Home | History | Annotate | Line # | Download | only in net
pf_norm.c revision 1.21
      1 /*	$NetBSD: pf_norm.c,v 1.21 2009/07/28 18:15:26 minskim Exp $	*/
      2 /*	$OpenBSD: pf_norm.c,v 1.109 2007/05/28 17:16:39 henning Exp $ */
      3 
      4 /*
      5  * Copyright 2001 Niels Provos <provos (at) citi.umich.edu>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: pf_norm.c,v 1.21 2009/07/28 18:15:26 minskim Exp $");
     31 
     32 #ifdef _KERNEL_OPT
     33 #include "opt_inet.h"
     34 #endif
     35 
     36 #include "pflog.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/mbuf.h>
     41 #include <sys/filio.h>
     42 #include <sys/fcntl.h>
     43 #include <sys/socket.h>
     44 #include <sys/kernel.h>
     45 #include <sys/time.h>
     46 #include <sys/pool.h>
     47 
     48 #ifdef __NetBSD__
     49 #include <sys/rnd.h>
     50 #else
     51 #include <dev/rndvar.h>
     52 #endif /* !__NetBSD__ */
     53 #include <net/if.h>
     54 #include <net/if_types.h>
     55 #include <net/bpf.h>
     56 #include <net/route.h>
     57 #include <net/if_pflog.h>
     58 
     59 #include <netinet/in.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/ip.h>
     63 #include <netinet/ip_var.h>
     64 #include <netinet/tcp.h>
     65 #include <netinet/tcp_seq.h>
     66 #include <netinet/udp.h>
     67 #include <netinet/ip_icmp.h>
     68 
     69 #ifdef INET6
     70 #include <netinet/ip6.h>
     71 #endif /* INET6 */
     72 
     73 #include <net/pfvar.h>
     74 
     75 struct pf_frent {
     76 	LIST_ENTRY(pf_frent) fr_next;
     77 	struct ip *fr_ip;
     78 	struct mbuf *fr_m;
     79 };
     80 
     81 struct pf_frcache {
     82 	LIST_ENTRY(pf_frcache) fr_next;
     83 	uint16_t	fr_off;
     84 	uint16_t	fr_end;
     85 };
     86 
     87 #define PFFRAG_SEENLAST	0x0001		/* Seen the last fragment for this */
     88 #define PFFRAG_NOBUFFER	0x0002		/* Non-buffering fragment cache */
     89 #define PFFRAG_DROP	0x0004		/* Drop all fragments */
     90 #define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
     91 
     92 struct pf_fragment {
     93 	RB_ENTRY(pf_fragment) fr_entry;
     94 	TAILQ_ENTRY(pf_fragment) frag_next;
     95 	struct in_addr	fr_src;
     96 	struct in_addr	fr_dst;
     97 	u_int8_t	fr_p;		/* protocol of this fragment */
     98 	u_int8_t	fr_flags;	/* status flags */
     99 	u_int16_t	fr_id;		/* fragment id for reassemble */
    100 	u_int16_t	fr_max;		/* fragment data max */
    101 	u_int32_t	fr_timeout;
    102 #define fr_queue	fr_u.fru_queue
    103 #define fr_cache	fr_u.fru_cache
    104 	union {
    105 		LIST_HEAD(pf_fragq, pf_frent) fru_queue;	/* buffering */
    106 		LIST_HEAD(pf_cacheq, pf_frcache) fru_cache;	/* non-buf */
    107 	} fr_u;
    108 };
    109 
    110 TAILQ_HEAD(pf_fragqueue, pf_fragment)	pf_fragqueue;
    111 TAILQ_HEAD(pf_cachequeue, pf_fragment)	pf_cachequeue;
    112 
    113 static __inline int	 pf_frag_compare(struct pf_fragment *,
    114 			    struct pf_fragment *);
    115 RB_HEAD(pf_frag_tree, pf_fragment)	pf_frag_tree, pf_cache_tree;
    116 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    117 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    118 
    119 /* Private prototypes */
    120 void			 pf_ip2key(struct pf_fragment *, struct ip *);
    121 void			 pf_remove_fragment(struct pf_fragment *);
    122 void			 pf_flush_fragments(void);
    123 void			 pf_free_fragment(struct pf_fragment *);
    124 struct pf_fragment	*pf_find_fragment(struct ip *, struct pf_frag_tree *);
    125 struct mbuf		*pf_reassemble(struct mbuf **, struct pf_fragment **,
    126 			    struct pf_frent *, int);
    127 struct mbuf		*pf_fragcache(struct mbuf **, struct ip*,
    128 			    struct pf_fragment **, int, int, int *);
    129 int			 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
    130 			    struct tcphdr *, int);
    131 
    132 #define	DPFPRINTF(x) do {				\
    133 	if (pf_status.debug >= PF_DEBUG_MISC) {		\
    134 		printf("%s: ", __func__);		\
    135 		printf x ;				\
    136 	}						\
    137 } while(0)
    138 
    139 /* Globals */
    140 struct pool		 pf_frent_pl, pf_frag_pl, pf_cache_pl, pf_cent_pl;
    141 struct pool		 pf_state_scrub_pl;
    142 int			 pf_nfrents, pf_ncache;
    143 
    144 void
    145 pf_normalize_init(void)
    146 {
    147 #ifdef __NetBSD__
    148 	pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
    149 	    NULL, IPL_SOFTNET);
    150 	pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
    151 	    NULL, IPL_SOFTNET);
    152 	pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
    153 	    "pffrcache", NULL, IPL_SOFTNET);
    154 	pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
    155 	    NULL, IPL_SOFTNET);
    156 	pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
    157 	    "pfstscr", NULL, IPL_SOFTNET);
    158 #else
    159 	pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
    160 	    NULL);
    161 	pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
    162 	    NULL);
    163 	pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
    164 	    "pffrcache", NULL);
    165 	pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
    166 	    NULL);
    167 	pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
    168 	    "pfstscr", NULL);
    169 #endif /* !__NetBSD__ */
    170 
    171 	pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
    172 	pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
    173 	pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
    174 	pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
    175 
    176 	TAILQ_INIT(&pf_fragqueue);
    177 	TAILQ_INIT(&pf_cachequeue);
    178 }
    179 
    180 static __inline int
    181 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
    182 {
    183 	int	diff;
    184 
    185 	if ((diff = a->fr_id - b->fr_id))
    186 		return (diff);
    187 	else if ((diff = a->fr_p - b->fr_p))
    188 		return (diff);
    189 	else if (a->fr_src.s_addr < b->fr_src.s_addr)
    190 		return (-1);
    191 	else if (a->fr_src.s_addr > b->fr_src.s_addr)
    192 		return (1);
    193 	else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
    194 		return (-1);
    195 	else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
    196 		return (1);
    197 	return (0);
    198 }
    199 
    200 void
    201 pf_purge_expired_fragments(void)
    202 {
    203 	struct pf_fragment	*frag;
    204 	u_int32_t		 expire = time_second -
    205 				    pf_default_rule.timeout[PFTM_FRAG];
    206 
    207 	while ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) != NULL) {
    208 		KASSERT(BUFFER_FRAGMENTS(frag));
    209 		if (frag->fr_timeout > expire)
    210 			break;
    211 
    212 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    213 		pf_free_fragment(frag);
    214 	}
    215 
    216 	while ((frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue)) != NULL) {
    217 		KASSERT(!BUFFER_FRAGMENTS(frag));
    218 		if (frag->fr_timeout > expire)
    219 			break;
    220 
    221 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    222 		pf_free_fragment(frag);
    223 		KASSERT(TAILQ_EMPTY(&pf_cachequeue) ||
    224 		    TAILQ_LAST(&pf_cachequeue, pf_cachequeue) != frag);
    225 	}
    226 }
    227 
    228 /*
    229  * Try to flush old fragments to make space for new ones
    230  */
    231 
    232 void
    233 pf_flush_fragments(void)
    234 {
    235 	struct pf_fragment	*frag;
    236 	int			 goal;
    237 
    238 	goal = pf_nfrents * 9 / 10;
    239 	DPFPRINTF(("trying to free > %d frents\n",
    240 	    pf_nfrents - goal));
    241 	while (goal < pf_nfrents) {
    242 		frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue);
    243 		if (frag == NULL)
    244 			break;
    245 		pf_free_fragment(frag);
    246 	}
    247 
    248 
    249 	goal = pf_ncache * 9 / 10;
    250 	DPFPRINTF(("trying to free > %d cache entries\n",
    251 	    pf_ncache - goal));
    252 	while (goal < pf_ncache) {
    253 		frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue);
    254 		if (frag == NULL)
    255 			break;
    256 		pf_free_fragment(frag);
    257 	}
    258 }
    259 
    260 /* Frees the fragments and all associated entries */
    261 
    262 void
    263 pf_free_fragment(struct pf_fragment *frag)
    264 {
    265 	struct pf_frent		*frent;
    266 	struct pf_frcache	*frcache;
    267 
    268 	/* Free all fragments */
    269 	if (BUFFER_FRAGMENTS(frag)) {
    270 		for (frent = LIST_FIRST(&frag->fr_queue); frent;
    271 		    frent = LIST_FIRST(&frag->fr_queue)) {
    272 			LIST_REMOVE(frent, fr_next);
    273 
