Home | History | Annotate | Line # | Download | only in net
pf_norm.c revision 1.17
      1 /*	$NetBSD: pf_norm.c,v 1.17 2007/12/11 11:08:21 lukem Exp $	*/
      2 /*	$OpenBSD: pf_norm.c,v 1.97 2004/09/21 16:59:12 aaron Exp $ */
      3 
      4 /*
      5  * Copyright 2001 Niels Provos <provos (at) citi.umich.edu>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: pf_norm.c,v 1.17 2007/12/11 11:08:21 lukem Exp $");
     31 
     32 #ifdef _KERNEL_OPT
     33 #include "opt_inet.h"
     34 #endif
     35 
     36 #include "pflog.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/mbuf.h>
     41 #include <sys/filio.h>
     42 #include <sys/fcntl.h>
     43 #include <sys/socket.h>
     44 #include <sys/kernel.h>
     45 #include <sys/time.h>
     46 #include <sys/pool.h>
     47 
     48 #ifdef __OpenBSD__
     49 #include <dev/rndvar.h>
     50 #else
     51 #include <sys/rnd.h>
     52 #endif
     53 #include <net/if.h>
     54 #include <net/if_types.h>
     55 #include <net/bpf.h>
     56 #include <net/route.h>
     57 #include <net/if_pflog.h>
     58 
     59 #include <netinet/in.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/ip.h>
     63 #include <netinet/ip_var.h>
     64 #include <netinet/tcp.h>
     65 #include <netinet/tcp_seq.h>
     66 #include <netinet/udp.h>
     67 #include <netinet/ip_icmp.h>
     68 
     69 #ifdef INET6
     70 #include <netinet/ip6.h>
     71 #endif /* INET6 */
     72 
     73 #include <net/pfvar.h>
     74 
     75 struct pf_frent {
     76 	LIST_ENTRY(pf_frent) fr_next;
     77 	struct ip *fr_ip;
     78 	struct mbuf *fr_m;
     79 };
     80 
     81 struct pf_frcache {
     82 	LIST_ENTRY(pf_frcache) fr_next;
     83 	uint16_t	fr_off;
     84 	uint16_t	fr_end;
     85 };
     86 
     87 #define PFFRAG_SEENLAST	0x0001		/* Seen the last fragment for this */
     88 #define PFFRAG_NOBUFFER	0x0002		/* Non-buffering fragment cache */
     89 #define PFFRAG_DROP	0x0004		/* Drop all fragments */
     90 #define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
     91 
     92 struct pf_fragment {
     93 	RB_ENTRY(pf_fragment) fr_entry;
     94 	TAILQ_ENTRY(pf_fragment) frag_next;
     95 	struct in_addr	fr_src;
     96 	struct in_addr	fr_dst;
     97 	u_int8_t	fr_p;		/* protocol of this fragment */
     98 	u_int8_t	fr_flags;	/* status flags */
     99 	u_int16_t	fr_id;		/* fragment id for reassemble */
    100 	u_int16_t	fr_max;		/* fragment data max */
    101 	u_int32_t	fr_timeout;
    102 #define fr_queue	fr_u.fru_queue
    103 #define fr_cache	fr_u.fru_cache
    104 	union {
    105 		LIST_HEAD(pf_fragq, pf_frent) fru_queue;	/* buffering */
    106 		LIST_HEAD(pf_cacheq, pf_frcache) fru_cache;	/* non-buf */
    107 	} fr_u;
    108 };
    109 
    110 TAILQ_HEAD(pf_fragqueue, pf_fragment)	pf_fragqueue;
    111 TAILQ_HEAD(pf_cachequeue, pf_fragment)	pf_cachequeue;
    112 
    113 static __inline int	 pf_frag_compare(struct pf_fragment *,
    114 			    struct pf_fragment *);
    115 RB_HEAD(pf_frag_tree, pf_fragment)	pf_frag_tree, pf_cache_tree;
    116 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    117 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    118 
    119 /* Private prototypes */
    120 void			 pf_ip2key(struct pf_fragment *, struct ip *);
    121 void			 pf_remove_fragment(struct pf_fragment *);
    122 void			 pf_flush_fragments(void);
    123 void			 pf_free_fragment(struct pf_fragment *);
    124 struct pf_fragment	*pf_find_fragment(struct ip *, struct pf_frag_tree *);
    125 struct mbuf		*pf_reassemble(struct mbuf **, struct pf_fragment **,
    126 			    struct pf_frent *, int);
    127 struct mbuf		*pf_fragcache(struct mbuf **, struct ip*,
    128 			    struct pf_fragment **, int, int, int *);
    129 int			 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
    130 			    struct tcphdr *, int);
    131 
    132 #define	DPFPRINTF(x) do {				\
    133 	if (pf_status.debug >= PF_DEBUG_MISC) {		\
    134 		printf("%s: ", __func__);		\
    135 		printf x ;				\
    136 	}						\
    137 } while(0)
    138 
    139 /* Globals */
    140 struct pool		 pf_frent_pl, pf_frag_pl, pf_cache_pl, pf_cent_pl;
    141 struct pool		 pf_state_scrub_pl;
    142 int			 pf_nfrents, pf_ncache;
    143 
    144 void
    145 pf_normalize_init(void)
    146 {
    147 #ifdef __NetBSD__
    148 	pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
    149 	    NULL, IPL_SOFTNET);
    150 	pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
    151 	    NULL, IPL_SOFTNET);
    152 	pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
    153 	    "pffrcache", NULL, IPL_SOFTNET);
    154 	pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
    155 	    NULL, IPL_SOFTNET);
    156 	pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
    157 	    "pfstscr", NULL, IPL_SOFTNET);
    158 #else
    159 	pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
    160 	    NULL);
    161 	pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
    162 	    NULL);
    163 	pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
    164 	    "pffrcache", NULL);
    165 	pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
    166 	    NULL);
    167 	pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
    168 	    "pfstscr", NULL);
    169 #endif
    170 
    171 	pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
    172 	pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
    173 	pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
    174 	pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
    175 
    176 	TAILQ_INIT(&pf_fragqueue);
    177 	TAILQ_INIT(&pf_cachequeue);
    178 }
    179 
    180 #ifdef _LKM
    181 void
    182 pf_normalize_destroy(void)
    183 {
    184 	pool_destroy(&pf_state_scrub_pl);
    185 	pool_destroy(&pf_cent_pl);
    186 	pool_destroy(&pf_cache_pl);
    187 	pool_destroy(&pf_frag_pl);
    188 	pool_destroy(&pf_frent_pl);
    189 }
    190 #endif
    191 
    192 static __inline int
    193 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
    194 {
    195 	int	diff;
    196 
    197 	if ((diff = a->fr_id - b->fr_id))
    198 		return (diff);
    199 	else if ((diff = a->fr_p - b->fr_p))
    200 		return (diff);
    201 	else if (a->fr_src.s_addr < b->fr_src.s_addr)
    202 		return (-1);
    203 	else if (a->fr_src.s_addr > b->fr_src.s_addr)
    204 		return (1);
    205 	else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
    206 		return (-1);
    207 	else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
    208 		return (1);
    209 	return (0);
    210 }
    211 
    212 void
    213 pf_purge_expired_fragments(void)
    214 {
    215 	struct pf_fragment	*frag;
    216 	u_int32_t		 expire = time_second -
    217 				    pf_default_rule.timeout[PFTM_FRAG];
    218 
    219 	while ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) != NULL) {
    220 		KASSERT(BUFFER_FRAGMENTS(frag));
    221 		if (frag->fr_timeout > expire)
    222 			break;
    223 
    224 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    225 		pf_free_fragment(frag);
    226 	}
    227 
    228 	while ((frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue)) != NULL) {
    229 		KASSERT(!BUFFER_FRAGMENTS(frag));
