Home | History | Annotate | Line # | Download | only in net
pf_norm.c revision 1.6
      1 /*	$NetBSD: pf_norm.c,v 1.6 2004/11/14 11:12:16 yamt Exp $	*/
      2 /*	$OpenBSD: pf_norm.c,v 1.96 2004/07/17 00:17:27 frantzen Exp $ */
      3 
      4 /*
      5  * Copyright 2001 Niels Provos <provos (at) citi.umich.edu>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #ifdef _KERNEL_OPT
     30 #include "opt_inet.h"
     31 #endif
     32 
     33 #include "pflog.h"
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/mbuf.h>
     38 #include <sys/filio.h>
     39 #include <sys/fcntl.h>
     40 #include <sys/socket.h>
     41 #include <sys/kernel.h>
     42 #include <sys/time.h>
     43 #include <sys/pool.h>
     44 
     45 #ifdef __OpenBSD__
     46 #include <dev/rndvar.h>
     47 #else
     48 #include <sys/rnd.h>
     49 #endif
     50 #include <net/if.h>
     51 #include <net/if_types.h>
     52 #include <net/bpf.h>
     53 #include <net/route.h>
     54 #include <net/if_pflog.h>
     55 
     56 #include <netinet/in.h>
     57 #include <netinet/in_var.h>
     58 #include <netinet/in_systm.h>
     59 #include <netinet/ip.h>
     60 #include <netinet/ip_var.h>
     61 #include <netinet/tcp.h>
     62 #include <netinet/tcp_seq.h>
     63 #include <netinet/udp.h>
     64 #include <netinet/ip_icmp.h>
     65 
     66 #ifdef INET6
     67 #include <netinet/ip6.h>
     68 #endif /* INET6 */
     69 
     70 #include <net/pfvar.h>
     71 
     72 struct pf_frent {
     73 	LIST_ENTRY(pf_frent) fr_next;
     74 	struct ip *fr_ip;
     75 	struct mbuf *fr_m;
     76 };
     77 
     78 struct pf_frcache {
     79 	LIST_ENTRY(pf_frcache) fr_next;
     80 	uint16_t	fr_off;
     81 	uint16_t	fr_end;
     82 };
     83 
     84 #define PFFRAG_SEENLAST	0x0001		/* Seen the last fragment for this */
     85 #define PFFRAG_NOBUFFER	0x0002		/* Non-buffering fragment cache */
     86 #define PFFRAG_DROP	0x0004		/* Drop all fragments */
     87 #define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
     88 
     89 struct pf_fragment {
     90 	RB_ENTRY(pf_fragment) fr_entry;
     91 	TAILQ_ENTRY(pf_fragment) frag_next;
     92 	struct in_addr	fr_src;
     93 	struct in_addr	fr_dst;
     94 	u_int8_t	fr_p;		/* protocol of this fragment */
     95 	u_int8_t	fr_flags;	/* status flags */
     96 	u_int16_t	fr_id;		/* fragment id for reassemble */
     97 	u_int16_t	fr_max;		/* fragment data max */
     98 	u_int32_t	fr_timeout;
     99 #define fr_queue	fr_u.fru_queue
    100 #define fr_cache	fr_u.fru_cache
    101 	union {
    102 		LIST_HEAD(pf_fragq, pf_frent) fru_queue;	/* buffering */
    103 		LIST_HEAD(pf_cacheq, pf_frcache) fru_cache;	/* non-buf */
    104 	} fr_u;
    105 };
    106 
    107 TAILQ_HEAD(pf_fragqueue, pf_fragment)	pf_fragqueue;
    108 TAILQ_HEAD(pf_cachequeue, pf_fragment)	pf_cachequeue;
    109 
    110 static __inline int	 pf_frag_compare(struct pf_fragment *,
    111 			    struct pf_fragment *);
    112 RB_HEAD(pf_frag_tree, pf_fragment)	pf_frag_tree, pf_cache_tree;
    113 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    114 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    115 
    116 /* Private prototypes */
    117 void			 pf_ip2key(struct pf_fragment *, struct ip *);
    118 void			 pf_remove_fragment(struct pf_fragment *);
    119 void			 pf_flush_fragments(void);
    120 void			 pf_free_fragment(struct pf_fragment *);
    121 struct pf_fragment	*pf_find_fragment(struct ip *, struct pf_frag_tree *);
    122 struct mbuf		*pf_reassemble(struct mbuf **, struct pf_fragment **,
    123 			    struct pf_frent *, int);
    124 struct mbuf		*pf_fragcache(struct mbuf **, struct ip*,
    125 			    struct pf_fragment **, int, int, int *);
    126 int			 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
    127 			    struct tcphdr *, int);
    128 
    129 #define	DPFPRINTF(x) do {				\
    130 	if (pf_status.debug >= PF_DEBUG_MISC) {		\
    131 		printf("%s: ", __func__);		\
    132 		printf x ;				\
    133 	}						\
    134 } while(0)
    135 
    136 /* Globals */
    137 struct pool		 pf_frent_pl, pf_frag_pl, pf_cache_pl, pf_cent_pl;
    138 struct pool		 pf_state_scrub_pl;
    139 int			 pf_nfrents, pf_ncache;
    140 
    141 void
    142 pf_normalize_init(void)
    143 {
    144 	pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
    145 	    NULL);
    146 	pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
    147 	    NULL);
    148 	pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
    149 	    "pffrcache", NULL);
    150 	pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
    151 	    NULL);
    152 	pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
    153 	    "pfstscr", NULL);
    154 
    155 	pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
    156 	pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
    157 	pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
    158 	pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
    159 
    160 	TAILQ_INIT(&pf_fragqueue);
    161 	TAILQ_INIT(&pf_cachequeue);
    162 }
    163 
    164 #ifdef _LKM
    165 #define TAILQ_DRAIN(list, element)				\
    166 	do {							\
    167 		while ((element = TAILQ_FIRST(list)) != NULL)	\
    168 			TAILQ_REMOVE(list, element, frag_next);	\
    169 	} while (0)
    170 
    171 void
    172 pf_normalize_destroy(void)
    173 {
    174 	struct pf_fragment *fragment_e;
    175 
    176 	TAILQ_DRAIN(&pf_fragqueue, fragment_e);
    177 	TAILQ_DRAIN(&pf_cachequeue, fragment_e);
    178 
    179 	pool_destroy(&pf_state_scrub_pl);
    180 	pool_destroy(&pf_cent_pl);
    181 	pool_destroy(&pf_cache_pl);
    182 	pool_destroy(&pf_frag_pl);
    183 	pool_destroy(&pf_frent_pl);
    184 }
    185 #endif
    186 
    187 static __inline int
    188 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
    189 {
    190 	int	diff;
    191 
    192 	if ((diff = a->fr_id - b->fr_id))
    193 		return (diff);
    194 	else if ((diff = a->fr_p - b->fr_p))
    195 		return (diff);
    196 	else if (a->fr_src.s_addr < b->fr_src.s_addr)
    197 		return (-1);
    198 	else if (a->fr_src.s_addr > b->fr_src.s_addr)
    199 		return (1);
    200 	else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
    201 		return (-1);
    202 	else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
    203 		return (1);
    204 	return (0);
    205 }
    206 
    207 void
    208 pf_purge_expired_fragments(void)
    209 {
    210 	struct pf_fragment	*frag;
    211 	u_int32_t		 expire = time_second -
    212 				    pf_default_rule.timeout[PFTM_FRAG];
    213 
    214 	while ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) != NULL) {
    215 		KASSERT(BUFFER_FRAGMENTS(frag));
    216 		if (frag->fr_timeout > expire)
    217 			break;
    218 
    219 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    220 		pf_free_fragment(frag);
    221 	}
    222 
    223 	while ((frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue)) != NULL) {
    224 		KASSERT(!BUFFER_FRAGMENTS(frag));
    225 		if (frag->fr_timeout > expire)
    226 			break;
    227 
