pf_norm.c revision 1.9 1 /* $NetBSD: pf_norm.c,v 1.9 2005/07/01 12:37:35 peter Exp $ */
2 /* $OpenBSD: pf_norm.c,v 1.97 2004/09/21 16:59:12 aaron Exp $ */
3
4 /*
5 * Copyright 2001 Niels Provos <provos (at) citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #ifdef _KERNEL_OPT
30 #include "opt_inet.h"
31 #endif
32
33 #include "pflog.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/filio.h>
39 #include <sys/fcntl.h>
40 #include <sys/socket.h>
41 #include <sys/kernel.h>
42 #include <sys/time.h>
43 #include <sys/pool.h>
44
45 #ifdef __OpenBSD__
46 #include <dev/rndvar.h>
47 #else
48 #include <sys/rnd.h>
49 #endif
50 #include <net/if.h>
51 #include <net/if_types.h>
52 #include <net/bpf.h>
53 #include <net/route.h>
54 #include <net/if_pflog.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_var.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/tcp.h>
62 #include <netinet/tcp_seq.h>
63 #include <netinet/udp.h>
64 #include <netinet/ip_icmp.h>
65
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif /* INET6 */
69
70 #include <net/pfvar.h>
71
72 struct pf_frent {
73 LIST_ENTRY(pf_frent) fr_next;
74 struct ip *fr_ip;
75 struct mbuf *fr_m;
76 };
77
78 struct pf_frcache {
79 LIST_ENTRY(pf_frcache) fr_next;
80 uint16_t fr_off;
81 uint16_t fr_end;
82 };
83
84 #define PFFRAG_SEENLAST 0x0001 /* Seen the last fragment for this */
85 #define PFFRAG_NOBUFFER 0x0002 /* Non-buffering fragment cache */
86 #define PFFRAG_DROP 0x0004 /* Drop all fragments */
87 #define BUFFER_FRAGMENTS(fr) (!((fr)->fr_flags & PFFRAG_NOBUFFER))
88
89 struct pf_fragment {
90 RB_ENTRY(pf_fragment) fr_entry;
91 TAILQ_ENTRY(pf_fragment) frag_next;
92 struct in_addr fr_src;
93 struct in_addr fr_dst;
94 u_int8_t fr_p; /* protocol of this fragment */
95 u_int8_t fr_flags; /* status flags */
96 u_int16_t fr_id; /* fragment id for reassemble */
97 u_int16_t fr_max; /* fragment data max */
98 u_int32_t fr_timeout;
99 #define fr_queue fr_u.fru_queue
100 #define fr_cache fr_u.fru_cache
101 union {
102 LIST_HEAD(pf_fragq, pf_frent) fru_queue; /* buffering */
103 LIST_HEAD(pf_cacheq, pf_frcache) fru_cache; /* non-buf */
104 } fr_u;
105 };
106
107 TAILQ_HEAD(pf_fragqueue, pf_fragment) pf_fragqueue;
108 TAILQ_HEAD(pf_cachequeue, pf_fragment) pf_cachequeue;
109
110 static __inline int pf_frag_compare(struct pf_fragment *,
111 struct pf_fragment *);
112 RB_HEAD(pf_frag_tree, pf_fragment) pf_frag_tree, pf_cache_tree;
113 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
114 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
115
116 /* Private prototypes */
117 void pf_ip2key(struct pf_fragment *, struct ip *);
118 void pf_remove_fragment(struct pf_fragment *);
119 void pf_flush_fragments(void);
120 void pf_free_fragment(struct pf_fragment *);
121 struct pf_fragment *pf_find_fragment(struct ip *, struct pf_frag_tree *);
122 struct mbuf *pf_reassemble(struct mbuf **, struct pf_fragment **,
123 struct pf_frent *, int);
124 struct mbuf *pf_fragcache(struct mbuf **, struct ip*,
125 struct pf_fragment **, int, int, int *);
126 int pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
127 struct tcphdr *, int);
128
129 #define DPFPRINTF(x) do { \
130 if (pf_status.debug >= PF_DEBUG_MISC) { \
131 printf("%s: ", __func__); \
132 printf x ; \
133 } \
134 } while(0)
135
136 /* Globals */
137 struct pool pf_frent_pl, pf_frag_pl, pf_cache_pl, pf_cent_pl;
138 struct pool pf_state_scrub_pl;
139 int pf_nfrents, pf_ncache;
140
141 void
142 pf_normalize_init(void)
143 {
144 pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
145 NULL);
146 pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
147 NULL);
148 pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
149 "pffrcache", NULL);
150 pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
151 NULL);
152 pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
153 "pfstscr", NULL);
154
155 pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
156 pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
157 pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
158 pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
159
160 TAILQ_INIT(&pf_fragqueue);
161 TAILQ_INIT(&pf_cachequeue);
162 }
163
164 #ifdef _LKM
165 void
166 pf_normalize_destroy(void)
167 {
168 pool_destroy(&pf_state_scrub_pl);
169 pool_destroy(&pf_cent_pl);
170 pool_destroy(&pf_cache_pl);
171 pool_destroy(&pf_frag_pl);
172 pool_destroy(&pf_frent_pl);
173 }
174 #endif
175
176 static __inline int
177 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
178 {
179 int diff;
180
181 if ((diff = a->fr_id - b->fr_id))
182 return (diff);
183 else if ((diff = a->fr_p - b->fr_p))
184 return (diff);
185 else if (a->fr_src.s_addr < b->fr_src.s_addr)
186 return (-1);
187 else if (a->fr_src.s_addr > b->fr_src.s_addr)
188 return (1);
189 else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
190 return (-1);
191 else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
192 return (1);
193 return (0);
194 }
195
196 void
197 pf_purge_expired_fragments(void)
198 {
199 struct pf_fragment *frag;
200 u_int32_t expire = time_second -
201 pf_default_rule.timeout[PFTM_FRAG];
202
203 while ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) != NULL) {
204 KASSERT(BUFFER_FRAGMENTS(frag));
205 if (frag->fr_timeout > expire)
206 break;
207
208 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
209 pf_free_fragment(frag);
210 }
211
212 while ((frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue)) != NULL) {
213 KASSERT(!BUFFER_FRAGMENTS(frag));
214 if (frag->fr_timeout > expire)
215 break;
216
217 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
218 pf_free_fragment(frag);
219 KASSERT(TAILQ_EMPTY(&pf_cachequeue) ||
220 TAILQ_LAST(&pf_cachequeue, pf_cachequeue) != frag);
221 }
222 }
223
224 /*
225 * Try to flush old fragments to make space for new ones
226 */
227
228 void
229 pf_flush_fragments(void)
230 {
231 struct pf_fragment *frag;
232 int goal;
233
234 goal = pf_nfrents * 9 / 10;
235 DPFPRINTF(("trying to free > %d frents\n",
236 pf_nfrents - goal));
237 while (goal < pf_nfrents) {
238 frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue);
239 if (frag == NULL)
240 break;
241 pf_free_fragment(frag);
242 }
243
244
245 goal = pf_ncache * 9 / 10;
246 DPFPRINTF(("trying to free > %d cache entries\n",
247 pf_ncache - goal));
248 while (goal < pf_ncache) {
249 frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue);
250 if (frag == NULL)
251 break;
252 pf_free_fragment(frag);
253 }
254 }
255
256 /* Frees the fragments and all associated entries */
257
258 void
259 pf_free_fragment(struct pf_fragment *frag)
260 {
261 struct pf_frent *frent;
262 struct pf_frcache *frcache;
263
264 /* Free all fragments */
265 if (BUFFER_FRAGMENTS(frag)) {
266 for (frent = LIST_FIRST(&frag->fr_queue); frent;
267 frent = LIST_FIRST(&frag->fr_queue)) {
268 LIST_REMOVE(frent, fr_next);
269
270 m_freem(frent->fr_m);
271 pool_put(&pf_frent_pl, frent);
272 pf_nfrents--;
273 }
274 } else {
