Home | History | Annotate | Line # | Download | only in net
pf_norm.c revision 1.1.1.3
      1 /*	$OpenBSD: pf_norm.c,v 1.97 2004/09/21 16:59:12 aaron Exp $ */
      2 
      3 /*
      4  * Copyright 2001 Niels Provos <provos (at) citi.umich.edu>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 
     28 #include "pflog.h"
     29 
     30 #include <sys/param.h>
     31 #include <sys/systm.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/filio.h>
     34 #include <sys/fcntl.h>
     35 #include <sys/socket.h>
     36 #include <sys/kernel.h>
     37 #include <sys/time.h>
     38 #include <sys/pool.h>
     39 
     40 #include <dev/rndvar.h>
     41 #include <net/if.h>
     42 #include <net/if_types.h>
     43 #include <net/bpf.h>
     44 #include <net/route.h>
     45 #include <net/if_pflog.h>
     46 
     47 #include <netinet/in.h>
     48 #include <netinet/in_var.h>
     49 #include <netinet/in_systm.h>
     50 #include <netinet/ip.h>
     51 #include <netinet/ip_var.h>
     52 #include <netinet/tcp.h>
     53 #include <netinet/tcp_seq.h>
     54 #include <netinet/udp.h>
     55 #include <netinet/ip_icmp.h>
     56 
     57 #ifdef INET6
     58 #include <netinet/ip6.h>
     59 #endif /* INET6 */
     60 
     61 #include <net/pfvar.h>
     62 
     63 struct pf_frent {
     64 	LIST_ENTRY(pf_frent) fr_next;
     65 	struct ip *fr_ip;
     66 	struct mbuf *fr_m;
     67 };
     68 
     69 struct pf_frcache {
     70 	LIST_ENTRY(pf_frcache) fr_next;
     71 	uint16_t	fr_off;
     72 	uint16_t	fr_end;
     73 };
     74 
     75 #define PFFRAG_SEENLAST	0x0001		/* Seen the last fragment for this */
     76 #define PFFRAG_NOBUFFER	0x0002		/* Non-buffering fragment cache */
     77 #define PFFRAG_DROP	0x0004		/* Drop all fragments */
     78 #define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
     79 
     80 struct pf_fragment {
     81 	RB_ENTRY(pf_fragment) fr_entry;
     82 	TAILQ_ENTRY(pf_fragment) frag_next;
     83 	struct in_addr	fr_src;
     84 	struct in_addr	fr_dst;
     85 	u_int8_t	fr_p;		/* protocol of this fragment */
     86 	u_int8_t	fr_flags;	/* status flags */
     87 	u_int16_t	fr_id;		/* fragment id for reassemble */
     88 	u_int16_t	fr_max;		/* fragment data max */
     89 	u_int32_t	fr_timeout;
     90 #define fr_queue	fr_u.fru_queue
     91 #define fr_cache	fr_u.fru_cache
     92 	union {
     93 		LIST_HEAD(pf_fragq, pf_frent) fru_queue;	/* buffering */
     94 		LIST_HEAD(pf_cacheq, pf_frcache) fru_cache;	/* non-buf */
     95 	} fr_u;
     96 };
     97 
     98 TAILQ_HEAD(pf_fragqueue, pf_fragment)	pf_fragqueue;
     99 TAILQ_HEAD(pf_cachequeue, pf_fragment)	pf_cachequeue;
    100 
    101 static __inline int	 pf_frag_compare(struct pf_fragment *,
    102 			    struct pf_fragment *);
    103 RB_HEAD(pf_frag_tree, pf_fragment)	pf_frag_tree, pf_cache_tree;
    104 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    105 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    106 
    107 /* Private prototypes */
    108 void			 pf_ip2key(struct pf_fragment *, struct ip *);
    109 void			 pf_remove_fragment(struct pf_fragment *);
    110 void			 pf_flush_fragments(void);
    111 void			 pf_free_fragment(struct pf_fragment *);
    112 struct pf_fragment	*pf_find_fragment(struct ip *, struct pf_frag_tree *);
    113 struct mbuf		*pf_reassemble(struct mbuf **, struct pf_fragment **,
    114 			    struct pf_frent *, int);
    115 struct mbuf		*pf_fragcache(struct mbuf **, struct ip*,
    116 			    struct pf_fragment **, int, int, int *);
    117 int			 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
    118 			    struct tcphdr *, int);
    119 
    120 #define	DPFPRINTF(x) do {				\
    121 	if (pf_status.debug >= PF_DEBUG_MISC) {		\
    122 		printf("%s: ", __func__);		\
    123 		printf x ;				\
    124 	}						\
    125 } while(0)
    126 
    127 /* Globals */
    128 struct pool		 pf_frent_pl, pf_frag_pl, pf_cache_pl, pf_cent_pl;
    129 struct pool		 pf_state_scrub_pl;
    130 int			 pf_nfrents, pf_ncache;
    131 
    132 void
    133 pf_normalize_init(void)
    134 {
    135 	pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
    136 	    NULL);
    137 	pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
    138 	    NULL);
    139 	pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
    140 	    "pffrcache", NULL);
    141 	pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
    142 	    NULL);
    143 	pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
    144 	    "pfstscr", NULL);
    145 
    146 	pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
    147 	pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
    148 	pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
    149 	pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
    150 
    151 	TAILQ_INIT(&pf_fragqueue);
    152 	TAILQ_INIT(&pf_cachequeue);
    153 }
    154 
    155 static __inline int
    156 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
    157 {
    158 	int	diff;
    159 
    160 	if ((diff = a->fr_id - b->fr_id))
    161 		return (diff);
    162 	else if ((diff = a->fr_p - b->fr_p))
    163 		return (diff);
    164 	else if (a->fr_src.s_addr < b->fr_src.s_addr)
    165 		return (-1);
    166 	else if (a->fr_src.s_addr > b->fr_src.s_addr)
    167 		return (1);
    168 	else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
    169 		return (-1);
    170 	else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
    171 		return (1);
    172 	return (0);
    173 }
    174 
    175 void
    176 pf_purge_expired_fragments(void)
    177 {
    178 	struct pf_fragment	*frag;
    179 	u_int32_t		 expire = time_second -
    180 				    pf_default_rule.timeout[PFTM_FRAG];
    181 
    182 	while ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) != NULL) {
    183 		KASSERT(BUFFER_FRAGMENTS(frag));
    184 		if (frag->fr_timeout > expire)
    185 			break;
    186 
    187 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    188 		pf_free_fragment(frag);
    189 	}
    190 
    191 	while ((frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue)) != NULL) {
    192 		KASSERT(!BUFFER_FRAGMENTS(frag));
    193 		if (frag->fr_timeout > expire)
    194 			break;
    195 
    196 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    197 		pf_free_fragment(frag);
    198 		KASSERT(TAILQ_EMPTY(&pf_cachequeue) ||
    199 		    TAILQ_LAST(&pf_cachequeue, pf_cachequeue) != frag);
    200 	}
    201 }
    202 
    203 /*
    204  * Try to flush old fragments to make space for new ones
    205  */
    206 
    207 void
    208 pf_flush_fragments(void)
    209 {
    210 	struct pf_fragment	*frag;
    211 	int			 goal;
    212 
    213 	goal = pf_nfrents * 9 / 10;
    214 	DPFPRINTF(("trying to free > %d frents\n",
    215 	    pf_nfrents - goal));
    216 	while (goal < pf_nfrents) {
    217 		frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue);
    218 		if (frag == NULL)
    219 			break;
    220 		pf_free_fragment(frag);
    221 	}
    222 
    223 
    224 	goal = pf_ncache * 9 / 10;
    225 	DPFPRINTF(("trying to free > %d cache entries\n",
    226 	    pf_ncache - goal));
    227 	while (goal < pf_ncache) {
    228 		frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue);
    229 		if (frag == NULL)
    230 			break;
    231 		pf_free_fragment(frag);
    232 	}
    233 }
    234 
    235 /* Frees the fragments and all associated entries */
    236 
    237 void
    238 pf_free_fragment(struct pf_fragment *frag)
    239 {
    240 	struct pf_frent		*frent;
    241 	struct pf_frcache	*frcache;
    242 
    243 	/* Free all fragments */
    244 	if (BUFFER_FRAGMENTS(frag)) {
    245 		for (frent = LIST_FIRST(&frag->fr_queue); frent;
    246 		    frent = LIST_FIRST(&frag->fr_queue)) {
    247 			LIST_REMOVE(frent, fr_next);
    248 
    249 			m_freem(frent->fr_m);
    250 			pool_put(&pf_frent_pl, frent);
    251 			pf_nfrents--;
    252 		}
    253 	} else {
    254 		for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
    255 		    frcache = LIST_FIRST(&frag->fr_cache)) {
    256 			LIST_REMOVE(frcache, fr_next);
    257 
    258 			KASSERT(LIST_EMPTY(&frag->fr_cache) ||
    259 			    LIST_FIRST(&frag->fr_cache)->fr_off >
    260 			    frcache->fr_end);
    261 
    262 			pool_put(&pf_cent_pl, frcache);
    263 			pf_ncache--;