    228 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    229 		pf_free_fragment(frag);
    230 		KASSERT(TAILQ_EMPTY(&pf_cachequeue) ||
    231 		    TAILQ_LAST(&pf_cachequeue, pf_cachequeue) != frag);
    232 	}
    233 }
    234 
    235 /*
    236  * Try to flush old fragments to make space for new ones
    237  */
    238 
    239 void
    240 pf_flush_fragments(void)
    241 {
    242 	struct pf_fragment	*frag;
    243 	int			 goal;
    244 
    245 	goal = pf_nfrents * 9 / 10;
    246 	DPFPRINTF(("trying to free > %d frents\n",
    247 	    pf_nfrents - goal));
    248 	while (goal < pf_nfrents) {
    249 		frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue);
    250 		if (frag == NULL)
    251 			break;
    252 		pf_free_fragment(frag);
    253 	}
    254 
    255 
    256 	goal = pf_ncache * 9 / 10;
    257 	DPFPRINTF(("trying to free > %d cache entries\n",
    258 	    pf_ncache - goal));
    259 	while (goal < pf_ncache) {
    260 		frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue);
    261 		if (frag == NULL)
    262 			break;
    263 		pf_free_fragment(frag);
    264 	}
    265 }
    266 
    267 /* Frees the fragments and all associated entries */
    268 
    269 void
    270 pf_free_fragment(struct pf_fragment *frag)
    271 {
    272 	struct pf_frent		*frent;
    273 	struct pf_frcache	*frcache;
    274 
    275 	/* Free all fragments */
    276 	if (BUFFER_FRAGMENTS(frag)) {
    277 		for (frent = LIST_FIRST(&frag->fr_queue); frent;
    278 		    frent = LIST_FIRST(&frag->fr_queue)) {
    279 			LIST_REMOVE(frent, fr_next);
    280 
    281 			m_freem(frent->fr_m);
    282 			pool_put(&pf_frent_pl, frent);
    283 			pf_nfrents--;
    284 		}
    285 	} else {
    286 		for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
    287 		    frcache = LIST_FIRST(&frag->fr_cache)) {
    288 			LIST_REMOVE(frcache, fr_next);
    289 
    290 			KASSERT(LIST_EMPTY(&frag->fr_cache) ||
    291 			    LIST_FIRST(&frag->fr_cache)->fr_off >
    292 			    frcache->fr_end);
    293 
    294 			pool_put(&pf_cent_pl, frcache);
    295 			pf_ncache--;
    296 		}
    297 	}
    298 
    299 	pf_remove_fragment(frag);
    300 }
    301 
    302 void
    303 pf_ip2key(struct pf_fragment *key, struct ip *ip)
    304 {
    305 	key->fr_p = ip->ip_p;
    306 	key->fr_id = ip->ip_id;
    307 	key->fr_src.s_addr = ip->ip_src.s_addr;
    308 	key->fr_dst.s_addr = ip->ip_dst.s_addr;
    309 }
    310 
    311 struct pf_fragment *
    312 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
    313 {
    314 	struct pf_fragment	 key;
    315 	struct pf_fragment	*frag;
    316 
    317 	pf_ip2key(&key, ip);
    318 
    319 	frag = RB_FIND(pf_frag_tree, tree, &key);
    320 	if (frag != NULL) {
    321 		/* XXX Are we sure we want to update the timeout? */
    322 		frag->fr_timeout = time_second;
    323 		if (BUFFER_FRAGMENTS(frag)) {
    324 			TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    325 			TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next);
    326 		} else {
    327 			TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    328 			TAILQ_INSERT_HEAD(&pf_cachequeue, frag, frag_next);
    329 		}
    330 	}
    331 
    332 	return (frag);
    333 }
    334 
    335 /* Removes a fragment from the fragment queue and frees the fragment */
    336 
    337 void
    338 pf_remove_fragment(struct pf_fragment *frag)
    339 {
    340 	if (BUFFER_FRAGMENTS(frag)) {
    341 		RB_REMOVE(pf_frag_tree, &pf_frag_tree, frag);
    342 		TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    343 		pool_put(&pf_frag_pl, frag);
    344 	} else {
    345 		RB_REMOVE(pf_frag_tree, &pf_cache_tree, frag);
    346 		TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    347 		pool_put(&pf_cache_pl, frag);
    348 	}
    349 }
    350 
    351 #define FR_IP_OFF(fr)	((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
    352 struct mbuf *
    353 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
    354     struct pf_frent *frent, int mff)
    355 {
    356 	struct mbuf	*m = *m0, *m2;
    357 	struct pf_frent	*frea, *next;
    358 	struct pf_frent	*frep = NULL;
    359 	struct ip	*ip = frent->fr_ip;
    360 	int		 hlen = ip->ip_hl << 2;
    361 	u_int16_t	 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    362 	u_int16_t	 ip_len = ntohs(ip->ip_len) - ip->ip_hl * 4;
    363 	u_int16_t	 max = ip_len + off;
    364 
    365 	KASSERT(*frag == NULL || BUFFER_FRAGMENTS(*frag));
    366 
    367 	/* Strip off ip header */
    368 	m->m_data += hlen;
    369 	m->m_len -= hlen;
    370 
    371 	/* Create a new reassembly queue for this packet */
    372 	if (*frag == NULL) {
    373 		*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    374 		if (*frag == NULL) {
    375 			pf_flush_fragments();
    376 			*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    377 			if (*frag == NULL)
    378 				goto drop_fragment;
    379 		}
    380 
    381 		(*frag)->fr_flags = 0;
    382 		(*frag)->fr_max = 0;
    383 		(*frag)->fr_src = frent->fr_ip->ip_src;
    384 		(*frag)->fr_dst = frent->fr_ip->ip_dst;
    385 		(*frag)->fr_p = frent->fr_ip->ip_p;
    386 		(*frag)->fr_id = frent->fr_ip->ip_id;
    387 		(*frag)->fr_timeout = time_second;
    388 		LIST_INIT(&(*frag)->fr_queue);
    389 
    390 		RB_INSERT(pf_frag_tree, &pf_frag_tree, *frag);
    391 		TAILQ_INSERT_HEAD(&pf_fragqueue, *frag, frag_next);
    392 
    393 		/* We do not have a previous fragment */
    394 		frep = NULL;
    395 		goto insert;
    396 	}
    397 
    398 	/*
    399 	 * Find a fragment after the current one:
    400 	 *  - off contains the real shifted offset.
    401 	 */
    402 	LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
    403 		if (FR_IP_OFF(frea) > off)
    404 			break;
    405 		frep = frea;
    406 	}
    407 
    408 	KASSERT(frep != NULL || frea != NULL);
    409 
    410 	if (frep != NULL &&
    411 	    FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl *
    412 	    4 > off)
    413 	{
    414 		u_int16_t	precut;
    415 
    416 		precut = FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) -
    417 		    frep->fr_ip->ip_hl * 4 - off;
    418 		if (precut >= ip_len)
    419 			goto drop_fragment;
    420 		m_adj(frent->fr_m, precut);
    421 		DPFPRINTF(("overlap -%d\n", precut));
    422 		/* Enforce 8 byte boundaries */
    423 		ip->ip_off = htons(ntohs(ip->ip_off) + (precut >> 3));
    424 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    425 		ip_len -= precut;
    426 		ip->ip_len = htons(ip_len);
    427 	}
    428 
    429 	for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
    430 	    frea = next)
    431 	{
    432 		u_int16_t	aftercut;
    433 
    434 		aftercut = ip_len + off - FR_IP_OFF(frea);
    435 		DPFPRINTF(("adjust overlap %d\n", aftercut));
    436 		if (aftercut < ntohs(frea->fr_ip->ip_len) - frea->fr_ip->ip_hl
    437 		    * 4)
    438 		{
    439 			frea->fr_ip->ip_len =
    440 			    htons(ntohs(frea->fr_ip->ip_len) - aftercut);
    441 			frea->fr_ip->ip_off = htons(ntohs(frea->fr_ip->ip_off) +
    442 			    (aftercut >> 3));
    443 			m_adj(frea->fr_m, aftercut);