    230 		if (frag->fr_timeout > expire)
    231 			break;
    232 
    233 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    234 		pf_free_fragment(frag);
    235 		KASSERT(TAILQ_EMPTY(&pf_cachequeue) ||
    236 		    TAILQ_LAST(&pf_cachequeue, pf_cachequeue) != frag);
    237 	}
    238 }
    239 
    240 /*
    241  * Try to flush old fragments to make space for new ones
    242  */
    243 
    244 void
    245 pf_flush_fragments(void)
    246 {
    247 	struct pf_fragment	*frag;
    248 	int			 goal;
    249 
    250 	goal = pf_nfrents * 9 / 10;
    251 	DPFPRINTF(("trying to free > %d frents\n",
    252 	    pf_nfrents - goal));
    253 	while (goal < pf_nfrents) {
    254 		frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue);
    255 		if (frag == NULL)
    256 			break;
    257 		pf_free_fragment(frag);
    258 	}
    259 
    260 
    261 	goal = pf_ncache * 9 / 10;
    262 	DPFPRINTF(("trying to free > %d cache entries\n",
    263 	    pf_ncache - goal));
    264 	while (goal < pf_ncache) {
    265 		frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue);
    266 		if (frag == NULL)
    267 			break;
    268 		pf_free_fragment(frag);
    269 	}
    270 }
    271 
    272 /* Frees the fragments and all associated entries */
    273 
    274 void
    275 pf_free_fragment(struct pf_fragment *frag)
    276 {
    277 	struct pf_frent		*frent;
    278 	struct pf_frcache	*frcache;
    279 
    280 	/* Free all fragments */
    281 	if (BUFFER_FRAGMENTS(frag)) {
    282 		for (frent = LIST_FIRST(&frag->fr_queue); frent;
    283 		    frent = LIST_FIRST(&frag->fr_queue)) {
    284 			LIST_REMOVE(frent, fr_next);
    285 
    286 			m_freem(frent->fr_m);
    287 			pool_put(&pf_frent_pl, frent);
    288 			pf_nfrents--;
    289 		}
    290 	} else {
    291 		for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
    292 		    frcache = LIST_FIRST(&frag->fr_cache)) {
    293 			LIST_REMOVE(frcache, fr_next);
    294 
    295 			KASSERT(LIST_EMPTY(&frag->fr_cache) ||
    296 			    LIST_FIRST(&frag->fr_cache)->fr_off >
    297 			    frcache->fr_end);
    298 
    299 			pool_put(&pf_cent_pl, frcache);
    300 			pf_ncache--;
    301 		}
    302 	}
    303 
    304 	pf_remove_fragment(frag);
    305 }
    306 
    307 void
    308 pf_ip2key(struct pf_fragment *key, struct ip *ip)
    309 {
    310 	key->fr_p = ip->ip_p;
    311 	key->fr_id = ip->ip_id;
    312 	key->fr_src.s_addr = ip->ip_src.s_addr;
    313 	key->fr_dst.s_addr = ip->ip_dst.s_addr;
    314 }
    315 
    316 struct pf_fragment *
    317 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
    318 {
    319 	struct pf_fragment	 key;
    320 	struct pf_fragment	*frag;
    321 
    322 	pf_ip2key(&key, ip);
    323 
    324 	frag = RB_FIND(pf_frag_tree, tree, &key);
    325 	if (frag != NULL) {
    326 		/* XXX Are we sure we want to update the timeout? */
    327 		frag->fr_timeout = time_second;
    328 		if (BUFFER_FRAGMENTS(frag)) {
    329 			TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    330 			TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next);
    331 		} else {
    332 			TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    333 			TAILQ_INSERT_HEAD(&pf_cachequeue, frag, frag_next);
    334 		}
    335 	}
    336 
    337 	return (frag);
    338 }
    339 
    340 /* Removes a fragment from the fragment queue and frees the fragment */
    341 
    342 void
    343 pf_remove_fragment(struct pf_fragment *frag)
    344 {
    345 	if (BUFFER_FRAGMENTS(frag)) {
    346 		RB_REMOVE(pf_frag_tree, &pf_frag_tree, frag);
    347 		TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    348 		pool_put(&pf_frag_pl, frag);
    349 	} else {
    350 		RB_REMOVE(pf_frag_tree, &pf_cache_tree, frag);
    351 		TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    352 		pool_put(&pf_cache_pl, frag);
    353 	}
    354 }
    355 
    356 #define FR_IP_OFF(fr)	((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
    357 struct mbuf *
    358 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
    359     struct pf_frent *frent, int mff)
    360 {
    361 	struct mbuf	*m = *m0, *m2;
    362 	struct pf_frent	*frea, *next;
    363 	struct pf_frent	*frep = NULL;
    364 	struct ip	*ip = frent->fr_ip;
    365 	int		 hlen = ip->ip_hl << 2;
    366 	u_int16_t	 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    367 	u_int16_t	 ip_len = ntohs(ip->ip_len) - ip->ip_hl * 4;
    368 	u_int16_t	 max = ip_len + off;
    369 
    370 	KASSERT(*frag == NULL || BUFFER_FRAGMENTS(*frag));
    371 
    372 	/* Strip off ip header */
    373 	m->m_data += hlen;
    374 	m->m_len -= hlen;
    375 
    376 	/* Create a new reassembly queue for this packet */
    377 	if (*frag == NULL) {
    378 		*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    379 		if (*frag == NULL) {
    380 			pf_flush_fragments();
    381 			*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    382 			if (*frag == NULL)
    383 				goto drop_fragment;
    384 		}
    385 
    386 		(*frag)->fr_flags = 0;
    387 		(*frag)->fr_max = 0;
    388 		(*frag)->fr_src = frent->fr_ip->ip_src;
    389 		(*frag)->fr_dst = frent->fr_ip->ip_dst;
    390 		(*frag)->fr_p = frent->fr_ip->ip_p;
    391 		(*frag)->fr_id = frent->fr_ip->ip_id;
    392 		(*frag)->fr_timeout = time_second;
    393 		LIST_INIT(&(*frag)->fr_queue);
    394 
    395 		RB_INSERT(pf_frag_tree, &pf_frag_tree, *frag);
    396 		TAILQ_INSERT_HEAD(&pf_fragqueue, *frag, frag_next);
    397 
    398 		/* We do not have a previous fragment */
    399 		frep = NULL;
    400 		goto insert;
    401 	}
    402 
    403 	/*
    404 	 * Find a fragment after the current one:
    405 	 *  - off contains the real shifted offset.
    406 	 */
    407 	LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
    408 		if (FR_IP_OFF(frea) > off)
    409 			break;
    410 		frep = frea;
    411 	}
    412 
    413 	KASSERT(frep != NULL || frea != NULL);
    414 
    415 	if (frep != NULL &&
    416 	    FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl *
    417 	    4 > off)
    418 	{
    419 		u_int16_t	precut;
    420 
    421 		precut = FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) -
    422 		    frep->fr_ip->ip_hl * 4 - off;
    423 		if (precut >= ip_len)
    424 			goto drop_fragment;
    425 		m_adj(frent->fr_m, precut);
    426 		DPFPRINTF(("overlap -%d\n", precut));
    427 		/* Enforce 8 byte boundaries */
    428 		ip->ip_off = htons(ntohs(ip->ip_off) + (precut >> 3));
    429 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    430 		ip_len -= precut;
    431 		ip->ip_len = htons(ip_len);
    432 	}
    433 
    434 	for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
    435 	    frea = next)
    436 	{
    437 		u_int16_t	aftercut;
    438 
    439 		aftercut = ip_len + off - FR_IP_OFF(frea);
    440 		DPFPRINTF(("adjust overlap %d\n", aftercut));
    441 		if (aftercut < ntohs(frea->fr_ip->ip_len) - frea->fr_ip->ip_hl
    442 		    * 4)
    443 		{
    444 			frea->fr_ip->ip_len =
    445 			    htons(ntohs(frea->fr_ip->ip_len) - aftercut);
    446 			frea->fr_ip->ip_off = htons(ntohs(frea->fr_ip->ip_off) +
    447 			    (aftercut >> 3));
    448 			m_adj(frea->fr_m, aftercut);