275 for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
276 frcache = LIST_FIRST(&frag->fr_cache)) {
277 LIST_REMOVE(frcache, fr_next);
278
279 KASSERT(LIST_EMPTY(&frag->fr_cache) ||
280 LIST_FIRST(&frag->fr_cache)->fr_off >
281 frcache->fr_end);
282
283 pool_put(&pf_cent_pl, frcache);
284 pf_ncache--;
285 }
286 }
287
288 pf_remove_fragment(frag);
289 }
290
291 void
292 pf_ip2key(struct pf_fragment *key, struct ip *ip)
293 {
294 key->fr_p = ip->ip_p;
295 key->fr_id = ip->ip_id;
296 key->fr_src.s_addr = ip->ip_src.s_addr;
297 key->fr_dst.s_addr = ip->ip_dst.s_addr;
298 }
299
300 struct pf_fragment *
301 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
302 {
303 struct pf_fragment key;
304 struct pf_fragment *frag;
305
306 pf_ip2key(&key, ip);
307
308 frag = RB_FIND(pf_frag_tree, tree, &key);
309 if (frag != NULL) {
310 /* XXX Are we sure we want to update the timeout? */
311 frag->fr_timeout = time_second;
312 if (BUFFER_FRAGMENTS(frag)) {
313 TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
314 TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next);
315 } else {
316 TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
317 TAILQ_INSERT_HEAD(&pf_cachequeue, frag, frag_next);
318 }
319 }
320
321 return (frag);
322 }
323
324 /* Removes a fragment from the fragment queue and frees the fragment */
325
326 void
327 pf_remove_fragment(struct pf_fragment *frag)
328 {
329 if (BUFFER_FRAGMENTS(frag)) {
330 RB_REMOVE(pf_frag_tree, &pf_frag_tree, frag);
331 TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
332 pool_put(&pf_frag_pl, frag);
333 } else {
334 RB_REMOVE(pf_frag_tree, &pf_cache_tree, frag);
335 TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
336 pool_put(&pf_cache_pl, frag);
337 }
338 }
339
340 #define FR_IP_OFF(fr) ((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
341 struct mbuf *
342 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
343 struct pf_frent *frent, int mff)
344 {
345 struct mbuf *m = *m0, *m2;
346 struct pf_frent *frea, *next;
347 struct pf_frent *frep = NULL;
348 struct ip *ip = frent->fr_ip;
349 int hlen = ip->ip_hl << 2;
350 u_int16_t off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
351 u_int16_t ip_len = ntohs(ip->ip_len) - ip->ip_hl * 4;
352 u_int16_t max = ip_len + off;
353
354 KASSERT(*frag == NULL || BUFFER_FRAGMENTS(*frag));
355
356 /* Strip off ip header */
357 m->m_data += hlen;
358 m->m_len -= hlen;
359
360 /* Create a new reassembly queue for this packet */
361 if (*frag == NULL) {
362 *frag = pool_get(&pf_frag_pl, PR_NOWAIT);
363 if (*frag == NULL) {
364 pf_flush_fragments();
365 *frag = pool_get(&pf_frag_pl, PR_NOWAIT);
366 if (*frag == NULL)
367 goto drop_fragment;
368 }
369
370 (*frag)->fr_flags = 0;
371 (*frag)->fr_max = 0;
372 (*frag)->fr_src = frent->fr_ip->ip_src;
373 (*frag)->fr_dst = frent->fr_ip->ip_dst;
374 (*frag)->fr_p = frent->fr_ip->ip_p;
375 (*frag)->fr_id = frent->fr_ip->ip_id;
376 (*frag)->fr_timeout = time_second;
377 LIST_INIT(&(*frag)->fr_queue);
378
379 RB_INSERT(pf_frag_tree, &pf_frag_tree, *frag);
380 TAILQ_INSERT_HEAD(&pf_fragqueue, *frag, frag_next);
381
382 /* We do not have a previous fragment */
383 frep = NULL;
384 goto insert;
385 }
386
387 /*
388 * Find a fragment after the current one:
389 * - off contains the real shifted offset.
390 */
391 LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
392 if (FR_IP_OFF(frea) > off)
393 break;
394 frep = frea;
395 }
396
397 KASSERT(frep != NULL || frea != NULL);
398
399 if (frep != NULL &&
400 FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl *
401 4 > off)
402 {
403 u_int16_t precut;
404
405 precut = FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) -
406 frep->fr_ip->ip_hl * 4 - off;
407 if (precut >= ip_len)
408 goto drop_fragment;
409 m_adj(frent->fr_m, precut);
410 DPFPRINTF(("overlap -%d\n", precut));
411 /* Enforce 8 byte boundaries */
412 ip->ip_off = htons(ntohs(ip->ip_off) + (precut >> 3));
413 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
414 ip_len -= precut;
415 ip->ip_len = htons(ip_len);
416 }
417
418 for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
419 frea = next)
420 {
421 u_int16_t aftercut;
422
423 aftercut = ip_len + off - FR_IP_OFF(frea);
424 DPFPRINTF(("adjust overlap %d\n", aftercut));
425 if (aftercut < ntohs(frea->fr_ip->ip_len) - frea->fr_ip->ip_hl
426 * 4)
427 {
428 frea->fr_ip->ip_len =
429 htons(ntohs(frea->fr_ip->ip_len) - aftercut);
430 frea->fr_ip->ip_off = htons(ntohs(frea->fr_ip->ip_off) +
431 (aftercut >> 3));
432 m_adj(frea->fr_m, aftercut);
433 break;
434 }
435
436 /* This fragment is completely overlapped, loose it */
437 next = LIST_NEXT(frea, fr_next);
438 m_freem(frea->fr_m);
439 LIST_REMOVE(frea, fr_next);
440 pool_put(&pf_frent_pl, frea);
441 pf_nfrents--;
442 }
443
444 insert:
445 /* Update maximum data size */
446 if ((*frag)->fr_max < max)
447 (*frag)->fr_max = max;
448 /* This is the last segment */
449 if (!mff)
450 (*frag)->fr_flags |= PFFRAG_SEENLAST;
451
452 if (frep == NULL)
453 LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
454 else
455 LIST_INSERT_AFTER(frep, frent, fr_next);
456
457 /* Check if we are completely reassembled */
458 if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
459 return (NULL);
460
461 /* Check if we have all the data */
462 off = 0;
463 for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
464 next = LIST_NEXT(frep, fr_next);
465
466 off += ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl * 4;
467 if (off < (*frag)->fr_max &&
468 (next == NULL || FR_IP_OFF(next) != off))
469 {
470 DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
471 off, next == NULL ? -1 : FR_IP_OFF(next),
472 (*frag)->fr_max));
473 return (NULL);
474 }
475 }
476 DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
477 if (off < (*frag)->fr_max)
478 return (NULL);
479
480 /* We have all the data */
481 frent = LIST_FIRST(&(*frag)->fr_queue);
482 KASSERT(frent != NULL);
483 if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
484 DPFPRINTF(("drop: too big: %d\n", off));
485 pf_free_fragment(*frag);
486 *frag = NULL;
487 return (NULL);
488 }
489 next = LIST_NEXT(frent, fr_next);
490
491 /* Magic from ip_input */
492 ip = frent->fr_ip;
493 m = frent->fr_m;
494 m2 = m->m_next;
495 m->m_next = NULL;
496 m_cat(m, m2);
497 pool_put(&pf_frent_pl, frent);
498 pf_nfrents--;
499 for (frent = next; frent != NULL; frent = next) {
500 next = LIST_NEXT(frent, fr_next);
501
502 m2 = frent->fr_m;
503 pool_put(&pf_frent_pl, frent);
504 pf_nfrents--;
505 m_cat(m, m2);
506 }
507
508 ip->ip_src = (*frag)->fr_src;
509 ip->ip_dst = (*frag)->fr_dst;
510
511 /* Remove from fragment queue */
512 pf_remove_fragment(*frag);
513 *frag = NULL;
514
515 hlen = ip->ip_hl << 2;
516 ip->ip_len = htons(off + hlen);
517 m->m_len += hlen;
518 m->m_data -= hlen;
519
520 /* some debugging cruft by sklower, below, will go away soon */
521 /* XXX this should be done elsewhere */
522 if (m->m_flags & M_PKTHDR) {
523 int plen = 0;