    444 			break;
    445 		}
    446 
    447 		/* This fragment is completely overlapped, loose it */
    448 		next = LIST_NEXT(frea, fr_next);
    449 		m_freem(frea->fr_m);
    450 		LIST_REMOVE(frea, fr_next);
    451 		pool_put(&pf_frent_pl, frea);
    452 		pf_nfrents--;
    453 	}
    454 
    455  insert:
    456 	/* Update maximum data size */
    457 	if ((*frag)->fr_max < max)
    458 		(*frag)->fr_max = max;
    459 	/* This is the last segment */
    460 	if (!mff)
    461 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    462 
    463 	if (frep == NULL)
    464 		LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
    465 	else
    466 		LIST_INSERT_AFTER(frep, frent, fr_next);
    467 
    468 	/* Check if we are completely reassembled */
    469 	if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
    470 		return (NULL);
    471 
    472 	/* Check if we have all the data */
    473 	off = 0;
    474 	for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
    475 		next = LIST_NEXT(frep, fr_next);
    476 
    477 		off += ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl * 4;
    478 		if (off < (*frag)->fr_max &&
    479 		    (next == NULL || FR_IP_OFF(next) != off))
    480 		{
    481 			DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
    482 			    off, next == NULL ? -1 : FR_IP_OFF(next),
    483 			    (*frag)->fr_max));
    484 			return (NULL);
    485 		}
    486 	}
    487 	DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
    488 	if (off < (*frag)->fr_max)
    489 		return (NULL);
    490 
    491 	/* We have all the data */
    492 	frent = LIST_FIRST(&(*frag)->fr_queue);
    493 	KASSERT(frent != NULL);
    494 	if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
    495 		DPFPRINTF(("drop: too big: %d\n", off));
    496 		pf_free_fragment(*frag);
    497 		*frag = NULL;
    498 		return (NULL);
    499 	}
    500 	next = LIST_NEXT(frent, fr_next);
    501 
    502 	/* Magic from ip_input */
    503 	ip = frent->fr_ip;
    504 	m = frent->fr_m;
    505 	m2 = m->m_next;
    506 	m->m_next = NULL;
    507 	m_cat(m, m2);
    508 	pool_put(&pf_frent_pl, frent);
    509 	pf_nfrents--;
    510 	for (frent = next; frent != NULL; frent = next) {
    511 		next = LIST_NEXT(frent, fr_next);
    512 
    513 		m2 = frent->fr_m;
    514 		pool_put(&pf_frent_pl, frent);
    515 		pf_nfrents--;
    516 		m_cat(m, m2);
    517 	}
    518 
    519 	ip->ip_src = (*frag)->fr_src;
    520 	ip->ip_dst = (*frag)->fr_dst;
    521 
    522 	/* Remove from fragment queue */
    523 	pf_remove_fragment(*frag);
    524 	*frag = NULL;
    525 
    526 	hlen = ip->ip_hl << 2;
    527 	ip->ip_len = htons(off + hlen);
    528 	m->m_len += hlen;
    529 	m->m_data -= hlen;
    530 
    531 	/* some debugging cruft by sklower, below, will go away soon */
    532 	/* XXX this should be done elsewhere */
    533 	if (m->m_flags & M_PKTHDR) {
    534 		int plen = 0;
    535 		for (m2 = m; m2; m2 = m2->m_next)
    536 			plen += m2->m_len;
    537 		m->m_pkthdr.len = plen;
    538 	}
    539 
    540 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
    541 	return (m);
    542 
    543  drop_fragment:
    544 	/* Oops - fail safe - drop packet */
    545 	pool_put(&pf_frent_pl, frent);
    546 	pf_nfrents--;
    547 	m_freem(m);
    548 	return (NULL);
    549 }
    550 
    551 struct mbuf *
    552 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
    553     int drop, int *nomem)
    554 {
    555 	struct mbuf		*m = *m0;
    556 	struct pf_frcache	*frp, *fra, *cur = NULL;
    557 	int			 ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
    558 	u_int16_t		 off = ntohs(h->ip_off) << 3;
    559 	u_int16_t		 max = ip_len + off;
    560 	int			 hosed = 0;
    561 
    562 	KASSERT(*frag == NULL || !BUFFER_FRAGMENTS(*frag));
    563 
    564 	/* Create a new range queue for this packet */
    565 	if (*frag == NULL) {
    566 		*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    567 		if (*frag == NULL) {
    568 			pf_flush_fragments();
    569 			*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    570 			if (*frag == NULL)
    571 				goto no_mem;
    572 		}
    573 
    574 		/* Get an entry for the queue */
    575 		cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    576 		if (cur == NULL) {
    577 			pool_put(&pf_cache_pl, *frag);
    578 			*frag = NULL;
    579 			goto no_mem;
    580 		}
    581 		pf_ncache++;
    582 
    583 		(*frag)->fr_flags = PFFRAG_NOBUFFER;
    584 		(*frag)->fr_max = 0;
    585 		(*frag)->fr_src = h->ip_src;
    586 		(*frag)->fr_dst = h->ip_dst;
    587 		(*frag)->fr_p = h->ip_p;
    588 		(*frag)->fr_id = h->ip_id;
    589 		(*frag)->fr_timeout = time_second;
    590 
    591 		cur->fr_off = off;
    592 		cur->fr_end = max;
    593 		LIST_INIT(&(*frag)->fr_cache);
    594 		LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
    595 
    596 		RB_INSERT(pf_frag_tree, &pf_cache_tree, *frag);
    597 		TAILQ_INSERT_HEAD(&pf_cachequeue, *frag, frag_next);
    598 
    599 		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
    600 
    601 		goto pass;
    602 	}
    603 
    604 	/*
    605 	 * Find a fragment after the current one:
    606 	 *  - off contains the real shifted offset.
    607 	 */
    608 	frp = NULL;
    609 	LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
    610 		if (fra->fr_off > off)
    611 			break;
    612 		frp = fra;
    613 	}
    614 
    615 	KASSERT(frp != NULL || fra != NULL);
    616 
    617 	if (frp != NULL) {
    618 		int	precut;
    619 
    620 		precut = frp->fr_end - off;
    621 		if (precut >= ip_len) {
    622 			/* Fragment is entirely a duplicate */
    623 			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
    624 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
    625 			goto drop_fragment;
    626 		}
    627 		if (precut == 0) {
    628 			/* They are adjacent.  Fixup cache entry */
    629 			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
    630 			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
    631 			frp->fr_end = max;
    632 		} else if (precut > 0) {
    633 			/* The first part of this payload overlaps with a
    634 			 * fragment that has already been passed.
    635 			 * Need to trim off the first part of the payload.
    636 			 * But to do so easily, we need to create another
    637 			 * mbuf to throw the original header into.
    638 			 */
    639 
    640 			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
    641 			    h->ip_id, precut, frp->fr_off, frp->fr_end, off,
    642 			    max));
    643 
    644 			off += precut;
    645 			max -= precut;
    646 			/* Update the previous frag to encompass this one */
    647 			frp->fr_end = max;
    648 
    649 			if (!drop) {
    650 				/* XXX Optimization opportunity
    651 				 * This is a very heavy way to trim the payload.
    652 				 * we could do it much faster by diddling mbuf
    653 				 * internals but that would be even less legible
    654 				 * than this mbuf magic.  For my next trick,
    655 				 * I'll pull a rabbit out of my laptop.
