make this integer friendly, we use some special hacks in step
312 1.1.2.2 elad * 7 below. Please read those comments to understand why I am using
313 1.1.2.2 elad * a whole number of 1.0 instead of 0.5 here.
314 1.1.2.2 elad */
315 1.1.2.2 elad interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0;
316 1.1.2.2 elad
317 1.1.2.2 elad print_value(6, "[2*INTERLACE]", interlace);
318 1.1.2.2 elad
319 1.1.2.2 elad
320 1.1.2.2 elad /* 7. Estimate the Horizontal period
321 1.1.2.2 elad *
322 1.1.2.2 elad * [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
323 1.1.2.2 elad * ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
324 1.1.2.2 elad * [MIN PORCH RND]+[INTERLACE]) * 1000000
325 1.1.2.2 elad *
326 1.1.2.2 elad * To make it integer friendly, we pre-multiply the 1000000 to get to
327 1.1.2.2 elad * usec. This gives us:
328 1.1.2.2 elad *
329 1.1.2.2 elad * [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) /
330 1.1.2.2 elad * ([V LINES RND] + (2 * [TOP MARGIN (LINES)]) +
331 1.1.2.2 elad * [MIN PORCH RND]+[INTERLACE])
332 1.1.2.2 elad *
333 1.1.2.2 elad * The other problem is that the interlace value is wrong. To get
334 1.1.2.2 elad * the interlace to a whole number, we multiply both the numerator and
335 1.1.2.2 elad * divisor by 2, so we can use a value of either 1 or 0 for the interlace
336 1.1.2.2 elad * factor.
337 1.1.2.2 elad *
338 1.1.2.2 elad * This gives us:
339 1.1.2.2 elad *
340 1.1.2.2 elad * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) /
341 1.1.2.2 elad * (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
342 1.1.2.2 elad * [MIN PORCH RND]) + [2*INTERLACE]))
343 1.1.2.2 elad *
344 1.1.2.2 elad * Finally we multiply by another 1000, to get value in picosec.
345 1.1.2.2 elad * Why picosec? To minimize rounding errors. Gotta love integer
346 1.1.2.2 elad * math and error propogation.
347 1.1.2.2 elad */
348 1.1.2.2 elad
349 1.1.2.2 elad h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) -
350 1.1.2.2 elad (2000000 * params->min_vsbp)),
351 1.1.2.2 elad ((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace));
352 1.1.2.2 elad
353 1.1.2.2 elad print_value(7, "[H PERIOD EST (ps)]", h_period_est);
354 1.1.2.2 elad
355 1.1.2.2 elad
356 1.1.2.2 elad /* 8. Find the number of lines in V sync + back porch:
357 1.1.2.2 elad *
358 1.1.2.2 elad * [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
359 1.1.2.2 elad *
360 1.1.2.2 elad * But recall that h_period_est is in psec. So multiply by 1000000.
361 1.1.2.2 elad */
362 1.1.2.2 elad
363 1.1.2.2 elad vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est);
364 1.1.2.2 elad
365 1.1.2.2 elad print_value(8, "[V SYNC+BP]", vsync_plus_bp);
366 1.1.2.2 elad
367 1.1.2.2 elad
368 1.1.2.2 elad /* 9. Find the number of lines in V back porch alone:
369 1.1.2.2 elad *
370 1.1.2.2 elad * [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
371 1.1.2.2 elad *
372 1.1.2.2 elad * XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
373 1.1.2.2 elad */
374 1.1.2.2 elad
375 1.1.2.2 elad v_back_porch = vsync_plus_bp - params->vsync_rqd;
376 1.1.2.2 elad
377 1.1.2.2 elad print_value(9, "[V BACK PORCH]", v_back_porch);
378 1.1.2.2 elad
379 1.1.2.2 elad
380 1.1.2.2 elad /* 10. Find the total number of lines in Vertical field period:
381 1.1.2.2 elad *
382 1.1.2.2 elad * [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
383 1.1.2.2 elad * [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
384 1.1.2.2 elad * [MIN PORCH RND]
385 1.1.2.2 elad */
386 1.1.2.2 elad
387 1.1.2.2 elad total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp +
388 1.1.2.2 elad interlace + params->min_porch;
389 1.1.2.2 elad
390 1.1.2.2 elad print_value(10, "[TOTAL V LINES]", total_v_lines);
391 1.1.2.2 elad
392 1.1.2.2 elad
393 1.1.2.2 elad /* 11. Estimate the Vertical field frequency:
394 1.1.2.2 elad *
395 1.1.2.2 elad * [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
396 1.1.2.2 elad *
397 1.1.2.2 elad * Again, we want to pre multiply by 10^9 to convert for nsec, thereby
398 1.1.2.2 elad * making it usable in integer math.