    264 		}
    265 	}
    266 
    267 	pf_remove_fragment(frag);
    268 }
    269 
    270 void
    271 pf_ip2key(struct pf_fragment *key, struct ip *ip)
    272 {
    273 	key->fr_p = ip->ip_p;
    274 	key->fr_id = ip->ip_id;
    275 	key->fr_src.s_addr = ip->ip_src.s_addr;
    276 	key->fr_dst.s_addr = ip->ip_dst.s_addr;
    277 }
    278 
    279 struct pf_fragment *
    280 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
    281 {
    282 	struct pf_fragment	 key;
    283 	struct pf_fragment	*frag;
    284 
    285 	pf_ip2key(&key, ip);
    286 
    287 	frag = RB_FIND(pf_frag_tree, tree, &key);
    288 	if (frag != NULL) {
    289 		/* XXX Are we sure we want to update the timeout? */
    290 		frag->fr_timeout = time_second;
    291 		if (BUFFER_FRAGMENTS(frag)) {
    292 			TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    293 			TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next);
    294 		} else {
    295 			TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    296 			TAILQ_INSERT_HEAD(&pf_cachequeue, frag, frag_next);
    297 		}
    298 	}
    299 
    300 	return (frag);
    301 }
    302 
    303 /* Removes a fragment from the fragment queue and frees the fragment */
    304 
    305 void
    306 pf_remove_fragment(struct pf_fragment *frag)
    307 {
    308 	if (BUFFER_FRAGMENTS(frag)) {
    309 		RB_REMOVE(pf_frag_tree, &pf_frag_tree, frag);
    310 		TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    311 		pool_put(&pf_frag_pl, frag);
    312 	} else {
    313 		RB_REMOVE(pf_frag_tree, &pf_cache_tree, frag);
    314 		TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    315 		pool_put(&pf_cache_pl, frag);
    316 	}
    317 }
    318 
    319 #define FR_IP_OFF(fr)	((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
    320 struct mbuf *
    321 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
    322     struct pf_frent *frent, int mff)
    323 {
    324 	struct mbuf	*m = *m0, *m2;
    325 	struct pf_frent	*frea, *next;
    326 	struct pf_frent	*frep = NULL;
    327 	struct ip	*ip = frent->fr_ip;
    328 	int		 hlen = ip->ip_hl << 2;
    329 	u_int16_t	 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    330 	u_int16_t	 ip_len = ntohs(ip->ip_len) - ip->ip_hl * 4;
    331 	u_int16_t	 max = ip_len + off;
    332 
    333 	KASSERT(*frag == NULL || BUFFER_FRAGMENTS(*frag));
    334 
    335 	/* Strip off ip header */
    336 	m->m_data += hlen;
    337 	m->m_len -= hlen;
    338 
    339 	/* Create a new reassembly queue for this packet */
    340 	if (*frag == NULL) {
    341 		*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    342 		if (*frag == NULL) {
    343 			pf_flush_fragments();
    344 			*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    345 			if (*frag == NULL)
    346 				goto drop_fragment;
    347 		}
    348 
    349 		(*frag)->fr_flags = 0;
    350 		(*frag)->fr_max = 0;
    351 		(*frag)->fr_src = frent->fr_ip->ip_src;
    352 		(*frag)->fr_dst = frent->fr_ip->ip_dst;
    353 		(*frag)->fr_p = frent->fr_ip->ip_p;
    354 		(*frag)->fr_id = frent->fr_ip->ip_id;
    355 		(*frag)->fr_timeout = time_second;
    356 		LIST_INIT(&(*frag)->fr_queue);
    357 
    358 		RB_INSERT(pf_frag_tree, &pf_frag_tree, *frag);
    359 		TAILQ_INSERT_HEAD(&pf_fragqueue, *frag, frag_next);
    360 
    361 		/* We do not have a previous fragment */
    362 		frep = NULL;
    363 		goto insert;
    364 	}
    365 
    366 	/*
    367 	 * Find a fragment after the current one:
    368 	 *  - off contains the real shifted offset.
    369 	 */
    370 	LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
    371 		if (FR_IP_OFF(frea) > off)
    372 			break;
    373 		frep = frea;
    374 	}
    375 
    376 	KASSERT(frep != NULL || frea != NULL);
    377 
    378 	if (frep != NULL &&
    379 	    FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl *
    380 	    4 > off)
    381 	{
    382 		u_int16_t	precut;
    383 
    384 		precut = FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) -
    385 		    frep->fr_ip->ip_hl * 4 - off;
    386 		if (precut >= ip_len)
    387 			goto drop_fragment;
    388 		m_adj(frent->fr_m, precut);
    389 		DPFPRINTF(("overlap -%d\n", precut));
    390 		/* Enforce 8 byte boundaries */
    391 		ip->ip_off = htons(ntohs(ip->ip_off) + (precut >> 3));
    392 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    393 		ip_len -= precut;
    394 		ip->ip_len = htons(ip_len);
    395 	}
    396 
    397 	for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
    398 	    frea = next)
    399 	{
    400 		u_int16_t	aftercut;
    401 
    402 		aftercut = ip_len + off - FR_IP_OFF(frea);
    403 		DPFPRINTF(("adjust overlap %d\n", aftercut));
    404 		if (aftercut < ntohs(frea->fr_ip->ip_len) - frea->fr_ip->ip_hl
    405 		    * 4)
    406 		{
    407 			frea->fr_ip->ip_len =
    408 			    htons(ntohs(frea->fr_ip->ip_len) - aftercut);
    409 			frea->fr_ip->ip_off = htons(ntohs(frea->fr_ip->ip_off) +
    410 			    (aftercut >> 3));
    411 			m_adj(frea->fr_m, aftercut);
    412 			break;
    413 		}
    414 
    415 		/* This fragment is completely overlapped, loose it */
    416 		next = LIST_NEXT(frea, fr_next);
    417 		m_freem(frea->fr_m);
    418 		LIST_REMOVE(frea, fr_next);
    419 		pool_put(&pf_frent_pl, frea);
    420 		pf_nfrents--;
    421 	}
    422 
    423  insert:
    424 	/* Update maximum data size */
    425 	if ((*frag)->fr_max < max)
    426 		(*frag)->fr_max = max;
    427 	/* This is the last segment */
    428 	if (!mff)
    429 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    430 
    431 	if (frep == NULL)
    432 		LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
    433 	else
    434 		LIST_INSERT_AFTER(frep, frent, fr_next);
    435 
    436 	/* Check if we are completely reassembled */
    437 	if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
    438 		return (NULL);
    439 
    440 	/* Check if we have all the data */
    441 	off = 0;
    442 	for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
    443 		next = LIST_NEXT(frep, fr_next);
    444 
    445 		off += ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl * 4;
    446 		if (off < (*frag)->fr_max &&
    447 		    (next == NULL || FR_IP_OFF(next) != off))
    448 		{
    449 			DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
    450 			    off, next == NULL ? -1 : FR_IP_OFF(next),
    451 			    (*frag)->fr_max));
    452 			return (NULL);
    453 		}
    454 	}
    455 	DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
    456 	if (off < (*frag)->fr_max)
    457 		return (NULL);
    458 
    459 	/* We have all the data */
    460 	frent = LIST_FIRST(&(*frag)->fr_queue);
    461 	KASSERT(frent != NULL);
    462 	if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
    463 		DPFPRINTF(("drop: too big: %d\n", off));
    464 		pf_free_fragment(*frag);
    465 		*frag = NULL;
    466 		return (NULL);
    467 	}
    468 	next = LIST_NEXT(frent, fr_next);
    469 
    470 	/* Magic from ip_input */
    471 	ip = frent->fr_ip;
    472 	m = frent->fr_m;
    473 	m2 = m->m_next;
    474 	m->m_next = NULL;
    475 	m_cat(m, m2);
    476 	pool_put(&pf_frent_pl, frent);
    477 	pf_nfrents--;
    478 	for (frent = next; frent != NULL; frent = next) {
    479 		next = LIST_NEXT(frent, fr_next);
    480 
    481 		m2 = frent->fr_m;
    482 		pool_put(&pf_frent_pl, frent);
    483 		pf_nfrents--;
    484 		m_cat(m, m2);
    485 	}
    486 
    487 	ip->ip_src = (*frag)->fr_src;
    488 	ip->ip_dst = (*frag)->fr_dst;
    489 
    490 	/* Remove from fragment queue */
    491 	pf_remove_fragment(*frag);
    492 	*frag = NULL;
    493 
    494 	hlen = ip->ip_hl << 2;
    495 	ip->ip_len = htons(off + hlen);
    496 	m->m_len += hlen;
    497 	m->m_data -= hlen;
    498 
    499 	/* some debugging cruft by sklower, below, will go away soon */
    500 	/* XXX this should be done elsewhere */
    501 	if (m->m_flags & M_PKTHDR) {
    502 		int plen = 0;
    503 		for (m2 = m; m2; m2 = m2->m_next)
    504 			plen += m2->m_len;
    505 		m->m_pkthdr.len = plen;
    506 	}
    507 
    508 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
    509 	return (m);
    510 
    511  drop_fragment:
    512 	/* Oops - fail safe - drop packet */
    513 	pool_put(&pf_frent_pl, frent);