    656 				 */
    657 #ifdef __OpenBSD__
    658 				*m0 = m_copym2(m, 0, h->ip_hl << 2, M_NOWAIT);
    659 #else
    660 				*m0 = m_dup(m, 0, h->ip_hl << 2, M_NOWAIT);
    661 #endif
    662 				if (*m0 == NULL)
    663 					goto no_mem;
    664 				KASSERT((*m0)->m_next == NULL);
    665 				m_adj(m, precut + (h->ip_hl << 2));
    666 				m_cat(*m0, m);
    667 				m = *m0;
    668 				if (m->m_flags & M_PKTHDR) {
    669 					int plen = 0;
    670 					struct mbuf *t;
    671 					for (t = m; t; t = t->m_next)
    672 						plen += t->m_len;
    673 					m->m_pkthdr.len = plen;
    674 				}
    675 
    676 
    677 				h = mtod(m, struct ip *);
    678 
    679 
    680 				KASSERT((int)m->m_len ==
    681 				    ntohs(h->ip_len) - precut);
    682 				h->ip_off = htons(ntohs(h->ip_off) +
    683 				    (precut >> 3));
    684 				h->ip_len = htons(ntohs(h->ip_len) - precut);
    685 			} else {
    686 				hosed++;
    687 			}
    688 		} else {
    689 			/* There is a gap between fragments */
    690 
    691 			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
    692 			    h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
    693 			    max));
    694 
    695 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    696 			if (cur == NULL)
    697 				goto no_mem;
    698 			pf_ncache++;
    699 
    700 			cur->fr_off = off;
    701 			cur->fr_end = max;
    702 			LIST_INSERT_AFTER(frp, cur, fr_next);
    703 		}
    704 	}
    705 
    706 	if (fra != NULL) {
    707 		int	aftercut;
    708 		int	merge = 0;
    709 
    710 		aftercut = max - fra->fr_off;
    711 		if (aftercut == 0) {
    712 			/* Adjacent fragments */
    713 			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
    714 			    h->ip_id, off, max, fra->fr_off, fra->fr_end));
    715 			fra->fr_off = off;
    716 			merge = 1;
    717 		} else if (aftercut > 0) {
    718 			/* Need to chop off the tail of this fragment */
    719 			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
    720 			    h->ip_id, aftercut, off, max, fra->fr_off,
    721 			    fra->fr_end));
    722 			fra->fr_off = off;
    723 			max -= aftercut;
    724 
    725 			merge = 1;
    726 
    727 			if (!drop) {
    728 				m_adj(m, -aftercut);
    729 				if (m->m_flags & M_PKTHDR) {
    730 					int plen = 0;
    731 					struct mbuf *t;
    732 					for (t = m; t; t = t->m_next)
    733 						plen += t->m_len;
    734 					m->m_pkthdr.len = plen;
    735 				}
    736 				h = mtod(m, struct ip *);
    737 				KASSERT((int)m->m_len ==
    738 				    ntohs(h->ip_len) - aftercut);
    739 				h->ip_len = htons(ntohs(h->ip_len) - aftercut);
    740 			} else {
    741 				hosed++;
    742 			}
    743 		} else {
    744 			/* There is a gap between fragments */
    745 			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
    746 			    h->ip_id, -aftercut, off, max, fra->fr_off,
    747 			    fra->fr_end));
    748 
    749 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    750 			if (cur == NULL)
    751 				goto no_mem;
    752 			pf_ncache++;
    753 
    754 			cur->fr_off = off;
    755 			cur->fr_end = max;
    756 			LIST_INSERT_BEFORE(fra, cur, fr_next);
    757 		}
    758 
    759 
    760 		/* Need to glue together two separate fragment descriptors */
    761 		if (merge) {
    762 			if (cur && fra->fr_off <= cur->fr_end) {
    763 				/* Need to merge in a previous 'cur' */
    764 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    765 				    "%d-%d) %d-%d (%d-%d)\n",
    766 				    h->ip_id, cur->fr_off, cur->fr_end, off,
    767 				    max, fra->fr_off, fra->fr_end));
    768 				fra->fr_off = cur->fr_off;
    769 				LIST_REMOVE(cur, fr_next);
    770 				pool_put(&pf_cent_pl, cur);
    771 				pf_ncache--;
    772 				cur = NULL;
    773 
    774 			} else if (frp && fra->fr_off <= frp->fr_end) {
    775 				/* Need to merge in a modified 'frp' */
    776 				KASSERT(cur == NULL);
    777 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    778 				    "%d-%d) %d-%d (%d-%d)\n",
    779 				    h->ip_id, frp->fr_off, frp->fr_end, off,
    780 				    max, fra->fr_off, fra->fr_end));
    781 				fra->fr_off = frp->fr_off;
    782 				LIST_REMOVE(frp, fr_next);
    783 				pool_put(&pf_cent_pl, frp);
    784 				pf_ncache--;
    785 				frp = NULL;
    786 
    787 			}
    788 		}
    789 	}
    790 
    791 	if (hosed) {
    792 		/*
    793 		 * We must keep tracking the overall fragment even when
    794 		 * we're going to drop it anyway so that we know when to
    795 		 * free the overall descriptor.  Thus we drop the frag late.
    796 		 */
    797 		goto drop_fragment;
    798 	}
    799 
    800 
    801  pass:
    802 	/* Update maximum data size */
    803 	if ((*frag)->fr_max < max)
    804 		(*frag)->fr_max = max;
    805 
    806 	/* This is the last segment */
    807 	if (!mff)
    808 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    809 
    810 	/* Check if we are completely reassembled */
    811 	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
    812 	    LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
    813 	    LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
    814 		/* Remove from fragment queue */
    815 		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
    816 		    (*frag)->fr_max));
    817 		pf_free_fragment(*frag);
    818 		*frag = NULL;
    819 	}
    820 
    821 	return (m);
    822 
    823  no_mem:
    824 	*nomem = 1;
    825 
    826 	/* Still need to pay attention to !IP_MF */
    827 	if (!mff && *frag != NULL)
    828 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    829 
    830 	m_freem(m);
    831 	return (NULL);
    832 
    833  drop_fragment:
    834 
    835 	/* Still need to pay attention to !IP_MF */
    836 	if (!mff && *frag != NULL)
    837 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    838 
    839 	if (drop) {
    840 		/* This fragment has been deemed bad.  Don't reass */
    841 		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
    842 			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
    843 			    h->ip_id));
    844 		(*frag)->fr_flags |= PFFRAG_DROP;
    845 	}
    846 
    847 	m_freem(m);
    848 	return (NULL);
    849 }
    850 
    851 int
    852 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
    853     struct pf_pdesc *pd)
    854 {
    855 	struct mbuf		*m = *m0;
    856 	struct pf_rule		*r;
    857 	struct pf_frent		*frent;
    858 	struct pf_fragment	*frag = NULL;
    859 	struct ip		*h = mtod(m, struct ip *);
    860 	int			 mff = (ntohs(h->ip_off) & IP_MF);
    861 	int			 hlen = h->ip_hl << 2;
    862 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
    863 	u_int16_t		 max;
    864 	int			 ip_len;
    865 	int			 ip_off;
    866 
    867 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
    868 	while (r != NULL) {
    869 		r->evaluations++;
    870 		if (r->kif != NULL &&
    871 		    (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
    872 			r = r->skip[PF_SKIP_IFP].ptr;
    873 		else if (r->direction && r->direction != dir)
    874 			r = r->skip[PF_SKIP_DIR].ptr;
    875 		else if (r->af && r->af != AF_INET)
    876 			r = r->skip[PF_SKIP_AF].ptr;
    877 		else if (r->proto && r->proto != h->ip_p)
    878 			r = r->skip[PF_SKIP_PROTO].ptr;
    879 		else if (PF_MISMATCHAW(&r->src.addr,
    880 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET, r->src.neg))
    881 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
    882 		else if (PF_MISMATCHAW(&r->dst.addr,
    883 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET, r->dst.neg))
    884 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
    885 		else
    886 			break;
    887 	}
    888 
    889 	if (r == NULL)
    890 		return (PF_PASS);
    891 	else
    892 		r->packets++;
    893 
    894 	/* Check for illegal packets */
    895 	if (hlen < (int)sizeof(struct ip))
    896 		goto drop;
    897 
    898 	if (hlen > ntohs(h->ip_len))
    899 		goto drop;
    900 
    901 	/* Clear IP_DF if the rule uses the no-df option */
    902 	if (r->rule_flag & PFRULE_NODF)
    903 		h->ip_off &= htons(~IP_DF);
    904 
    905 	/* We will need other tests here */
    906 	if (!fragoff && !mff)
    907 		goto no_fragment;
    908 
    909 	/* We're dealing with a fragment now. Don't allow fragments
    910 	 * with IP_DF to enter the cache. If the flag was cleared by
    911 	 * no-df above, fine. Otherwise drop it.
    912 	 */
    913 	if (h->ip_off & htons(IP_DF)) {
    914 		DPFPRINTF(("IP_DF\n"));
    915 		goto bad;
    916 	}
    917 
    918 	ip_len = ntohs(h->ip_len) - hlen;
    919 	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
    920 
    921 	/* All fragments are 8 byte aligned */
    922 	if (mff && (ip_len & 0x7)) {
    923 		DPFPRINTF(("mff and %d\n", ip_len));
    924 		goto bad;
    925 	}
    926 
    927 	/* Respect maximum length */
    928 	if (fragoff + ip_len > IP_MAXPACKET) {
    929 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
    930 		goto bad;
    931 	}
    932 	max = fragoff + ip_len;
    933 
    934 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
    935 		/* Fully buffer all of the fragments */
    936 
    937 		frag = pf_find_fragment(h, &pf_frag_tree);
    938 
    939 		/* Check if we saw the last fragment already */
    940 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    941 		    max > frag->fr_max)
    942 			goto bad;
    943 
    944 		/* Get an entry for the fragment queue */
    945 		frent = pool_get(&pf_frent_pl, PR_NOWAIT);
    946 		if (frent == NULL) {
    947 			REASON_SET(reason, PFRES_MEMORY);
    948 			return (PF_DROP);
    949 		}
    950 		pf_nfrents++;
    951 		frent->fr_ip = h;
    952 		frent->fr_m = m;
    953 
    954 		/* Might return a completely reassembled mbuf, or NULL */
    955 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
    956 		*m0 = m = pf_reassemble(m0, &frag, frent, mff);
    957 
    958 		if (m == NULL)
    959 			return (PF_DROP);
    960 
    961 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
    962 			goto drop;
    963 
    964 		h = mtod(m, struct ip *);
    965 	} else {
    966 		/* non-buffering fragment cache (drops or masks overlaps) */
    967 		int	nomem = 0;
    968 
    969 		if (dir == PF_OUT) {
    970 			if (m_tag_find(m, PACKET_TAG_PF_FRAGCACHE, NULL) !=
    971 			    NULL) {
    972 				/* Already passed the fragment cache in the
    973 				 * input direction.  If we continued, it would
    974 				 * appear to be a dup and would be dropped.