    274 			m_freem(frent->fr_m);
    275 			pool_put(&pf_frent_pl, frent);
    276 			pf_nfrents--;
    277 		}
    278 	} else {
    279 		for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
    280 		    frcache = LIST_FIRST(&frag->fr_cache)) {
    281 			LIST_REMOVE(frcache, fr_next);
    282 
    283 			KASSERT(LIST_EMPTY(&frag->fr_cache) ||
    284 			    LIST_FIRST(&frag->fr_cache)->fr_off >
    285 			    frcache->fr_end);
    286 
    287 			pool_put(&pf_cent_pl, frcache);
    288 			pf_ncache--;
    289 		}
    290 	}
    291 
    292 	pf_remove_fragment(frag);
    293 }
    294 
    295 void
    296 pf_ip2key(struct pf_fragment *key, struct ip *ip)
    297 {
    298 	key->fr_p = ip->ip_p;
    299 	key->fr_id = ip->ip_id;
    300 	key->fr_src.s_addr = ip->ip_src.s_addr;
    301 	key->fr_dst.s_addr = ip->ip_dst.s_addr;
    302 }
    303 
    304 struct pf_fragment *
    305 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
    306 {
    307 	struct pf_fragment	 key;
    308 	struct pf_fragment	*frag;
    309 
    310 	pf_ip2key(&key, ip);
    311 
    312 	frag = RB_FIND(pf_frag_tree, tree, &key);
    313 	if (frag != NULL) {
    314 		/* XXX Are we sure we want to update the timeout? */
    315 		frag->fr_timeout = time_second;
    316 		if (BUFFER_FRAGMENTS(frag)) {
    317 			TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    318 			TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next);
    319 		} else {
    320 			TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    321 			TAILQ_INSERT_HEAD(&pf_cachequeue, frag, frag_next);
    322 		}
    323 	}
    324 
    325 	return (frag);
    326 }
    327 
    328 /* Removes a fragment from the fragment queue and frees the fragment */
    329 
    330 void
    331 pf_remove_fragment(struct pf_fragment *frag)
    332 {
    333 	if (BUFFER_FRAGMENTS(frag)) {
    334 		RB_REMOVE(pf_frag_tree, &pf_frag_tree, frag);
    335 		TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    336 		pool_put(&pf_frag_pl, frag);
    337 	} else {
    338 		RB_REMOVE(pf_frag_tree, &pf_cache_tree, frag);
    339 		TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    340 		pool_put(&pf_cache_pl, frag);
    341 	}
    342 }
    343 
    344 #define FR_IP_OFF(fr)	((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
    345 struct mbuf *
    346 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
    347     struct pf_frent *frent, int mff)
    348 {
    349 	struct mbuf	*m = *m0, *m2;
    350 	struct pf_frent	*frea, *next;
    351 	struct pf_frent	*frep = NULL;
    352 	struct ip	*ip = frent->fr_ip;
    353 	int		 hlen = ip->ip_hl << 2;
    354 	u_int16_t	 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    355 	u_int16_t	 ip_len = ntohs(ip->ip_len) - ip->ip_hl * 4;
    356 	u_int16_t	 max = ip_len + off;
    357 
    358 	KASSERT(*frag == NULL || BUFFER_FRAGMENTS(*frag));
    359 
    360 	/* Strip off ip header */
    361 	m->m_data += hlen;
    362 	m->m_len -= hlen;
    363 
    364 	/* Create a new reassembly queue for this packet */
    365 	if (*frag == NULL) {
    366 		*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    367 		if (*frag == NULL) {
    368 			pf_flush_fragments();
    369 			*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    370 			if (*frag == NULL)
    371 				goto drop_fragment;
    372 		}
    373 
    374 		(*frag)->fr_flags = 0;
    375 		(*frag)->fr_max = 0;
    376 		(*frag)->fr_src = frent->fr_ip->ip_src;
    377 		(*frag)->fr_dst = frent->fr_ip->ip_dst;
    378 		(*frag)->fr_p = frent->fr_ip->ip_p;
    379 		(*frag)->fr_id = frent->fr_ip->ip_id;
    380 		(*frag)->fr_timeout = time_second;
    381 		LIST_INIT(&(*frag)->fr_queue);
    382 
    383 		RB_INSERT(pf_frag_tree, &pf_frag_tree, *frag);
    384 		TAILQ_INSERT_HEAD(&pf_fragqueue, *frag, frag_next);
    385 
    386 		/* We do not have a previous fragment */
    387 		frep = NULL;
    388 		goto insert;
    389 	}
    390 
    391 	/*
    392 	 * Find a fragment after the current one:
    393 	 *  - off contains the real shifted offset.
    394 	 */
    395 	LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
    396 		if (FR_IP_OFF(frea) > off)
    397 			break;
    398 		frep = frea;
    399 	}
    400 
    401 	KASSERT(frep != NULL || frea != NULL);
    402 
    403 	if (frep != NULL &&
    404 	    FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl *
    405 	    4 > off)
    406 	{
    407 		u_int16_t	precut;
    408 
    409 		precut = FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) -
    410 		    frep->fr_ip->ip_hl * 4 - off;
    411 		if (precut >= ip_len)
    412 			goto drop_fragment;
    413 		m_adj(frent->fr_m, precut);
    414 		DPFPRINTF(("overlap -%d\n", precut));
    415 		/* Enforce 8 byte boundaries */
    416 		ip->ip_off = htons(ntohs(ip->ip_off) + (precut >> 3));
    417 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    418 		ip_len -= precut;
    419 		ip->ip_len = htons(ip_len);
    420 	}
    421 
    422 	for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
    423 	    frea = next)
    424 	{
    425 		u_int16_t	aftercut;
    426 
    427 		aftercut = ip_len + off - FR_IP_OFF(frea);
    428 		DPFPRINTF(("adjust overlap %d\n", aftercut));
    429 		if (aftercut < ntohs(frea->fr_ip->ip_len) - frea->fr_ip->ip_hl
    430 		    * 4)
    431 		{
    432 			frea->fr_ip->ip_len =
    433 			    htons(ntohs(frea->fr_ip->ip_len) - aftercut);
    434 			frea->fr_ip->ip_off = htons(ntohs(frea->fr_ip->ip_off) +
    435 			    (aftercut >> 3));
    436 			m_adj(frea->fr_m, aftercut);
    437 			break;
    438 		}
    439 
    440 		/* This fragment is completely overlapped, lose it */
    441 		next = LIST_NEXT(frea, fr_next);
    442 		m_freem(frea->fr_m);
    443 		LIST_REMOVE(frea, fr_next);
    444 		pool_put(&pf_frent_pl, frea);
    445 		pf_nfrents--;
    446 	}
    447 
    448  insert:
    449 	/* Update maximum data size */
    450 	if ((*frag)->fr_max < max)
    451 		(*frag)->fr_max = max;
    452 	/* This is the last segment */
    453 	if (!mff)
    454 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    455 
    456 	if (frep == NULL)
    457 		LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
    458 	else
    459 		LIST_INSERT_AFTER(frep, frent, fr_next);
    460 
    461 	/* Check if we are completely reassembled */
    462 	if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
    463 		return (NULL);
    464 
    465 	/* Check if we have all the data */
    466 	off = 0;
    467 	for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
    468 		next = LIST_NEXT(frep, fr_next);
    469 
    470 		off += ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl * 4;
    471 		if (off < (*frag)->fr_max &&
    472 		    (next == NULL || FR_IP_OFF(next) != off))
    473 		{
    474 			DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
    475 			    off, next == NULL ? -1 : FR_IP_OFF(next),
    476 			    (*frag)->fr_max));
    477 			return (NULL);
    478 		}
    479 	}
    480 	DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
    481 	if (off < (*frag)->fr_max)
    482 		return (NULL);
    483 
    484 	/* We have all the data */
    485 	frent = LIST_FIRST(&(*frag)->fr_queue);
    486 	KASSERT(frent != NULL);
    487 	if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
    488 		DPFPRINTF(("drop: too big: %d\n", off));
    489 		pf_free_fragment(*frag);
    490 		*frag = NULL;
    491 		return (NULL);
    492 	}
    493 	next = LIST_NEXT(frent, fr_next);
    494 
    495 	/* Magic from ip_input */
    496 	ip = frent->fr_ip;
    497 	m = frent->fr_m;
    498 	m2 = m->m_next;
    499 	m->m_next = NULL;
    500 	m_cat(m, m2);
    501 	pool_put(&pf_frent_pl, frent);
    502 	pf_nfrents--;
    503 	for (frent = next; frent != NULL; frent = next) {
    504 		next = LIST_NEXT(frent, fr_next);
    505 
    506 		m2 = frent->fr_m;
    507 		pool_put(&pf_frent_pl, frent);
    508 		pf_nfrents--;
    509 		m_cat(m, m2);
    510 	}
    511 
    512 	ip->ip_src = (*frag)->fr_src;
    513 	ip->ip_dst = (*frag)->fr_dst;
    514 
    515 	/* Remove from fragment queue */
    516 	pf_remove_fragment(*frag);
    517 	*frag = NULL;
    518 
    519 	hlen = ip->ip_hl << 2;
    520 	ip->ip_len = htons(off + hlen);
    521 	m->m_len += hlen;
    522 	m->m_data -= hlen;
    523 
    524 	/* some debugging cruft by sklower, below, will go away soon */
    525 	/* XXX this should be done elsewhere */
    526 	if (m->m_flags & M_PKTHDR) {
    527 		int plen = 0;
    528 		for (m2 = m; m2; m2 = m2->m_next)
    529 			plen += m2->m_len;
    530 		m->m_pkthdr.len = plen;
    531 #ifdef __NetBSD__