524 for (m2 = m; m2; m2 = m2->m_next)
525 plen += m2->m_len;
526 m->m_pkthdr.len = plen;
527 #if defined(__NetBSD__)
528 m->m_pkthdr.csum_flags = 0;
529 #endif /* defined(__NetBSD__) */
530 }
531
532 DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
533 return (m);
534
535 drop_fragment:
536 /* Oops - fail safe - drop packet */
537 pool_put(&pf_frent_pl, frent);
538 pf_nfrents--;
539 m_freem(m);
540 return (NULL);
541 }
542
543 struct mbuf *
544 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
545 int drop, int *nomem)
546 {
547 struct mbuf *m = *m0;
548 struct pf_frcache *frp, *fra, *cur = NULL;
549 int ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
550 u_int16_t off = ntohs(h->ip_off) << 3;
551 u_int16_t max = ip_len + off;
552 int hosed = 0;
553
554 KASSERT(*frag == NULL || !BUFFER_FRAGMENTS(*frag));
555
556 /* Create a new range queue for this packet */
557 if (*frag == NULL) {
558 *frag = pool_get(&pf_cache_pl, PR_NOWAIT);
559 if (*frag == NULL) {
560 pf_flush_fragments();
561 *frag = pool_get(&pf_cache_pl, PR_NOWAIT);
562 if (*frag == NULL)
563 goto no_mem;
564 }
565
566 /* Get an entry for the queue */
567 cur = pool_get(&pf_cent_pl, PR_NOWAIT);
568 if (cur == NULL) {
569 pool_put(&pf_cache_pl, *frag);
570 *frag = NULL;
571 goto no_mem;
572 }
573 pf_ncache++;
574
575 (*frag)->fr_flags = PFFRAG_NOBUFFER;
576 (*frag)->fr_max = 0;
577 (*frag)->fr_src = h->ip_src;
578 (*frag)->fr_dst = h->ip_dst;
579 (*frag)->fr_p = h->ip_p;
580 (*frag)->fr_id = h->ip_id;
581 (*frag)->fr_timeout = time_second;
582
583 cur->fr_off = off;
584 cur->fr_end = max;
585 LIST_INIT(&(*frag)->fr_cache);
586 LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
587
588 RB_INSERT(pf_frag_tree, &pf_cache_tree, *frag);
589 TAILQ_INSERT_HEAD(&pf_cachequeue, *frag, frag_next);
590
591 DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
592
593 goto pass;
594 }
595
596 /*
597 * Find a fragment after the current one:
598 * - off contains the real shifted offset.
599 */
600 frp = NULL;
601 LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
602 if (fra->fr_off > off)
603 break;
604 frp = fra;
605 }
606
607 KASSERT(frp != NULL || fra != NULL);
608
609 if (frp != NULL) {
610 int precut;
611
612 precut = frp->fr_end - off;
613 if (precut >= ip_len) {
614 /* Fragment is entirely a duplicate */
615 DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
616 h->ip_id, frp->fr_off, frp->fr_end, off, max));
617 goto drop_fragment;
618 }
619 if (precut == 0) {
620 /* They are adjacent. Fixup cache entry */
621 DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
622 h->ip_id, frp->fr_off, frp->fr_end, off, max));
623 frp->fr_end = max;
624 } else if (precut > 0) {
625 /* The first part of this payload overlaps with a
626 * fragment that has already been passed.
627 * Need to trim off the first part of the payload.
628 * But to do so easily, we need to create another
629 * mbuf to throw the original header into.
630 */
631
632 DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
633 h->ip_id, precut, frp->fr_off, frp->fr_end, off,
634 max));
635
636 off += precut;
637 max -= precut;
638 /* Update the previous frag to encompass this one */
639 frp->fr_end = max;
640
641 if (!drop) {
642 /* XXX Optimization opportunity
643 * This is a very heavy way to trim the payload.
644 * we could do it much faster by diddling mbuf
645 * internals but that would be even less legible
646 * than this mbuf magic. For my next trick,
647 * I'll pull a rabbit out of my laptop.
648 */
649 *m0 = m_copym2(m, 0, h->ip_hl << 2, M_NOWAIT);
650 if (*m0 == NULL)
651 goto no_mem;
652 KASSERT((*m0)->m_next == NULL);
653 m_adj(m, precut + (h->ip_hl << 2));
654 m_cat(*m0, m);
655 m = *m0;
656 if (m->m_flags & M_PKTHDR) {
657 int plen = 0;
658 struct mbuf *t;
659 for (t = m; t; t = t->m_next)
660 plen += t->m_len;
661 m->m_pkthdr.len = plen;
662 }
663
664
665 h = mtod(m, struct ip *);
666
667
668 KASSERT((int)m->m_len ==
669 ntohs(h->ip_len) - precut);
670 h->ip_off = htons(ntohs(h->ip_off) +
671 (precut >> 3));
672 h->ip_len = htons(ntohs(h->ip_len) - precut);
673 } else {
674 hosed++;
675 }
676 } else {
677 /* There is a gap between fragments */
678
679 DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
680 h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
681 max));
682
683 cur = pool_get(&pf_cent_pl, PR_NOWAIT);
684 if (cur == NULL)
685 goto no_mem;
686 pf_ncache++;
687
688 cur->fr_off = off;
689 cur->fr_end = max;
690 LIST_INSERT_AFTER(frp, cur, fr_next);
691 }
692 }
693
694 if (fra != NULL) {
695 int aftercut;
696 int merge = 0;
697
698 aftercut = max - fra->fr_off;
699 if (aftercut == 0) {
700 /* Adjacent fragments */
701 DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
702 h->ip_id, off, max, fra->fr_off, fra->fr_end));
703 fra->fr_off = off;
704 merge = 1;
705 } else if (aftercut > 0) {
706 /* Need to chop off the tail of this fragment */
707 DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
708 h->ip_id, aftercut, off, max, fra->fr_off,
709 fra->fr_end));
710 fra->fr_off = off;
711 max -= aftercut;
712
713 merge = 1;
714
715 if (!drop) {
716 m_adj(m, -aftercut);
717 if (m->m_flags & M_PKTHDR) {
718 int plen = 0;
719 struct mbuf *t;
720 for (t = m; t; t = t->m_next)
721 plen += t->m_len;
722 m->m_pkthdr.len = plen;
723 }
724 h = mtod(m, struct ip *);
725 KASSERT((int)m->m_len ==
726 ntohs(h->ip_len) - aftercut);
727 h->ip_len = htons(ntohs(h->ip_len) - aftercut);
728 } else {
729 hosed++;
730 }
731 } else {
732 /* There is a gap between fragments */
733 DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
734 h->ip_id, -aftercut, off, max, fra->fr_off,
735 fra->fr_end));
736
737 cur = pool_get(&pf_cent_pl, PR_NOWAIT);
738 if (cur == NULL)
739 goto no_mem;
740 pf_ncache++;
741
742 cur->fr_off = off;
743 cur->fr_end = max;
744 LIST_INSERT_BEFORE(fra, cur, fr_next);
745 }
746
747
748 /* Need to glue together two separate fragment descriptors */
749 if (merge) {
750 if (cur && fra->fr_off <= cur->fr_end) {
751 /* Need to merge in a previous 'cur' */
752 DPFPRINTF(("fragcache[%d]: adjacent(merge "
753 "%d-%d) %d-%d (%d-%d)\n",
754 h->ip_id, cur->fr_off, cur->fr_end, off,
755 max, fra->fr_off, fra->fr_end));
756 fra->fr_off = cur->fr_off;
757 LIST_REMOVE(cur, fr_next);
758 pool_put(&pf_cent_pl, cur);
759 pf_ncache--;
760 cur = NULL;
761
762 } else if (frp && fra->fr_off <= frp->fr_end) {
763 /* Need to merge in a modified 'frp' */
764 KASSERT(cur == NULL);
765 DPFPRINTF(("fragcache[%d]: adjacent(merge "
766 "%d-%d) %d-%d (%d-%d)\n",
767 h->ip_id, frp->fr_off, frp->fr_end, off,
768 max, fra->fr_off, fra->fr_end));
769 fra->fr_off = frp->fr_off;
770 LIST_REMOVE(frp, fr_next);
771 pool_put(&pf_cent_pl, frp);
772 pf_ncache--;
773 frp = NULL;
774
775 }
776 }
777 }
778
779 if (hosed) {
780 /*
781 * We must keep tracking the overall fragment even when
782 * we're going to drop it anyway so that we know when to
783 * free the overall descriptor. Thus we drop the frag late.