    975 				 */
    976 				goto fragment_pass;
    977 			}
    978 		}
    979 
    980 		frag = pf_find_fragment(h, &pf_cache_tree);
    981 
    982 		/* Check if we saw the last fragment already */
    983 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    984 		    max > frag->fr_max) {
    985 			if (r->rule_flag & PFRULE_FRAGDROP)
    986 				frag->fr_flags |= PFFRAG_DROP;
    987 			goto bad;
    988 		}
    989 
    990 		*m0 = m = pf_fragcache(m0, h, &frag, mff,
    991 		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
    992 		if (m == NULL) {
    993 			if (nomem)
    994 				goto no_mem;
    995 			goto drop;
    996 		}
    997 
    998 		if (dir == PF_IN) {
    999 			struct m_tag	*mtag;
   1000 
   1001 			mtag = m_tag_get(PACKET_TAG_PF_FRAGCACHE, 0, M_NOWAIT);
   1002 			if (mtag == NULL)
   1003 				goto no_mem;
   1004 			m_tag_prepend(m, mtag);
   1005 		}
   1006 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
   1007 			goto drop;
   1008 		goto fragment_pass;
   1009 	}
   1010 
   1011  no_fragment:
   1012 	/* At this point, only IP_DF is allowed in ip_off */
   1013 	h->ip_off &= htons(IP_DF);
   1014 
   1015 	/* Enforce a minimum ttl, may cause endless packet loops */
   1016 	if (r->min_ttl && h->ip_ttl < r->min_ttl)
   1017 		h->ip_ttl = r->min_ttl;
   1018 
   1019 	if (r->rule_flag & PFRULE_RANDOMID) {
   1020 		u_int16_t ip_id = h->ip_id;
   1021 
   1022 		h->ip_id = ip_randomid();
   1023 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
   1024 	}
   1025 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
   1026 		pd->flags |= PFDESC_IP_REAS;
   1027 
   1028 	return (PF_PASS);
   1029 
   1030  fragment_pass:
   1031 	/* Enforce a minimum ttl, may cause endless packet loops */
   1032 	if (r->min_ttl && h->ip_ttl < r->min_ttl)
   1033 		h->ip_ttl = r->min_ttl;
   1034 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
   1035 		pd->flags |= PFDESC_IP_REAS;
   1036 	return (PF_PASS);
   1037 
   1038  no_mem:
   1039 	REASON_SET(reason, PFRES_MEMORY);
   1040 	if (r != NULL && r->log)
   1041 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
   1042 	return (PF_DROP);
   1043 
   1044  drop:
   1045 	REASON_SET(reason, PFRES_NORM);
   1046 	if (r != NULL && r->log)
   1047 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
   1048 	return (PF_DROP);
   1049 
   1050  bad:
   1051 	DPFPRINTF(("dropping bad fragment\n"));
   1052 
   1053 	/* Free associated fragments */
   1054 	if (frag != NULL)
   1055 		pf_free_fragment(frag);
   1056 
   1057 	REASON_SET(reason, PFRES_FRAG);
   1058 	if (r != NULL && r->log)
   1059 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
   1060 
   1061 	return (PF_DROP);
   1062 }
   1063 
   1064 #ifdef INET6
   1065 int
   1066 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
   1067     u_short *reason, struct pf_pdesc *pd)
   1068 {
   1069 	struct mbuf		*m = *m0;
   1070 	struct pf_rule		*r;
   1071 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
   1072 	int			 off;
   1073 	struct ip6_ext		 ext;
   1074 	struct ip6_opt		 opt;
   1075 	struct ip6_opt_jumbo	 jumbo;
   1076 	struct ip6_frag		 frag;
   1077 	u_int32_t		 jumbolen = 0, plen;
   1078 	u_int16_t		 fragoff = 0;
   1079 	int			 optend;
   1080 	int			 ooff;
   1081 	u_int8_t		 proto;
   1082 	int			 terminal;
   1083 
   1084 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1085 	while (r != NULL) {
   1086 		r->evaluations++;
   1087 		if (r->kif != NULL &&
   1088 		    (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
   1089 			r = r->skip[PF_SKIP_IFP].ptr;
   1090 		else if (r->direction && r->direction != dir)
   1091 			r = r->skip[PF_SKIP_DIR].ptr;
   1092 		else if (r->af && r->af != AF_INET6)
   1093 			r = r->skip[PF_SKIP_AF].ptr;
   1094 #if 0 /* header chain! */
   1095 		else if (r->proto && r->proto != h->ip6_nxt)
   1096 			r = r->skip[PF_SKIP_PROTO].ptr;
   1097 #endif
   1098 		else if (PF_MISMATCHAW(&r->src.addr,
   1099 		    (struct pf_addr *)&h->ip6_src, AF_INET6, r->src.neg))
   1100 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1101 		else if (PF_MISMATCHAW(&r->dst.addr,
   1102 		    (struct pf_addr *)&h->ip6_dst, AF_INET6, r->dst.neg))
   1103 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1104 		else
   1105 			break;
   1106 	}
   1107 
   1108 	if (r == NULL)
   1109 		return (PF_PASS);
   1110 	else
   1111 		r->packets++;
   1112 
   1113 	/* Check for illegal packets */
   1114 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
   1115 		goto drop;
   1116 
   1117 	off = sizeof(struct ip6_hdr);
   1118 	proto = h->ip6_nxt;
   1119 	terminal = 0;
   1120 	do {
   1121 		switch (proto) {
   1122 		case IPPROTO_FRAGMENT:
   1123 			goto fragment;
   1124 			break;
   1125 		case IPPROTO_AH:
   1126 		case IPPROTO_ROUTING:
   1127 		case IPPROTO_DSTOPTS:
   1128 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1129 			    NULL, AF_INET6))
   1130 				goto shortpkt;
   1131 			if (proto == IPPROTO_AH)
   1132 				off += (ext.ip6e_len + 2) * 4;
   1133 			else
   1134 				off += (ext.ip6e_len + 1) * 8;
   1135 			proto = ext.ip6e_nxt;
   1136 			break;
   1137 		case IPPROTO_HOPOPTS:
   1138 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1139 			    NULL, AF_INET6))
   1140 				goto shortpkt;
   1141 			optend = off + (ext.ip6e_len + 1) * 8;
   1142 			ooff = off + sizeof(ext);
   1143 			do {
   1144 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
   1145 				    sizeof(opt.ip6o_type), NULL, NULL,
   1146 				    AF_INET6))
   1147 					goto shortpkt;
   1148 				if (opt.ip6o_type == IP6OPT_PAD1) {
   1149 					ooff++;
   1150 					continue;
   1151 				}
   1152 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
   1153 				    NULL, NULL, AF_INET6))
   1154 					goto shortpkt;
   1155 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
   1156 					goto drop;
   1157 				switch (opt.ip6o_type) {
   1158 				case IP6OPT_JUMBO:
   1159 					if (h->ip6_plen != 0)
   1160 						goto drop;
   1161 					if (!pf_pull_hdr(m, ooff, &jumbo,
   1162 					    sizeof(jumbo), NULL, NULL,
   1163 					    AF_INET6))
   1164 						goto shortpkt;
   1165 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
   1166 					    sizeof(jumbolen));
   1167 					jumbolen = ntohl(jumbolen);
   1168 					if (jumbolen <= IPV6_MAXPACKET)
   1169 						goto drop;
   1170 					if (sizeof(struct ip6_hdr) + jumbolen !=
   1171 					    m->m_pkthdr.len)
   1172 						goto drop;
   1173 					break;
   1174 				default:
   1175 					break;
   1176 				}
   1177 				ooff += sizeof(opt) + opt.ip6o_len;
   1178 			} while (ooff < optend);
   1179 
   1180 			off = optend;
   1181 			proto = ext.ip6e_nxt;
   1182 			break;
   1183 		default:
   1184 			terminal = 1;
   1185 			break;
   1186 		}
   1187 	} while (!terminal);
   1188 
   1189 	/* jumbo payload option must be present, or plen > 0 */
   1190 	if (ntohs(h->ip6_plen) == 0)
   1191 		plen = jumbolen;
   1192 	else
   1193 		plen = ntohs(h->ip6_plen);
   1194 	if (plen == 0)
   1195 		goto drop;
   1196 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
   1197 		goto shortpkt;
   1198 
   1199 	/* Enforce a minimum ttl, may cause endless packet loops */
   1200 	if (r->min_ttl && h->ip6_hlim < r->min_ttl)
   1201 		h->ip6_hlim = r->min_ttl;
   1202 
   1203 	return (PF_PASS);
   1204 
   1205  fragment:
   1206 	if (ntohs(h->ip6_plen) == 0 || jumbolen)
   1207 		goto drop;
   1208 	plen = ntohs(h->ip6_plen);
   1209 
   1210 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
   1211 		goto shortpkt;
   1212 	fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
   1213 	if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
   1214 		goto badfrag;
   1215 
   1216 	/* do something about it */
   1217 	/* remember to set pd->flags |= PFDESC_IP_REAS */
   1218 	return (PF_PASS);
   1219 
   1220  shortpkt:
   1221 	REASON_SET(reason, PFRES_SHORT);
   1222 	if (r != NULL && r->log)