    532 		m->m_pkthdr.csum_flags = 0;
    533 #endif /* __NetBSD__ */
    534 	}
    535 
    536 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
    537 	return (m);
    538 
    539  drop_fragment:
    540 	/* Oops - fail safe - drop packet */
    541 	pool_put(&pf_frent_pl, frent);
    542 	pf_nfrents--;
    543 	m_freem(m);
    544 	return (NULL);
    545 }
    546 
    547 struct mbuf *
    548 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
    549     int drop, int *nomem)
    550 {
    551 	struct mbuf		*m = *m0;
    552 	struct pf_frcache	*frp, *fra, *cur = NULL;
    553 	int			 ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
    554 	u_int16_t		 off = ntohs(h->ip_off) << 3;
    555 	u_int16_t		 max = ip_len + off;
    556 	int			 hosed = 0;
    557 
    558 	KASSERT(*frag == NULL || !BUFFER_FRAGMENTS(*frag));
    559 
    560 	/* Create a new range queue for this packet */
    561 	if (*frag == NULL) {
    562 		*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    563 		if (*frag == NULL) {
    564 			pf_flush_fragments();
    565 			*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    566 			if (*frag == NULL)
    567 				goto no_mem;
    568 		}
    569 
    570 		/* Get an entry for the queue */
    571 		cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    572 		if (cur == NULL) {
    573 			pool_put(&pf_cache_pl, *frag);
    574 			*frag = NULL;
    575 			goto no_mem;
    576 		}
    577 		pf_ncache++;
    578 
    579 		(*frag)->fr_flags = PFFRAG_NOBUFFER;
    580 		(*frag)->fr_max = 0;
    581 		(*frag)->fr_src = h->ip_src;
    582 		(*frag)->fr_dst = h->ip_dst;
    583 		(*frag)->fr_p = h->ip_p;
    584 		(*frag)->fr_id = h->ip_id;
    585 		(*frag)->fr_timeout = time_second;
    586 
    587 		cur->fr_off = off;
    588 		cur->fr_end = max;
    589 		LIST_INIT(&(*frag)->fr_cache);
    590 		LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
    591 
    592 		RB_INSERT(pf_frag_tree, &pf_cache_tree, *frag);
    593 		TAILQ_INSERT_HEAD(&pf_cachequeue, *frag, frag_next);
    594 
    595 		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
    596 
    597 		goto pass;
    598 	}
    599 
    600 	/*
    601 	 * Find a fragment after the current one:
    602 	 *  - off contains the real shifted offset.
    603 	 */
    604 	frp = NULL;
    605 	LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
    606 		if (fra->fr_off > off)
    607 			break;
    608 		frp = fra;
    609 	}
    610 
    611 	KASSERT(frp != NULL || fra != NULL);
    612 
    613 	if (frp != NULL) {
    614 		int	precut;
    615 
    616 		precut = frp->fr_end - off;
    617 		if (precut >= ip_len) {
    618 			/* Fragment is entirely a duplicate */
    619 			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
    620 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
    621 			goto drop_fragment;
    622 		}
    623 		if (precut == 0) {
    624 			/* They are adjacent.  Fixup cache entry */
    625 			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
    626 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
    627 			frp->fr_end = max;
    628 		} else if (precut > 0) {
    629 			/* The first part of this payload overlaps with a
    630 			 * fragment that has already been passed.
    631 			 * Need to trim off the first part of the payload.
    632 			 * But to do so easily, we need to create another
    633 			 * mbuf to throw the original header into.
    634 			 */
    635 
    636 			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
    637 			    h->ip_id, precut, frp->fr_off, frp->fr_end, off,
    638 			    max));
    639 
    640 			off += precut;
    641 			max -= precut;
    642 			/* Update the previous frag to encompass this one */
    643 			frp->fr_end = max;
    644 
    645 			if (!drop) {
    646 				/* XXX Optimization opportunity
    647 				 * This is a very heavy way to trim the payload.
    648 				 * we could do it much faster by diddling mbuf
    649 				 * internals but that would be even less legible
    650 				 * than this mbuf magic.  For my next trick,
    651 				 * I'll pull a rabbit out of my laptop.
    652 				 */
    653 				*m0 = m_dup(m, 0, h->ip_hl << 2, M_NOWAIT);
    654 				if (*m0 == NULL)
    655 					goto no_mem;
    656 				KASSERT((*m0)->m_next == NULL);
    657 				m_adj(m, precut + (h->ip_hl << 2));
    658 				m_cat(*m0, m);
    659 				m = *m0;
    660 				if (m->m_flags & M_PKTHDR) {
    661 					int plen = 0;
    662 					struct mbuf *t;
    663 					for (t = m; t; t = t->m_next)
    664 						plen += t->m_len;
    665 					m->m_pkthdr.len = plen;
    666 				}
    667 
    668 
    669 				h = mtod(m, struct ip *);
    670 
    671 
    672 				KASSERT((int)m->m_len ==
    673 				    ntohs(h->ip_len) - precut);
    674 				h->ip_off = htons(ntohs(h->ip_off) +
    675 				    (precut >> 3));
    676 				h->ip_len = htons(ntohs(h->ip_len) - precut);
    677 			} else {
    678 				hosed++;
    679 			}
    680 		} else {
    681 			/* There is a gap between fragments */
    682 
    683 			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
    684 			    h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
    685 			    max));
    686 
    687 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    688 			if (cur == NULL)
    689 				goto no_mem;
    690 			pf_ncache++;
    691 
    692 			cur->fr_off = off;
    693 			cur->fr_end = max;
    694 			LIST_INSERT_AFTER(frp, cur, fr_next);
    695 		}
    696 	}
    697 
    698 	if (fra != NULL) {
    699 		int	aftercut;
    700 		int	merge = 0;
    701 
    702 		aftercut = max - fra->fr_off;
    703 		if (aftercut == 0) {
    704 			/* Adjacent fragments */
    705 			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
    706 			    h->ip_id, off, max, fra->fr_off, fra->fr_end));
    707 			fra->fr_off = off;
    708 			merge = 1;
    709 		} else if (aftercut > 0) {
    710 			/* Need to chop off the tail of this fragment */
    711 			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
    712 			    h->ip_id, aftercut, off, max, fra->fr_off,
    713 			    fra->fr_end));
    714 			fra->fr_off = off;
    715 			max -= aftercut;
    716 
    717 			merge = 1;
    718 
    719 			if (!drop) {
    720 				m_adj(m, -aftercut);
    721 				if (m->m_flags & M_PKTHDR) {
    722 					int plen = 0;
    723 					struct mbuf *t;
    724 					for (t = m; t; t = t->m_next)
    725 						plen += t->m_len;
    726 					m->m_pkthdr.len = plen;
    727 				}
    728 				h = mtod(m, struct ip *);
    729 				KASSERT((int)m->m_len ==
    730 				    ntohs(h->ip_len) - aftercut);
    731 				h->ip_len = htons(ntohs(h->ip_len) - aftercut);
    732 			} else {
    733 				hosed++;
    734 			}
    735 		} else if (frp == NULL) {
    736 			/* There is a gap between fragments */
    737 			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
    738 			    h->ip_id, -aftercut, off, max, fra->fr_off,
    739 			    fra->fr_end));
    740 
    741 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    742 			if (cur == NULL)
    743 				goto no_mem;
    744 			pf_ncache++;
    745 
    746 			cur->fr_off = off;
    747 			cur->fr_end = max;
    748 			LIST_INSERT_BEFORE(fra, cur, fr_next);
    749 		}
    750 
    751 
    752 		/* Need to glue together two separate fragment descriptors */
    753 		if (merge) {
    754 			if (cur && fra->fr_off <= cur->fr_end) {
    755 				/* Need to merge in a previous 'cur' */
    756 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    757 				    "%d-%d) %d-%d (%d-%d)\n",
    758 				    h->ip_id, cur->fr_off, cur->fr_end, off,
    759 				    max, fra->fr_off, fra->fr_end));
    760 				fra->fr_off = cur->fr_off;
    761 				LIST_REMOVE(cur, fr_next);
    762 				pool_put(&pf_cent_pl, cur);
    763 				pf_ncache--;
    764 				cur = NULL;
    765 
    766 			} else if (frp && fra->fr_off <= frp->fr_end) {
    767 				/* Need to merge in a modified 'frp' */
    768 				KASSERT(cur == NULL);
    769 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    770 				    "%d-%d) %d-%d (%d-%d)\n",
    771 				    h->ip_id, frp->fr_off, frp->fr_end, off,
    772 				    max, fra->fr_off, fra->fr_end));
    773 				fra->fr_off = frp->fr_off;
    774 				LIST_REMOVE(frp, fr_next);
    775 				pool_put(&pf_cent_pl, frp);
    776 				pf_ncache--;
    777 				frp = NULL;
    778 
    779 			}
    780 		}
    781 	}
    782 
    783 	if (hosed) {
    784 		/*
    785 		 * We must keep tracking the overall fragment even when
    786 		 * we're going to drop it anyway so that we know when to
    787 		 * free the overall descriptor.  Thus we drop the frag late.