    449 			break;
    450 		}
    451 
    452 		/* This fragment is completely overlapped, loose it */
    453 		next = LIST_NEXT(frea, fr_next);
    454 		m_freem(frea->fr_m);
    455 		LIST_REMOVE(frea, fr_next);
    456 		pool_put(&pf_frent_pl, frea);
    457 		pf_nfrents--;
    458 	}
    459 
    460  insert:
    461 	/* Update maximum data size */
    462 	if ((*frag)->fr_max < max)
    463 		(*frag)->fr_max = max;
    464 	/* This is the last segment */
    465 	if (!mff)
    466 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    467 
    468 	if (frep == NULL)
    469 		LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
    470 	else
    471 		LIST_INSERT_AFTER(frep, frent, fr_next);
    472 
    473 	/* Check if we are completely reassembled */
    474 	if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
    475 		return (NULL);
    476 
    477 	/* Check if we have all the data */
    478 	off = 0;
    479 	for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
    480 		next = LIST_NEXT(frep, fr_next);
    481 
    482 		off += ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl * 4;
    483 		if (off < (*frag)->fr_max &&
    484 		    (next == NULL || FR_IP_OFF(next) != off))
    485 		{
    486 			DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
    487 			    off, next == NULL ? -1 : FR_IP_OFF(next),
    488 			    (*frag)->fr_max));
    489 			return (NULL);
    490 		}
    491 	}
    492 	DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
    493 	if (off < (*frag)->fr_max)
    494 		return (NULL);
    495 
    496 	/* We have all the data */
    497 	frent = LIST_FIRST(&(*frag)->fr_queue);
    498 	KASSERT(frent != NULL);
    499 	if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
    500 		DPFPRINTF(("drop: too big: %d\n", off));
    501 		pf_free_fragment(*frag);
    502 		*frag = NULL;
    503 		return (NULL);
    504 	}
    505 	next = LIST_NEXT(frent, fr_next);
    506 
    507 	/* Magic from ip_input */
    508 	ip = frent->fr_ip;
    509 	m = frent->fr_m;
    510 	m2 = m->m_next;
    511 	m->m_next = NULL;
    512 	m_cat(m, m2);
    513 	pool_put(&pf_frent_pl, frent);
    514 	pf_nfrents--;
    515 	for (frent = next; frent != NULL; frent = next) {
    516 		next = LIST_NEXT(frent, fr_next);
    517 
    518 		m2 = frent->fr_m;
    519 		pool_put(&pf_frent_pl, frent);
    520 		pf_nfrents--;
    521 		m_cat(m, m2);
    522 	}
    523 
    524 	ip->ip_src = (*frag)->fr_src;
    525 	ip->ip_dst = (*frag)->fr_dst;
    526 
    527 	/* Remove from fragment queue */
    528 	pf_remove_fragment(*frag);
    529 	*frag = NULL;
    530 
    531 	hlen = ip->ip_hl << 2;
    532 	ip->ip_len = htons(off + hlen);
    533 	m->m_len += hlen;
    534 	m->m_data -= hlen;
    535 
    536 	/* some debugging cruft by sklower, below, will go away soon */
    537 	/* XXX this should be done elsewhere */
    538 	if (m->m_flags & M_PKTHDR) {
    539 		int plen = 0;
    540 		for (m2 = m; m2; m2 = m2->m_next)
    541 			plen += m2->m_len;
    542 		m->m_pkthdr.len = plen;
    543 #if defined(__NetBSD__)
    544 		m->m_pkthdr.csum_flags = 0;
    545 #endif /* defined(__NetBSD__) */
    546 	}
    547 
    548 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
    549 	return (m);
    550 
    551  drop_fragment:
    552 	/* Oops - fail safe - drop packet */
    553 	pool_put(&pf_frent_pl, frent);
    554 	pf_nfrents--;
    555 	m_freem(m);
    556 	return (NULL);
    557 }
    558 
    559 struct mbuf *
    560 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
    561     int drop, int *nomem)
    562 {
    563 	struct mbuf		*m = *m0;
    564 	struct pf_frcache	*frp, *fra, *cur = NULL;
    565 	int			 ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
    566 	u_int16_t		 off = ntohs(h->ip_off) << 3;
    567 	u_int16_t		 max = ip_len + off;
    568 	int			 hosed = 0;
    569 
    570 	KASSERT(*frag == NULL || !BUFFER_FRAGMENTS(*frag));
    571 
    572 	/* Create a new range queue for this packet */
    573 	if (*frag == NULL) {
    574 		*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    575 		if (*frag == NULL) {
    576 			pf_flush_fragments();
    577 			*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    578 			if (*frag == NULL)
    579 				goto no_mem;
    580 		}
    581 
    582 		/* Get an entry for the queue */
    583 		cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    584 		if (cur == NULL) {
    585 			pool_put(&pf_cache_pl, *frag);
    586 			*frag = NULL;
    587 			goto no_mem;
    588 		}
    589 		pf_ncache++;
    590 
    591 		(*frag)->fr_flags = PFFRAG_NOBUFFER;
    592 		(*frag)->fr_max = 0;
    593 		(*frag)->fr_src = h->ip_src;
    594 		(*frag)->fr_dst = h->ip_dst;
    595 		(*frag)->fr_p = h->ip_p;
    596 		(*frag)->fr_id = h->ip_id;
    597 		(*frag)->fr_timeout = time_second;
    598 
    599 		cur->fr_off = off;
    600 		cur->fr_end = max;
    601 		LIST_INIT(&(*frag)->fr_cache);
    602 		LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
    603 
    604 		RB_INSERT(pf_frag_tree, &pf_cache_tree, *frag);
    605 		TAILQ_INSERT_HEAD(&pf_cachequeue, *frag, frag_next);
    606 
    607 		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
    608 
    609 		goto pass;
    610 	}
    611 
    612 	/*
    613 	 * Find a fragment after the current one:
    614 	 *  - off contains the real shifted offset.
    615 	 */
    616 	frp = NULL;
    617 	LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
    618 		if (fra->fr_off > off)
    619 			break;
    620 		frp = fra;
    621 	}
    622 
    623 	KASSERT(frp != NULL || fra != NULL);
    624 
    625 	if (frp != NULL) {
    626 		int	precut;
    627 
    628 		precut = frp->fr_end - off;
    629 		if (precut >= ip_len) {
    630 			/* Fragment is entirely a duplicate */
    631 			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
    632 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
    633 			goto drop_fragment;
    634 		}
    635 		if (precut == 0) {
    636 			/* They are adjacent.  Fixup cache entry */
    637 			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
    638 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
    639 			frp->fr_end = max;
    640 		} else if (precut > 0) {
    641 			/* The first part of this payload overlaps with a
    642 			 * fragment that has already been passed.
    643 			 * Need to trim off the first part of the payload.
    644 			 * But to do so easily, we need to create another
    645 			 * mbuf to throw the original header into.
    646 			 */
    647 
    648 			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
    649 			    h->ip_id, precut, frp->fr_off, frp->fr_end, off,
    650 			    max));
    651 
    652 			off += precut;
    653 			max -= precut;
    654 			/* Update the previous frag to encompass this one */
    655 			frp->fr_end = max;
    656 
    657 			if (!drop) {
    658 				/* XXX Optimization opportunity
    659 				 * This is a very heavy way to trim the payload.
    660 				 * we could do it much faster by diddling mbuf
    661 				 * internals but that would be even less legible
    662 				 * than this mbuf magic.  For my next trick,
    663 				 * I'll pull a rabbit out of my laptop.