   1223 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
   1224 	return (PF_DROP);
   1225 
   1226  drop:
   1227 	REASON_SET(reason, PFRES_NORM);
   1228 	if (r != NULL && r->log)
   1229 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
   1230 	return (PF_DROP);
   1231 
   1232  badfrag:
   1233 	REASON_SET(reason, PFRES_FRAG);
   1234 	if (r != NULL && r->log)
   1235 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
   1236 	return (PF_DROP);
   1237 }
   1238 #endif /* INET6 */
   1239 
   1240 int
   1241 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
   1242     int off, void *h, struct pf_pdesc *pd)
   1243 {
   1244 	struct pf_rule	*r, *rm = NULL;
   1245 	struct tcphdr	*th = pd->hdr.tcp;
   1246 	int		 rewrite = 0;
   1247 	u_short		 reason;
   1248 	u_int8_t	 flags;
   1249 	sa_family_t	 af = pd->af;
   1250 
   1251 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1252 	while (r != NULL) {
   1253 		r->evaluations++;
   1254 		if (r->kif != NULL &&
   1255 		    (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
   1256 			r = r->skip[PF_SKIP_IFP].ptr;
   1257 		else if (r->direction && r->direction != dir)
   1258 			r = r->skip[PF_SKIP_DIR].ptr;
   1259 		else if (r->af && r->af != af)
   1260 			r = r->skip[PF_SKIP_AF].ptr;
   1261 		else if (r->proto && r->proto != pd->proto)
   1262 			r = r->skip[PF_SKIP_PROTO].ptr;
   1263 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, r->src.neg))
   1264 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1265 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
   1266 			    r->src.port[0], r->src.port[1], th->th_sport))
   1267 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
   1268 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, r->dst.neg))
   1269 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1270 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
   1271 			    r->dst.port[0], r->dst.port[1], th->th_dport))
   1272 			r = r->skip[PF_SKIP_DST_PORT].ptr;
   1273 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
   1274 			    pf_osfp_fingerprint(pd, m, off, th),
   1275 			    r->os_fingerprint))
   1276 			r = TAILQ_NEXT(r, entries);
   1277 		else {
   1278 			rm = r;
   1279 			break;
   1280 		}
   1281 	}
   1282 
   1283 	if (rm == NULL)
   1284 		return (PF_PASS);
   1285 	else
   1286 		r->packets++;
   1287 
   1288 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
   1289 		pd->flags |= PFDESC_TCP_NORM;
   1290 
   1291 	flags = th->th_flags;
   1292 	if (flags & TH_SYN) {
   1293 		/* Illegal packet */
   1294 		if (flags & TH_RST)
   1295 			goto tcp_drop;
   1296 
   1297 		if (flags & TH_FIN)
   1298 			flags &= ~TH_FIN;
   1299 	} else {
   1300 		/* Illegal packet */
   1301 		if (!(flags & (TH_ACK|TH_RST)))
   1302 			goto tcp_drop;
   1303 	}
   1304 
   1305 	if (!(flags & TH_ACK)) {
   1306 		/* These flags are only valid if ACK is set */
   1307 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
   1308 			goto tcp_drop;
   1309 	}
   1310 
   1311 	/* Check for illegal header length */
   1312 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
   1313 		goto tcp_drop;
   1314 
   1315 	/* If flags changed, or reserved data set, then adjust */
   1316 	if (flags != th->th_flags || th->th_x2 != 0) {
   1317 		u_int16_t	ov, nv;
   1318 
   1319 		ov = *(u_int16_t *)(&th->th_ack + 1);
   1320 		th->th_flags = flags;
   1321 		th->th_x2 = 0;
   1322 		nv = *(u_int16_t *)(&th->th_ack + 1);
   1323 
   1324 		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
   1325 		rewrite = 1;
   1326 	}
   1327 
   1328 	/* Remove urgent pointer, if TH_URG is not set */
   1329 	if (!(flags & TH_URG) && th->th_urp) {
   1330 		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
   1331 		th->th_urp = 0;
   1332 		rewrite = 1;
   1333 	}
   1334 
   1335 	/* Process options */
   1336 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off))
   1337 		rewrite = 1;
   1338 
   1339 	/* copy back packet headers if we sanitized */
   1340 	if (rewrite)
   1341 		m_copyback(m, off, sizeof(*th), th);
   1342 
   1343 	return (PF_PASS);
   1344 
   1345  tcp_drop:
   1346 	REASON_SET(&reason, PFRES_NORM);
   1347 	if (rm != NULL && r->log)
   1348 		PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL);
   1349 	return (PF_DROP);
   1350 }
   1351 
   1352 int
   1353 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
   1354     struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
   1355 {
   1356 	u_int32_t tsval, tsecr;
   1357 	u_int8_t hdr[60];
   1358 	u_int8_t *opt;
   1359 
   1360 	KASSERT(src->scrub == NULL);
   1361 
   1362 	src->scrub = pool_get(&pf_state_scrub_pl, PR_NOWAIT);
   1363 	if (src->scrub == NULL)
   1364 		return (1);
   1365 	bzero(src->scrub, sizeof(*src->scrub));
   1366 
   1367 	switch (pd->af) {
   1368 #ifdef INET
   1369 	case AF_INET: {
   1370 		struct ip *h = mtod(m, struct ip *);
   1371 		src->scrub->pfss_ttl = h->ip_ttl;
   1372 		break;
   1373 	}
   1374 #endif /* INET */
   1375 #ifdef INET6
   1376 	case AF_INET6: {
   1377 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1378 		src->scrub->pfss_ttl = h->ip6_hlim;
   1379 		break;
   1380 	}
   1381 #endif /* INET6 */
   1382 	}
   1383 
   1384 
   1385 	/*
   1386 	 * All normalizations below are only begun if we see the start of
   1387 	 * the connections.  They must all set an enabled bit in pfss_flags
   1388 	 */
   1389 	if ((th->th_flags & TH_SYN) == 0)
   1390 		return (0);
   1391 
   1392 
   1393 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
   1394 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1395 		/* Diddle with TCP options */
   1396 		int hlen;
   1397 		opt = hdr + sizeof(struct tcphdr);
   1398 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1399 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1400 			switch (*opt) {
   1401 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1402 			case TCPOPT_NOP:
   1403 				opt++;
   1404 				hlen--;
   1405 				break;
   1406 			case TCPOPT_TIMESTAMP:
   1407 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1408 					src->scrub->pfss_flags |=
   1409 					    PFSS_TIMESTAMP;
   1410 					src->scrub->pfss_ts_mod =
   1411 					    htonl(arc4random());
   1412 
   1413 					/* note PFSS_PAWS not set yet */
   1414 					memcpy(&tsval, &opt[2],
   1415 					    sizeof(u_int32_t));
   1416 					memcpy(&tsecr, &opt[6],
   1417 					    sizeof(u_int32_t));
   1418 					src->scrub->pfss_tsval0 = ntohl(tsval);
   1419 					src->scrub->pfss_tsval = ntohl(tsval);
   1420 					src->scrub->pfss_tsecr = ntohl(tsecr);
   1421 					getmicrouptime(&src->scrub->pfss_last);
   1422 				}
   1423 				/* FALLTHROUGH */
   1424 			default:
   1425 				hlen -= MAX(opt[1], 2);
   1426 				opt += MAX(opt[1], 2);
   1427 				break;
   1428 			}
   1429 		}
   1430 	}
   1431 
   1432 	return (0);
   1433 }
   1434 
   1435 void
   1436 pf_normalize_tcp_cleanup(struct pf_state *state)
   1437 {
   1438 	if (state->src.scrub)
   1439 		pool_put(&pf_state_scrub_pl, state->src.scrub);
   1440 	if (state->dst.scrub)
   1441 		pool_put(&pf_state_scrub_pl, state->dst.scrub);
   1442 
   1443 	/* Someday... flush the TCP segment reassembly descriptors. */
   1444 }
   1445 
   1446 int
   1447 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
   1448     u_short *reason, struct tcphdr *th, struct pf_state *state,
   1449     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
   1450 {
   1451 	struct timeval uptime;
   1452 	u_int32_t tsval, tsecr;
   1453 	u_int tsval_from_last;
   1454 	u_int8_t hdr[60];
   1455 	u_int8_t *opt;
   1456 	int copyback = 0;
   1457 	int got_ts = 0;
   1458 
   1459 	KASSERT(src->scrub || dst->scrub);
   1460 
   1461 	/*
   1462 	 * Enforce the minimum TTL seen for this connection.  Negate a common
   1463 	 * technique to evade an intrusion detection system and confuse
   1464 	 * firewall state code.