    788 		 */
    789 		goto drop_fragment;
    790 	}
    791 
    792 
    793  pass:
    794 	/* Update maximum data size */
    795 	if ((*frag)->fr_max < max)
    796 		(*frag)->fr_max = max;
    797 
    798 	/* This is the last segment */
    799 	if (!mff)
    800 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    801 
    802 	/* Check if we are completely reassembled */
    803 	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
    804 	    LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
    805 	    LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
    806 		/* Remove from fragment queue */
    807 		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
    808 		    (*frag)->fr_max));
    809 		pf_free_fragment(*frag);
    810 		*frag = NULL;
    811 	}
    812 
    813 	return (m);
    814 
    815  no_mem:
    816 	*nomem = 1;
    817 
    818 	/* Still need to pay attention to !IP_MF */
    819 	if (!mff && *frag != NULL)
    820 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    821 
    822 	m_freem(m);
    823 	return (NULL);
    824 
    825  drop_fragment:
    826 
    827 	/* Still need to pay attention to !IP_MF */
    828 	if (!mff && *frag != NULL)
    829 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    830 
    831 	if (drop) {
    832 		/* This fragment has been deemed bad.  Don't reass */
    833 		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
    834 			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
    835 			    h->ip_id));
    836 		(*frag)->fr_flags |= PFFRAG_DROP;
    837 	}
    838 
    839 	m_freem(m);
    840 	return (NULL);
    841 }
    842 
    843 int
    844 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
    845     struct pf_pdesc *pd)
    846 {
    847 	struct mbuf		*m = *m0;
    848 	struct pf_rule		*r;
    849 	struct pf_frent		*frent;
    850 	struct pf_fragment	*frag = NULL;
    851 	struct ip		*h = mtod(m, struct ip *);
    852 	int			 mff = (ntohs(h->ip_off) & IP_MF);
    853 	int			 hlen = h->ip_hl << 2;
    854 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
    855 	u_int16_t		 max;
    856 	int			 ip_len;
    857 	int			 ip_off;
    858 
    859 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
    860 	while (r != NULL) {
    861 		r->evaluations++;
    862 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
    863 			r = r->skip[PF_SKIP_IFP].ptr;
    864 		else if (r->direction && r->direction != dir)
    865 			r = r->skip[PF_SKIP_DIR].ptr;
    866 		else if (r->af && r->af != AF_INET)
    867 			r = r->skip[PF_SKIP_AF].ptr;
    868 		else if (r->proto && r->proto != h->ip_p)
    869 			r = r->skip[PF_SKIP_PROTO].ptr;
    870 		else if (PF_MISMATCHAW(&r->src.addr,
    871 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
    872 		    r->src.neg, kif))
    873 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
    874 		else if (PF_MISMATCHAW(&r->dst.addr,
    875 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
    876 		    r->dst.neg, NULL))
    877 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
    878 		else
    879 			break;
    880 	}
    881 
    882 	if (r == NULL || r->action == PF_NOSCRUB)
    883 		return (PF_PASS);
    884 	else {
    885 		r->packets[dir == PF_OUT]++;
    886 		r->bytes[dir == PF_OUT] += pd->tot_len;
    887 	}
    888 
    889 	/* Check for illegal packets */
    890 	if (hlen < (int)sizeof(struct ip))
    891 		goto drop;
    892 
    893 	if (hlen > ntohs(h->ip_len))
    894 		goto drop;
    895 
    896 	/* Clear IP_DF if the rule uses the no-df option */
    897 	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
    898 		u_int16_t ip_off = h->ip_off;
    899 
    900 		h->ip_off &= htons(~IP_DF);
    901 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
    902 	}
    903 
    904 	/* We will need other tests here */
    905 	if (!fragoff && !mff)
    906 		goto no_fragment;
    907 
    908 	/* We're dealing with a fragment now. Don't allow fragments
    909 	 * with IP_DF to enter the cache. If the flag was cleared by
    910 	 * no-df above, fine. Otherwise drop it.
    911 	 */
    912 	if (h->ip_off & htons(IP_DF)) {
    913 		DPFPRINTF(("IP_DF\n"));
    914 		goto bad;
    915 	}
    916 
    917 	ip_len = ntohs(h->ip_len) - hlen;
    918 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
    919 
    920 	/* All fragments are 8 byte aligned */
    921 	if (mff && (ip_len & 0x7)) {
    922 		DPFPRINTF(("mff and %d\n", ip_len));
    923 		goto bad;
    924 	}
    925 
    926 	/* Respect maximum length */
    927 	if (fragoff + ip_len > IP_MAXPACKET) {
    928 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
    929 		goto bad;
    930 	}
    931 	max = fragoff + ip_len;
    932 
    933 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
    934 		/* Fully buffer all of the fragments */
    935 
    936 		frag = pf_find_fragment(h, &pf_frag_tree);
    937 
    938 		/* Check if we saw the last fragment already */
    939 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    940 		    max > frag->fr_max)
    941 			goto bad;
    942 
    943 		/* Get an entry for the fragment queue */
    944 		frent = pool_get(&pf_frent_pl, PR_NOWAIT);
    945 		if (frent == NULL) {
    946 			REASON_SET(reason, PFRES_MEMORY);
    947 			return (PF_DROP);
    948 		}
    949 		pf_nfrents++;
    950 		frent->fr_ip = h;
    951 		frent->fr_m = m;
    952 
    953 		/* Might return a completely reassembled mbuf, or NULL */
    954 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
    955 		*m0 = m = pf_reassemble(m0, &frag, frent, mff);
    956 
    957 		if (m == NULL)
    958 			return (PF_DROP);
    959 
    960 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
    961 			goto drop;
    962 
    963 		h = mtod(m, struct ip *);
    964 	} else {
    965 		/* non-buffering fragment cache (drops or masks overlaps) */
    966 		int	nomem = 0;
    967 
    968 #ifdef __NetBSD__
    969 		struct pf_mtag *pf_mtag = pf_find_mtag(m);
    970 		KASSERT(pf_mtag != NULL);
    971 
    972 		if (dir == PF_OUT && pf_mtag->flags & PF_TAG_FRAGCACHE) {
    973 #else
    974 		if (dir == PF_OUT && m->m_pkthdr.pf.flags & PF_TAG_FRAGCACHE) {
    975 #endif /* !__NetBSD__ */
    976 			/*
    977 			 * Already passed the fragment cache in the
    978 			 * input direction.  If we continued, it would
    979 			 * appear to be a dup and would be dropped.