399 1.1.2.2 elad *
400 1.1.2.2 elad * So we get:
401 1.1.2.2 elad *
402 1.1.2.2 elad * [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES]
403 1.1.2.2 elad *
404 1.1.2.2 elad * This is all scaled to get the result in uHz. Again, we're trying to
405 1.1.2.2 elad * minimize error propogation.
406 1.1.2.2 elad */
407 1.1.2.2 elad v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est),
408 1.1.2.2 elad total_v_lines);
409 1.1.2.2 elad
410 1.1.2.2 elad print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est);
411 1.1.2.2 elad
412 1.1.2.2 elad
413 1.1.2.2 elad /* 12. Find the actual horizontal period:
414 1.1.2.2 elad *
415 1.1.2.2 elad * [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
416 1.1.2.2 elad */
417 1.1.2.2 elad
418 1.1.2.2 elad h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000);
419 1.1.2.2 elad
420 1.1.2.2 elad print_value(12, "[H PERIOD(ps)]", h_period);
421 1.1.2.2 elad
422 1.1.2.2 elad
423 1.1.2.2 elad /* 13. Find the actual Vertical field frequency:
424 1.1.2.2 elad *
425 1.1.2.2 elad * [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
426 1.1.2.2 elad *
427 1.1.2.2 elad * And again, we convert to nsec ahead of time, giving us:
428 1.1.2.2 elad *
429 1.1.2.2 elad * [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES]
430 1.1.2.2 elad *
431 1.1.2.2 elad * And another rescaling back to mHz. Gotta love it.
432 1.1.2.2 elad */
433 1.1.2.2 elad
434 1.1.2.2 elad v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines);
435 1.1.2.2 elad
436 1.1.2.2 elad print_value(13, "[V FIELD RATE]", v_field_rate);
437 1.1.2.2 elad
438 1.1.2.2 elad
439 1.1.2.2 elad /* 14. Find the Vertical frame frequency:
440 1.1.2.2 elad *
441 1.1.2.2 elad * [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
442 1.1.2.2 elad *
443 1.1.2.2 elad * N.B. that the result here is in mHz.
444 1.1.2.2 elad */
445 1.1.2.2 elad
446 1.1.2.2 elad v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ?
447 1.1.2.2 elad v_field_rate / 2 : v_field_rate;
448 1.1.2.2 elad
449 1.1.2.2 elad print_value(14, "[V FRAME RATE]", v_frame_rate);
450 1.1.2.2 elad
451 1.1.2.2 elad
452 1.1.2.2 elad /* 15. Find number of pixels in left margin:
453 1.1.2.2 elad * 16. Find number of pixels in right margin:
454 1.1.2.2 elad *
455 1.1.2.2 elad * [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
456 1.1.2.2 elad * (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
457 1.1.2.2 elad * [CELL GRAN RND]),0)) * [CELL GRAN RND],
458 1.1.2.2 elad * 0))
459 1.1.2.2 elad *
460 1.1.2.2 elad * Again, we deal with margin percentages as PPT (parts per thousand).
461 1.1.2.2 elad * And the calculations for left and right are the same.
462 1.1.2.2 elad */
463 1.1.2.2 elad
464 1.1.2.2 elad left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ?