   1465 	 */
   1466 	switch (pd->af) {
   1467 #ifdef INET
   1468 	case AF_INET: {
   1469 		if (src->scrub) {
   1470 			struct ip *h = mtod(m, struct ip *);
   1471 			if (h->ip_ttl > src->scrub->pfss_ttl)
   1472 				src->scrub->pfss_ttl = h->ip_ttl;
   1473 			h->ip_ttl = src->scrub->pfss_ttl;
   1474 		}
   1475 		break;
   1476 	}
   1477 #endif /* INET */
   1478 #ifdef INET6
   1479 	case AF_INET6: {
   1480 		if (src->scrub) {
   1481 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1482 			if (h->ip6_hlim > src->scrub->pfss_ttl)
   1483 				src->scrub->pfss_ttl = h->ip6_hlim;
   1484 			h->ip6_hlim = src->scrub->pfss_ttl;
   1485 		}
   1486 		break;
   1487 	}
   1488 #endif /* INET6 */
   1489 	}
   1490 
   1491 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
   1492 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
   1493 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
   1494 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1495 		/* Diddle with TCP options */
   1496 		int hlen;
   1497 		opt = hdr + sizeof(struct tcphdr);
   1498 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1499 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1500 			switch (*opt) {
   1501 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1502 			case TCPOPT_NOP:
   1503 				opt++;
   1504 				hlen--;
   1505 				break;
   1506 			case TCPOPT_TIMESTAMP:
   1507 				/* Modulate the timestamps.  Can be used for
   1508 				 * NAT detection, OS uptime determination or
   1509 				 * reboot detection.
   1510 				 */
   1511 
   1512 				if (got_ts) {
   1513 					/* Huh?  Multiple timestamps!? */
   1514 					if (pf_status.debug >= PF_DEBUG_MISC) {
   1515 						DPFPRINTF(("multiple TS??"));
   1516 						pf_print_state(state);
   1517 						printf("\n");
   1518 					}
   1519 					REASON_SET(reason, PFRES_TS);
   1520 					return (PF_DROP);
   1521 				}
   1522 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1523 					memcpy(&tsval, &opt[2],
   1524 					    sizeof(u_int32_t));
   1525 					if (tsval && src->scrub &&
   1526 					    (src->scrub->pfss_flags &
   1527 					    PFSS_TIMESTAMP)) {
   1528 						tsval = ntohl(tsval);
   1529 						pf_change_a(&opt[2],
   1530 						    &th->th_sum,
   1531 						    htonl(tsval +
   1532 						    src->scrub->pfss_ts_mod),
   1533 						    0);
   1534 						copyback = 1;
   1535 					}
   1536 
   1537 					/* Modulate TS reply iff valid (!0) */
   1538 					memcpy(&tsecr, &opt[6],
   1539 					    sizeof(u_int32_t));
   1540 					if (tsecr && dst->scrub &&
   1541 					    (dst->scrub->pfss_flags &
   1542 					    PFSS_TIMESTAMP)) {
   1543 						tsecr = ntohl(tsecr)
   1544 						    - dst->scrub->pfss_ts_mod;
   1545 						pf_change_a(&opt[6],
   1546 						    &th->th_sum, htonl(tsecr),
   1547 						    0);
   1548 						copyback = 1;
   1549 					}
   1550 					got_ts = 1;
   1551 				}
   1552 				/* FALLTHROUGH */
   1553 			default:
   1554 				hlen -= MAX(opt[1], 2);
   1555 				opt += MAX(opt[1], 2);
   1556 				break;
   1557 			}
   1558 		}
   1559 		if (copyback) {
   1560 			/* Copyback the options, caller copys back header */
   1561 			*writeback = 1;
   1562 			m_copyback(m, off + sizeof(struct tcphdr),
   1563 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
   1564 			    sizeof(struct tcphdr));
   1565 		}
   1566 	}
   1567 
   1568 
   1569 	/*
   1570 	 * Must invalidate PAWS checks on connections idle for too long.
   1571 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
   1572 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
   1573 	 * TS echo check only works for the first 12 days of a connection
   1574 	 * when the TS has exhausted half its 32bit space
   1575 	 */
   1576 #define TS_MAX_IDLE	(24*24*60*60)
   1577 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
   1578 
   1579 	getmicrouptime(&uptime);
   1580 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
   1581 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
   1582 	    time_second - state->creation > TS_MAX_CONN))  {
   1583 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1584 			DPFPRINTF(("src idled out of PAWS\n"));
   1585 			pf_print_state(state);
   1586 			printf("\n");
   1587 		}
   1588 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
   1589 		    | PFSS_PAWS_IDLED;
   1590 	}
   1591 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
   1592 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
   1593 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1594 			DPFPRINTF(("dst idled out of PAWS\n"));
   1595 			pf_print_state(state);
   1596 			printf("\n");
   1597 		}
   1598 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
   1599 		    | PFSS_PAWS_IDLED;
   1600 	}
   1601 
   1602 	if (got_ts && src->scrub && dst->scrub &&
   1603 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1604 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1605 		/* Validate that the timestamps are "in-window".
   1606 		 * RFC1323 describes TCP Timestamp options that allow
   1607 		 * measurement of RTT (round trip time) and PAWS
   1608 		 * (protection against wrapped sequence numbers).  PAWS
   1609 		 * gives us a set of rules for rejecting packets on
   1610 		 * long fat pipes (packets that were somehow delayed
   1611 		 * in transit longer than the time it took to send the
   1612 		 * full TCP sequence space of 4Gb).  We can use these
   1613 		 * rules and infer a few others that will let us treat
   1614 		 * the 32bit timestamp and the 32bit echoed timestamp
   1615 		 * as sequence numbers to prevent a blind attacker from
   1616 		 * inserting packets into a connection.
   1617 		 *
   1618 		 * RFC1323 tells us:
   1619 		 *  - The timestamp on this packet must be greater than
   1620 		 *    or equal to the last value echoed by the other
   1621 		 *    endpoint.  The RFC says those will be discarded
   1622 		 *    since it is a dup that has already been acked.
   1623 		 *    This gives us a lowerbound on the timestamp.
   1624 		 *        timestamp >= other last echoed timestamp
   1625 		 *  - The timestamp will be less than or equal to
   1626 		 *    the last timestamp plus the time between the
   1627 		 *    last packet and now.  The RFC defines the max
   1628 		 *    clock rate as 1ms.  We will allow clocks to be
   1629 		 *    up to 10% fast and will allow a total difference
   1630 		 *    or 30 seconds due to a route change.  And this
   1631 		 *    gives us an upperbound on the timestamp.
   1632 		 *        timestamp <= last timestamp + max ticks
   1633 		 *    We have to be careful here.  Windows will send an
   1634 		 *    initial timestamp of zero and then initialize it
   1635 		 *    to a random value after the 3whs; presumably to
   1636 		 *    avoid a DoS by having to call an expensive RNG
   1637 		 *    during a SYN flood.  Proof MS has at least one
   1638 		 *    good security geek.
   1639 		 *
   1640 		 *  - The TCP timestamp option must also echo the other
   1641 		 *    endpoints timestamp.  The timestamp echoed is the
   1642 		 *    one carried on the earliest unacknowledged segment
   1643 		 *    on the left edge of the sequence window.  The RFC
   1644 		 *    states that the host will reject any echoed
   1645 		 *    timestamps that were larger than any ever sent.
   1646 		 *    This gives us an upperbound on the TS echo.
   1647 		 *        tescr <= largest_tsval
   1648 		 *  - The lowerbound on the TS echo is a little more
   1649 		 *    tricky to determine.  The other endpoint's echoed
   1650 		 *    values will not decrease.  But there may be
   1651 		 *    network conditions that re-order packets and
   1652 		 *    cause our view of them to decrease.  For now the
   1653 		 *    only lowerbound we can safely determine is that
   1654 		 *    the TS echo will never be less than the orginal
   1655 		 *    TS.  XXX There is probably a better lowerbound.