    664 				 */
    665 				*m0 = m_copym2(m, 0, h->ip_hl << 2, M_NOWAIT);
    666 				if (*m0 == NULL)
    667 					goto no_mem;
    668 				KASSERT((*m0)->m_next == NULL);
    669 				m_adj(m, precut + (h->ip_hl << 2));
    670 				m_cat(*m0, m);
    671 				m = *m0;
    672 				if (m->m_flags & M_PKTHDR) {
    673 					int plen = 0;
    674 					struct mbuf *t;
    675 					for (t = m; t; t = t->m_next)
    676 						plen += t->m_len;
    677 					m->m_pkthdr.len = plen;
    678 				}
    679 
    680 
    681 				h = mtod(m, struct ip *);
    682 
    683 
    684 				KASSERT((int)m->m_len ==
    685 				    ntohs(h->ip_len) - precut);
    686 				h->ip_off = htons(ntohs(h->ip_off) +
    687 				    (precut >> 3));
    688 				h->ip_len = htons(ntohs(h->ip_len) - precut);
    689 			} else {
    690 				hosed++;
    691 			}
    692 		} else {
    693 			/* There is a gap between fragments */
    694 
    695 			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
    696 			    h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
    697 			    max));
    698 
    699 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    700 			if (cur == NULL)
    701 				goto no_mem;
    702 			pf_ncache++;
    703 
    704 			cur->fr_off = off;
    705 			cur->fr_end = max;
    706 			LIST_INSERT_AFTER(frp, cur, fr_next);
    707 		}
    708 	}
    709 
    710 	if (fra != NULL) {
    711 		int	aftercut;
    712 		int	merge = 0;
    713 
    714 		aftercut = max - fra->fr_off;
    715 		if (aftercut == 0) {
    716 			/* Adjacent fragments */
    717 			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
    718 			    h->ip_id, off, max, fra->fr_off, fra->fr_end));
    719 			fra->fr_off = off;
    720 			merge = 1;
    721 		} else if (aftercut > 0) {
    722 			/* Need to chop off the tail of this fragment */
    723 			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
    724 			    h->ip_id, aftercut, off, max, fra->fr_off,
    725 			    fra->fr_end));
    726 			fra->fr_off = off;
    727 			max -= aftercut;
    728 
    729 			merge = 1;
    730 
    731 			if (!drop) {
    732 				m_adj(m, -aftercut);
    733 				if (m->m_flags & M_PKTHDR) {
    734 					int plen = 0;
    735 					struct mbuf *t;
    736 					for (t = m; t; t = t->m_next)
    737 						plen += t->m_len;
    738 					m->m_pkthdr.len = plen;
    739 				}
    740 				h = mtod(m, struct ip *);
    741 				KASSERT((int)m->m_len ==
    742 				    ntohs(h->ip_len) - aftercut);
    743 				h->ip_len = htons(ntohs(h->ip_len) - aftercut);
    744 			} else {
    745 				hosed++;
    746 			}
    747 		} else if (frp == NULL) {
    748 			/* There is a gap between fragments */
    749 			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
    750 			    h->ip_id, -aftercut, off, max, fra->fr_off,
    751 			    fra->fr_end));
    752 
    753 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    754 			if (cur == NULL)
    755 				goto no_mem;
    756 			pf_ncache++;
    757 
    758 			cur->fr_off = off;
    759 			cur->fr_end = max;
    760 			LIST_INSERT_BEFORE(fra, cur, fr_next);
    761 		}
    762 
    763 
    764 		/* Need to glue together two separate fragment descriptors */
    765 		if (merge) {
    766 			if (cur && fra->fr_off <= cur->fr_end) {
    767 				/* Need to merge in a previous 'cur' */
    768 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    769 				    "%d-%d) %d-%d (%d-%d)\n",
    770 				    h->ip_id, cur->fr_off, cur->fr_end, off,
    771 				    max, fra->fr_off, fra->fr_end));
    772 				fra->fr_off = cur->fr_off;
    773 				LIST_REMOVE(cur, fr_next);
    774 				pool_put(&pf_cent_pl, cur);
    775 				pf_ncache--;
    776 				cur = NULL;
    777 
    778 			} else if (frp && fra->fr_off <= frp->fr_end) {
    779 				/* Need to merge in a modified 'frp' */
    780 				KASSERT(cur == NULL);
    781 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    782 				    "%d-%d) %d-%d (%d-%d)\n",
    783 				    h->ip_id, frp->fr_off, frp->fr_end, off,
    784 				    max, fra->fr_off, fra->fr_end));
    785 				fra->fr_off = frp->fr_off;
    786 				LIST_REMOVE(frp, fr_next);
    787 				pool_put(&pf_cent_pl, frp);
    788 				pf_ncache--;
    789 				frp = NULL;
    790 
    791 			}
    792 		}
    793 	}
    794 
    795 	if (hosed) {
    796 		/*
    797 		 * We must keep tracking the overall fragment even when
    798 		 * we're going to drop it anyway so that we know when to
    799 		 * free the overall descriptor.  Thus we drop the frag late.
    800 		 */
    801 		goto drop_fragment;
    802 	}
    803 
    804 
    805  pass:
    806 	/* Update maximum data size */
    807 	if ((*frag)->fr_max < max)
    808 		(*frag)->fr_max = max;
    809 
    810 	/* This is the last segment */
    811 	if (!mff)
    812 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    813 
    814 	/* Check if we are completely reassembled */
    815 	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
    816 	    LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
    817 	    LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
    818 		/* Remove from fragment queue */
    819 		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
    820 		    (*frag)->fr_max));
    821 		pf_free_fragment(*frag);
    822 		*frag = NULL;
    823 	}
    824 
    825 	return (m);
    826 
    827  no_mem:
    828 	*nomem = 1;
    829 
    830 	/* Still need to pay attention to !IP_MF */
    831 	if (!mff && *frag != NULL)
    832 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    833 
    834 	m_freem(m);
    835 	return (NULL);
    836 
    837  drop_fragment:
    838 
    839 	/* Still need to pay attention to !IP_MF */
    840 	if (!mff && *frag != NULL)
    841 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    842 
    843 	if (drop) {
    844 		/* This fragment has been deemed bad.  Don't reass */
    845 		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
    846 			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
    847 			    h->ip_id));
    848 		(*frag)->fr_flags |= PFFRAG_DROP;
    849 	}
    850 
    851 	m_freem(m);
    852 	return (NULL);
    853 }
    854 
    855 int
    856 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
    857     struct pf_pdesc *pd)
    858 {
    859 	struct mbuf		*m = *m0;
    860 	struct pf_rule		*r;
    861 	struct pf_frent		*frent;
    862 	struct pf_fragment	*frag = NULL;
    863 	struct ip		*h = mtod(m, struct ip *);
    864 	int			 mff = (ntohs(h->ip_off) & IP_MF);
    865 	int			 hlen = h->ip_hl << 2;
    866 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
    867 	u_int16_t		 max;
    868 	int			 ip_len;
    869 	int			 ip_off;
    870 
    871 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
    872 	while (r != NULL) {
    873 		r->evaluations++;
    874 		if (r->kif != NULL &&
    875 		    (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
    876 			r = r->skip[PF_SKIP_IFP].ptr;
    877 		else if (r->direction && r->direction != dir)
    878 			r = r->skip[PF_SKIP_DIR].ptr;
    879 		else if (r->af && r->af != AF_INET)
    880 			r = r->skip[PF_SKIP_AF].ptr;
    881 		else if (r->proto && r->proto != h->ip_p)
    882 			r = r->skip[PF_SKIP_PROTO].ptr;
    883 		else if (PF_MISMATCHAW(&r->src.addr,
    884 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET, r->src.neg))
    885 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
    886 		else if (PF_MISMATCHAW(&r->dst.addr,
    887 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET, r->dst.neg))
    888 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
    889 		else
    890 			break;
    891 	}
    892 
    893 	if (r == NULL)
    894 		return (PF_PASS);
    895 	else
    896 		r->packets++;
    897 
    898 	/* Check for illegal packets */
    899 	if (hlen < (int)sizeof(struct ip))
    900 		goto drop;
    901 
    902 	if (hlen > ntohs(h->ip_len))
    903 		goto drop;
    904 
    905 	/* Clear IP_DF if the rule uses the no-df option */
    906 	if (r->rule_flag & PFRULE_NODF)
    907 		h->ip_off &= htons(~IP_DF);
    908 
    909 	/* We will need other tests here */
    910 	if (!fragoff && !mff)
    911 		goto no_fragment;
    912 
    913 	/* We're dealing with a fragment now. Don't allow fragments
    914 	 * with IP_DF to enter the cache. If the flag was cleared by
    915 	 * no-df above, fine. Otherwise drop it.
    916 	 */
    917 	if (h->ip_off & htons(IP_DF)) {
    918 		DPFPRINTF(("IP_DF\n"));
    919 		goto bad;
    920 	}
    921 
    922 	ip_len = ntohs(h->ip_len) - hlen;
    923 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
    924 
    925 	/* All fragments are 8 byte aligned */
    926 	if (mff && (ip_len & 0x7)) {
    927 		DPFPRINTF(("mff and %d\n", ip_len));
    928 		goto bad;
    929 	}
    930 
    931 	/* Respect maximum length */
    932 	if (fragoff + ip_len > IP_MAXPACKET) {
    933 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
    934 		goto bad;
    935 	}
    936 	max = fragoff + ip_len;
    937 
    938 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
    939 		/* Fully buffer all of the fragments */
    940 
    941 		frag = pf_find_fragment(h, &pf_frag_tree);
    942 
    943 		/* Check if we saw the last fragment already */
    944 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    945 		    max > frag->fr_max)
    946 			goto bad;
    947 
    948 		/* Get an entry for the fragment queue */
    949 		frent = pool_get(&pf_frent_pl, PR_NOWAIT);
    950 		if (frent == NULL) {
    951 			REASON_SET(reason, PFRES_MEMORY);
    952 			return (PF_DROP);
    953 		}
    954 		pf_nfrents++;
    955 		frent->fr_ip = h;
    956 		frent->fr_m = m;
    957 
    958 		/* Might return a completely reassembled mbuf, or NULL */
    959 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
    960 		*m0 = m = pf_reassemble(m0, &frag, frent, mff);
    961 
    962 		if (m == NULL)
    963 			return (PF_DROP);
    964 
    965 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
    966 			goto drop;
    967 
    968 		h = mtod(m, struct ip *);
    969 	} else {
    970 		/* non-buffering fragment cache (drops or masks overlaps) */
    971 		int	nomem = 0;
    972 
    973 		if (dir == PF_OUT) {
    974 			if (m_tag_find(m, PACKET_TAG_PF_FRAGCACHE, NULL) !=
    975 			    NULL) {
    976 				/* Already passed the fragment cache in the
    977 				 * input direction.  If we continued, it would
    978 				 * appear to be a dup and would be dropped.