    980 			 */
    981 			goto fragment_pass;
    982 		}
    983 
    984 		frag = pf_find_fragment(h, &pf_cache_tree);
    985 
    986 		/* Check if we saw the last fragment already */
    987 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    988 		    max > frag->fr_max) {
    989 			if (r->rule_flag & PFRULE_FRAGDROP)
    990 				frag->fr_flags |= PFFRAG_DROP;
    991 			goto bad;
    992 		}
    993 
    994 		*m0 = m = pf_fragcache(m0, h, &frag, mff,
    995 		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
    996 		if (m == NULL) {
    997 			if (nomem)
    998 				goto no_mem;
    999 			goto drop;
   1000 		}
   1001 
   1002 		if (dir == PF_IN)
   1003 #ifdef __NetBSD__
   1004 			pf_mtag = pf_find_mtag(m);
   1005 			KASSERT(pf_mtag != NULL);
   1006 
   1007 			pf_mtag->flags |= PF_TAG_FRAGCACHE;
   1008 #else
   1009 			m->m_pkthdr.pf.flags |= PF_TAG_FRAGCACHE;
   1010 #endif /* !__NetBSD__ */
   1011 
   1012 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
   1013 			goto drop;
   1014 		goto fragment_pass;
   1015 	}
   1016 
   1017  no_fragment:
   1018 	/* At this point, only IP_DF is allowed in ip_off */
   1019 	if (h->ip_off & ~htons(IP_DF)) {
   1020 		u_int16_t ip_off = h->ip_off;
   1021 
   1022 		h->ip_off &= htons(IP_DF);
   1023 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
   1024 	}
   1025 
   1026 	/* Enforce a minimum ttl, may cause endless packet loops */
   1027 	if (r->min_ttl && h->ip_ttl < r->min_ttl) {
   1028 		u_int16_t ip_ttl = h->ip_ttl;
   1029 
   1030 		h->ip_ttl = r->min_ttl;
   1031 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
   1032 	}
   1033 
   1034 	if (r->rule_flag & PFRULE_RANDOMID) {
   1035 		u_int16_t ip_id = h->ip_id;
   1036 
   1037 		h->ip_id = ip_randomid(0);
   1038 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
   1039 	}
   1040 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
   1041 		pd->flags |= PFDESC_IP_REAS;
   1042 
   1043 	return (PF_PASS);
   1044 
   1045  fragment_pass:
   1046 	/* Enforce a minimum ttl, may cause endless packet loops */
   1047 	if (r->min_ttl && h->ip_ttl < r->min_ttl) {
   1048 		u_int16_t ip_ttl = h->ip_ttl;
   1049 
   1050 		h->ip_ttl = r->min_ttl;
   1051 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
   1052 	}
   1053 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
   1054 		pd->flags |= PFDESC_IP_REAS;
   1055 	return (PF_PASS);
   1056 
   1057  no_mem:
   1058 	REASON_SET(reason, PFRES_MEMORY);
   1059 	if (r != NULL && r->log)
   1060 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
   1061 	return (PF_DROP);
   1062 
   1063  drop:
   1064 	REASON_SET(reason, PFRES_NORM);
   1065 	if (r != NULL && r->log)
   1066 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
   1067 	return (PF_DROP);
   1068 
   1069  bad:
   1070 	DPFPRINTF(("dropping bad fragment\n"));
   1071 
   1072 	/* Free associated fragments */
   1073 	if (frag != NULL)
   1074 		pf_free_fragment(frag);
   1075 
   1076 	REASON_SET(reason, PFRES_FRAG);
   1077 	if (r != NULL && r->log)
   1078 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
   1079 
   1080 	return (PF_DROP);
   1081 }
   1082 
   1083 #ifdef INET6
   1084 int
   1085 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
   1086     u_short *reason, struct pf_pdesc *pd)
   1087 {
   1088 	struct mbuf		*m = *m0;
   1089 	struct pf_rule		*r;
   1090 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
   1091 	int			 off;
   1092 	struct ip6_ext		 ext;
   1093 	struct ip6_opt		 opt;
   1094 	struct ip6_opt_jumbo	 jumbo;
   1095 	struct ip6_frag		 frag;
   1096 	u_int32_t		 jumbolen = 0, plen;
   1097 	u_int16_t		 fragoff = 0;
   1098 	int			 optend;
   1099 	int			 ooff;
   1100 	u_int8_t		 proto;
   1101 	int			 terminal;
   1102 
   1103 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1104 	while (r != NULL) {
   1105 		r->evaluations++;
   1106 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
   1107 			r = r->skip[PF_SKIP_IFP].ptr;
   1108 		else if (r->direction && r->direction != dir)
   1109 			r = r->skip[PF_SKIP_DIR].ptr;
   1110 		else if (r->af && r->af != AF_INET6)
   1111 			r = r->skip[PF_SKIP_AF].ptr;
   1112 #if 0 /* header chain! */
   1113 		else if (r->proto && r->proto != h->ip6_nxt)
   1114 			r = r->skip[PF_SKIP_PROTO].ptr;
   1115 #endif
   1116 		else if (PF_MISMATCHAW(&r->src.addr,
   1117 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
   1118 		    r->src.neg, kif))
   1119 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1120 		else if (PF_MISMATCHAW(&r->dst.addr,
   1121 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
   1122 		    r->dst.neg, NULL))
   1123 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1124 		else
   1125 			break;
   1126 	}
   1127 
   1128 	if (r == NULL || r->action == PF_NOSCRUB)
   1129 		return (PF_PASS);
   1130 	else {
   1131 		r->packets[dir == PF_OUT]++;
   1132 		r->bytes[dir == PF_OUT] += pd->tot_len;
   1133 	}
   1134 
   1135 	/* Check for illegal packets */
   1136 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
   1137 		goto drop;
   1138 
   1139 	off = sizeof(struct ip6_hdr);
   1140 	proto = h->ip6_nxt;
   1141 	terminal = 0;
   1142 	do {
   1143 		switch (proto) {
   1144 		case IPPROTO_FRAGMENT:
   1145 			goto fragment;
   1146 			break;
   1147 		case IPPROTO_AH:
   1148 		case IPPROTO_ROUTING:
   1149 		case IPPROTO_DSTOPTS:
   1150 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1151 			    NULL, AF_INET6))
   1152 				goto shortpkt;
   1153 			if (proto == IPPROTO_AH)
   1154 				off += (ext.ip6e_len + 2) * 4;
   1155 			else
   1156 				off += (ext.ip6e_len + 1) * 8;
   1157 			proto = ext.ip6e_nxt;
   1158 			break;
   1159 		case IPPROTO_HOPOPTS:
   1160 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1161 			    NULL, AF_INET6))
   1162 				goto shortpkt;
   1163 			optend = off + (ext.ip6e_len + 1) * 8;
   1164 			ooff = off + sizeof(ext);
   1165 			do {
   1166 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
   1167 				    sizeof(opt.ip6o_type), NULL, NULL,
   1168 				    AF_INET6))
   1169 					goto shortpkt;
   1170 				if (opt.ip6o_type == IP6OPT_PAD1) {
   1171 					ooff++;
   1172 					continue;
   1173 				}
   1174 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
   1175 				    NULL, NULL, AF_INET6))
   1176 					goto shortpkt;
   1177 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
   1178 					goto drop;
   1179 				switch (opt.ip6o_type) {
   1180 				case IP6OPT_JUMBO:
   1181 					if (h->ip6_plen != 0)
   1182 						goto drop;
   1183 					if (!pf_pull_hdr(m, ooff, &jumbo,
   1184 					    sizeof(jumbo), NULL, NULL,
   1185 					    AF_INET6))
   1186 						goto shortpkt;
   1187 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
   1188 					    sizeof(jumbolen));
   1189 					jumbolen = ntohl(jumbolen);
   1190 					if (jumbolen <= IPV6_MAXPACKET)
   1191 						goto drop;
   1192 					if (sizeof(struct ip6_hdr) + jumbolen !=
   1193 					    m->m_pkthdr.len)
   1194 						goto drop;
   1195 					break;
   1196 				default:
   1197 					break;
   1198 				}
   1199 				ooff += sizeof(opt) + opt.ip6o_len;
   1200 			} while (ooff < optend);
   1201 
   1202 			off = optend;
   1203 			proto = ext.ip6e_nxt;
   1204 			break;
   1205 		default:
   1206 			terminal = 1;
   1207 			break;
   1208 		}
   1209 	} while (!terminal);
   1210 
   1211 	/* jumbo payload option must be present, or plen > 0 */
   1212 	if (ntohs(h->ip6_plen) == 0)
   1213 		plen = jumbolen;
   1214 	else
   1215 		plen = ntohs(h->ip6_plen);
   1216 	if (plen == 0)
   1217 		goto drop;
   1218 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
   1219 		goto shortpkt;
   1220 
   1221 	/* Enforce a minimum ttl, may cause endless packet loops */
   1222 	if (r->min_ttl && h->ip6_hlim < r->min_ttl)
   1223 		h->ip6_hlim = r->min_ttl;
   1224 
   1225 	return (PF_PASS);
   1226 
   1227  fragment:
   1228 	if (ntohs(h->ip6_plen) == 0 || jumbolen)
   1229 		goto drop;
   1230 	plen = ntohs(h->ip6_plen);
   1231 
   1232 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
   1233 		goto shortpkt;
   1234 	fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
   1235 	if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
   1236 		goto badfrag;
   1237 