784 */
785 goto drop_fragment;
786 }
787
788
789 pass:
790 /* Update maximum data size */
791 if ((*frag)->fr_max < max)
792 (*frag)->fr_max = max;
793
794 /* This is the last segment */
795 if (!mff)
796 (*frag)->fr_flags |= PFFRAG_SEENLAST;
797
798 /* Check if we are completely reassembled */
799 if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
800 LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
801 LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
802 /* Remove from fragment queue */
803 DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
804 (*frag)->fr_max));
805 pf_free_fragment(*frag);
806 *frag = NULL;
807 }
808
809 return (m);
810
811 no_mem:
812 *nomem = 1;
813
814 /* Still need to pay attention to !IP_MF */
815 if (!mff && *frag != NULL)
816 (*frag)->fr_flags |= PFFRAG_SEENLAST;
817
818 m_freem(m);
819 return (NULL);
820
821 drop_fragment:
822
823 /* Still need to pay attention to !IP_MF */
824 if (!mff && *frag != NULL)
825 (*frag)->fr_flags |= PFFRAG_SEENLAST;
826
827 if (drop) {
828 /* This fragment has been deemed bad. Don't reass */
829 if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
830 DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
831 h->ip_id));
832 (*frag)->fr_flags |= PFFRAG_DROP;
833 }
834
835 m_freem(m);
836 return (NULL);
837 }
838
839 int
840 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
841 struct pf_pdesc *pd)
842 {
843 struct mbuf *m = *m0;
844 struct pf_rule *r;
845 struct pf_frent *frent;
846 struct pf_fragment *frag = NULL;
847 struct ip *h = mtod(m, struct ip *);
848 int mff = (ntohs(h->ip_off) & IP_MF);
849 int hlen = h->ip_hl << 2;
850 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
851 u_int16_t max;
852 int ip_len;
853 int ip_off;
854
855 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
856 while (r != NULL) {
857 r->evaluations++;
858 if (r->kif != NULL &&
859 (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
860 r = r->skip[PF_SKIP_IFP].ptr;
861 else if (r->direction && r->direction != dir)
862 r = r->skip[PF_SKIP_DIR].ptr;
863 else if (r->af && r->af != AF_INET)
864 r = r->skip[PF_SKIP_AF].ptr;
865 else if (r->proto && r->proto != h->ip_p)
866 r = r->skip[PF_SKIP_PROTO].ptr;
867 else if (PF_MISMATCHAW(&r->src.addr,
868 (struct pf_addr *)&h->ip_src.s_addr, AF_INET, r->src.neg))
869 r = r->skip[PF_SKIP_SRC_ADDR].ptr;
870 else if (PF_MISMATCHAW(&r->dst.addr,
871 (struct pf_addr *)&h->ip_dst.s_addr, AF_INET, r->dst.neg))
872 r = r->skip[PF_SKIP_DST_ADDR].ptr;
873 else
874 break;
875 }
876
877 if (r == NULL)
878 return (PF_PASS);
879 else
880 r->packets++;
881
882 /* Check for illegal packets */
883 if (hlen < (int)sizeof(struct ip))
884 goto drop;
885
886 if (hlen > ntohs(h->ip_len))
887 goto drop;
888
889 /* Clear IP_DF if the rule uses the no-df option */
890 if (r->rule_flag & PFRULE_NODF)
891 h->ip_off &= htons(~IP_DF);
892
893 /* We will need other tests here */
894 if (!fragoff && !mff)
895 goto no_fragment;
896
897 /* We're dealing with a fragment now. Don't allow fragments
898 * with IP_DF to enter the cache. If the flag was cleared by
899 * no-df above, fine. Otherwise drop it.
900 */
901 if (h->ip_off & htons(IP_DF)) {
902 DPFPRINTF(("IP_DF\n"));
903 goto bad;
904 }
905
906 ip_len = ntohs(h->ip_len) - hlen;
907 ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
908
909 /* All fragments are 8 byte aligned */
910 if (mff && (ip_len & 0x7)) {
911 DPFPRINTF(("mff and %d\n", ip_len));
912 goto bad;
913 }
914
915 /* Respect maximum length */
916 if (fragoff + ip_len > IP_MAXPACKET) {
917 DPFPRINTF(("max packet %d\n", fragoff + ip_len));
918 goto bad;
919 }
920 max = fragoff + ip_len;
921
922 if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
923 /* Fully buffer all of the fragments */
924
925 frag = pf_find_fragment(h, &pf_frag_tree);
926
927 /* Check if we saw the last fragment already */
928 if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
929 max > frag->fr_max)
930 goto bad;
931
932 /* Get an entry for the fragment queue */
933 frent = pool_get(&pf_frent_pl, PR_NOWAIT);
934 if (frent == NULL) {
935 REASON_SET(reason, PFRES_MEMORY);
936 return (PF_DROP);
937 }
938 pf_nfrents++;
939 frent->fr_ip = h;
940 frent->fr_m = m;
941
942 /* Might return a completely reassembled mbuf, or NULL */
943 DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
944 *m0 = m = pf_reassemble(m0, &frag, frent, mff);
945
946 if (m == NULL)
947 return (PF_DROP);
948
949 if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
950 goto drop;
951
952 h = mtod(m, struct ip *);
953 } else {
954 /* non-buffering fragment cache (drops or masks overlaps) */
955 int nomem = 0;
956
957 if (dir == PF_OUT) {
958 if (m_tag_find(m, PACKET_TAG_PF_FRAGCACHE, NULL) !=
959 NULL) {
960 /* Already passed the fragment cache in the
961 * input direction. If we continued, it would
962 * appear to be a dup and would be dropped.