    514 	pf_nfrents--;
    515 	m_freem(m);
    516 	return (NULL);
    517 }
    518 
    519 struct mbuf *
    520 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
    521     int drop, int *nomem)
    522 {
    523 	struct mbuf		*m = *m0;
    524 	struct pf_frcache	*frp, *fra, *cur = NULL;
    525 	int			 ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
    526 	u_int16_t		 off = ntohs(h->ip_off) << 3;
    527 	u_int16_t		 max = ip_len + off;
    528 	int			 hosed = 0;
    529 
    530 	KASSERT(*frag == NULL || !BUFFER_FRAGMENTS(*frag));
    531 
    532 	/* Create a new range queue for this packet */
    533 	if (*frag == NULL) {
    534 		*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    535 		if (*frag == NULL) {
    536 			pf_flush_fragments();
    537 			*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    538 			if (*frag == NULL)
    539 				goto no_mem;
    540 		}
    541 
    542 		/* Get an entry for the queue */
    543 		cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    544 		if (cur == NULL) {
    545 			pool_put(&pf_cache_pl, *frag);
    546 			*frag = NULL;
    547 			goto no_mem;
    548 		}
    549 		pf_ncache++;
    550 
    551 		(*frag)->fr_flags = PFFRAG_NOBUFFER;
    552 		(*frag)->fr_max = 0;
    553 		(*frag)->fr_src = h->ip_src;
    554 		(*frag)->fr_dst = h->ip_dst;
    555 		(*frag)->fr_p = h->ip_p;
    556 		(*frag)->fr_id = h->ip_id;
    557 		(*frag)->fr_timeout = time_second;
    558 
    559 		cur->fr_off = off;
    560 		cur->fr_end = max;
    561 		LIST_INIT(&(*frag)->fr_cache);
    562 		LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
    563 
    564 		RB_INSERT(pf_frag_tree, &pf_cache_tree, *frag);
    565 		TAILQ_INSERT_HEAD(&pf_cachequeue, *frag, frag_next);
    566 
    567 		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
    568 
    569 		goto pass;
    570 	}
    571 
    572 	/*
    573 	 * Find a fragment after the current one:
    574 	 *  - off contains the real shifted offset.
    575 	 */
    576 	frp = NULL;
    577 	LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
    578 		if (fra->fr_off > off)
    579 			break;
    580 		frp = fra;
    581 	}
    582 
    583 	KASSERT(frp != NULL || fra != NULL);
    584 
    585 	if (frp != NULL) {
    586 		int	precut;
    587 
    588 		precut = frp->fr_end - off;
    589 		if (precut >= ip_len) {
    590 			/* Fragment is entirely a duplicate */
    591 			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
    592 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
    593 			goto drop_fragment;
    594 		}
    595 		if (precut == 0) {
    596 			/* They are adjacent.  Fixup cache entry */
    597 			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
    598 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
    599 			frp->fr_end = max;
    600 		} else if (precut > 0) {
    601 			/* The first part of this payload overlaps with a
    602 			 * fragment that has already been passed.
    603 			 * Need to trim off the first part of the payload.
    604 			 * But to do so easily, we need to create another
    605 			 * mbuf to throw the original header into.
    606 			 */
    607 
    608 			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
    609 			    h->ip_id, precut, frp->fr_off, frp->fr_end, off,
    610 			    max));
    611 
    612 			off += precut;
    613 			max -= precut;
    614 			/* Update the previous frag to encompass this one */
    615 			frp->fr_end = max;
    616 
    617 			if (!drop) {
    618 				/* XXX Optimization opportunity
    619 				 * This is a very heavy way to trim the payload.
    620 				 * we could do it much faster by diddling mbuf
    621 				 * internals but that would be even less legible
    622 				 * than this mbuf magic.  For my next trick,
    623 				 * I'll pull a rabbit out of my laptop.
    624 				 */
    625 				*m0 = m_copym2(m, 0, h->ip_hl << 2, M_NOWAIT);
    626 				if (*m0 == NULL)
    627 					goto no_mem;
    628 				KASSERT((*m0)->m_next == NULL);
    629 				m_adj(m, precut + (h->ip_hl << 2));
    630 				m_cat(*m0, m);
    631 				m = *m0;
    632 				if (m->m_flags & M_PKTHDR) {
    633 					int plen = 0;
    634 					struct mbuf *t;
    635 					for (t = m; t; t = t->m_next)
    636 						plen += t->m_len;
    637 					m->m_pkthdr.len = plen;
    638 				}
    639 
    640 
    641 				h = mtod(m, struct ip *);
    642 
    643 
    644 				KASSERT((int)m->m_len ==
    645 				    ntohs(h->ip_len) - precut);
    646 				h->ip_off = htons(ntohs(h->ip_off) +
    647 				    (precut >> 3));
    648 				h->ip_len = htons(ntohs(h->ip_len) - precut);
    649 			} else {
    650 				hosed++;
    651 			}
    652 		} else {
    653 			/* There is a gap between fragments */
    654 
    655 			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
    656 			    h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
    657 			    max));
    658 
    659 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    660 			if (cur == NULL)
    661 				goto no_mem;
    662 			pf_ncache++;
    663 
    664 			cur->fr_off = off;
    665 			cur->fr_end = max;
    666 			LIST_INSERT_AFTER(frp, cur, fr_next);
    667 		}
    668 	}
    669 
    670 	if (fra != NULL) {
    671 		int	aftercut;
    672 		int	merge = 0;
    673 
    674 		aftercut = max - fra->fr_off;
    675 		if (aftercut == 0) {
    676 			/* Adjacent fragments */
    677 			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
    678 			    h->ip_id, off, max, fra->fr_off, fra->fr_end));
    679 			fra->fr_off = off;
    680 			merge = 1;
    681 		} else if (aftercut > 0) {
    682 			/* Need to chop off the tail of this fragment */
    683 			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
    684 			    h->ip_id, aftercut, off, max, fra->fr_off,
    685 			    fra->fr_end));
    686 			fra->fr_off = off;
    687 			max -= aftercut;
    688 
    689 			merge = 1;
    690 
    691 			if (!drop) {
    692 				m_adj(m, -aftercut);
    693 				if (m->m_flags & M_PKTHDR) {
    694 					int plen = 0;
    695 					struct mbuf *t;
    696 					for (t = m; t; t = t->m_next)
    697 						plen += t->m_len;
    698 					m->m_pkthdr.len = plen;
    699 				}
    700 				h = mtod(m, struct ip *);
    701 				KASSERT((int)m->m_len ==
    702 				    ntohs(h->ip_len) - aftercut);
    703 				h->ip_len = htons(ntohs(h->ip_len) - aftercut);
    704 			} else {
    705 				hosed++;
    706 			}
    707 		} else {
    708 			/* There is a gap between fragments */
    709 			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
    710 			    h->ip_id, -aftercut, off, max, fra->fr_off,
    711 			    fra->fr_end));
    712 
    713 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    714 			if (cur == NULL)
    715 				goto no_mem;
    716 			pf_ncache++;
    717 
    718 			cur->fr_off = off;
    719 			cur->fr_end = max;
    720 			LIST_INSERT_BEFORE(fra, cur, fr_next);
    721 		}
    722 
    723 
    724 		/* Need to glue together two separate fragment descriptors */
    725 		if (merge) {
    726 			if (cur && fra->fr_off <= cur->fr_end) {
    727 				/* Need to merge in a previous 'cur' */
    728 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    729 				    "%d-%d) %d-%d (%d-%d)\n",
    730 				    h->ip_id, cur->fr_off, cur->fr_end, off,
    731 				    max, fra->fr_off, fra->fr_end));
    732 				fra->fr_off = cur->fr_off;
    733 				LIST_REMOVE(cur, fr_next);
    734 				pool_put(&pf_cent_pl, cur);
    735 				pf_ncache--;
    736 				cur = NULL;
    737 
    738 			} else if (frp && fra->fr_off <= frp->fr_end) {
    739 				/* Need to merge in a modified 'frp' */
    740 				KASSERT(cur == NULL);
    741 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    742 				    "%d-%d) %d-%d (%d-%d)\n",
    743 				    h->ip_id, frp->fr_off, frp->fr_end, off,
    744 				    max, fra->fr_off, fra->fr_end));
    745 				fra->fr_off = frp->fr_off;
    746 				LIST_REMOVE(frp, fr_next);
    747 				pool_put(&pf_cent_pl, frp);
    748 				pf_ncache--;
    749 				frp = NULL;
    750 
    751 			}
    752 		}
    753 	}
    754 
    755 	if (hosed) {
    756 		/*
    757 		 * We must keep tracking the overall fragment even when
    758 		 * we're going to drop it anyway so that we know when to
    759 		 * free the overall descriptor.  Thus we drop the frag late.