   1238 	/* do something about it */
   1239 	/* remember to set pd->flags |= PFDESC_IP_REAS */
   1240 	return (PF_PASS);
   1241 
   1242  shortpkt:
   1243 	REASON_SET(reason, PFRES_SHORT);
   1244 	if (r != NULL && r->log)
   1245 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
   1246 	return (PF_DROP);
   1247 
   1248  drop:
   1249 	REASON_SET(reason, PFRES_NORM);
   1250 	if (r != NULL && r->log)
   1251 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
   1252 	return (PF_DROP);
   1253 
   1254  badfrag:
   1255 	REASON_SET(reason, PFRES_FRAG);
   1256 	if (r != NULL && r->log)
   1257 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
   1258 	return (PF_DROP);
   1259 }
   1260 #endif /* INET6 */
   1261 
   1262 int
   1263 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m,
   1264     int ipoff, int off, void *h, struct pf_pdesc *pd)
   1265 {
   1266 	struct pf_rule	*r, *rm = NULL;
   1267 	struct tcphdr	*th = pd->hdr.tcp;
   1268 	int		 rewrite = 0;
   1269 	u_short		 reason;
   1270 	u_int8_t	 flags;
   1271 	sa_family_t	 af = pd->af;
   1272 
   1273 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1274 	while (r != NULL) {
   1275 		r->evaluations++;
   1276 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
   1277 			r = r->skip[PF_SKIP_IFP].ptr;
   1278 		else if (r->direction && r->direction != dir)
   1279 			r = r->skip[PF_SKIP_DIR].ptr;
   1280 		else if (r->af && r->af != af)
   1281 			r = r->skip[PF_SKIP_AF].ptr;
   1282 		else if (r->proto && r->proto != pd->proto)
   1283 			r = r->skip[PF_SKIP_PROTO].ptr;
   1284 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
   1285 		    r->src.neg, kif))
   1286 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1287 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
   1288 			    r->src.port[0], r->src.port[1], th->th_sport))
   1289 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
   1290 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
   1291 		    r->dst.neg, NULL))
   1292 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1293 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
   1294 			    r->dst.port[0], r->dst.port[1], th->th_dport))
   1295 			r = r->skip[PF_SKIP_DST_PORT].ptr;
   1296 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
   1297 			    pf_osfp_fingerprint(pd, m, off, th),
   1298 			    r->os_fingerprint))
   1299 			r = TAILQ_NEXT(r, entries);
   1300 		else {
   1301 			rm = r;
   1302 			break;
   1303 		}
   1304 	}
   1305 
   1306 	if (rm == NULL || rm->action == PF_NOSCRUB)
   1307 		return (PF_PASS);
   1308 	else {
   1309 		r->packets[dir == PF_OUT]++;
   1310 		r->bytes[dir == PF_OUT] += pd->tot_len;
   1311 	}
   1312 
   1313 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
   1314 		pd->flags |= PFDESC_TCP_NORM;
   1315 
   1316 	flags = th->th_flags;
   1317 	if (flags & TH_SYN) {
   1318 		/* Illegal packet */
   1319 		if (flags & TH_RST)
   1320 			goto tcp_drop;
   1321 
   1322 		if (flags & TH_FIN)
   1323 			flags &= ~TH_FIN;
   1324 	} else {
   1325 		/* Illegal packet */
   1326 		if (!(flags & (TH_ACK|TH_RST)))
   1327 			goto tcp_drop;
   1328 	}
   1329 
   1330 	if (!(flags & TH_ACK)) {
   1331 		/* These flags are only valid if ACK is set */
   1332 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
   1333 			goto tcp_drop;
   1334 	}
   1335 
   1336 	/* Check for illegal header length */
   1337 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
   1338 		goto tcp_drop;
   1339 
   1340 	/* If flags changed, or reserved data set, then adjust */
   1341 	if (flags != th->th_flags || th->th_x2 != 0) {
   1342 		u_int16_t	ov, nv;
   1343 
   1344 		ov = *(u_int16_t *)(&th->th_ack + 1);
   1345 		th->th_flags = flags;
   1346 		th->th_x2 = 0;
   1347 		nv = *(u_int16_t *)(&th->th_ack + 1);
   1348 
   1349 		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
   1350 		rewrite = 1;
   1351 	}
   1352 
   1353 	/* Remove urgent pointer, if TH_URG is not set */
   1354 	if (!(flags & TH_URG) && th->th_urp) {
   1355 		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
   1356 		th->th_urp = 0;
   1357 		rewrite = 1;
   1358 	}
   1359 
   1360 	/* Process options */
   1361 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off))
   1362 		rewrite = 1;
   1363 
   1364 	/* copy back packet headers if we sanitized */
   1365 	if (rewrite)
   1366 		m_copyback(m, off, sizeof(*th), th);
   1367 
   1368 	return (PF_PASS);
   1369 
   1370  tcp_drop:
   1371 	REASON_SET(&reason, PFRES_NORM);
   1372 	if (rm != NULL && r->log)
   1373 		PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL, pd);
   1374 	return (PF_DROP);
   1375 }
   1376 
   1377 int
   1378 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
   1379     struct tcphdr *th, struct pf_state_peer *src,
   1380     struct pf_state_peer *dst)
   1381 {
   1382 	u_int32_t tsval, tsecr;
   1383 	u_int8_t hdr[60];
   1384 	u_int8_t *opt;
   1385 
   1386 	KASSERT(src->scrub == NULL);
   1387 
   1388 	src->scrub = pool_get(&pf_state_scrub_pl, PR_NOWAIT);
   1389 	if (src->scrub == NULL)
   1390 		return (1);
   1391 	bzero(src->scrub, sizeof(*src->scrub));
   1392 
   1393 	switch (pd->af) {
   1394 #ifdef INET
   1395 	case AF_INET: {
   1396 		struct ip *h = mtod(m, struct ip *);
   1397 		src->scrub->pfss_ttl = h->ip_ttl;
   1398 		break;
   1399 	}
   1400 #endif /* INET */
   1401 #ifdef INET6
   1402 	case AF_INET6: {
   1403 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1404 		src->scrub->pfss_ttl = h->ip6_hlim;
   1405 		break;
   1406 	}
   1407 #endif /* INET6 */
   1408 	}
   1409 
   1410 
   1411 	/*
   1412 	 * All normalizations below are only begun if we see the start of
   1413 	 * the connections.  They must all set an enabled bit in pfss_flags
   1414 	 */
   1415 	if ((th->th_flags & TH_SYN) == 0)
   1416 		return (0);
   1417 
   1418 
   1419 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
   1420 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1421 		/* Diddle with TCP options */
   1422 		int hlen;
   1423 		opt = hdr + sizeof(struct tcphdr);
   1424 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1425 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1426 			switch (*opt) {
   1427 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1428 			case TCPOPT_NOP:
   1429 				opt++;
   1430 				hlen--;
   1431 				break;
   1432 			case TCPOPT_TIMESTAMP:
   1433 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1434 					src->scrub->pfss_flags |=
   1435 					    PFSS_TIMESTAMP;
   1436 					src->scrub->pfss_ts_mod =
   1437 					    htonl(arc4random());
   1438 
   1439 					/* note PFSS_PAWS not set yet */
   1440 					memcpy(&tsval, &opt[2],
   1441 					    sizeof(u_int32_t));
   1442 					memcpy(&tsecr, &opt[6],
   1443 					    sizeof(u_int32_t));
   1444 					src->scrub->pfss_tsval0 = ntohl(tsval);
   1445 					src->scrub->pfss_tsval = ntohl(tsval);
   1446 					src->scrub->pfss_tsecr = ntohl(tsecr);
   1447 					getmicrouptime(&src->scrub->pfss_last);
   1448 				}
   1449 				/* FALLTHROUGH */
   1450 			default:
   1451 				hlen -= MAX(opt[1], 2);
   1452 				opt += MAX(opt[1], 2);
   1453 				break;
   1454 			}
   1455 		}
   1456 	}
   1457 
   1458 	return (0);
   1459 }
   1460 
   1461 void
   1462 pf_normalize_tcp_cleanup(struct pf_state *state)
   1463 {
   1464 	if (state->src.scrub)
   1465 		pool_put(&pf_state_scrub_pl, state->src.scrub);
   1466 	if (state->dst.scrub)
   1467 		pool_put(&pf_state_scrub_pl, state->dst.scrub);
   1468 
   1469 	/* Someday... flush the TCP segment reassembly descriptors. */
   1470 }
   1471 
   1472 int
   1473 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
   1474     u_short *reason, struct tcphdr *th, struct pf_state *state,
   1475     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
   1476 {
   1477 	struct timeval uptime;
   1478 	u_int32_t tsval, tsecr;
   1479 	u_int tsval_from_last;
   1480 	u_int8_t hdr[60];
   1481 	u_int8_t *opt;
   1482 	int copyback = 0;
   1483 	int got_ts = 0;
   1484 
   1485 	KASSERT(src->scrub || dst->scrub);
   1486 
   1487 	/*
   1488 	 * Enforce the minimum TTL seen for this connection.  Negate a common
   1489 	 * technique to evade an intrusion detection system and confuse
   1490 	 * firewall state code.