    979 				 */
    980 				goto fragment_pass;
    981 			}
    982 		}
    983 
    984 		frag = pf_find_fragment(h, &pf_cache_tree);
    985 
    986 		/* Check if we saw the last fragment already */
    987 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    988 		    max > frag->fr_max) {
    989 			if (r->rule_flag & PFRULE_FRAGDROP)
    990 				frag->fr_flags |= PFFRAG_DROP;
    991 			goto bad;
    992 		}
    993 
    994 		*m0 = m = pf_fragcache(m0, h, &frag, mff,
    995 		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
    996 		if (m == NULL) {
    997 			if (nomem)
    998 				goto no_mem;
    999 			goto drop;
   1000 		}
   1001 
   1002 		if (dir == PF_IN) {
   1003 			struct m_tag	*mtag;
   1004 
   1005 			mtag = m_tag_get(PACKET_TAG_PF_FRAGCACHE, 0, M_NOWAIT);
   1006 			if (mtag == NULL)
   1007 				goto no_mem;
   1008 			m_tag_prepend(m, mtag);
   1009 		}
   1010 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
   1011 			goto drop;
   1012 		goto fragment_pass;
   1013 	}
   1014 
   1015  no_fragment:
   1016 	/* At this point, only IP_DF is allowed in ip_off */
   1017 	h->ip_off &= htons(IP_DF);
   1018 
   1019 	/* Enforce a minimum ttl, may cause endless packet loops */
   1020 	if (r->min_ttl && h->ip_ttl < r->min_ttl)
   1021 		h->ip_ttl = r->min_ttl;
   1022 
   1023 	if (r->rule_flag & PFRULE_RANDOMID) {
   1024 		u_int16_t ip_id = h->ip_id;
   1025 
   1026 		h->ip_id = ip_randomid();
   1027 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
   1028 	}
   1029 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
   1030 		pd->flags |= PFDESC_IP_REAS;
   1031 
   1032 	return (PF_PASS);
   1033 
   1034  fragment_pass:
   1035 	/* Enforce a minimum ttl, may cause endless packet loops */
   1036 	if (r->min_ttl && h->ip_ttl < r->min_ttl)
   1037 		h->ip_ttl = r->min_ttl;
   1038 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
   1039 		pd->flags |= PFDESC_IP_REAS;
   1040 	return (PF_PASS);
   1041 
   1042  no_mem:
   1043 	REASON_SET(reason, PFRES_MEMORY);
   1044 	if (r != NULL && r->log)
   1045 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
   1046 	return (PF_DROP);
   1047 
   1048  drop:
   1049 	REASON_SET(reason, PFRES_NORM);
   1050 	if (r != NULL && r->log)
   1051 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
   1052 	return (PF_DROP);
   1053 
   1054  bad:
   1055 	DPFPRINTF(("dropping bad fragment\n"));
   1056 
   1057 	/* Free associated fragments */
   1058 	if (frag != NULL)
   1059 		pf_free_fragment(frag);
   1060 
   1061 	REASON_SET(reason, PFRES_FRAG);
   1062 	if (r != NULL && r->log)
   1063 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
   1064 
   1065 	return (PF_DROP);
   1066 }
   1067 
   1068 #ifdef INET6
   1069 int
   1070 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
   1071     u_short *reason, struct pf_pdesc *pd)
   1072 {
   1073 	struct mbuf		*m = *m0;
   1074 	struct pf_rule		*r;
   1075 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
   1076 	int			 off;
   1077 	struct ip6_ext		 ext;
   1078 	struct ip6_opt		 opt;
   1079 	struct ip6_opt_jumbo	 jumbo;
   1080 	struct ip6_frag		 frag;
   1081 	u_int32_t		 jumbolen = 0, plen;
   1082 	u_int16_t		 fragoff = 0;
   1083 	int			 optend;
   1084 	int			 ooff;
   1085 	u_int8_t		 proto;
   1086 	int			 terminal;
   1087 
   1088 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1089 	while (r != NULL) {
   1090 		r->evaluations++;
   1091 		if (r->kif != NULL &&
   1092 		    (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
   1093 			r = r->skip[PF_SKIP_IFP].ptr;
   1094 		else if (r->direction && r->direction != dir)
   1095 			r = r->skip[PF_SKIP_DIR].ptr;
   1096 		else if (r->af && r->af != AF_INET6)
   1097 			r = r->skip[PF_SKIP_AF].ptr;
   1098 #if 0 /* header chain! */
   1099 		else if (r->proto && r->proto != h->ip6_nxt)
   1100 			r = r->skip[PF_SKIP_PROTO].ptr;
   1101 #endif
   1102 		else if (PF_MISMATCHAW(&r->src.addr,
   1103 		    (struct pf_addr *)&h->ip6_src, AF_INET6, r->src.neg))
   1104 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1105 		else if (PF_MISMATCHAW(&r->dst.addr,
   1106 		    (struct pf_addr *)&h->ip6_dst, AF_INET6, r->dst.neg))
   1107 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1108 		else
   1109 			break;
   1110 	}
   1111 
   1112 	if (r == NULL)
   1113 		return (PF_PASS);
   1114 	else
   1115 		r->packets++;
   1116 
   1117 	/* Check for illegal packets */
   1118 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
   1119 		goto drop;
   1120 
   1121 	off = sizeof(struct ip6_hdr);
   1122 	proto = h->ip6_nxt;
   1123 	terminal = 0;
   1124 	do {
   1125 		switch (proto) {
   1126 		case IPPROTO_FRAGMENT:
   1127 			goto fragment;
   1128 			break;
   1129 		case IPPROTO_AH:
   1130 		case IPPROTO_ROUTING:
   1131 		case IPPROTO_DSTOPTS:
   1132 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1133 			    NULL, AF_INET6))
   1134 				goto shortpkt;
   1135 			if (proto == IPPROTO_AH)
   1136 				off += (ext.ip6e_len + 2) * 4;
   1137 			else
   1138 				off += (ext.ip6e_len + 1) * 8;
   1139 			proto = ext.ip6e_nxt;
   1140 			break;
   1141 		case IPPROTO_HOPOPTS:
   1142 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1143 			    NULL, AF_INET6))
   1144 				goto shortpkt;
   1145 			optend = off + (ext.ip6e_len + 1) * 8;
   1146 			ooff = off + sizeof(ext);
   1147 			do {
   1148 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
   1149 				    sizeof(opt.ip6o_type), NULL, NULL,
   1150 				    AF_INET6))
   1151 					goto shortpkt;
   1152 				if (opt.ip6o_type == IP6OPT_PAD1) {
   1153 					ooff++;
   1154 					continue;
   1155 				}
   1156 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
   1157 				    NULL, NULL, AF_INET6))
   1158 					goto shortpkt;
   1159 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
   1160 					goto drop;
   1161 				switch (opt.ip6o_type) {
   1162 				case IP6OPT_JUMBO:
   1163 					if (h->ip6_plen != 0)
   1164 						goto drop;
   1165 					if (!pf_pull_hdr(m, ooff, &jumbo,
   1166 					    sizeof(jumbo), NULL, NULL,
   1167 					    AF_INET6))
   1168 						goto shortpkt;
   1169 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
   1170 					    sizeof(jumbolen));
   1171 					jumbolen = ntohl(jumbolen);
   1172 					if (jumbolen <= IPV6_MAXPACKET)
   1173 						goto drop;
   1174 					if (sizeof(struct ip6_hdr) + jumbolen !=
   1175 					    m->m_pkthdr.len)
   1176 						goto drop;
   1177 					break;
   1178 				default:
   1179 					break;
   1180 				}
   1181 				ooff += sizeof(opt) + opt.ip6o_len;
   1182 			} while (ooff < optend);
   1183 
   1184 			off = optend;
   1185 			proto = ext.ip6e_nxt;
   1186 			break;
   1187 		default:
   1188 			terminal = 1;
   1189 			break;
   1190 		}
   1191 	} while (!terminal);
   1192 
   1193 	/* jumbo payload option must be present, or plen > 0 */
   1194 	if (ntohs(h->ip6_plen) == 0)
   1195 		plen = jumbolen;
   1196 	else
   1197 		plen = ntohs(h->ip6_plen);
   1198 	if (plen == 0)
   1199 		goto drop;
   1200 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
   1201 		goto shortpkt;
   1202 
   1203 	/* Enforce a minimum ttl, may cause endless packet loops */
   1204 	if (r->min_ttl && h->ip6_hlim < r->min_ttl)
   1205 		h->ip6_hlim = r->min_ttl;
   1206 
   1207 	return (PF_PASS);
   1208 
   1209  fragment:
   1210 	if (ntohs(h->ip6_plen) == 0 || jumbolen)
   1211 		goto drop;
   1212 	plen = ntohs(h->ip6_plen);
   1213 
   1214 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
   1215 		goto shortpkt;
   1216 	fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
   1217 	if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
   1218 		goto badfrag;
   1219 
   1220 	/* do something about it */
   1221 	/* remember to set pd->flags |= PFDESC_IP_REAS */
   1222 	return (PF_PASS);
   1223 
   1224  shortpkt:
   1225 	REASON_SET(reason, PFRES_SHORT);
   1226 	if (r != NULL && r->log)