    760 		 */
    761 		goto drop_fragment;
    762 	}
    763 
    764 
    765  pass:
    766 	/* Update maximum data size */
    767 	if ((*frag)->fr_max < max)
    768 		(*frag)->fr_max = max;
    769 
    770 	/* This is the last segment */
    771 	if (!mff)
    772 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    773 
    774 	/* Check if we are completely reassembled */
    775 	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
    776 	    LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
    777 	    LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
    778 		/* Remove from fragment queue */
    779 		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
    780 		    (*frag)->fr_max));
    781 		pf_free_fragment(*frag);
    782 		*frag = NULL;
    783 	}
    784 
    785 	return (m);
    786 
    787  no_mem:
    788 	*nomem = 1;
    789 
    790 	/* Still need to pay attention to !IP_MF */
    791 	if (!mff && *frag != NULL)
    792 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    793 
    794 	m_freem(m);
    795 	return (NULL);
    796 
    797  drop_fragment:
    798 
    799 	/* Still need to pay attention to !IP_MF */
    800 	if (!mff && *frag != NULL)
    801 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    802 
    803 	if (drop) {
    804 		/* This fragment has been deemed bad.  Don't reass */
    805 		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
    806 			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
    807 			    h->ip_id));
    808 		(*frag)->fr_flags |= PFFRAG_DROP;
    809 	}
    810 
    811 	m_freem(m);
    812 	return (NULL);
    813 }
    814 
    815 int
    816 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
    817     struct pf_pdesc *pd)
    818 {
    819 	struct mbuf		*m = *m0;
    820 	struct pf_rule		*r;
    821 	struct pf_frent		*frent;
    822 	struct pf_fragment	*frag = NULL;
    823 	struct ip		*h = mtod(m, struct ip *);
    824 	int			 mff = (ntohs(h->ip_off) & IP_MF);
    825 	int			 hlen = h->ip_hl << 2;
    826 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
    827 	u_int16_t		 max;
    828 	int			 ip_len;
    829 	int			 ip_off;
    830 
    831 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
    832 	while (r != NULL) {
    833 		r->evaluations++;
    834 		if (r->kif != NULL &&
    835 		    (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
    836 			r = r->skip[PF_SKIP_IFP].ptr;
    837 		else if (r->direction && r->direction != dir)
    838 			r = r->skip[PF_SKIP_DIR].ptr;
    839 		else if (r->af && r->af != AF_INET)
    840 			r = r->skip[PF_SKIP_AF].ptr;
    841 		else if (r->proto && r->proto != h->ip_p)
    842 			r = r->skip[PF_SKIP_PROTO].ptr;
    843 		else if (PF_MISMATCHAW(&r->src.addr,
    844 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET, r->src.neg))
    845 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
    846 		else if (PF_MISMATCHAW(&r->dst.addr,
    847 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET, r->dst.neg))
    848 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
    849 		else
    850 			break;
    851 	}
    852 
    853 	if (r == NULL)
    854 		return (PF_PASS);
    855 	else
    856 		r->packets++;
    857 
    858 	/* Check for illegal packets */
    859 	if (hlen < (int)sizeof(struct ip))
    860 		goto drop;
    861 
    862 	if (hlen > ntohs(h->ip_len))
    863 		goto drop;
    864 
    865 	/* Clear IP_DF if the rule uses the no-df option */
    866 	if (r->rule_flag & PFRULE_NODF)
    867 		h->ip_off &= htons(~IP_DF);
    868 
    869 	/* We will need other tests here */
    870 	if (!fragoff && !mff)
    871 		goto no_fragment;
    872 
    873 	/* We're dealing with a fragment now. Don't allow fragments
    874 	 * with IP_DF to enter the cache. If the flag was cleared by
    875 	 * no-df above, fine. Otherwise drop it.
    876 	 */
    877 	if (h->ip_off & htons(IP_DF)) {
    878 		DPFPRINTF(("IP_DF\n"));
    879 		goto bad;
    880 	}
    881 
    882 	ip_len = ntohs(h->ip_len) - hlen;
    883 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
    884 
    885 	/* All fragments are 8 byte aligned */
    886 	if (mff && (ip_len & 0x7)) {
    887 		DPFPRINTF(("mff and %d\n", ip_len));
    888 		goto bad;
    889 	}
    890 
    891 	/* Respect maximum length */
    892 	if (fragoff + ip_len > IP_MAXPACKET) {
    893 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
    894 		goto bad;
    895 	}
    896 	max = fragoff + ip_len;
    897 
    898 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
    899 		/* Fully buffer all of the fragments */
    900 
    901 		frag = pf_find_fragment(h, &pf_frag_tree);
    902 
    903 		/* Check if we saw the last fragment already */
    904 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    905 		    max > frag->fr_max)
    906 			goto bad;
    907 
    908 		/* Get an entry for the fragment queue */
    909 		frent = pool_get(&pf_frent_pl, PR_NOWAIT);
    910 		if (frent == NULL) {
    911 			REASON_SET(reason, PFRES_MEMORY);
    912 			return (PF_DROP);
    913 		}
    914 		pf_nfrents++;
    915 		frent->fr_ip = h;
    916 		frent->fr_m = m;
    917 
    918 		/* Might return a completely reassembled mbuf, or NULL */
    919 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
    920 		*m0 = m = pf_reassemble(m0, &frag, frent, mff);
    921 
    922 		if (m == NULL)
    923 			return (PF_DROP);
    924 
    925 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
    926 			goto drop;
    927 
    928 		h = mtod(m, struct ip *);
    929 	} else {
    930 		/* non-buffering fragment cache (drops or masks overlaps) */
    931 		int	nomem = 0;
    932 
    933 		if (dir == PF_OUT) {
    934 			if (m_tag_find(m, PACKET_TAG_PF_FRAGCACHE, NULL) !=
    935 			    NULL) {
    936 				/* Already passed the fragment cache in the
    937 				 * input direction.  If we continued, it would
    938 				 * appear to be a dup and would be dropped.