   1491 	 */
   1492 	switch (pd->af) {
   1493 #ifdef INET
   1494 	case AF_INET: {
   1495 		if (src->scrub) {
   1496 			struct ip *h = mtod(m, struct ip *);
   1497 			if (h->ip_ttl > src->scrub->pfss_ttl)
   1498 				src->scrub->pfss_ttl = h->ip_ttl;
   1499 			h->ip_ttl = src->scrub->pfss_ttl;
   1500 		}
   1501 		break;
   1502 	}
   1503 #endif /* INET */
   1504 #ifdef INET6
   1505 	case AF_INET6: {
   1506 		if (src->scrub) {
   1507 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1508 			if (h->ip6_hlim > src->scrub->pfss_ttl)
   1509 				src->scrub->pfss_ttl = h->ip6_hlim;
   1510 			h->ip6_hlim = src->scrub->pfss_ttl;
   1511 		}
   1512 		break;
   1513 	}
   1514 #endif /* INET6 */
   1515 	}
   1516 
   1517 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
   1518 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
   1519 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
   1520 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1521 		/* Diddle with TCP options */
   1522 		int hlen;
   1523 		opt = hdr + sizeof(struct tcphdr);
   1524 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1525 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1526 			switch (*opt) {
   1527 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1528 			case TCPOPT_NOP:
   1529 				opt++;
   1530 				hlen--;
   1531 				break;
   1532 			case TCPOPT_TIMESTAMP:
   1533 				/* Modulate the timestamps.  Can be used for
   1534 				 * NAT detection, OS uptime determination or
   1535 				 * reboot detection.
   1536 				 */
   1537 
   1538 				if (got_ts) {
   1539 					/* Huh?  Multiple timestamps!? */
   1540 					if (pf_status.debug >= PF_DEBUG_MISC) {
   1541 						DPFPRINTF(("multiple TS??"));
   1542 						pf_print_state(state);
   1543 						printf("\n");
   1544 					}
   1545 					REASON_SET(reason, PFRES_TS);
   1546 					return (PF_DROP);
   1547 				}
   1548 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1549 					memcpy(&tsval, &opt[2],
   1550 					    sizeof(u_int32_t));
   1551 					if (tsval && src->scrub &&
   1552 					    (src->scrub->pfss_flags &
   1553 					    PFSS_TIMESTAMP)) {
   1554 						tsval = ntohl(tsval);
   1555 						pf_change_a(&opt[2],
   1556 						    &th->th_sum,
   1557 						    htonl(tsval +
   1558 						    src->scrub->pfss_ts_mod),
   1559 						    0);
   1560 						copyback = 1;
   1561 					}
   1562 
   1563 					/* Modulate TS reply iff valid (!0) */
   1564 					memcpy(&tsecr, &opt[6],
   1565 					    sizeof(u_int32_t));
   1566 					if (tsecr && dst->scrub &&
   1567 					    (dst->scrub->pfss_flags &
   1568 					    PFSS_TIMESTAMP)) {
   1569 						tsecr = ntohl(tsecr)
   1570 						    - dst->scrub->pfss_ts_mod;
   1571 						pf_change_a(&opt[6],
   1572 						    &th->th_sum, htonl(tsecr),
   1573 						    0);
   1574 						copyback = 1;
   1575 					}
   1576 					got_ts = 1;
   1577 				}
   1578 				/* FALLTHROUGH */
   1579 			default:
   1580 				hlen -= MAX(opt[1], 2);
   1581 				opt += MAX(opt[1], 2);
   1582 				break;
   1583 			}
   1584 		}
   1585 		if (copyback) {
   1586 			/* Copyback the options, caller copys back header */
   1587 			*writeback = 1;
   1588 			m_copyback(m, off + sizeof(struct tcphdr),
   1589 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
   1590 			    sizeof(struct tcphdr));
   1591 		}
   1592 	}
   1593 
   1594 
   1595 	/*
   1596 	 * Must invalidate PAWS checks on connections idle for too long.
   1597 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
   1598 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
   1599 	 * TS echo check only works for the first 12 days of a connection
   1600 	 * when the TS has exhausted half its 32bit space
   1601 	 */
   1602 #define TS_MAX_IDLE	(24*24*60*60)
   1603 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
   1604 
   1605 	getmicrouptime(&uptime);
   1606 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
   1607 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
   1608 	    time_second - state->creation > TS_MAX_CONN))  {
   1609 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1610 			DPFPRINTF(("src idled out of PAWS\n"));
   1611 			pf_print_state(state);
   1612 			printf("\n");
   1613 		}
   1614 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
   1615 		    | PFSS_PAWS_IDLED;
   1616 	}
   1617 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
   1618 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
   1619 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1620 			DPFPRINTF(("dst idled out of PAWS\n"));
   1621 			pf_print_state(state);
   1622 			printf("\n");
   1623 		}
   1624 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
   1625 		    | PFSS_PAWS_IDLED;
   1626 	}
   1627 
   1628 	if (got_ts && src->scrub && dst->scrub &&
   1629 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1630 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1631 		/* Validate that the timestamps are "in-window".
   1632 		 * RFC1323 describes TCP Timestamp options that allow
   1633 		 * measurement of RTT (round trip time) and PAWS
   1634 		 * (protection against wrapped sequence numbers).  PAWS
   1635 		 * gives us a set of rules for rejecting packets on
   1636 		 * long fat pipes (packets that were somehow delayed
   1637 		 * in transit longer than the time it took to send the
   1638 		 * full TCP sequence space of 4Gb).  We can use these
   1639 		 * rules and infer a few others that will let us treat
   1640 		 * the 32bit timestamp and the 32bit echoed timestamp
   1641 		 * as sequence numbers to prevent a blind attacker from
   1642 		 * inserting packets into a connection.
   1643 		 *
   1644 		 * RFC1323 tells us:
   1645 		 *  - The timestamp on this packet must be greater than
   1646 		 *    or equal to the last value echoed by the other
   1647 		 *    endpoint.  The RFC says those will be discarded
   1648 		 *    since it is a dup that has already been acked.
   1649 		 *    This gives us a lowerbound on the timestamp.
   1650 		 *        timestamp >= other last echoed timestamp
   1651 		 *  - The timestamp will be less than or equal to
   1652 		 *    the last timestamp plus the time between the
   1653 		 *    last packet and now.  The RFC defines the max
   1654 		 *    clock rate as 1ms.  We will allow clocks to be
   1655 		 *    up to 10% fast and will allow a total difference
   1656 		 *    or 30 seconds due to a route change.  And this
   1657 		 *    gives us an upperbound on the timestamp.
   1658 		 *        timestamp <= last timestamp + max ticks
   1659 		 *    We have to be careful here.  Windows will send an
   1660 		 *    initial timestamp of zero and then initialize it
   1661 		 *    to a random value after the 3whs; presumably to
   1662 		 *    avoid a DoS by having to call an expensive RNG
   1663 		 *    during a SYN flood.  Proof MS has at least one
   1664 		 *    good security geek.
   1665 		 *
   1666 		 *  - The TCP timestamp option must also echo the other
   1667 		 *    endpoints timestamp.  The timestamp echoed is the
   1668 		 *    one carried on the earliest unacknowledged segment
   1669 		 *    on the left edge of the sequence window.  The RFC
   1670 		 *    states that the host will reject any echoed
   1671 		 *    timestamps that were larger than any ever sent.
   1672 		 *    This gives us an upperbound on the TS echo.
   1673 		 *        tescr <= largest_tsval
   1674 		 *  - The lowerbound on the TS echo is a little more
   1675 		 *    tricky to determine.  The other endpoint's echoed
   1676 		 *    values will not decrease.  But there may be
   1677 		 *    network conditions that re-order packets and
   1678 		 *    cause our view of them to decrease.  For now the
   1679 		 *    only lowerbound we can safely determine is that
   1680 		 *    the TS echo will never be less than the original
   1681 		 *    TS.  XXX There is probably a better lowerbound.