   1656 		 *    Remove TS_MAX_CONN with better lowerbound check.
   1657 		 *        tescr >= other original TS
   1658 		 *
   1659 		 * It is also important to note that the fastest
   1660 		 * timestamp clock of 1ms will wrap its 32bit space in
   1661 		 * 24 days.  So we just disable TS checking after 24
   1662 		 * days of idle time.  We actually must use a 12d
   1663 		 * connection limit until we can come up with a better
   1664 		 * lowerbound to the TS echo check.
   1665 		 */
   1666 		struct timeval delta_ts;
   1667 		int ts_fudge;
   1668 
   1669 
   1670 		/*
   1671 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
   1672 		 * a host's timestamp.  This can happen if the previous
   1673 		 * packet got delayed in transit for much longer than
   1674 		 * this packet.
   1675 		 */
   1676 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
   1677 			ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
   1678 
   1679 
   1680 		/* Calculate max ticks since the last timestamp */
   1681 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
   1682 #define TS_MICROSECS	1000000		/* microseconds per second */
   1683 		timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
   1684 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
   1685 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
   1686 
   1687 
   1688 		if ((src->state >= TCPS_ESTABLISHED &&
   1689 		    dst->state >= TCPS_ESTABLISHED) &&
   1690 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
   1691 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
   1692 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
   1693 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
   1694 			/* Bad RFC1323 implementation or an insertion attack.
   1695 			 *
   1696 			 * - Solaris 2.6 and 2.7 are known to send another ACK
   1697 			 *   after the FIN,FIN|ACK,ACK closing that carries
   1698 			 *   an old timestamp.
   1699 			 */
   1700 
   1701 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
   1702 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
   1703 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
   1704 			    tsval_from_last) ? '1' : ' ',
   1705 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
   1706 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
   1707 			DPFPRINTF((" tsval: %" PRIu32 "  tsecr: %" PRIu32
   1708 			    "  +ticks: %" PRIu32 "  idle: %lus %lums\n",
   1709 			    tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
   1710 			    delta_ts.tv_usec / 1000));
   1711 			DPFPRINTF((" src->tsval: %" PRIu32 "  tsecr: %" PRIu32
   1712 			    "\n",
   1713 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
   1714 			DPFPRINTF((" dst->tsval: %" PRIu32 "  tsecr: %" PRIu32
   1715 			    "  tsval0: %" PRIu32 "\n",
   1716 			    dst->scrub->pfss_tsval,
   1717 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
   1718 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1719 				pf_print_state(state);
   1720 				pf_print_flags(th->th_flags);
   1721 				printf("\n");
   1722 			}
   1723 			REASON_SET(reason, PFRES_TS);
   1724 			return (PF_DROP);
   1725 		}
   1726 
   1727 		/* XXX I'd really like to require tsecr but it's optional */
   1728 
   1729 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
   1730 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
   1731 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
   1732 	    src->scrub && dst->scrub &&
   1733 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1734 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1735 		/* Didn't send a timestamp.  Timestamps aren't really useful
   1736 		 * when:
   1737 		 *  - connection opening or closing (often not even sent).
   1738 		 *    but we must not let an attacker to put a FIN on a
   1739 		 *    data packet to sneak it through our ESTABLISHED check.
   1740 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
   1741 		 *  - on an empty ACK.  The TS will not be echoed so it will
   1742 		 *    probably not help keep the RTT calculation in sync and
   1743 		 *    there isn't as much danger when the sequence numbers
   1744 		 *    got wrapped.  So some stacks don't include TS on empty
   1745 		 *    ACKs :-(
   1746 		 *
   1747 		 * To minimize the disruption to mostly RFC1323 conformant
   1748 		 * stacks, we will only require timestamps on data packets.
   1749 		 *
   1750 		 * And what do ya know, we cannot require timestamps on data
   1751 		 * packets.  There appear to be devices that do legitimate
   1752 		 * TCP connection hijacking.  There are HTTP devices that allow
   1753 		 * a 3whs (with timestamps) and then buffer the HTTP request.
   1754 		 * If the intermediate device has the HTTP response cache, it
   1755 		 * will spoof the response but not bother timestamping its
   1756 		 * packets.  So we can look for the presence of a timestamp in
   1757 		 * the first data packet and if there, require it in all future
   1758 		 * packets.
   1759 		 */
   1760 
   1761 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
   1762 			/*
   1763 			 * Hey!  Someone tried to sneak a packet in.  Or the
   1764 			 * stack changed its RFC1323 behavior?!?!
   1765 			 */
   1766 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1767 				DPFPRINTF(("Did not receive expected RFC1323 "
   1768 				    "timestamp\n"));
   1769 				pf_print_state(state);
   1770 				pf_print_flags(th->th_flags);
   1771 				printf("\n");
   1772 			}
   1773 			REASON_SET(reason, PFRES_TS);
   1774 			return (PF_DROP);
   1775 		}
   1776 	}
   1777 
   1778 
   1779 	/*
   1780 	 * We will note if a host sends his data packets with or without
   1781 	 * timestamps.  And require all data packets to contain a timestamp
   1782 	 * if the first does.  PAWS implicitly requires that all data packets be
   1783 	 * timestamped.  But I think there are middle-man devices that hijack
   1784 	 * TCP streams immedietly after the 3whs and don't timestamp their
   1785 	 * packets (seen in a WWW accelerator or cache).
   1786 	 */
   1787 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
   1788 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
   1789 		if (got_ts)
   1790 			src->scrub->pfss_flags |= PFSS_DATA_TS;
   1791 		else {
   1792 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
   1793 			if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
   1794 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
   1795 				/* Don't warn if other host rejected RFC1323 */
   1796 				DPFPRINTF(("Broken RFC1323 stack did not "
   1797 				    "timestamp data packet. Disabled PAWS "
   1798 				    "security.\n"));
   1799 				pf_print_state(state);
   1800 				pf_print_flags(th->th_flags);
   1801 				printf("\n");
   1802 			}
   1803 		}
   1804 	}
   1805 
   1806 
   1807 	/*
   1808 	 * Update PAWS values
   1809 	 */
   1810 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
   1811 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
   1812 		getmicrouptime(&src->scrub->pfss_last);
   1813 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
   1814 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1815 			src->scrub->pfss_tsval = tsval;
   1816 
   1817 		if (tsecr) {
   1818 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
   1819 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1820 				src->scrub->pfss_tsecr = tsecr;
   1821 
   1822 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
   1823 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
   1824 			    src->scrub->pfss_tsval0 == 0)) {
   1825 				/* tsval0 MUST be the lowest timestamp */
   1826 				src->scrub->pfss_tsval0 = tsval;
   1827 			}
   1828 
   1829 			/* Only fully initialized after a TS gets echoed */
   1830 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1831 				src->scrub->pfss_flags |= PFSS_PAWS;
   1832 		}
   1833 	}
   1834 
   1835 	/* I have a dream....  TCP segment reassembly.... */
   1836 	return (0);
   1837 }
   1838 
   1839 int
   1840 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
   1841     int off)
   1842 {
   1843 	u_int16_t	*mss;
   1844 	int		 thoff;
   1845 	int		 opt, cnt, optlen = 0;
   1846 	int		 rewrite = 0;
   1847 	u_char		*optp;
   1848 
   1849 	thoff = th->th_off << 2;
   1850 	cnt = thoff - sizeof(struct tcphdr);
   1851 	optp = mtod(m, caddr_t) + off + sizeof(struct tcphdr);
   1852 
   1853 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
   1854 		opt = optp[0];
   1855 		if (opt == TCPOPT_EOL)
   1856 			break;
   1857 		if (opt == TCPOPT_NOP)
   1858 			optlen = 1;
   1859 		else {
   1860 			if (cnt < 2)
   1861 				break;
   1862 			optlen = optp[1];
   1863 			if (optlen < 2 || optlen > cnt)
   1864 				break;
   1865 		}
   1866 		switch (opt) {
   1867 		case TCPOPT_MAXSEG:
   1868 			mss = (u_int16_t *)(optp + 2);
   1869 			if ((ntohs(*mss)) > r->max_mss) {
   1870 				th->th_sum = pf_cksum_fixup(th->th_sum,
   1871 				    *mss, htons(r->max_mss), 0);
   1872 				*mss = htons(r->max_mss);
   1873 				rewrite = 1;
   1874 			}
   1875 			break;
   1876 		default:
   1877 			break;
   1878 		}
   1879 	}
   1880 
   1881 	return (rewrite);
   1882 }
   1883