465 1.1.2.2 elad DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000),
466 1.1.2.2 elad CELL_GRAN) * CELL_GRAN : 0;
467 1.1.2.2 elad
468 1.1.2.2 elad print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
469 1.1.2.2 elad print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
470 1.1.2.2 elad
471 1.1.2.2 elad
472 1.1.2.2 elad /* 17. Find total number of active pixels in image and left and right
473 1.1.2.2 elad * margins:
474 1.1.2.2 elad *
475 1.1.2.2 elad * [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
476 1.1.2.2 elad * [RIGHT MARGIN (PIXELS)]
477 1.1.2.2 elad */
478 1.1.2.2 elad
479 1.1.2.2 elad total_active_pixels = h_pixels + left_margin + right_margin;
480 1.1.2.2 elad
481 1.1.2.2 elad print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
482 1.1.2.2 elad
483 1.1.2.2 elad
484 1.1.2.2 elad /* 18. Find the ideal blanking duty cycle from the blanking duty cycle
485 1.1.2.2 elad * equation:
486 1.1.2.2 elad *
487 1.1.2.2 elad * [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
488 1.1.2.2 elad *
489 1.1.2.2 elad * However, we have modified values for [C'] as [256*C'] and
490 1.1.2.2 elad * [M'] as [256*M']. Again the idea here is to get good scaling.
491 1.1.2.2 elad * We use 256 as the factor to make the math fast.
492 1.1.2.2 elad *
493 1.1.2.2 elad * Note that this means that we have to scale it appropriately in
494 1.1.2.2 elad * later calculations.
495 1.1.2.2 elad *
496 1.1.2.2 elad * The ending result is that our ideal_duty_cycle is 256000x larger
497 1.1.2.2 elad * than the duty cycle used by VESA. But again, this reduces error
498 1.1.2.2 elad * propogation.
499 1.1.2.2 elad */
500 1.1.2.2 elad
501 1.1.2.2 elad ideal_duty_cycle =
502 1.1.2.2 elad ((C_PRIME256(params) * 1000) -
503 1.1.2.2 elad (M_PRIME256(params) * h_period / 1000000));
504 1.1.2.2 elad
505 1.1.2.2 elad print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
506 1.1.2.2 elad
507 1.1.2.2 elad
508 1.1.2.2 elad /* 19. Find the number of pixels in the blanking time to the nearest
509 1.1.2.2 elad * double character cell:
510 1.1.2.2 elad *
511 1.1.2.2 elad * [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
512 1.1.2.2 elad * [IDEAL DUTY CYCLE] /
513 1.1.2.2 elad * (100-[IDEAL DUTY CYCLE]) /
514 1.1.2.2 elad * (2*[CELL GRAN RND])), 0))
515 1.1.2.2 elad * * (2*[CELL GRAN RND])
516 1.1.2.2 elad *
517 1.1.2.2 elad * Of course, we adjust to make this rounding work in integer math.
518 1.1.2.2 elad */
519 1.1.2.2 elad
520 1.1.2.2 elad h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle,
521 1.1.2.2 elad (256000 * 100ULL) - ideal_duty_cycle),
522 1.1.2.2 elad 2 * CELL_GRAN) * (2 * CELL_GRAN);
523 1.1.2.2 elad
524 1.1.2.2 elad print_value(19, "[H BLANK (PIXELS)]", h_blank);
525 1.1.2.2 elad
526 1.1.2.2 elad
527 1.1.2.2 elad /* 20. Find total number of pixels:
528 1.1.2.2 elad *
529 1.1.2.2 elad * [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
530 1.1.2.2 elad */
531 1.1.2.2 elad
532 1.1.2.2 elad total_pixels = total_active_pixels + h_blank;
533 1.1.2.2 elad
534 1.1.2.2 elad print_value(20, "[TOTAL PIXELS]", total_pixels);
535 1.1.2.2 elad
536 1.1.2.2 elad
537 1.1.2.2 elad /* 21. Find pixel clock frequency:
538 1.1.2.2 elad *
539 1.1.2.2 elad * [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
540 1.1.2.2 elad *
541 1.1.2.2 elad * We calculate this in Hz rather than MHz, to get a value that
542 1.1.2.2 elad * is usable with integer math. Recall that the [H PERIOD] is in
543 1.1.2.2 elad * nsec.