    939 				 */
    940 				goto fragment_pass;
    941 			}
    942 		}
    943 
    944 		frag = pf_find_fragment(h, &pf_cache_tree);
    945 
    946 		/* Check if we saw the last fragment already */
    947 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    948 		    max > frag->fr_max) {
    949 			if (r->rule_flag & PFRULE_FRAGDROP)
    950 				frag->fr_flags |= PFFRAG_DROP;
    951 			goto bad;
    952 		}
    953 
    954 		*m0 = m = pf_fragcache(m0, h, &frag, mff,
    955 		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
    956 		if (m == NULL) {
    957 			if (nomem)
    958 				goto no_mem;
    959 			goto drop;
    960 		}
    961 
    962 		if (dir == PF_IN) {
    963 			struct m_tag	*mtag;
    964 
    965 			mtag = m_tag_get(PACKET_TAG_PF_FRAGCACHE, 0, M_NOWAIT);
    966 			if (mtag == NULL)
    967 				goto no_mem;
    968 			m_tag_prepend(m, mtag);
    969 		}
    970 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
    971 			goto drop;
    972 		goto fragment_pass;
    973 	}
    974 
    975  no_fragment:
    976 	/* At this point, only IP_DF is allowed in ip_off */
    977 	h->ip_off &= htons(IP_DF);
    978 
    979 	/* Enforce a minimum ttl, may cause endless packet loops */
    980 	if (r->min_ttl && h->ip_ttl < r->min_ttl)
    981 		h->ip_ttl = r->min_ttl;
    982 
    983 	if (r->rule_flag & PFRULE_RANDOMID) {
    984 		u_int16_t ip_id = h->ip_id;
    985 
    986 		h->ip_id = ip_randomid();
    987 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
    988 	}
    989 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
    990 		pd->flags |= PFDESC_IP_REAS;
    991 
    992 	return (PF_PASS);
    993 
    994  fragment_pass:
    995 	/* Enforce a minimum ttl, may cause endless packet loops */
    996 	if (r->min_ttl && h->ip_ttl < r->min_ttl)
    997 		h->ip_ttl = r->min_ttl;
    998 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
    999 		pd->flags |= PFDESC_IP_REAS;
   1000 	return (PF_PASS);
   1001 
   1002  no_mem:
   1003 	REASON_SET(reason, PFRES_MEMORY);
   1004 	if (r != NULL && r->log)
   1005 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
   1006 	return (PF_DROP);
   1007 
   1008  drop:
   1009 	REASON_SET(reason, PFRES_NORM);
   1010 	if (r != NULL && r->log)
   1011 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
   1012 	return (PF_DROP);
   1013 
   1014  bad:
   1015 	DPFPRINTF(("dropping bad fragment\n"));
   1016 
   1017 	/* Free associated fragments */
   1018 	if (frag != NULL)
   1019 		pf_free_fragment(frag);
   1020 
   1021 	REASON_SET(reason, PFRES_FRAG);
   1022 	if (r != NULL && r->log)
   1023 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
   1024 
   1025 	return (PF_DROP);
   1026 }
   1027 
   1028 #ifdef INET6
   1029 int
   1030 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
   1031     u_short *reason, struct pf_pdesc *pd)
   1032 {
   1033 	struct mbuf		*m = *m0;
   1034 	struct pf_rule		*r;
   1035 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
   1036 	int			 off;
   1037 	struct ip6_ext		 ext;
   1038 	struct ip6_opt		 opt;
   1039 	struct ip6_opt_jumbo	 jumbo;
   1040 	struct ip6_frag		 frag;
   1041 	u_int32_t		 jumbolen = 0, plen;
   1042 	u_int16_t		 fragoff = 0;
   1043 	int			 optend;
   1044 	int			 ooff;
   1045 	u_int8_t		 proto;
   1046 	int			 terminal;
   1047 
   1048 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1049 	while (r != NULL) {
   1050 		r->evaluations++;
   1051 		if (r->kif != NULL &&
   1052 		    (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
   1053 			r = r->skip[PF_SKIP_IFP].ptr;
   1054 		else if (r->direction && r->direction != dir)
   1055 			r = r->skip[PF_SKIP_DIR].ptr;
   1056 		else if (r->af && r->af != AF_INET6)
   1057 			r = r->skip[PF_SKIP_AF].ptr;
   1058 #if 0 /* header chain! */
   1059 		else if (r->proto && r->proto != h->ip6_nxt)
   1060 			r = r->skip[PF_SKIP_PROTO].ptr;
   1061 #endif
   1062 		else if (PF_MISMATCHAW(&r->src.addr,
   1063 		    (struct pf_addr *)&h->ip6_src, AF_INET6, r->src.neg))
   1064 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1065 		else if (PF_MISMATCHAW(&r->dst.addr,
   1066 		    (struct pf_addr *)&h->ip6_dst, AF_INET6, r->dst.neg))
   1067 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1068 		else
   1069 			break;
   1070 	}
   1071 
   1072 	if (r == NULL)
   1073 		return (PF_PASS);
   1074 	else
   1075 		r->packets++;
   1076 
   1077 	/* Check for illegal packets */
   1078 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
   1079 		goto drop;
   1080 
   1081 	off = sizeof(struct ip6_hdr);
   1082 	proto = h->ip6_nxt;
   1083 	terminal = 0;
   1084 	do {
   1085 		switch (proto) {
   1086 		case IPPROTO_FRAGMENT:
   1087 			goto fragment;
   1088 			break;
   1089 		case IPPROTO_AH:
   1090 		case IPPROTO_ROUTING:
   1091 		case IPPROTO_DSTOPTS:
   1092 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1093 			    NULL, AF_INET6))
   1094 				goto shortpkt;
   1095 			if (proto == IPPROTO_AH)
   1096 				off += (ext.ip6e_len + 2) * 4;
   1097 			else
   1098 				off += (ext.ip6e_len + 1) * 8;
   1099 			proto = ext.ip6e_nxt;
   1100 			break;
   1101 		case IPPROTO_HOPOPTS:
   1102 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1103 			    NULL, AF_INET6))
   1104 				goto shortpkt;
   1105 			optend = off + (ext.ip6e_len + 1) * 8;
   1106 			ooff = off + sizeof(ext);
   1107 			do {
   1108 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
   1109 				    sizeof(opt.ip6o_type), NULL, NULL,
   1110 				    AF_INET6))
   1111 					goto shortpkt;
   1112 				if (opt.ip6o_type == IP6OPT_PAD1) {
   1113 					ooff++;
   1114 					continue;
   1115 				}
   1116 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
   1117 				    NULL, NULL, AF_INET6))
   1118 					goto shortpkt;
   1119 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
   1120 					goto drop;
   1121 				switch (opt.ip6o_type) {
   1122 				case IP6OPT_JUMBO:
   1123 					if (h->ip6_plen != 0)
   1124 						goto drop;
   1125 					if (!pf_pull_hdr(m, ooff, &jumbo,
   1126 					    sizeof(jumbo), NULL, NULL,
   1127 					    AF_INET6))
   1128 						goto shortpkt;
   1129 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
   1130 					    sizeof(jumbolen));
   1131 					jumbolen = ntohl(jumbolen);
   1132 					if (jumbolen <= IPV6_MAXPACKET)
   1133 						goto drop;
   1134 					if (sizeof(struct ip6_hdr) + jumbolen !=
   1135 					    m->m_pkthdr.len)
   1136 						goto drop;
   1137 					break;
   1138 				default:
   1139 					break;
   1140 				}
   1141 				ooff += sizeof(opt) + opt.ip6o_len;
   1142 			} while (ooff < optend);
   1143 
   1144 			off = optend;
   1145 			proto = ext.ip6e_nxt;
   1146 			break;
   1147 		default:
   1148 			terminal = 1;
   1149 			break;
   1150 		}
   1151 	} while (!terminal);
   1152 
   1153 	/* jumbo payload option must be present, or plen > 0 */
   1154 	if (ntohs(h->ip6_plen) == 0)
   1155 		plen = jumbolen;
   1156 	else
   1157 		plen = ntohs(h->ip6_plen);
   1158 	if (plen == 0)
   1159 		goto drop;
   1160 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
   1161 		goto shortpkt;
   1162 
   1163 	/* Enforce a minimum ttl, may cause endless packet loops */
   1164 	if (r->min_ttl && h->ip6_hlim < r->min_ttl)
   1165 		h->ip6_hlim = r->min_ttl;
   1166 
   1167 	return (PF_PASS);
   1168 
   1169  fragment:
   1170 	if (ntohs(h->ip6_plen) == 0 || jumbolen)
   1171 		goto drop;
   1172 	plen = ntohs(h->ip6_plen);
   1173 
   1174 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
   1175 		goto shortpkt;
   1176 	fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
   1177 	if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
   1178 		goto badfrag;
   1179 
   1180 	/* do something about it */
   1181 	/* remember to set pd->flags |= PFDESC_IP_REAS */
   1182 	return (PF_PASS);
   1183 
   1184  shortpkt:
   1185 	REASON_SET(reason, PFRES_SHORT);
   1186 	if (r != NULL && r->log)