   1227 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
   1228 	return (PF_DROP);
   1229 
   1230  drop:
   1231 	REASON_SET(reason, PFRES_NORM);
   1232 	if (r != NULL && r->log)
   1233 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
   1234 	return (PF_DROP);
   1235 
   1236  badfrag:
   1237 	REASON_SET(reason, PFRES_FRAG);
   1238 	if (r != NULL && r->log)
   1239 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
   1240 	return (PF_DROP);
   1241 }
   1242 #endif /* INET6 */
   1243 
   1244 int
   1245 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m,
   1246     int ipoff, int off, void *h, struct pf_pdesc *pd)
   1247 {
   1248 	struct pf_rule	*r, *rm = NULL;
   1249 	struct tcphdr	*th = pd->hdr.tcp;
   1250 	int		 rewrite = 0;
   1251 	u_short		 reason;
   1252 	u_int8_t	 flags;
   1253 	sa_family_t	 af = pd->af;
   1254 
   1255 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1256 	while (r != NULL) {
   1257 		r->evaluations++;
   1258 		if (r->kif != NULL &&
   1259 		    (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
   1260 			r = r->skip[PF_SKIP_IFP].ptr;
   1261 		else if (r->direction && r->direction != dir)
   1262 			r = r->skip[PF_SKIP_DIR].ptr;
   1263 		else if (r->af && r->af != af)
   1264 			r = r->skip[PF_SKIP_AF].ptr;
   1265 		else if (r->proto && r->proto != pd->proto)
   1266 			r = r->skip[PF_SKIP_PROTO].ptr;
   1267 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, r->src.neg))
   1268 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1269 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
   1270 			    r->src.port[0], r->src.port[1], th->th_sport))
   1271 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
   1272 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, r->dst.neg))
   1273 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1274 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
   1275 			    r->dst.port[0], r->dst.port[1], th->th_dport))
   1276 			r = r->skip[PF_SKIP_DST_PORT].ptr;
   1277 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
   1278 			    pf_osfp_fingerprint(pd, m, off, th),
   1279 			    r->os_fingerprint))
   1280 			r = TAILQ_NEXT(r, entries);
   1281 		else {
   1282 			rm = r;
   1283 			break;
   1284 		}
   1285 	}
   1286 
   1287 	if (rm == NULL || rm->action == PF_NOSCRUB)
   1288 		return (PF_PASS);
   1289 	else
   1290 		r->packets++;
   1291 
   1292 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
   1293 		pd->flags |= PFDESC_TCP_NORM;
   1294 
   1295 	flags = th->th_flags;
   1296 	if (flags & TH_SYN) {
   1297 		/* Illegal packet */
   1298 		if (flags & TH_RST)
   1299 			goto tcp_drop;
   1300 
   1301 		if (flags & TH_FIN)
   1302 			flags &= ~TH_FIN;
   1303 	} else {
   1304 		/* Illegal packet */
   1305 		if (!(flags & (TH_ACK|TH_RST)))
   1306 			goto tcp_drop;
   1307 	}
   1308 
   1309 	if (!(flags & TH_ACK)) {
   1310 		/* These flags are only valid if ACK is set */
   1311 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
   1312 			goto tcp_drop;
   1313 	}
   1314 
   1315 	/* Check for illegal header length */
   1316 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
   1317 		goto tcp_drop;
   1318 
   1319 	/* If flags changed, or reserved data set, then adjust */
   1320 	if (flags != th->th_flags || th->th_x2 != 0) {
   1321 		u_int16_t	ov, nv;
   1322 
   1323 		ov = *(u_int16_t *)(&th->th_ack + 1);
   1324 		th->th_flags = flags;
   1325 		th->th_x2 = 0;
   1326 		nv = *(u_int16_t *)(&th->th_ack + 1);
   1327 
   1328 		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
   1329 		rewrite = 1;
   1330 	}
   1331 
   1332 	/* Remove urgent pointer, if TH_URG is not set */
   1333 	if (!(flags & TH_URG) && th->th_urp) {
   1334 		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
   1335 		th->th_urp = 0;
   1336 		rewrite = 1;
   1337 	}
   1338 
   1339 	/* Process options */
   1340 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off))
   1341 		rewrite = 1;
   1342 
   1343 	/* copy back packet headers if we sanitized */
   1344 	if (rewrite)
   1345 		m_copyback(m, off, sizeof(*th), th);
   1346 
   1347 	return (PF_PASS);
   1348 
   1349  tcp_drop:
   1350 	REASON_SET(&reason, PFRES_NORM);
   1351 	if (rm != NULL && r->log)
   1352 		PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL);
   1353 	return (PF_DROP);
   1354 }
   1355 
   1356 int
   1357 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
   1358     struct tcphdr *th, struct pf_state_peer *src,
   1359     struct pf_state_peer *dst)
   1360 {
   1361 	u_int32_t tsval, tsecr;
   1362 	u_int8_t hdr[60];
   1363 	u_int8_t *opt;
   1364 
   1365 	KASSERT(src->scrub == NULL);
   1366 
   1367 	src->scrub = pool_get(&pf_state_scrub_pl, PR_NOWAIT);
   1368 	if (src->scrub == NULL)
   1369 		return (1);
   1370 	bzero(src->scrub, sizeof(*src->scrub));
   1371 
   1372 	switch (pd->af) {
   1373 #ifdef INET
   1374 	case AF_INET: {
   1375 		struct ip *h = mtod(m, struct ip *);
   1376 		src->scrub->pfss_ttl = h->ip_ttl;
   1377 		break;
   1378 	}
   1379 #endif /* INET */
   1380 #ifdef INET6
   1381 	case AF_INET6: {
   1382 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1383 		src->scrub->pfss_ttl = h->ip6_hlim;
   1384 		break;
   1385 	}
   1386 #endif /* INET6 */
   1387 	}
   1388 
   1389 
   1390 	/*
   1391 	 * All normalizations below are only begun if we see the start of
   1392 	 * the connections.  They must all set an enabled bit in pfss_flags
   1393 	 */
   1394 	if ((th->th_flags & TH_SYN) == 0)
   1395 		return (0);
   1396 
   1397 
   1398 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
   1399 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1400 		/* Diddle with TCP options */
   1401 		int hlen;
   1402 		opt = hdr + sizeof(struct tcphdr);
   1403 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1404 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1405 			switch (*opt) {
   1406 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1407 			case TCPOPT_NOP:
   1408 				opt++;
   1409 				hlen--;
   1410 				break;
   1411 			case TCPOPT_TIMESTAMP:
   1412 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1413 					src->scrub->pfss_flags |=
   1414 					    PFSS_TIMESTAMP;
   1415 					src->scrub->pfss_ts_mod =
   1416 					    htonl(arc4random());
   1417 
   1418 					/* note PFSS_PAWS not set yet */
   1419 					memcpy(&tsval, &opt[2],
   1420 					    sizeof(u_int32_t));
   1421 					memcpy(&tsecr, &opt[6],
   1422 					    sizeof(u_int32_t));
   1423 					src->scrub->pfss_tsval0 = ntohl(tsval);
   1424 					src->scrub->pfss_tsval = ntohl(tsval);
   1425 					src->scrub->pfss_tsecr = ntohl(tsecr);
   1426 					getmicrouptime(&src->scrub->pfss_last);
   1427 				}
   1428 				/* FALLTHROUGH */
   1429 			default:
   1430 				hlen -= MAX(opt[1], 2);
   1431 				opt += MAX(opt[1], 2);
   1432 				break;
   1433 			}
   1434 		}
   1435 	}
   1436 
   1437 	return (0);
   1438 }
   1439 
   1440 void
   1441 pf_normalize_tcp_cleanup(struct pf_state *state)
   1442 {
   1443 	if (state->src.scrub)
   1444 		pool_put(&pf_state_scrub_pl, state->src.scrub);
   1445 	if (state->dst.scrub)
   1446 		pool_put(&pf_state_scrub_pl, state->dst.scrub);
   1447 
   1448 	/* Someday... flush the TCP segment reassembly descriptors. */
   1449 }
   1450 
   1451 int
   1452 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
   1453     u_short *reason, struct tcphdr *th, struct pf_state *state,
   1454     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
   1455 {
   1456 	struct timeval uptime;
   1457 	u_int32_t tsval, tsecr;
   1458 	u_int tsval_from_last;
   1459 	u_int8_t hdr[60];
   1460 	u_int8_t *opt;
   1461 	int copyback = 0;
   1462 	int got_ts = 0;
   1463 
   1464 	KASSERT(src->scrub || dst->scrub);
   1465 
   1466 	/*
   1467 	 * Enforce the minimum TTL seen for this connection.  Negate a common
   1468 	 * technique to evade an intrusion detection system and confuse
   1469 	 * firewall state code.