544 1.1.2.2 elad */
545 1.1.2.2 elad
546 1.1.2.2 elad pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000));
547 1.1.2.2 elad
548 1.1.2.2 elad print_value(21, "[PIXEL FREQ]", pixel_freq);
549 1.1.2.2 elad
550 1.1.2.2 elad
551 1.1.2.2 elad /* 22. Find horizontal frequency:
552 1.1.2.2 elad *
553 1.1.2.2 elad * [H FREQ] = 1000 / [H PERIOD]
554 1.1.2.2 elad *
555 1.1.2.2 elad * I've ifdef'd this out, because we don't need it for any of
556 1.1.2.2 elad * our calculations.
557 1.1.2.2 elad * We calculate this in Hz rather than kHz, to avoid rounding
558 1.1.2.2 elad * errors. Recall that the [H PERIOD] is in usec.
559 1.1.2.2 elad */
560 1.1.2.2 elad
561 1.1.2.2 elad #ifdef GTFDEBUG
562 1.1.2.2 elad h_freq = 1000000000 / h_period;
563 1.1.2.2 elad
564 1.1.2.2 elad print_value(22, "[H FREQ]", h_freq);
565 1.1.2.2 elad #endif
566 1.1.2.2 elad
567 1.1.2.2 elad
568 1.1.2.2 elad
569 1.1.2.2 elad /* Stage 1 computations are now complete; I should really pass
570 1.1.2.2 elad the results to another function and do the Stage 2
571 1.1.2.2 elad computations, but I only need a few more values so I'll just
572 1.1.2.2 elad append the computations here for now */
573 1.1.2.2 elad
574 1.1.2.2 elad
575 1.1.2.2 elad
576 1.1.2.2 elad /* 17. Find the number of pixels in the horizontal sync period:
577 1.1.2.2 elad *
578 1.1.2.2 elad * [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
579 1.1.2.2 elad * [CELL GRAN RND]),0))*[CELL GRAN RND]
580 1.1.2.2 elad *
581 1.1.2.2 elad * Rewriting for integer math:
582 1.1.2.2 elad *
583 1.1.2.2 elad * [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 /
584 1.1.2.2 elad * [CELL GRAN RND),0))*[CELL GRAN RND]
585 1.1.2.2 elad */
586 1.1.2.2 elad
587 1.1.2.2 elad h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) *
588 1.1.2.2 elad CELL_GRAN;
589 1.1.2.2 elad
590 1.1.2.2 elad print_value(17, "[H SYNC (PIXELS)]", h_sync);
591 1.1.2.2 elad
592 1.1.2.2 elad
593 1.1.2.2 elad /* 18. Find the number of pixels in the horizontal front porch period:
594 1.1.2.2 elad *
595 1.1.2.2 elad * [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
596 1.1.2.2 elad *
597 1.1.2.2 elad * Note that h_blank is always an even number of characters (i.e.
598 1.1.2.2 elad * h_blank % (CELL_GRAN * 2) == 0)
599 1.1.2.2 elad */
600 1.1.2.2 elad
601 1.1.2.2 elad h_front_porch = (h_blank / 2) - h_sync;
602 1.1.2.2 elad
603 1.1.2.2 elad print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
604 1.1.2.2 elad
605 1.1.2.2 elad
606 1.1.2.2 elad /* 36. Find the number of lines in the odd front porch period:
607 1.1.2.2 elad *
608 1.1.2.2 elad * [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
609 1.1.2.2 elad *
610 1.1.2.2 elad * Adjusting for the fact that the interlace is scaled:
611 1.1.2.2 elad *
612 1.1.2.2 elad * [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2
613 1.1.2.2 elad */
614 1.1.2.2 elad
615 1.1.2.2 elad v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2;
616 1.1.2.2 elad
617 1.1.2.2 elad print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
618 1.1.2.2 elad
619 1.1.2.2 elad
620 1.1.2.2 elad /* finally, pack the results in the mode struct */
621 1.1.2.2 elad
622 1.1.2.2 elad vmp->hsync_start = h_pixels + h_front_porch;