963 */
964 goto fragment_pass;
965 }
966 }
967
968 frag = pf_find_fragment(h, &pf_cache_tree);
969
970 /* Check if we saw the last fragment already */
971 if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
972 max > frag->fr_max) {
973 if (r->rule_flag & PFRULE_FRAGDROP)
974 frag->fr_flags |= PFFRAG_DROP;
975 goto bad;
976 }
977
978 *m0 = m = pf_fragcache(m0, h, &frag, mff,
979 (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
980 if (m == NULL) {
981 if (nomem)
982 goto no_mem;
983 goto drop;
984 }
985
986 if (dir == PF_IN) {
987 struct m_tag *mtag;
988
989 mtag = m_tag_get(PACKET_TAG_PF_FRAGCACHE, 0, M_NOWAIT);
990 if (mtag == NULL)
991 goto no_mem;
992 m_tag_prepend(m, mtag);
993 }
994 if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
995 goto drop;
996 goto fragment_pass;
997 }
998
999 no_fragment:
1000 /* At this point, only IP_DF is allowed in ip_off */
1001 h->ip_off &= htons(IP_DF);
1002
1003 /* Enforce a minimum ttl, may cause endless packet loops */
1004 if (r->min_ttl && h->ip_ttl < r->min_ttl)
1005 h->ip_ttl = r->min_ttl;
1006
1007 if (r->rule_flag & PFRULE_RANDOMID) {
1008 u_int16_t ip_id = h->ip_id;
1009
1010 h->ip_id = ip_randomid();
1011 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1012 }
1013 if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1014 pd->flags |= PFDESC_IP_REAS;
1015
1016 return (PF_PASS);
1017
1018 fragment_pass:
1019 /* Enforce a minimum ttl, may cause endless packet loops */
1020 if (r->min_ttl && h->ip_ttl < r->min_ttl)
1021 h->ip_ttl = r->min_ttl;
1022 if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1023 pd->flags |= PFDESC_IP_REAS;
1024 return (PF_PASS);
1025
1026 no_mem:
1027 REASON_SET(reason, PFRES_MEMORY);
1028 if (r != NULL && r->log)
1029 PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
1030 return (PF_DROP);
1031
1032 drop:
1033 REASON_SET(reason, PFRES_NORM);
1034 if (r != NULL && r->log)
1035 PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
1036 return (PF_DROP);
1037
1038 bad:
1039 DPFPRINTF(("dropping bad fragment\n"));
1040
1041 /* Free associated fragments */
1042 if (frag != NULL)
1043 pf_free_fragment(frag);
1044
1045 REASON_SET(reason, PFRES_FRAG);
1046 if (r != NULL && r->log)
1047 PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL);
1048
1049 return (PF_DROP);
1050 }
1051
1052 #ifdef INET6
1053 int
1054 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
1055 u_short *reason, struct pf_pdesc *pd)
1056 {
1057 struct mbuf *m = *m0;
1058 struct pf_rule *r;
1059 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1060 int off;
1061 struct ip6_ext ext;
1062 struct ip6_opt opt;
1063 struct ip6_opt_jumbo jumbo;
1064 struct ip6_frag frag;
1065 u_int32_t jumbolen = 0, plen;
1066 u_int16_t fragoff = 0;
1067 int optend;
1068 int ooff;
1069 u_int8_t proto;
1070 int terminal;
1071
1072 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1073 while (r != NULL) {
1074 r->evaluations++;
1075 if (r->kif != NULL &&
1076 (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
1077 r = r->skip[PF_SKIP_IFP].ptr;
1078 else if (r->direction && r->direction != dir)
1079 r = r->skip[PF_SKIP_DIR].ptr;
1080 else if (r->af && r->af != AF_INET6)
1081 r = r->skip[PF_SKIP_AF].ptr;
1082 #if 0 /* header chain! */
1083 else if (r->proto && r->proto != h->ip6_nxt)
1084 r = r->skip[PF_SKIP_PROTO].ptr;
1085 #endif
1086 else if (PF_MISMATCHAW(&r->src.addr,
1087 (struct pf_addr *)&h->ip6_src, AF_INET6, r->src.neg))
1088 r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1089 else if (PF_MISMATCHAW(&r->dst.addr,
1090 (struct pf_addr *)&h->ip6_dst, AF_INET6, r->dst.neg))
1091 r = r->skip[PF_SKIP_DST_ADDR].ptr;
1092 else
1093 break;
1094 }
1095
1096 if (r == NULL)
1097 return (PF_PASS);
1098 else
1099 r->packets++;
1100
1101 /* Check for illegal packets */
1102 if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1103 goto drop;
1104
1105 off = sizeof(struct ip6_hdr);
1106 proto = h->ip6_nxt;
1107 terminal = 0;
1108 do {
1109 switch (proto) {
1110 case IPPROTO_FRAGMENT:
1111 goto fragment;
1112 break;
1113 case IPPROTO_AH:
1114 case IPPROTO_ROUTING:
1115 case IPPROTO_DSTOPTS:
1116 if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1117 NULL, AF_INET6))
1118 goto shortpkt;
1119 if (proto == IPPROTO_AH)
1120 off += (ext.ip6e_len + 2) * 4;
1121 else
1122 off += (ext.ip6e_len + 1) * 8;
1123 proto = ext.ip6e_nxt;
1124 break;
1125 case IPPROTO_HOPOPTS:
1126 if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1127 NULL, AF_INET6))
1128 goto shortpkt;
1129 optend = off + (ext.ip6e_len + 1) * 8;
1130 ooff = off + sizeof(ext);
1131 do {
1132 if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1133 sizeof(opt.ip6o_type), NULL, NULL,
1134 AF_INET6))
1135 goto shortpkt;
1136 if (opt.ip6o_type == IP6OPT_PAD1) {
1137 ooff++;
1138 continue;
1139 }
1140 if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1141 NULL, NULL, AF_INET6))
1142 goto shortpkt;
1143 if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1144 goto drop;
1145 switch (opt.ip6o_type) {
1146 case IP6OPT_JUMBO:
1147 if (h->ip6_plen != 0)
1148 goto drop;
1149 if (!pf_pull_hdr(m, ooff, &jumbo,
1150 sizeof(jumbo), NULL, NULL,
1151 AF_INET6))
1152 goto shortpkt;
1153 memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1154 sizeof(jumbolen));
1155 jumbolen = ntohl(jumbolen);
1156 if (jumbolen <= IPV6_MAXPACKET)
1157 goto drop;
1158 if (sizeof(struct ip6_hdr) + jumbolen !=
1159 m->m_pkthdr.len)
1160 goto drop;
1161 break;
1162 default:
1163 break;
1164 }
1165 ooff += sizeof(opt) + opt.ip6o_len;
1166 } while (ooff < optend);
1167
1168 off = optend;
1169 proto = ext.ip6e_nxt;
1170 break;
1171 default:
1172 terminal = 1;
1173 break;
1174 }
1175 } while (!terminal);
1176
1177 /* jumbo payload option must be present, or plen > 0 */
1178 if (ntohs(h->ip6_plen) == 0)
1179 plen = jumbolen;
1180 else
1181 plen = ntohs(h->ip6_plen);
1182 if (plen == 0)
1183 goto drop;
1184 if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1185 goto shortpkt;
1186
1187 /* Enforce a minimum ttl, may cause endless packet loops */
1188 if (r->min_ttl && h->ip6_hlim < r->min_ttl)
1189 h->ip6_hlim = r->min_ttl;
1190
1191 return (PF_PASS);
1192
1193 fragment:
1194 if (ntohs(h->ip6_plen) == 0 || jumbolen)
1195 goto drop;
1196 plen = ntohs(h->ip6_plen);
1197
1198 if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1199 goto shortpkt;
1200 fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
1201 if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
1202 goto badfrag;
1203
1204 /* do something about it */
1205 /* remember to set pd->flags |= PFDESC_IP_REAS */
1206 return (PF_PASS);
1207
1208 shortpkt:
1209 REASON_SET(reason, PFRES_SHORT);
1210 if (r != NULL && r->log)
1211 PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