   1187 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
   1188 	return (PF_DROP);
   1189 
   1190  drop:
   1191 	REASON_SET(reason, PFRES_NORM);
   1192 	if (r != NULL && r->log)
   1193 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
   1194 	return (PF_DROP);
   1195 
   1196  badfrag:
   1197 	REASON_SET(reason, PFRES_FRAG);
   1198 	if (r != NULL && r->log)
   1199 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
   1200 	return (PF_DROP);
   1201 }
   1202 #endif /* INET6 */
   1203 
   1204 int
   1205 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
   1206     int off, void *h, struct pf_pdesc *pd)
   1207 {
   1208 	struct pf_rule	*r, *rm = NULL;
   1209 	struct tcphdr	*th = pd->hdr.tcp;
   1210 	int		 rewrite = 0;
   1211 	u_short		 reason;
   1212 	u_int8_t	 flags;
   1213 	sa_family_t	 af = pd->af;
   1214 
   1215 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1216 	while (r != NULL) {
   1217 		r->evaluations++;
   1218 		if (r->kif != NULL &&
   1219 		    (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
   1220 			r = r->skip[PF_SKIP_IFP].ptr;
   1221 		else if (r->direction && r->direction != dir)
   1222 			r = r->skip[PF_SKIP_DIR].ptr;
   1223 		else if (r->af && r->af != af)
   1224 			r = r->skip[PF_SKIP_AF].ptr;
   1225 		else if (r->proto && r->proto != pd->proto)
   1226 			r = r->skip[PF_SKIP_PROTO].ptr;
   1227 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, r->src.neg))
   1228 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1229 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
   1230 			    r->src.port[0], r->src.port[1], th->th_sport))
   1231 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
   1232 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, r->dst.neg))
   1233 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1234 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
   1235 			    r->dst.port[0], r->dst.port[1], th->th_dport))
   1236 			r = r->skip[PF_SKIP_DST_PORT].ptr;
   1237 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
   1238 			    pf_osfp_fingerprint(pd, m, off, th),
   1239 			    r->os_fingerprint))
   1240 			r = TAILQ_NEXT(r, entries);
   1241 		else {
   1242 			rm = r;
   1243 			break;
   1244 		}
   1245 	}
   1246 
   1247 	if (rm == NULL || rm->action == PF_NOSCRUB)
   1248 		return (PF_PASS);
   1249 	else
   1250 		r->packets++;
   1251 
   1252 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
   1253 		pd->flags |= PFDESC_TCP_NORM;
   1254 
   1255 	flags = th->th_flags;
   1256 	if (flags & TH_SYN) {
   1257 		/* Illegal packet */
   1258 		if (flags & TH_RST)
   1259 			goto tcp_drop;
   1260 
   1261 		if (flags & TH_FIN)
   1262 			flags &= ~TH_FIN;
   1263 	} else {
   1264 		/* Illegal packet */
   1265 		if (!(flags & (TH_ACK|TH_RST)))
   1266 			goto tcp_drop;
   1267 	}
   1268 
   1269 	if (!(flags & TH_ACK)) {
   1270 		/* These flags are only valid if ACK is set */
   1271 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
   1272 			goto tcp_drop;
   1273 	}
   1274 
   1275 	/* Check for illegal header length */
   1276 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
   1277 		goto tcp_drop;
   1278 
   1279 	/* If flags changed, or reserved data set, then adjust */
   1280 	if (flags != th->th_flags || th->th_x2 != 0) {
   1281 		u_int16_t	ov, nv;
   1282 
   1283 		ov = *(u_int16_t *)(&th->th_ack + 1);
   1284 		th->th_flags = flags;
   1285 		th->th_x2 = 0;
   1286 		nv = *(u_int16_t *)(&th->th_ack + 1);
   1287 
   1288 		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
   1289 		rewrite = 1;
   1290 	}
   1291 
   1292 	/* Remove urgent pointer, if TH_URG is not set */
   1293 	if (!(flags & TH_URG) && th->th_urp) {
   1294 		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
   1295 		th->th_urp = 0;
   1296 		rewrite = 1;
   1297 	}
   1298 
   1299 	/* Process options */
   1300 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off))
   1301 		rewrite = 1;
   1302 
   1303 	/* copy back packet headers if we sanitized */
   1304 	if (rewrite)
   1305 		m_copyback(m, off, sizeof(*th), th);
   1306 
   1307 	return (PF_PASS);
   1308 
   1309  tcp_drop:
   1310 	REASON_SET(&reason, PFRES_NORM);
   1311 	if (rm != NULL && r->log)
   1312 		PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL);
   1313 	return (PF_DROP);
   1314 }
   1315 
   1316 int
   1317 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
   1318     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
   1319 {
   1320 	u_int32_t tsval, tsecr;
   1321 	u_int8_t hdr[60];
   1322 	u_int8_t *opt;
   1323 
   1324 	KASSERT(src->scrub == NULL);
   1325 
   1326 	src->scrub = pool_get(&pf_state_scrub_pl, PR_NOWAIT);
   1327 	if (src->scrub == NULL)
   1328 		return (1);
   1329 	bzero(src->scrub, sizeof(*src->scrub));
   1330 
   1331 	switch (pd->af) {
   1332 #ifdef INET
   1333 	case AF_INET: {
   1334 		struct ip *h = mtod(m, struct ip *);
   1335 		src->scrub->pfss_ttl = h->ip_ttl;
   1336 		break;
   1337 	}
   1338 #endif /* INET */
   1339 #ifdef INET6
   1340 	case AF_INET6: {
   1341 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1342 		src->scrub->pfss_ttl = h->ip6_hlim;
   1343 		break;
   1344 	}
   1345 #endif /* INET6 */
   1346 	}
   1347 
   1348 
   1349 	/*
   1350 	 * All normalizations below are only begun if we see the start of
   1351 	 * the connections.  They must all set an enabled bit in pfss_flags
   1352 	 */
   1353 	if ((th->th_flags & TH_SYN) == 0)
   1354 		return (0);
   1355 
   1356 
   1357 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
   1358 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1359 		/* Diddle with TCP options */
   1360 		int hlen;
   1361 		opt = hdr + sizeof(struct tcphdr);
   1362 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1363 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1364 			switch (*opt) {
   1365 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1366 			case TCPOPT_NOP:
   1367 				opt++;
   1368 				hlen--;
   1369 				break;
   1370 			case TCPOPT_TIMESTAMP:
   1371 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1372 					src->scrub->pfss_flags |=
   1373 					    PFSS_TIMESTAMP;
   1374 					src->scrub->pfss_ts_mod =
   1375 					    htonl(arc4random());
   1376 
   1377 					/* note PFSS_PAWS not set yet */
   1378 					memcpy(&tsval, &opt[2],
   1379 					    sizeof(u_int32_t));
   1380 					memcpy(&tsecr, &opt[6],
   1381 					    sizeof(u_int32_t));
   1382 					src->scrub->pfss_tsval0 = ntohl(tsval);
   1383 					src->scrub->pfss_tsval = ntohl(tsval);
   1384 					src->scrub->pfss_tsecr = ntohl(tsecr);
   1385 					getmicrouptime(&src->scrub->pfss_last);
   1386 				}
   1387 				/* FALLTHROUGH */
   1388 			default:
   1389 				hlen -= MAX(opt[1], 2);
   1390 				opt += MAX(opt[1], 2);
   1391 				break;
   1392 			}
   1393 		}
   1394 	}
   1395 
   1396 	return (0);
   1397 }
   1398 
   1399 void
   1400 pf_normalize_tcp_cleanup(struct pf_state *state)
   1401 {
   1402 	if (state->src.scrub)
   1403 		pool_put(&pf_state_scrub_pl, state->src.scrub);
   1404 	if (state->dst.scrub)
   1405 		pool_put(&pf_state_scrub_pl, state->dst.scrub);
   1406 
   1407 	/* Someday... flush the TCP segment reassembly descriptors. */
   1408 }
   1409 
   1410 int
   1411 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
   1412     u_short *reason, struct tcphdr *th, struct pf_state *state,
   1413     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
   1414 {
   1415 	struct timeval uptime;
   1416 	u_int32_t tsval, tsecr;
   1417 	u_int tsval_from_last;
   1418 	u_int8_t hdr[60];
   1419 	u_int8_t *opt;
   1420 	int copyback = 0;
   1421 	int got_ts = 0;
   1422 
   1423 	KASSERT(src->scrub || dst->scrub);
   1424 
   1425 	/*
   1426 	 * Enforce the minimum TTL seen for this connection.  Negate a common
   1427 	 * technique to evade an intrusion detection system and confuse
   1428 	 * firewall state code.