   1470 	 */
   1471 	switch (pd->af) {
   1472 #ifdef INET
   1473 	case AF_INET: {
   1474 		if (src->scrub) {
   1475 			struct ip *h = mtod(m, struct ip *);
   1476 			if (h->ip_ttl > src->scrub->pfss_ttl)
   1477 				src->scrub->pfss_ttl = h->ip_ttl;
   1478 			h->ip_ttl = src->scrub->pfss_ttl;
   1479 		}
   1480 		break;
   1481 	}
   1482 #endif /* INET */
   1483 #ifdef INET6
   1484 	case AF_INET6: {
   1485 		if (src->scrub) {
   1486 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1487 			if (h->ip6_hlim > src->scrub->pfss_ttl)
   1488 				src->scrub->pfss_ttl = h->ip6_hlim;
   1489 			h->ip6_hlim = src->scrub->pfss_ttl;
   1490 		}
   1491 		break;
   1492 	}
   1493 #endif /* INET6 */
   1494 	}
   1495 
   1496 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
   1497 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
   1498 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
   1499 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1500 		/* Diddle with TCP options */
   1501 		int hlen;
   1502 		opt = hdr + sizeof(struct tcphdr);
   1503 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1504 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1505 			switch (*opt) {
   1506 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1507 			case TCPOPT_NOP:
   1508 				opt++;
   1509 				hlen--;
   1510 				break;
   1511 			case TCPOPT_TIMESTAMP:
   1512 				/* Modulate the timestamps.  Can be used for
   1513 				 * NAT detection, OS uptime determination or
   1514 				 * reboot detection.
   1515 				 */
   1516 
   1517 				if (got_ts) {
   1518 					/* Huh?  Multiple timestamps!? */
   1519 					if (pf_status.debug >= PF_DEBUG_MISC) {
   1520 						DPFPRINTF(("multiple TS??"));
   1521 						pf_print_state(state);
   1522 						printf("\n");
   1523 					}
   1524 					REASON_SET(reason, PFRES_TS);
   1525 					return (PF_DROP);
   1526 				}
   1527 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1528 					memcpy(&tsval, &opt[2],
   1529 					    sizeof(u_int32_t));
   1530 					if (tsval && src->scrub &&
   1531 					    (src->scrub->pfss_flags &
   1532 					    PFSS_TIMESTAMP)) {
   1533 						tsval = ntohl(tsval);
   1534 						pf_change_a(&opt[2],
   1535 						    &th->th_sum,
   1536 						    htonl(tsval +
   1537 						    src->scrub->pfss_ts_mod),
   1538 						    0);
   1539 						copyback = 1;
   1540 					}
   1541 
   1542 					/* Modulate TS reply iff valid (!0) */
   1543 					memcpy(&tsecr, &opt[6],
   1544 					    sizeof(u_int32_t));
   1545 					if (tsecr && dst->scrub &&
   1546 					    (dst->scrub->pfss_flags &
   1547 					    PFSS_TIMESTAMP)) {
   1548 						tsecr = ntohl(tsecr)
   1549 						    - dst->scrub->pfss_ts_mod;
   1550 						pf_change_a(&opt[6],
   1551 						    &th->th_sum, htonl(tsecr),
   1552 						    0);
   1553 						copyback = 1;
   1554 					}
   1555 					got_ts = 1;
   1556 				}
   1557 				/* FALLTHROUGH */
   1558 			default:
   1559 				hlen -= MAX(opt[1], 2);
   1560 				opt += MAX(opt[1], 2);
   1561 				break;
   1562 			}
   1563 		}
   1564 		if (copyback) {
   1565 			/* Copyback the options, caller copys back header */
   1566 			*writeback = 1;
   1567 			m_copyback(m, off + sizeof(struct tcphdr),
   1568 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
   1569 			    sizeof(struct tcphdr));
   1570 		}
   1571 	}
   1572 
   1573 
   1574 	/*
   1575 	 * Must invalidate PAWS checks on connections idle for too long.
   1576 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
   1577 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
   1578 	 * TS echo check only works for the first 12 days of a connection
   1579 	 * when the TS has exhausted half its 32bit space
   1580 	 */
   1581 #define TS_MAX_IDLE	(24*24*60*60)
   1582 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
   1583 
   1584 	getmicrouptime(&uptime);
   1585 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
   1586 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
   1587 	    time_second - state->creation > TS_MAX_CONN))  {
   1588 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1589 			DPFPRINTF(("src idled out of PAWS\n"));
   1590 			pf_print_state(state);
   1591 			printf("\n");
   1592 		}
   1593 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
   1594 		    | PFSS_PAWS_IDLED;
   1595 	}
   1596 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
   1597 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
   1598 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1599 			DPFPRINTF(("dst idled out of PAWS\n"));
   1600 			pf_print_state(state);
   1601 			printf("\n");
   1602 		}
   1603 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
   1604 		    | PFSS_PAWS_IDLED;
   1605 	}
   1606 
   1607 	if (got_ts && src->scrub && dst->scrub &&
   1608 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1609 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1610 		/* Validate that the timestamps are "in-window".
   1611 		 * RFC1323 describes TCP Timestamp options that allow
   1612 		 * measurement of RTT (round trip time) and PAWS
   1613 		 * (protection against wrapped sequence numbers).  PAWS
   1614 		 * gives us a set of rules for rejecting packets on
   1615 		 * long fat pipes (packets that were somehow delayed
   1616 		 * in transit longer than the time it took to send the
   1617 		 * full TCP sequence space of 4Gb).  We can use these
   1618 		 * rules and infer a few others that will let us treat
   1619 		 * the 32bit timestamp and the 32bit echoed timestamp
   1620 		 * as sequence numbers to prevent a blind attacker from
   1621 		 * inserting packets into a connection.
   1622 		 *
   1623 		 * RFC1323 tells us:
   1624 		 *  - The timestamp on this packet must be greater than
   1625 		 *    or equal to the last value echoed by the other
   1626 		 *    endpoint.  The RFC says those will be discarded
   1627 		 *    since it is a dup that has already been acked.
   1628 		 *    This gives us a lowerbound on the timestamp.
   1629 		 *        timestamp >= other last echoed timestamp
   1630 		 *  - The timestamp will be less than or equal to
   1631 		 *    the last timestamp plus the time between the
   1632 		 *    last packet and now.  The RFC defines the max
   1633 		 *    clock rate as 1ms.  We will allow clocks to be
   1634 		 *    up to 10% fast and will allow a total difference
   1635 		 *    or 30 seconds due to a route change.  And this
   1636 		 *    gives us an upperbound on the timestamp.
   1637 		 *        timestamp <= last timestamp + max ticks
   1638 		 *    We have to be careful here.  Windows will send an
   1639 		 *    initial timestamp of zero and then initialize it
   1640 		 *    to a random value after the 3whs; presumably to
   1641 		 *    avoid a DoS by having to call an expensive RNG
   1642 		 *    during a SYN flood.  Proof MS has at least one
   1643 		 *    good security geek.
   1644 		 *
   1645 		 *  - The TCP timestamp option must also echo the other
   1646 		 *    endpoints timestamp.  The timestamp echoed is the
   1647 		 *    one carried on the earliest unacknowledged segment
   1648 		 *    on the left edge of the sequence window.  The RFC
   1649 		 *    states that the host will reject any echoed
   1650 		 *    timestamps that were larger than any ever sent.
   1651 		 *    This gives us an upperbound on the TS echo.
   1652 		 *        tescr <= largest_tsval
   1653 		 *  - The lowerbound on the TS echo is a little more
   1654 		 *    tricky to determine.  The other endpoint's echoed
   1655 		 *    values will not decrease.  But there may be
   1656 		 *    network conditions that re-order packets and
   1657 		 *    cause our view of them to decrease.  For now the
   1658 		 *    only lowerbound we can safely determine is that
   1659 		 *    the TS echo will never be less than the orginal
   1660 		 *    TS.  XXX There is probably a better lowerbound.