1212 return (PF_DROP);
1213
1214 drop:
1215 REASON_SET(reason, PFRES_NORM);
1216 if (r != NULL && r->log)
1217 PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
1218 return (PF_DROP);
1219
1220 badfrag:
1221 REASON_SET(reason, PFRES_FRAG);
1222 if (r != NULL && r->log)
1223 PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL);
1224 return (PF_DROP);
1225 }
1226 #endif /* INET6 */
1227
1228 int
1229 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1230 int off, void *h, struct pf_pdesc *pd)
1231 {
1232 struct pf_rule *r, *rm = NULL;
1233 struct tcphdr *th = pd->hdr.tcp;
1234 int rewrite = 0;
1235 u_short reason;
1236 u_int8_t flags;
1237 sa_family_t af = pd->af;
1238
1239 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1240 while (r != NULL) {
1241 r->evaluations++;
1242 if (r->kif != NULL &&
1243 (r->kif != kif && r->kif != kif->pfik_parent) == !r->ifnot)
1244 r = r->skip[PF_SKIP_IFP].ptr;
1245 else if (r->direction && r->direction != dir)
1246 r = r->skip[PF_SKIP_DIR].ptr;
1247 else if (r->af && r->af != af)
1248 r = r->skip[PF_SKIP_AF].ptr;
1249 else if (r->proto && r->proto != pd->proto)
1250 r = r->skip[PF_SKIP_PROTO].ptr;
1251 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, r->src.neg))
1252 r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1253 else if (r->src.port_op && !pf_match_port(r->src.port_op,
1254 r->src.port[0], r->src.port[1], th->th_sport))
1255 r = r->skip[PF_SKIP_SRC_PORT].ptr;
1256 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, r->dst.neg))
1257 r = r->skip[PF_SKIP_DST_ADDR].ptr;
1258 else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1259 r->dst.port[0], r->dst.port[1], th->th_dport))
1260 r = r->skip[PF_SKIP_DST_PORT].ptr;
1261 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1262 pf_osfp_fingerprint(pd, m, off, th),
1263 r->os_fingerprint))
1264 r = TAILQ_NEXT(r, entries);
1265 else {
1266 rm = r;
1267 break;
1268 }
1269 }
1270
1271 if (rm == NULL || rm->action == PF_NOSCRUB)
1272 return (PF_PASS);
1273 else
1274 r->packets++;
1275
1276 if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1277 pd->flags |= PFDESC_TCP_NORM;
1278
1279 flags = th->th_flags;
1280 if (flags & TH_SYN) {
1281 /* Illegal packet */
1282 if (flags & TH_RST)
1283 goto tcp_drop;
1284
1285 if (flags & TH_FIN)
1286 flags &= ~TH_FIN;
1287 } else {
1288 /* Illegal packet */
1289 if (!(flags & (TH_ACK|TH_RST)))
1290 goto tcp_drop;
1291 }
1292
1293 if (!(flags & TH_ACK)) {
1294 /* These flags are only valid if ACK is set */
1295 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1296 goto tcp_drop;
1297 }
1298
1299 /* Check for illegal header length */
1300 if (th->th_off < (sizeof(struct tcphdr) >> 2))
1301 goto tcp_drop;
1302
1303 /* If flags changed, or reserved data set, then adjust */
1304 if (flags != th->th_flags || th->th_x2 != 0) {
1305 u_int16_t ov, nv;
1306
1307 ov = *(u_int16_t *)(&th->th_ack + 1);
1308 th->th_flags = flags;
1309 th->th_x2 = 0;
1310 nv = *(u_int16_t *)(&th->th_ack + 1);
1311
1312 th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
1313 rewrite = 1;
1314 }
1315
1316 /* Remove urgent pointer, if TH_URG is not set */
1317 if (!(flags & TH_URG) && th->th_urp) {
1318 th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
1319 th->th_urp = 0;
1320 rewrite = 1;
1321 }
1322
1323 /* Process options */
1324 if (r->max_mss && pf_normalize_tcpopt(r, m, th, off))
1325 rewrite = 1;
1326
1327 /* copy back packet headers if we sanitized */
1328 if (rewrite)
1329 m_copyback(m, off, sizeof(*th), th);
1330
1331 return (PF_PASS);
1332
1333 tcp_drop:
1334 REASON_SET(&reason, PFRES_NORM);
1335 if (rm != NULL && r->log)
1336 PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL);
1337 return (PF_DROP);
1338 }
1339
1340 int
1341 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1342 struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1343 {
1344 u_int32_t tsval, tsecr;
1345 u_int8_t hdr[60];
1346 u_int8_t *opt;
1347
1348 KASSERT(src->scrub == NULL);
1349
1350 src->scrub = pool_get(&pf_state_scrub_pl, PR_NOWAIT);
1351 if (src->scrub == NULL)
1352 return (1);
1353 bzero(src->scrub, sizeof(*src->scrub));
1354
1355 switch (pd->af) {
1356 #ifdef INET
1357 case AF_INET: {
1358 struct ip *h = mtod(m, struct ip *);
1359 src->scrub->pfss_ttl = h->ip_ttl;
1360 break;
1361 }
1362 #endif /* INET */
1363 #ifdef INET6
1364 case AF_INET6: {
1365 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1366 src->scrub->pfss_ttl = h->ip6_hlim;
1367 break;
1368 }
1369 #endif /* INET6 */
1370 }
1371
1372
1373 /*
1374 * All normalizations below are only begun if we see the start of
1375 * the connections. They must all set an enabled bit in pfss_flags
1376 */
1377 if ((th->th_flags & TH_SYN) == 0)
1378 return (0);
1379
1380
1381 if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1382 pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1383 /* Diddle with TCP options */
1384 int hlen;
1385 opt = hdr + sizeof(struct tcphdr);
1386 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1387 while (hlen >= TCPOLEN_TIMESTAMP) {
1388 switch (*opt) {
1389 case TCPOPT_EOL: /* FALLTHROUGH */
1390 case TCPOPT_NOP:
1391 opt++;
1392 hlen--;
1393 break;
1394 case TCPOPT_TIMESTAMP:
1395 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1396 src->scrub->pfss_flags |=
1397 PFSS_TIMESTAMP;
1398 src->scrub->pfss_ts_mod =
1399 htonl(arc4random());
1400
1401 /* note PFSS_PAWS not set yet */
1402 memcpy(&tsval, &opt[2],
1403 sizeof(u_int32_t));
1404 memcpy(&tsecr, &opt[6],
1405 sizeof(u_int32_t));
1406 src->scrub->pfss_tsval0 = ntohl(tsval);
1407 src->scrub->pfss_tsval = ntohl(tsval);
1408 src->scrub->pfss_tsecr = ntohl(tsecr);
1409 getmicrouptime(&src->scrub->pfss_last);
1410 }
1411 /* FALLTHROUGH */
1412 default:
1413 hlen -= MAX(opt[1], 2);
1414 opt += MAX(opt[1], 2);
1415 break;
1416 }
1417 }
1418 }
1419
1420 return (0);
1421 }
1422
1423 void
1424 pf_normalize_tcp_cleanup(struct pf_state *state)
1425 {
1426 if (state->src.scrub)
1427 pool_put(&pf_state_scrub_pl, state->src.scrub);
1428 if (state->dst.scrub)
1429 pool_put(&pf_state_scrub_pl, state->dst.scrub);
1430
1431 /* Someday... flush the TCP segment reassembly descriptors. */
1432 }
1433
1434 int
1435 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1436 u_short *reason, struct tcphdr *th, struct pf_state *state,
1437 struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1438 {
1439 struct timeval uptime;
1440 u_int32_t tsval, tsecr;
1441 u_int tsval_from_last;
1442 u_int8_t hdr[60];
1443 u_int8_t *opt;
1444 int copyback = 0;
1445 int got_ts = 0;
1446
1447 KASSERT(src->scrub || dst->scrub);
1448
1449 /*
1450 * Enforce the minimum TTL seen for this connection. Negate a common
1451 * technique to evade an intrusion detection system and confuse
1452 * firewall state code.