623 1.1.2.2 elad vmp->hsync_end = vmp->hsync_start + h_sync;
624 1.1.2.2 elad vmp->htotal = total_pixels;
625 1.1.2.2 elad vmp->hdisplay = h_pixels;
626 1.1.2.2 elad
627 1.1.2.2 elad vmp->vsync_start = v_lines + v_odd_front_porch_lines;
628 1.1.2.2 elad vmp->vsync_end = vmp->vsync_start + params->vsync_rqd;
629 1.1.2.2 elad vmp->vtotal = total_v_lines;
630 1.1.2.2 elad vmp->vdisplay = v_lines;
631 1.1.2.2 elad
632 1.1.2.2 elad vmp->dot_clock = pixel_freq;
633 1.1.2.2 elad
634 1.1.2.2 elad }
635 1.1.2.2 elad
636 1.1.2.2 elad void
637 1.1.2.2 elad vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp)
638 1.1.2.2 elad {
639 1.1.2.2 elad struct vesagtf_params params;
640 1.1.2.2 elad
641 1.1.2.2 elad params.margin_ppt = VESAGTF_MARGIN_PPT;
642 1.1.2.2 elad params.min_porch = VESAGTF_MIN_PORCH;
643 1.1.2.2 elad params.vsync_rqd = VESAGTF_VSYNC_RQD;
644 1.1.2.2 elad params.hsync_pct = VESAGTF_HSYNC_PCT;
645 1.1.2.2 elad params.min_vsbp = VESAGTF_MIN_VSBP;
646 1.1.2.2 elad params.M = VESAGTF_M;
647 1.1.2.2 elad params.C = VESAGTF_C;
648 1.1.2.2 elad params.K = VESAGTF_K;
649 1.1.2.2 elad params.J = VESAGTF_J;
650 1.1.2.2 elad
651 1.1.2.2 elad vesagtf_mode_params(x, y, refresh, ¶ms, 0, vmp);
652 1.1.2.2 elad }
653 1.1.2.2 elad
654 1.1.2.2 elad /*
655 1.1.2.2 elad * The tidbit here is so that you can compile this file as a
656 1.1.2.2 elad * standalone user program to generate X11 modelines using VESA GTF.
657 1.1.2.2 elad * This also allows for testing of the code itself, without
658 1.1.2.2 elad * necessitating a full kernel recompile.
659 1.1.2.2 elad */
660 1.1.2.2 elad
661 1.1.2.2 elad /* print_xf86_mode() - print the XFree86 modeline, given mode timings. */
662 1.1.2.2 elad
663 1.1.2.2 elad #ifndef _KERNEL
664 1.1.2.2 elad void
665 1.1.2.2 elad print_xf86_mode (struct videomode *vmp)
666 1.1.2.2 elad {
667 1.1.2.2 elad float vf, hf;
668 1.1.2.2 elad
669 1.1.2.2 elad hf = 1000.0 * vmp->dot_clock / vmp->htotal;
670 1.1.2.2 elad vf = 1.0 * hf / vmp->vtotal;
671 1.1.2.2 elad
672 1.1.2.2 elad printf("\n");
673 1.1.2.2 elad printf(" # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
674 1.1.2.2 elad vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0);
675 1.1.2.2 elad
676 1.1.2.2 elad printf(" Modeline \"%dx%d_%.2f\" %.2f"
677 1.1.2.2 elad " %d %d %d %d"
678 1.1.2.2 elad " %d %d %d %d"
679 1.1.2.2 elad " -HSync +Vsync\n\n",
680 1.1.2.2 elad vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0),
681 1.1.2.2 elad vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal,
682 1.1.2.2 elad vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal);
683 1.1.2.2 elad }
684 1.1.2.2 elad
685 1.1.2.2 elad int
686 1.1.2.2 elad main (int argc, char *argv[])
687 1.1.2.2 elad {
688 1.1.2.2 elad struct videomode m;
689 1.1.2.2 elad
690 1.1.2.2 elad if (argc != 4) {
691 1.1.2.2 elad printf("usage: %s x y refresh\n", argv[0]);
692 1.1.2.2 elad exit(1);
693 1.1.2.2 elad }
694 1.1.2.2 elad
695 1.1.2.2 elad vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m);
696 1.1.2.2 elad
697 1.1.2.2 elad print_xf86_mode(&m);
698 1.1.2.2 elad
699 1.1.2.2 elad return 0;
700 1.1.2.2 elad
701 1.1.2.2 elad }
702 1.1.2.2 elad #endif
703