   1661 		 *    Remove TS_MAX_CONN with better lowerbound check.
   1662 		 *        tescr >= other original TS
   1663 		 *
   1664 		 * It is also important to note that the fastest
   1665 		 * timestamp clock of 1ms will wrap its 32bit space in
   1666 		 * 24 days.  So we just disable TS checking after 24
   1667 		 * days of idle time.  We actually must use a 12d
   1668 		 * connection limit until we can come up with a better
   1669 		 * lowerbound to the TS echo check.
   1670 		 */
   1671 		struct timeval delta_ts;
   1672 		int ts_fudge;
   1673 
   1674 
   1675 		/*
   1676 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
   1677 		 * a host's timestamp.  This can happen if the previous
   1678 		 * packet got delayed in transit for much longer than
   1679 		 * this packet.
   1680 		 */
   1681 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
   1682 			ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
   1683 
   1684 
   1685 		/* Calculate max ticks since the last timestamp */
   1686 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1 kHz + 10% skew */
   1687 #define TS_MICROSECS	1000000		/* microseconds per second */
   1688 		timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
   1689 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
   1690 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
   1691 
   1692 
   1693 		if ((src->state >= TCPS_ESTABLISHED &&
   1694 		    dst->state >= TCPS_ESTABLISHED) &&
   1695 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
   1696 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
   1697 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
   1698 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
   1699 			/* Bad RFC1323 implementation or an insertion attack.
   1700 			 *
   1701 			 * - Solaris 2.6 and 2.7 are known to send another ACK
   1702 			 *   after the FIN,FIN|ACK,ACK closing that carries
   1703 			 *   an old timestamp.
   1704 			 */
   1705 
   1706 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
   1707 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
   1708 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
   1709 			    tsval_from_last) ? '1' : ' ',
   1710 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
   1711 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
   1712 			DPFPRINTF((" tsval: %" PRIu32 "  tsecr: %" PRIu32
   1713 			    "  +ticks: %" PRIu32 "  idle: %lus %lums\n",
   1714 			    tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
   1715 			    delta_ts.tv_usec / 1000));
   1716 			DPFPRINTF((" src->tsval: %" PRIu32 "  tsecr: %" PRIu32
   1717 			    "\n",
   1718 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
   1719 			DPFPRINTF((" dst->tsval: %" PRIu32 "  tsecr: %" PRIu32
   1720 			    "  tsval0: %" PRIu32 "\n",
   1721 			    dst->scrub->pfss_tsval,
   1722 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
   1723 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1724 				pf_print_state(state);
   1725 				pf_print_flags(th->th_flags);
   1726 				printf("\n");
   1727 			}
   1728 			REASON_SET(reason, PFRES_TS);
   1729 			return (PF_DROP);
   1730 		}
   1731 
   1732 		/* XXX I'd really like to require tsecr but it's optional */
   1733 
   1734 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
   1735 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
   1736 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
   1737 	    src->scrub && dst->scrub &&
   1738 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1739 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1740 		/* Didn't send a timestamp.  Timestamps aren't really useful
   1741 		 * when:
   1742 		 *  - connection opening or closing (often not even sent).
   1743 		 *    but we must not let an attacker to put a FIN on a
   1744 		 *    data packet to sneak it through our ESTABLISHED check.
   1745 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
   1746 		 *  - on an empty ACK.  The TS will not be echoed so it will
   1747 		 *    probably not help keep the RTT calculation in sync and
   1748 		 *    there isn't as much danger when the sequence numbers
   1749 		 *    got wrapped.  So some stacks don't include TS on empty
   1750 		 *    ACKs :-(
   1751 		 *
   1752 		 * To minimize the disruption to mostly RFC1323 conformant
   1753 		 * stacks, we will only require timestamps on data packets.
   1754 		 *
   1755 		 * And what do ya know, we cannot require timestamps on data
   1756 		 * packets.  There appear to be devices that do legitimate
   1757 		 * TCP connection hijacking.  There are HTTP devices that allow
   1758 		 * a 3whs (with timestamps) and then buffer the HTTP request.
   1759 		 * If the intermediate device has the HTTP response cache, it
   1760 		 * will spoof the response but not bother timestamping its
   1761 		 * packets.  So we can look for the presence of a timestamp in
   1762 		 * the first data packet and if there, require it in all future
   1763 		 * packets.
   1764 		 */
   1765 
   1766 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
   1767 			/*
   1768 			 * Hey!  Someone tried to sneak a packet in.  Or the
   1769 			 * stack changed its RFC1323 behavior?!?!
   1770 			 */
   1771 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1772 				DPFPRINTF(("Did not receive expected RFC1323 "
   1773 				    "timestamp\n"));
   1774 				pf_print_state(state);
   1775 				pf_print_flags(th->th_flags);
   1776 				printf("\n");
   1777 			}
   1778 			REASON_SET(reason, PFRES_TS);
   1779 			return (PF_DROP);
   1780 		}
   1781 	}
   1782 
   1783 
   1784 	/*
   1785 	 * We will note if a host sends his data packets with or without
   1786 	 * timestamps.  And require all data packets to contain a timestamp
   1787 	 * if the first does.  PAWS implicitly requires that all data packets be
   1788 	 * timestamped.  But I think there are middle-man devices that hijack
   1789 	 * TCP streams immedietly after the 3whs and don't timestamp their
   1790 	 * packets (seen in a WWW accelerator or cache).
   1791 	 */
   1792 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
   1793 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
   1794 		if (got_ts)
   1795 			src->scrub->pfss_flags |= PFSS_DATA_TS;
   1796 		else {
   1797 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
   1798 			if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
   1799 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
   1800 				/* Don't warn if other host rejected RFC1323 */
   1801 				DPFPRINTF(("Broken RFC1323 stack did not "
   1802 				    "timestamp data packet. Disabled PAWS "
   1803 				    "security.\n"));
   1804 				pf_print_state(state);
   1805 				pf_print_flags(th->th_flags);
   1806 				printf("\n");
   1807 			}
   1808 		}
   1809 	}
   1810 
   1811 
   1812 	/*
   1813 	 * Update PAWS values
   1814 	 */
   1815 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
   1816 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
   1817 		getmicrouptime(&src->scrub->pfss_last);
   1818 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
   1819 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1820 			src->scrub->pfss_tsval = tsval;
   1821 
   1822 		if (tsecr) {
   1823 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
   1824 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1825 				src->scrub->pfss_tsecr = tsecr;
   1826 
   1827 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
   1828 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
   1829 			    src->scrub->pfss_tsval0 == 0)) {
   1830 				/* tsval0 MUST be the lowest timestamp */
   1831 				src->scrub->pfss_tsval0 = tsval;
   1832 			}
   1833 
   1834 			/* Only fully initialized after a TS gets echoed */
   1835 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1836 				src->scrub->pfss_flags |= PFSS_PAWS;
   1837 		}
   1838 	}
   1839 
   1840 	/* I have a dream....  TCP segment reassembly.... */
   1841 	return (0);
   1842 }
   1843 
   1844 int
   1845 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
   1846     int off)
   1847 {
   1848 	u_int16_t	*mss;
   1849 	int		 thoff;
   1850 	int		 opt, cnt, optlen = 0;
   1851 	int		 rewrite = 0;
   1852 	u_char		*optp;
   1853 
   1854 	thoff = th->th_off << 2;
   1855 	cnt = thoff - sizeof(struct tcphdr);
   1856 	optp = mtod(m, u_char *) + off + sizeof(struct tcphdr);
   1857 
   1858 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
   1859 		opt = optp[0];
   1860 		if (opt == TCPOPT_EOL)
   1861 			break;
   1862 		if (opt == TCPOPT_NOP)
   1863 			optlen = 1;
   1864 		else {
   1865 			if (cnt < 2)
   1866 				break;
   1867 			optlen = optp[1];
   1868 			if (optlen < 2 || optlen > cnt)
   1869 				break;
   1870 		}
   1871 		switch (opt) {
   1872 		case TCPOPT_MAXSEG:
   1873 			mss = (u_int16_t *)(optp + 2);
   1874 			if ((ntohs(*mss)) > r->max_mss) {
   1875 				th->th_sum = pf_cksum_fixup(th->th_sum,
   1876 				    *mss, htons(r->max_mss), 0);
   1877 				*mss = htons(r->max_mss);
   1878 				rewrite = 1;
   1879 			}
   1880 			break;
   1881 		default:
   1882 			break;
   1883 		}
   1884 	}
   1885 
   1886 	return (rewrite);
   1887 }
   1888