1453 */
1454 switch (pd->af) {
1455 #ifdef INET
1456 case AF_INET: {
1457 if (src->scrub) {
1458 struct ip *h = mtod(m, struct ip *);
1459 if (h->ip_ttl > src->scrub->pfss_ttl)
1460 src->scrub->pfss_ttl = h->ip_ttl;
1461 h->ip_ttl = src->scrub->pfss_ttl;
1462 }
1463 break;
1464 }
1465 #endif /* INET */
1466 #ifdef INET6
1467 case AF_INET6: {
1468 if (src->scrub) {
1469 struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1470 if (h->ip6_hlim > src->scrub->pfss_ttl)
1471 src->scrub->pfss_ttl = h->ip6_hlim;
1472 h->ip6_hlim = src->scrub->pfss_ttl;
1473 }
1474 break;
1475 }
1476 #endif /* INET6 */
1477 }
1478
1479 if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1480 ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1481 (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1482 pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1483 /* Diddle with TCP options */
1484 int hlen;
1485 opt = hdr + sizeof(struct tcphdr);
1486 hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1487 while (hlen >= TCPOLEN_TIMESTAMP) {
1488 switch (*opt) {
1489 case TCPOPT_EOL: /* FALLTHROUGH */
1490 case TCPOPT_NOP:
1491 opt++;
1492 hlen--;
1493 break;
1494 case TCPOPT_TIMESTAMP:
1495 /* Modulate the timestamps. Can be used for
1496 * NAT detection, OS uptime determination or
1497 * reboot detection.
1498 */
1499
1500 if (got_ts) {
1501 /* Huh? Multiple timestamps!? */
1502 if (pf_status.debug >= PF_DEBUG_MISC) {
1503 DPFPRINTF(("multiple TS??"));
1504 pf_print_state(state);
1505 printf("\n");
1506 }
1507 REASON_SET(reason, PFRES_TS);
1508 return (PF_DROP);
1509 }
1510 if (opt[1] >= TCPOLEN_TIMESTAMP) {
1511 memcpy(&tsval, &opt[2],
1512 sizeof(u_int32_t));
1513 if (tsval && src->scrub &&
1514 (src->scrub->pfss_flags &
1515 PFSS_TIMESTAMP)) {
1516 tsval = ntohl(tsval);
1517 pf_change_a(&opt[2],
1518 &th->th_sum,
1519 htonl(tsval +
1520 src->scrub->pfss_ts_mod),
1521 0);
1522 copyback = 1;
1523 }
1524
1525 /* Modulate TS reply iff valid (!0) */
1526 memcpy(&tsecr, &opt[6],
1527 sizeof(u_int32_t));
1528 if (tsecr && dst->scrub &&
1529 (dst->scrub->pfss_flags &
1530 PFSS_TIMESTAMP)) {
1531 tsecr = ntohl(tsecr)
1532 - dst->scrub->pfss_ts_mod;
1533 pf_change_a(&opt[6],
1534 &th->th_sum, htonl(tsecr),
1535 0);
1536 copyback = 1;
1537 }
1538 got_ts = 1;
1539 }
1540 /* FALLTHROUGH */
1541 default:
1542 hlen -= MAX(opt[1], 2);
1543 opt += MAX(opt[1], 2);
1544 break;
1545 }
1546 }
1547 if (copyback) {
1548 /* Copyback the options, caller copys back header */
1549 *writeback = 1;
1550 m_copyback(m, off + sizeof(struct tcphdr),
1551 (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1552 sizeof(struct tcphdr));
1553 }
1554 }
1555
1556
1557 /*
1558 * Must invalidate PAWS checks on connections idle for too long.
1559 * The fastest allowed timestamp clock is 1ms. That turns out to
1560 * be about 24 days before it wraps. XXX Right now our lowerbound
1561 * TS echo check only works for the first 12 days of a connection
1562 * when the TS has exhausted half its 32bit space
1563 */
1564 #define TS_MAX_IDLE (24*24*60*60)
1565 #define TS_MAX_CONN (12*24*60*60) /* XXX remove when better tsecr check */
1566
1567 getmicrouptime(&uptime);
1568 if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1569 (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1570 time_second - state->creation > TS_MAX_CONN)) {
1571 if (pf_status.debug >= PF_DEBUG_MISC) {
1572 DPFPRINTF(("src idled out of PAWS\n"));
1573 pf_print_state(state);
1574 printf("\n");
1575 }
1576 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1577 | PFSS_PAWS_IDLED;
1578 }
1579 if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1580 uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1581 if (pf_status.debug >= PF_DEBUG_MISC) {
1582 DPFPRINTF(("dst idled out of PAWS\n"));
1583 pf_print_state(state);
1584 printf("\n");
1585 }
1586 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1587 | PFSS_PAWS_IDLED;
1588 }
1589
1590 if (got_ts && src->scrub && dst->scrub &&
1591 (src->scrub->pfss_flags & PFSS_PAWS) &&
1592 (dst->scrub->pfss_flags & PFSS_PAWS)) {
1593 /* Validate that the timestamps are "in-window".
1594 * RFC1323 describes TCP Timestamp options that allow
1595 * measurement of RTT (round trip time) and PAWS
1596 * (protection against wrapped sequence numbers). PAWS
1597 * gives us a set of rules for rejecting packets on
1598 * long fat pipes (packets that were somehow delayed
1599 * in transit longer than the time it took to send the
1600 * full TCP sequence space of 4Gb). We can use these
1601 * rules and infer a few others that will let us treat
1602 * the 32bit timestamp and the 32bit echoed timestamp
1603 * as sequence numbers to prevent a blind attacker from
1604 * inserting packets into a connection.
1605 *
1606 * RFC1323 tells us:
1607 * - The timestamp on this packet must be greater than
1608 * or equal to the last value echoed by the other
1609 * endpoint. The RFC says those will be discarded
1610 * since it is a dup that has already been acked.
1611 * This gives us a lowerbound on the timestamp.
1612 * timestamp >= other last echoed timestamp
1613 * - The timestamp will be less than or equal to
1614 * the last timestamp plus the time between the
1615 * last packet and now. The RFC defines the max
1616 * clock rate as 1ms. We will allow clocks to be
1617 * up to 10% fast and will allow a total difference
1618 * or 30 seconds due to a route change. And this
1619 * gives us an upperbound on the timestamp.
1620 * timestamp <= last timestamp + max ticks
1621 * We have to be careful here. Windows will send an
1622 * initial timestamp of zero and then initialize it
1623 * to a random value after the 3whs; presumably to
1624 * avoid a DoS by having to call an expensive RNG
1625 * during a SYN flood. Proof MS has at least one
1626 * good security geek.
1627 *
1628 * - The TCP timestamp option must also echo the other
1629 * endpoints timestamp. The timestamp echoed is the
1630 * one carried on the earliest unacknowledged segment
1631 * on the left edge of the sequence window. The RFC
1632 * states that the host will reject any echoed
1633 * timestamps that were larger than any ever sent.
1634 * This gives us an upperbound on the TS echo.
1635 * tescr <= largest_tsval
1636 * - The lowerbound on the TS echo is a little more
1637 * tricky to determine. The other endpoint's echoed
1638 * values will not decrease. But there may be
1639 * network conditions that re-order packets and
1640 * cause our view of them to decrease. For now the
1641 * only lowerbound we can safely determine is that
1642 * the TS echo will never be less than the orginal
1643 * TS. XXX There is probably a better lowerbound.
1644 * Remove TS_MAX_CONN with better lowerbound check.