   1429 	 */
   1430 	switch (pd->af) {
   1431 #ifdef INET
   1432 	case AF_INET: {
   1433 		if (src->scrub) {
   1434 			struct ip *h = mtod(m, struct ip *);
   1435 			if (h->ip_ttl > src->scrub->pfss_ttl)
   1436 				src->scrub->pfss_ttl = h->ip_ttl;
   1437 			h->ip_ttl = src->scrub->pfss_ttl;
   1438 		}
   1439 		break;
   1440 	}
   1441 #endif /* INET */
   1442 #ifdef INET6
   1443 	case AF_INET6: {
   1444 		if (src->scrub) {
   1445 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1446 			if (h->ip6_hlim > src->scrub->pfss_ttl)
   1447 				src->scrub->pfss_ttl = h->ip6_hlim;
   1448 			h->ip6_hlim = src->scrub->pfss_ttl;
   1449 		}
   1450 		break;
   1451 	}
   1452 #endif /* INET6 */
   1453 	}
   1454 
   1455 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
   1456 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
   1457 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
   1458 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1459 		/* Diddle with TCP options */
   1460 		int hlen;
   1461 		opt = hdr + sizeof(struct tcphdr);
   1462 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1463 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1464 			switch (*opt) {
   1465 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1466 			case TCPOPT_NOP:
   1467 				opt++;
   1468 				hlen--;
   1469 				break;
   1470 			case TCPOPT_TIMESTAMP:
   1471 				/* Modulate the timestamps.  Can be used for
   1472 				 * NAT detection, OS uptime determination or
   1473 				 * reboot detection.
   1474 				 */
   1475 
   1476 				if (got_ts) {
   1477 					/* Huh?  Multiple timestamps!? */
   1478 					if (pf_status.debug >= PF_DEBUG_MISC) {
   1479 						DPFPRINTF(("multiple TS??"));
   1480 						pf_print_state(state);
   1481 						printf("\n");
   1482 					}
   1483 					REASON_SET(reason, PFRES_TS);
   1484 					return (PF_DROP);
   1485 				}
   1486 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1487 					memcpy(&tsval, &opt[2],
   1488 					    sizeof(u_int32_t));
   1489 					if (tsval && src->scrub &&
   1490 					    (src->scrub->pfss_flags &
   1491 					    PFSS_TIMESTAMP)) {
   1492 						tsval = ntohl(tsval);
   1493 						pf_change_a(&opt[2],
   1494 						    &th->th_sum,
   1495 						    htonl(tsval +
   1496 						    src->scrub->pfss_ts_mod),
   1497 						    0);
   1498 						copyback = 1;
   1499 					}
   1500 
   1501 					/* Modulate TS reply iff valid (!0) */
   1502 					memcpy(&tsecr, &opt[6],
   1503 					    sizeof(u_int32_t));
   1504 					if (tsecr && dst->scrub &&
   1505 					    (dst->scrub->pfss_flags &
   1506 					    PFSS_TIMESTAMP)) {
   1507 						tsecr = ntohl(tsecr)
   1508 						    - dst->scrub->pfss_ts_mod;
   1509 						pf_change_a(&opt[6],
   1510 						    &th->th_sum, htonl(tsecr),
   1511 						    0);
   1512 						copyback = 1;
   1513 					}
   1514 					got_ts = 1;
   1515 				}
   1516 				/* FALLTHROUGH */
   1517 			default:
   1518 				hlen -= MAX(opt[1], 2);
   1519 				opt += MAX(opt[1], 2);
   1520 				break;
   1521 			}
   1522 		}
   1523 		if (copyback) {
   1524 			/* Copyback the options, caller copys back header */
   1525 			*writeback = 1;
   1526 			m_copyback(m, off + sizeof(struct tcphdr),
   1527 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
   1528 			    sizeof(struct tcphdr));
   1529 		}
   1530 	}
   1531 
   1532 
   1533 	/*
   1534 	 * Must invalidate PAWS checks on connections idle for too long.
   1535 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
   1536 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
   1537 	 * TS echo check only works for the first 12 days of a connection
   1538 	 * when the TS has exhausted half its 32bit space
   1539 	 */
   1540 #define TS_MAX_IDLE	(24*24*60*60)
   1541 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
   1542 
   1543 	getmicrouptime(&uptime);
   1544 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
   1545 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
   1546 	    time_second - state->creation > TS_MAX_CONN))  {
   1547 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1548 			DPFPRINTF(("src idled out of PAWS\n"));
   1549 			pf_print_state(state);
   1550 			printf("\n");
   1551 		}
   1552 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
   1553 		    | PFSS_PAWS_IDLED;
   1554 	}
   1555 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
   1556 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
   1557 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1558 			DPFPRINTF(("dst idled out of PAWS\n"));
   1559 			pf_print_state(state);
   1560 			printf("\n");
   1561 		}
   1562 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
   1563 		    | PFSS_PAWS_IDLED;
   1564 	}
   1565 
   1566 	if (got_ts && src->scrub && dst->scrub &&
   1567 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1568 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1569 		/* Validate that the timestamps are "in-window".
   1570 		 * RFC1323 describes TCP Timestamp options that allow
   1571 		 * measurement of RTT (round trip time) and PAWS
   1572 		 * (protection against wrapped sequence numbers).  PAWS
   1573 		 * gives us a set of rules for rejecting packets on
   1574 		 * long fat pipes (packets that were somehow delayed
   1575 		 * in transit longer than the time it took to send the
   1576 		 * full TCP sequence space of 4Gb).  We can use these
   1577 		 * rules and infer a few others that will let us treat
   1578 		 * the 32bit timestamp and the 32bit echoed timestamp
   1579 		 * as sequence numbers to prevent a blind attacker from
   1580 		 * inserting packets into a connection.
   1581 		 *
   1582 		 * RFC1323 tells us:
   1583 		 *  - The timestamp on this packet must be greater than
   1584 		 *    or equal to the last value echoed by the other
   1585 		 *    endpoint.  The RFC says those will be discarded
   1586 		 *    since it is a dup that has already been acked.
   1587 		 *    This gives us a lowerbound on the timestamp.
   1588 		 *        timestamp >= other last echoed timestamp
   1589 		 *  - The timestamp will be less than or equal to
   1590 		 *    the last timestamp plus the time between the
   1591 		 *    last packet and now.  The RFC defines the max
   1592 		 *    clock rate as 1ms.  We will allow clocks to be
   1593 		 *    up to 10% fast and will allow a total difference
   1594 		 *    or 30 seconds due to a route change.  And this
   1595 		 *    gives us an upperbound on the timestamp.
   1596 		 *        timestamp <= last timestamp + max ticks
   1597 		 *    We have to be careful here.  Windows will send an
   1598 		 *    initial timestamp of zero and then initialize it
   1599 		 *    to a random value after the 3whs; presumably to
   1600 		 *    avoid a DoS by having to call an expensive RNG
   1601 		 *    during a SYN flood.  Proof MS has at least one
   1602 		 *    good security geek.
   1603 		 *
   1604 		 *  - The TCP timestamp option must also echo the other
   1605 		 *    endpoints timestamp.  The timestamp echoed is the
   1606 		 *    one carried on the earliest unacknowledged segment
   1607 		 *    on the left edge of the sequence window.  The RFC
   1608 		 *    states that the host will reject any echoed
   1609 		 *    timestamps that were larger than any ever sent.
   1610 		 *    This gives us an upperbound on the TS echo.
   1611 		 *        tescr <= largest_tsval
   1612 		 *  - The lowerbound on the TS echo is a little more
   1613 		 *    tricky to determine.  The other endpoint's echoed
   1614 		 *    values will not decrease.  But there may be
   1615 		 *    network conditions that re-order packets and
   1616 		 *    cause our view of them to decrease.  For now the
   1617 		 *    only lowerbound we can safely determine is that
   1618 		 *    the TS echo will never be less than the orginal
   1619 		 *    TS.  XXX There is probably a better lowerbound.