   1682 		 *    Remove TS_MAX_CONN with better lowerbound check.
   1683 		 *        tescr >= other original TS
   1684 		 *
   1685 		 * It is also important to note that the fastest
   1686 		 * timestamp clock of 1ms will wrap its 32bit space in
   1687 		 * 24 days.  So we just disable TS checking after 24
   1688 		 * days of idle time.  We actually must use a 12d
   1689 		 * connection limit until we can come up with a better
   1690 		 * lowerbound to the TS echo check.
   1691 		 */
   1692 		struct timeval delta_ts;
   1693 		int ts_fudge;
   1694 
   1695 
   1696 		/*
   1697 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
   1698 		 * a host's timestamp.  This can happen if the previous
   1699 		 * packet got delayed in transit for much longer than
   1700 		 * this packet.
   1701 		 */
   1702 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
   1703 			ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
   1704 
   1705 
   1706 		/* Calculate max ticks since the last timestamp */
   1707 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1 kHz + 10% skew */
   1708 #define TS_MICROSECS	1000000		/* microseconds per second */
   1709 		timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
   1710 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
   1711 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
   1712 
   1713 
   1714 		if ((src->state >= TCPS_ESTABLISHED &&
   1715 		    dst->state >= TCPS_ESTABLISHED) &&
   1716 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
   1717 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
   1718 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
   1719 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
   1720 			/* Bad RFC1323 implementation or an insertion attack.
   1721 			 *
   1722 			 * - Solaris 2.6 and 2.7 are known to send another ACK
   1723 			 *   after the FIN,FIN|ACK,ACK closing that carries
   1724 			 *   an old timestamp.
   1725 			 */
   1726 
   1727 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
   1728 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
   1729 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
   1730 			    tsval_from_last) ? '1' : ' ',
   1731 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
   1732 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
   1733 			DPFPRINTF((" tsval: %" PRIu32 "  tsecr: %" PRIu32
   1734 			    "  +ticks: %" PRIu32 "  idle: %"PRIx64"s %ums\n",
   1735 			    tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
   1736 			    delta_ts.tv_usec / 1000U));
   1737 			DPFPRINTF((" src->tsval: %" PRIu32 "  tsecr: %" PRIu32
   1738 			    "\n",
   1739 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
   1740 			DPFPRINTF((" dst->tsval: %" PRIu32 "  tsecr: %" PRIu32
   1741 			    "  tsval0: %" PRIu32 "\n",
   1742 			    dst->scrub->pfss_tsval,
   1743 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
   1744 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1745 				pf_print_state(state);
   1746 				pf_print_flags(th->th_flags);
   1747 				printf("\n");
   1748 			}
   1749 			REASON_SET(reason, PFRES_TS);
   1750 			return (PF_DROP);
   1751 		}
   1752 
   1753 		/* XXX I'd really like to require tsecr but it's optional */
   1754 
   1755 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
   1756 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
   1757 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
   1758 	    src->scrub && dst->scrub &&
   1759 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1760 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1761 		/* Didn't send a timestamp.  Timestamps aren't really useful
   1762 		 * when:
   1763 		 *  - connection opening or closing (often not even sent).
   1764 		 *    but we must not let an attacker to put a FIN on a
   1765 		 *    data packet to sneak it through our ESTABLISHED check.
   1766 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
   1767 		 *  - on an empty ACK.  The TS will not be echoed so it will
   1768 		 *    probably not help keep the RTT calculation in sync and
   1769 		 *    there isn't as much danger when the sequence numbers
   1770 		 *    got wrapped.  So some stacks don't include TS on empty
   1771 		 *    ACKs :-(
   1772 		 *
   1773 		 * To minimize the disruption to mostly RFC1323 conformant
   1774 		 * stacks, we will only require timestamps on data packets.
   1775 		 *
   1776 		 * And what do ya know, we cannot require timestamps on data
   1777 		 * packets.  There appear to be devices that do legitimate
   1778 		 * TCP connection hijacking.  There are HTTP devices that allow
   1779 		 * a 3whs (with timestamps) and then buffer the HTTP request.
   1780 		 * If the intermediate device has the HTTP response cache, it
   1781 		 * will spoof the response but not bother timestamping its
   1782 		 * packets.  So we can look for the presence of a timestamp in
   1783 		 * the first data packet and if there, require it in all future
   1784 		 * packets.
   1785 		 */
   1786 
   1787 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
   1788 			/*
   1789 			 * Hey!  Someone tried to sneak a packet in.  Or the
   1790 			 * stack changed its RFC1323 behavior?!?!
   1791 			 */
   1792 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1793 				DPFPRINTF(("Did not receive expected RFC1323 "
   1794 				    "timestamp\n"));
   1795 				pf_print_state(state);
   1796 				pf_print_flags(th->th_flags);
   1797 				printf("\n");
   1798 			}
   1799 			REASON_SET(reason, PFRES_TS);
   1800 			return (PF_DROP);
   1801 		}
   1802 	}
   1803 
   1804 
   1805 	/*
   1806 	 * We will note if a host sends his data packets with or without
   1807 	 * timestamps.  And require all data packets to contain a timestamp
   1808 	 * if the first does.  PAWS implicitly requires that all data packets be
   1809 	 * timestamped.  But I think there are middle-man devices that hijack
   1810 	 * TCP streams immediately after the 3whs and don't timestamp their
   1811 	 * packets (seen in a WWW accelerator or cache).
   1812 	 */
   1813 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
   1814 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
   1815 		if (got_ts)
   1816 			src->scrub->pfss_flags |= PFSS_DATA_TS;
   1817 		else {
   1818 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
   1819 			if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
   1820 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
   1821 				/* Don't warn if other host rejected RFC1323 */
   1822 				DPFPRINTF(("Broken RFC1323 stack did not "
   1823 				    "timestamp data packet. Disabled PAWS "
   1824 				    "security.\n"));
   1825 				pf_print_state(state);
   1826 				pf_print_flags(th->th_flags);
   1827 				printf("\n");
   1828 			}
   1829 		}
   1830 	}
   1831 
   1832 
   1833 	/*
   1834 	 * Update PAWS values
   1835 	 */
   1836 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
   1837 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
   1838 		getmicrouptime(&src->scrub->pfss_last);
   1839 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
   1840 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1841 			src->scrub->pfss_tsval = tsval;
   1842 
   1843 		if (tsecr) {
   1844 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
   1845 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1846 				src->scrub->pfss_tsecr = tsecr;
   1847 
   1848 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
   1849 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
   1850 			    src->scrub->pfss_tsval0 == 0)) {
   1851 				/* tsval0 MUST be the lowest timestamp */
   1852 				src->scrub->pfss_tsval0 = tsval;
   1853 			}
   1854 
   1855 			/* Only fully initialized after a TS gets echoed */
   1856 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1857 				src->scrub->pfss_flags |= PFSS_PAWS;
   1858 		}
   1859 	}
   1860 
   1861 	/* I have a dream....  TCP segment reassembly.... */
   1862 	return (0);
   1863 }
   1864 
   1865 int
   1866 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
   1867     int off)
   1868 {
   1869 	u_int16_t	*mss;
   1870 	int		 thoff;
   1871 	int		 opt, cnt, optlen = 0;
   1872 	int		 rewrite = 0;
   1873 	u_char		*optp;
   1874 
   1875 	thoff = th->th_off << 2;
   1876 	cnt = thoff - sizeof(struct tcphdr);
   1877 	optp = mtod(m, u_char *) + off + sizeof(struct tcphdr);
   1878 
   1879 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
   1880 		opt = optp[0];
   1881 		if (opt == TCPOPT_EOL)
   1882 			break;
   1883 		if (opt == TCPOPT_NOP)
   1884 			optlen = 1;
   1885 		else {
   1886 			if (cnt < 2)
   1887 				break;
   1888 			optlen = optp[1];
   1889 			if (optlen < 2 || optlen > cnt)
   1890 				break;
   1891 		}
   1892 		switch (opt) {
   1893 		case TCPOPT_MAXSEG:
   1894 			mss = (u_int16_t *)(optp + 2);
   1895 			if ((ntohs(*mss)) > r->max_mss) {
   1896 				th->th_sum = pf_cksum_fixup(th->th_sum,
   1897 				    *mss, htons(r->max_mss), 0);
   1898 				*mss = htons(r->max_mss);
   1899 				rewrite = 1;
   1900 			}
   1901 			break;
   1902 		default:
   1903 			break;
   1904 		}
   1905 	}
   1906 
   1907 	return (rewrite);
   1908 }
   1909