1645 * tescr >= other original TS
1646 *
1647 * It is also important to note that the fastest
1648 * timestamp clock of 1ms will wrap its 32bit space in
1649 * 24 days. So we just disable TS checking after 24
1650 * days of idle time. We actually must use a 12d
1651 * connection limit until we can come up with a better
1652 * lowerbound to the TS echo check.
1653 */
1654 struct timeval delta_ts;
1655 int ts_fudge;
1656
1657
1658 /*
1659 * PFTM_TS_DIFF is how many seconds of leeway to allow
1660 * a host's timestamp. This can happen if the previous
1661 * packet got delayed in transit for much longer than
1662 * this packet.
1663 */
1664 if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1665 ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
1666
1667
1668 /* Calculate max ticks since the last timestamp */
1669 #define TS_MAXFREQ 1100 /* RFC max TS freq of 1Khz + 10% skew */
1670 #define TS_MICROSECS 1000000 /* microseconds per second */
1671 timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
1672 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1673 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1674
1675
1676 if ((src->state >= TCPS_ESTABLISHED &&
1677 dst->state >= TCPS_ESTABLISHED) &&
1678 (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1679 SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1680 (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1681 SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1682 /* Bad RFC1323 implementation or an insertion attack.
1683 *
1684 * - Solaris 2.6 and 2.7 are known to send another ACK
1685 * after the FIN,FIN|ACK,ACK closing that carries
1686 * an old timestamp.
1687 */
1688
1689 DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1690 SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1691 SEQ_GT(tsval, src->scrub->pfss_tsval +
1692 tsval_from_last) ? '1' : ' ',
1693 SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1694 SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1695 DPFPRINTF((" tsval: %" PRIu32 " tsecr: %" PRIu32
1696 " +ticks: %" PRIu32 " idle: %lus %lums\n",
1697 tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
1698 delta_ts.tv_usec / 1000));
1699 DPFPRINTF((" src->tsval: %" PRIu32 " tsecr: %" PRIu32
1700 "\n",
1701 src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1702 DPFPRINTF((" dst->tsval: %" PRIu32 " tsecr: %" PRIu32
1703 " tsval0: %" PRIu32 "\n",
1704 dst->scrub->pfss_tsval,
1705 dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1706 if (pf_status.debug >= PF_DEBUG_MISC) {
1707 pf_print_state(state);
1708 pf_print_flags(th->th_flags);
1709 printf("\n");
1710 }
1711 REASON_SET(reason, PFRES_TS);
1712 return (PF_DROP);
1713 }
1714
1715 /* XXX I'd really like to require tsecr but it's optional */
1716
1717 } else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1718 ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1719 || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1720 src->scrub && dst->scrub &&
1721 (src->scrub->pfss_flags & PFSS_PAWS) &&
1722 (dst->scrub->pfss_flags & PFSS_PAWS)) {
1723 /* Didn't send a timestamp. Timestamps aren't really useful
1724 * when:
1725 * - connection opening or closing (often not even sent).
1726 * but we must not let an attacker to put a FIN on a
1727 * data packet to sneak it through our ESTABLISHED check.
1728 * - on a TCP reset. RFC suggests not even looking at TS.
1729 * - on an empty ACK. The TS will not be echoed so it will
1730 * probably not help keep the RTT calculation in sync and
1731 * there isn't as much danger when the sequence numbers
1732 * got wrapped. So some stacks don't include TS on empty
1733 * ACKs :-(
1734 *
1735 * To minimize the disruption to mostly RFC1323 conformant
1736 * stacks, we will only require timestamps on data packets.
1737 *
1738 * And what do ya know, we cannot require timestamps on data
1739 * packets. There appear to be devices that do legitimate
1740 * TCP connection hijacking. There are HTTP devices that allow
1741 * a 3whs (with timestamps) and then buffer the HTTP request.
1742 * If the intermediate device has the HTTP response cache, it
1743 * will spoof the response but not bother timestamping its
1744 * packets. So we can look for the presence of a timestamp in
1745 * the first data packet and if there, require it in all future
1746 * packets.
1747 */
1748
1749 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1750 /*
1751 * Hey! Someone tried to sneak a packet in. Or the
1752 * stack changed its RFC1323 behavior?!?!
1753 */
1754 if (pf_status.debug >= PF_DEBUG_MISC) {
1755 DPFPRINTF(("Did not receive expected RFC1323 "
1756 "timestamp\n"));
1757 pf_print_state(state);
1758 pf_print_flags(th->th_flags);
1759 printf("\n");
1760 }
1761 REASON_SET(reason, PFRES_TS);
1762 return (PF_DROP);
1763 }
1764 }
1765
1766
1767 /*
1768 * We will note if a host sends his data packets with or without
1769 * timestamps. And require all data packets to contain a timestamp
1770 * if the first does. PAWS implicitly requires that all data packets be
1771 * timestamped. But I think there are middle-man devices that hijack
1772 * TCP streams immedietly after the 3whs and don't timestamp their
1773 * packets (seen in a WWW accelerator or cache).
1774 */
1775 if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1776 (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1777 if (got_ts)
1778 src->scrub->pfss_flags |= PFSS_DATA_TS;
1779 else {
1780 src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1781 if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1782 (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1783 /* Don't warn if other host rejected RFC1323 */
1784 DPFPRINTF(("Broken RFC1323 stack did not "
1785 "timestamp data packet. Disabled PAWS "
1786 "security.\n"));
1787 pf_print_state(state);
1788 pf_print_flags(th->th_flags);
1789 printf("\n");
1790 }
1791 }
1792 }
1793
1794
1795 /*
1796 * Update PAWS values
1797 */
1798 if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1799 (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1800 getmicrouptime(&src->scrub->pfss_last);
1801 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1802 (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1803 src->scrub->pfss_tsval = tsval;
1804
1805 if (tsecr) {
1806 if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1807 (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1808 src->scrub->pfss_tsecr = tsecr;
1809
1810 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1811 (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1812 src->scrub->pfss_tsval0 == 0)) {
1813 /* tsval0 MUST be the lowest timestamp */
1814 src->scrub->pfss_tsval0 = tsval;
1815 }
1816
1817 /* Only fully initialized after a TS gets echoed */
1818 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1819 src->scrub->pfss_flags |= PFSS_PAWS;
1820 }
1821 }
1822
1823 /* I have a dream.... TCP segment reassembly.... */
1824 return (0);
1825 }
1826
1827 int
1828 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1829 int off)
1830 {
1831 u_int16_t *mss;
1832 int thoff;
1833 int opt, cnt, optlen = 0;
1834 int rewrite = 0;
1835 u_char *optp;
1836
1837 thoff = th->th_off << 2;
1838 cnt = thoff - sizeof(struct tcphdr);
1839 optp = mtod(m, caddr_t) + off + sizeof(struct tcphdr);
1840
1841 for (; cnt > 0; cnt -= optlen, optp += optlen) {
1842 opt = optp[0];
1843 if (opt == TCPOPT_EOL)
1844 break;
1845 if (opt == TCPOPT_NOP)
1846 optlen = 1;
1847 else {
1848 if (cnt < 2)
1849 break;
1850 optlen = optp[1];
1851 if (optlen < 2 || optlen > cnt)
1852 break;
1853 }
1854 switch (opt) {
1855 case TCPOPT_MAXSEG:
1856 mss = (u_int16_t *)(optp + 2);
1857 if ((ntohs(*mss)) > r->max_mss) {
1858 th->th_sum = pf_cksum_fixup(th->th_sum,
1859 *mss, htons(r->max_mss), 0);
1860 *mss = htons(r->max_mss);
1861 rewrite = 1;
1862 }
1863 break;
1864 default:
1865 break;
1866 }
1867 }
1868
1869 return (rewrite);
1870 }
1871