   1620 		 *    Remove TS_MAX_CONN with better lowerbound check.
   1621 		 *        tescr >= other original TS
   1622 		 *
   1623 		 * It is also important to note that the fastest
   1624 		 * timestamp clock of 1ms will wrap its 32bit space in
   1625 		 * 24 days.  So we just disable TS checking after 24
   1626 		 * days of idle time.  We actually must use a 12d
   1627 		 * connection limit until we can come up with a better
   1628 		 * lowerbound to the TS echo check.
   1629 		 */
   1630 		struct timeval delta_ts;
   1631 		int ts_fudge;
   1632 
   1633 
   1634 		/*
   1635 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
   1636 		 * a host's timestamp.  This can happen if the previous
   1637 		 * packet got delayed in transit for much longer than
   1638 		 * this packet.
   1639 		 */
   1640 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
   1641 			ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
   1642 
   1643 
   1644 		/* Calculate max ticks since the last timestamp */
   1645 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
   1646 #define TS_MICROSECS	1000000		/* microseconds per second */
   1647 		timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
   1648 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
   1649 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
   1650 
   1651 
   1652 		if ((src->state >= TCPS_ESTABLISHED &&
   1653 		    dst->state >= TCPS_ESTABLISHED) &&
   1654 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
   1655 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
   1656 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
   1657 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
   1658 			/* Bad RFC1323 implementation or an insertion attack.
   1659 			 *
   1660 			 * - Solaris 2.6 and 2.7 are known to send another ACK
   1661 			 *   after the FIN,FIN|ACK,ACK closing that carries
   1662 			 *   an old timestamp.
   1663 			 */
   1664 
   1665 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
   1666 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
   1667 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
   1668 			    tsval_from_last) ? '1' : ' ',
   1669 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
   1670 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
   1671 			DPFPRINTF((" tsval: %lu  tsecr: %lu  +ticks: %lu  "
   1672 			    "idle: %lus %lums\n",
   1673 			    tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
   1674 			    delta_ts.tv_usec / 1000));
   1675 			DPFPRINTF((" src->tsval: %lu  tsecr: %lu\n",
   1676 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
   1677 			DPFPRINTF((" dst->tsval: %lu  tsecr: %lu  tsval0: %lu"
   1678 			    "\n", dst->scrub->pfss_tsval,
   1679 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
   1680 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1681 				pf_print_state(state);
   1682 				pf_print_flags(th->th_flags);
   1683 				printf("\n");
   1684 			}
   1685 			REASON_SET(reason, PFRES_TS);
   1686 			return (PF_DROP);
   1687 		}
   1688 
   1689 		/* XXX I'd really like to require tsecr but it's optional */
   1690 
   1691 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
   1692 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
   1693 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
   1694 	    src->scrub && dst->scrub &&
   1695 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1696 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1697 		/* Didn't send a timestamp.  Timestamps aren't really useful
   1698 		 * when:
   1699 		 *  - connection opening or closing (often not even sent).
   1700 		 *    but we must not let an attacker to put a FIN on a
   1701 		 *    data packet to sneak it through our ESTABLISHED check.
   1702 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
   1703 		 *  - on an empty ACK.  The TS will not be echoed so it will
   1704 		 *    probably not help keep the RTT calculation in sync and
   1705 		 *    there isn't as much danger when the sequence numbers
   1706 		 *    got wrapped.  So some stacks don't include TS on empty
   1707 		 *    ACKs :-(
   1708 		 *
   1709 		 * To minimize the disruption to mostly RFC1323 conformant
   1710 		 * stacks, we will only require timestamps on data packets.
   1711 		 *
   1712 		 * And what do ya know, we cannot require timestamps on data
   1713 		 * packets.  There appear to be devices that do legitimate
   1714 		 * TCP connection hijacking.  There are HTTP devices that allow
   1715 		 * a 3whs (with timestamps) and then buffer the HTTP request.
   1716 		 * If the intermediate device has the HTTP response cache, it
   1717 		 * will spoof the response but not bother timestamping its
   1718 		 * packets.  So we can look for the presence of a timestamp in
   1719 		 * the first data packet and if there, require it in all future
   1720 		 * packets.
   1721 		 */
   1722 
   1723 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
   1724 			/*
   1725 			 * Hey!  Someone tried to sneak a packet in.  Or the
   1726 			 * stack changed its RFC1323 behavior?!?!
   1727 			 */
   1728 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1729 				DPFPRINTF(("Did not receive expected RFC1323 "
   1730 				    "timestamp\n"));
   1731 				pf_print_state(state);
   1732 				pf_print_flags(th->th_flags);
   1733 				printf("\n");
   1734 			}
   1735 			REASON_SET(reason, PFRES_TS);
   1736 			return (PF_DROP);
   1737 		}
   1738 	}
   1739 
   1740 
   1741 	/*
   1742 	 * We will note if a host sends his data packets with or without
   1743 	 * timestamps.  And require all data packets to contain a timestamp
   1744 	 * if the first does.  PAWS implicitly requires that all data packets be
   1745 	 * timestamped.  But I think there are middle-man devices that hijack
   1746 	 * TCP streams immedietly after the 3whs and don't timestamp their
   1747 	 * packets (seen in a WWW accelerator or cache).
   1748 	 */
   1749 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
   1750 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
   1751 		if (got_ts)
   1752 			src->scrub->pfss_flags |= PFSS_DATA_TS;
   1753 		else {
   1754 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
   1755 			if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
   1756 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
   1757 				/* Don't warn if other host rejected RFC1323 */
   1758 				DPFPRINTF(("Broken RFC1323 stack did not "
   1759 				    "timestamp data packet. Disabled PAWS "
   1760 				    "security.\n"));
   1761 				pf_print_state(state);
   1762 				pf_print_flags(th->th_flags);
   1763 				printf("\n");
   1764 			}
   1765 		}
   1766 	}
   1767 
   1768 
   1769 	/*
   1770 	 * Update PAWS values
   1771 	 */
   1772 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
   1773 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
   1774 		getmicrouptime(&src->scrub->pfss_last);
   1775 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
   1776 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1777 			src->scrub->pfss_tsval = tsval;
   1778 
   1779 		if (tsecr) {
   1780 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
   1781 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1782 				src->scrub->pfss_tsecr = tsecr;
   1783 
   1784 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
   1785 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
   1786 			    src->scrub->pfss_tsval0 == 0)) {
   1787 				/* tsval0 MUST be the lowest timestamp */
   1788 				src->scrub->pfss_tsval0 = tsval;
   1789 			}
   1790 
   1791 			/* Only fully initialized after a TS gets echoed */
   1792 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1793 				src->scrub->pfss_flags |= PFSS_PAWS;
   1794 		}
   1795 	}
   1796 
   1797 	/* I have a dream....  TCP segment reassembly.... */
   1798 	return (0);
   1799 }
   1800 
   1801 int
   1802 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
   1803     int off)
   1804 {
   1805 	u_int16_t	*mss;
   1806 	int		 thoff;
   1807 	int		 opt, cnt, optlen = 0;
   1808 	int		 rewrite = 0;
   1809 	u_char		*optp;
   1810 
   1811 	thoff = th->th_off << 2;
   1812 	cnt = thoff - sizeof(struct tcphdr);
   1813 	optp = mtod(m, caddr_t) + off + sizeof(struct tcphdr);
   1814 
   1815 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
   1816 		opt = optp[0];
   1817 		if (opt == TCPOPT_EOL)
   1818 			break;
   1819 		if (opt == TCPOPT_NOP)
   1820 			optlen = 1;
   1821 		else {
   1822 			if (cnt < 2)
   1823 				break;
   1824 			optlen = optp[1];
   1825 			if (optlen < 2 || optlen > cnt)
   1826 				break;
   1827 		}
   1828 		switch (opt) {
   1829 		case TCPOPT_MAXSEG:
   1830 			mss = (u_int16_t *)(optp + 2);
   1831 			if ((ntohs(*mss)) > r->max_mss) {
   1832 				th->th_sum = pf_cksum_fixup(th->th_sum,
   1833 				    *mss, htons(r->max_mss), 0);
   1834 				*mss = htons(r->max_mss);
   1835 				rewrite = 1;
   1836 			}
   1837 			break;
   1838 		default:
   1839 			break;
   1840 		}
   1841 	}
   1842 
   1843 	return (rewrite);
   1844 }
   1845